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Abstract
Consider a class of discrete probability distributions with a limited support. A typical
example of such support is some variant of a Likert scale, with a response mapped
to either the {1, 2, . . . , 5} or {−3,−2, . . . , 2, 3} set. Such type of data is common for
Multimedia Quality Assessment but can also be found in many other research fields.
For modelling such data a latent variable approach is usually used (e.g., Ordered
Probit). In many cases it is convenient or even necessary to avoid latent variable
approach (e.g., when dealing with too small sample size). To avoid it the proper class
of discrete distributions is needed. The main idea of this paper is to propose a family
of discrete probability distributions with only two parameters that play the same role
as the parameters of the normal distribution. We call the new class the Generalised
Score Distribution (GSD). The proposed GSD class covers the entire set of possible
means and variances, for any fixed and finite support. Furthermore, the GSD class
can be treated as an underdispersed continuation of a reparametrized beta-binomial
distribution. The GSD class parameters are intuitive and can be easily estimated by
the method of moments. We also offer a Maximum Likelihood Estimation (MLE)
algorithm for the GSD class and evidence that the class properly describes response
distributions coming from 24 Multimedia Quality Assessment experiments. At last,
we show that the GSD class can be represented as a sum of dichotomous zero–one
random variables, which points to an interesting interpretation of the class.
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1 Introduction

A Likert scale is used in numerous research fields, like psychology, medicine, or
quality of experience (Liddell and Kruschke 2018; Pinson and Janowski 2014), to
name a few. Responses given to questions using a Likert scale are ordinal, but in
practice they are often analysed as data coming from an interval scale. There is even a
fairly common approach of ignoring the fact that data are discrete and treating them as
if they come from a continuous, usually normal, distribution (ITU-R 2019). The reason
why ordinal responses are converted to an interval scale is that proper latent variable
models, like ordered logit or ordered probit [see McCullagh and Nelder (1989)], are
too complicated for studies with relatively few responses per hidden variable. The
parameters in hidden variable models are difficult to interpret and in the case of small
sample sizes, it is impossible to estimate them properly.

The main idea of this paper is to propose a family of discrete probability distri-
butions that is able to model responses gathered in Multimedia Quality Assessment
(MQA)1 subjective experiments, and we believe it can be used in other fields. InMQA
the distribution of responses is often (but not exclusively) uderdispersed (i.e., having
variance lower than that of the binomial distribution) and practitioners analysing these
data need a model intuitively conveying response distribution characteristics. We put
forward a solution avoiding the difficulties inherent to treating ordinal responses as
though they are expressed on an interval scale and, at the same time, offer a model
with only two parameters (to sidestep overparameterisation challenges). We find our
solution attractive to practitioners, who want to use relatively simple but mathemati-
cally correct tools. We call our proposed family of distributions a Generalised Score
Distribution class (GSD). It is a two-parameter family of discrete distributions on the
set {1, . . . , M}, M ∈ N\{1, 2}. Because of its convenient parameterisation, the class
does a similar job to what the normal distribution class does for the continuous case.
The first parameter ψ ∈ [1, M] is (as in the case of the normal distribution class)
the expected value. We would like the second parameter of the GSD class to play the
same role as the second parameter of the normal distribution class. Unfortunately, for
discrete distributions defined on the set {1, . . . , M}, the range of all possible variances
is changing with ψ . Therefore, the second parameter ρ ∈ [0, 1] (also referred to as
dispersion parameter or confidence parameter) of the GSD class is a linear function
of variance, with the value range equal to the interval [0, 1] for every ψ . To the best
of our knowledge, the convenient parameterisation of the GSD class is unique, com-
pared to other discrete distributions. It allows us to look at the parameters describing
the expected value and variance independently, as one can do in the case of the normal
distribution class. In other words, shifting the expected value parameter (ψ), does not
change the dispersion parameter (ρ). Likewise, changing the dispersion parameter (ρ),
does not influence the expected value parameter (ψ). The GSD class covers all possi-
ble first- and second-order moments for discrete distributions defined on {1, . . . , M}.
It also offers explicit formulae for probabilities without the use of special functions
and thus explicit formulae for the derivatives of its log-likelihood function. Therefore,
we believe that the GSD can be used outside of the field of MQA.

1 Video Quality Assessment (VQA) mentioned previously is a sub-field of MQA.
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The problem of generalising the binomial distribution to overdispersed and under-
dispersed data is known andwidely considered in literature. The natural generalisation
of the binomial distribution for overdispersed data is the beta-binomial distribution. It
provides simple formulae for probabilities and derivatives of its log-likelihood func-
tion. Furthermore, there are available ready-to-use algorithms for the estimation of its
parameters (see Griffiths (1973)). One can also find applications of the beta-binomial
distribution when dealing with overdispersed data (see e.g. Gange et al. (1996)). In
Prentice (1986) the method for extending the beta-binomial distribution for underdis-
persed data is proposed. Unfortunately, this method does not provide a distribution that
covers all possible variances. For any fixed mean value, it stops at some variance and
cannot go lower (see Fig. 2). Thus, the data that are strongly underdispersed cannot
be modelled in such a way. In this paper, we propose a different way of extending
the beta-binomial distribution. Our solution allows to obtain all possible variances for
a discrete distribution defined on {1, . . . , M}. Our method also provides a reparam-
eterisation to obtain easy to interpret parameters ψ (mean value) and ρ (confidence
level linearly dependent on variance). The GSD class can be also represented as a
sum of dichotomous zero–one random variables (see Proposition 4), which gives an
interesting interpretation of that class.

This paper provides estimation and test of goodness-of-fit algorithms for the GSD
class. We analyse the algorithms performance through an extensive simulation study.
We also use six Multimedia Quality Assessment (MQA) databases (amounting to
more than 100,000 individual responses) to provide evidence that the proposed class
is a useful analytical tool that can be used in practice. It is worth mentioning that we
already proposed in the past a tool based on the GSD class. The tool extends possible
ways to validate data consistency of responses obtained during a MQA subjective
experiment (Nawała et al. 2020). Importantly, our work was noticed by practitioners
in the MQA field and referred to in Chinen et al. (2021), Chinen (2021), and Hoßfeld
et al. (2021).

The GSD class we propose can be used for modelling survey responses expressed
on a Likert scale as well. For example, in Alwin et al. (2018) the authors consider the
impact of the number of response categories on the reliability of the measurements.
In the theorised response generation model (provided in equation (1) of Alwin et al.
(2018)), one can use the GSD class to model the random error. This approach would
then allow to estimate the latent unobserved true response. The same method can also
be used, for example, in Malott et al. (2017), where the problem of measuring patient
experience in hospitals is considered.

We claim that the GSD class properly describes responses from MQA subjective
experiments. We also state that the GSD class estimates well response distributions
even for samples of small size (i.e., sample sizes conventionally used in MQA exper-
iments). At last, we argue that the GSD class describes response distributions using
easy to interpret and easy to estimate parameters. To substantiate our claims, in this
work we present the following contributions:

• We offer the GSD family of distributions (also referred to as the GSD class) that:

1. covers all possible first- and second-order moments for a distribution defined
on a discrete finite support,

123
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2. extends binomial distribution to cover all underdispersed and overdispersed
data, and

3. uses parameterisation similar to normal distribution’s parameterisation.

• We evidence that the GSD family of distributions can be represented as a sum of
dichotomous zero–one random variables.

• We show a Maximum Likelihood Estimation (MLE) algorithm for the GSD class.
• We indicate through goodness-of-fit testing that the GSD class well describes
responses fromMQA subjective experiments (in contrast to other commonly used
modelling approaches).

• We reveal that based on samples of small size, the GSD class better forecasts a
response distribution for a sample of larger size, in comparison to the empirical
distribution.

The paper is structured as follows. In Sect. 2, we describe the proposed GSD family
of distributions and compare it with the Ordered Probit model. Section3 introduces
the maximum likelihood estimation for the GSD class. It also considers the numerical
accuracy of the estimation method we use. (Numerical accuracy was also examined
in multidimensional case in Appendix E.) Sect. 4 presents the analyses performed on
real data sets of responses from sixMQA studies. The last section concludes the paper.
All proves and additional formulae can be found in Appendices.

2 Model description

Assuming that we use an M-point discrete scale, a random variable U (describing a
subjective response) has a distribution given by:

P(U = s) = ps, where
M∑

s=1

ps = 1 (1)

Such a description of a response distribution is general but hasM−1 different parame-
ters. There areM−1of them, since there areM probabilities this distribution describes.
In general, we can describe a subjective response as a function:

U = ψ + ε, (2)

where ψ is the expected value (referred to as true quality2 in the context of MQA
research) and ε is an error term with the mean value equal to zero. An algorithm
predicting stimulus quality (or any other subjectively judged trait) should aim at esti-
mating ψ . Still, the error distribution is important and should be modelled. The error
term represents the precision of ψ estimation. It is desirable that the error term (repre-
sented by ε) should not be too complicated. Therefore, we would like to use a model
in which the error is described by a single parameter. (Please note that in Appendix E

2 Our notation convention generally follows the guidelines of VQEG (Video Quality Expert Group),
described in Janowski et al. (2019).
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we also consider a multidimensional version of subjective responses with m quality
parameters and n error parameters.)

2.1 Ordered probit with fixed thresholds

The models proposed by Janowski and Pinson (2015) and Li and Bampis (2017)
describe subjective responses as following a continuous normal distribution with cer-
tain meanμ, which is assumed to represent the latent stimulus quality (also referred to
as true quality), and standard deviation σ , describing the error. Therefore, subjective
response O ∼ N (μ, σ 2). Since in MQA experiments subjective responses are often
expressed on a discrete scale, we cannot directly observe O . To convert the continuous
form of a response to a discrete one, discretisation and censoring (clipping) are nec-
essary. This process converts a continuous random variable O to a discrete variable
U . We can calculate each response category probability (i.e., U distribution), as a
function of μ and σ using the following equations:

P(U = s) =
∫ s+0.5

s−0.5

1√
2πσ

e− (x−μ)2

2σ2 dx (3)

for s = {2, 3, . . . , M − 1} and

P(U = 1) =
∫ 1.5

−∞
1√
2πσ

e− (x−μ)2

2σ2 dx,

P(U = M) =
∫ ∞

M−0.5

1√
2πσ

e− (x−μ)2

2σ2 dx . (4)

Note that the definition of true quality μ is model dependent here. This is a flaw of
this approach. It is also worth mentioning that μ = E(O) can be completely different
from ψ = E(U ). The latter is a natural and model-independent parameter defining
the true quality (for possible differences between E(O) and E(U ) see Fig. 1).

Fig. 1 The difference between
E(U ) and μ (the ordered probit
parameter) for M = 5 and
different σ
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It is obvious that E(O) ∈ (−∞,∞) and E(U ) ∈ [1, M] have to be different.
However, even forE(O) ∈ [1, M] the differences are considerable. The other problem,
especially from the numerical estimation point of view, is the unbounded parameter
set (μ, σ ) ∈ (−∞,∞)× (0,∞). In Fig. 6 one can see how parameters (μ, σ ) map to
(E(U ), V(U )) after discretisation, for the case M = 5. This figure and the lack of an
inverse formula for calculating (μ, σ ) having (E(U ), V(U )), make it clear that this
approach (referred to in the literature as ordered probit (Becker and Kennedy 1992))
may prove problematic if the moments-based estimation would be used. Likewise, it
may be challenging to find a starting point for numerical estimation methods.

2.2 GSD

An example of a discrete distribution that is described by two parameters is the
beta-binomial distribution (Coombes 2018). The smallest variance the beta-binomial
distribution can express is binomial distribution’s variance. It is a strong limitation.
For example, in the case of MQA subjective experiments for video, in Hossfeld et al.
(2018) it is suggested that the binomial distribution has the highest possible variance
for a correctly conducted subjective experiment. Differently put, most MQA subjec-
tive experiments yield data with response distributions having the variance lower than
that of the binomial distribution. Therefore, we need a different distribution, covering
the whole spectrum of possible variances. This is especially true for underdispersed
probability distributions (i.e., distributions with the variance lower than that of the
binomial distribution; see Fig. 2).

2.2.1 GSD construction and definition

Let us start with the equation describing subjective responses

U = ψ + ε, (5)

where ε is an errorwithmeanvalue equal to 0. SinceU belongs to the set {1, 2, . . . , M},
then the distribution of ε has to be supported on the set 1− ψ , 2− ψ ,…, M − ψ . Let
us consider the shifted binomial distribution for ε:

P(ε = k − ψ) =
(
M − 1

k − 1

) (
ψ − 1

M − 1

)k−1 (
M − ψ

M − 1

)M−k

,

where k ∈ {1, . . . , M} represents the response categories, from which subjective
experiment participants (also referred to as subjects or raters) can choose from.

Since the support of this distribution and the mean value are fixed, we obtain a
fixed shifted binomial distribution without any freedom. However, we would like to
have a class of distributions for ε with all possible variances V(ε) = V(U ). Let us
think about how the set of all possible variances, for all distributions supported on the
set 1 − ψ , 2 − ψ ,…, M − ψ , looks like. Remember that the mean values for such
distributions are fixed at 0 (since they describe the error term). This is why the set of
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Fig. 2 Area of all possible (E(U ), V(U )) for discrete distributions on {1, . . . , M} for M = 5. The area is
divided into different parts covered by two-parameter discrete models: the beta-binomial distribution (green
crosses), extended beta-binomial distribution (previous + blue vertical hatching), and our solution (covers
all possible values including the area marked with red dots)

all possible variances depends on ψ . If we denote by Vmin(ψ), Vmax(ψ) the minimal
and maximal possible variance, respectively, then

Vmin(ψ) = (�ψ� − ψ)(ψ − �ψ	), (6)

Vmax(ψ) = (ψ − 1)(M − ψ), (7)

and the interval [Vmin(ψ), Vmax(ψ)] is the set of all possible variances. Notice that
the interval [Vmin(ψ), Vmax(ψ)] is the biggest for ψ = (M + 1)/2 and if ψ is not an
integer, then Vmin(ψ) > 0. Let us return to the shifted binomial distribution. It is easy
to calculate that its variance is equal to:

VBin(ψ) := Vmax(ψ)

M − 1
. (8)

The question is how to obtain from this shifted binomial distribution a class of distri-
butions that covers the whole interval of variances [Vmin(ψ), Vmax(ψ)] for any ψ (see
Fig. 2).

We would like to obtain this class by:

• adding only a single normalised parameter ρ ∈ [0, 1],
• making variance of the error to be linearly dependent on ρ and
• requiring that variance is a decreasing function of ρ (this way we could interpret

ρ as a confidence parameter; see Fig. 4).

Let us denote by Hρ the distribution of the error fulfilling the above conditions.
Since the variance of the error is linearly dependent on ρ and decreasing, then it has
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to be equal to
VHρ (ε) = ρVmin(ψ) + (1 − ρ)Vmax(ψ). (9)

Using formulae (8) and (9) we can calculate

VHρ (ε) = VBin(ψ) ⇔ ρ = C(ψ) := M − 2

M − 1

Vmax(ψ)

Vmax(ψ) − Vmin(ψ)
, (10)

which gives us the value of ρ corresponding to a shifted binomial distribution. We
have

VHρ (ε) ∈ [Vmin(ψ), VBin(ψ)] ⇔ ρ ∈ [C(ψ), 1],

which corresponds to the red coloured dots and blue vertical hatching in Fig. 2, and

VHρ (ε) ∈ [VBin(ψ), Vmax(ψ)] ⇔ ρ ∈ [0,C(ψ)],

which corresponds to the green coloured area in Fig. 2.
For variances bigger than VBin(ψ) (the green coloured area in Fig. 2) we use the

reparameterised beta binomial distribution. Since the mean value is fixed, we only
have one free parameter ρ ∈ [0,C(ψ)]. The effect of such reparameterization gives
us the distribution denoted by Gρ :

PGρ (ε = k − ψ)

=
(
M − 1

k − 1

)
k−2∏
i=0

(
(ψ−1)ρ
(M−1) + i(C(ψ) − ρ)

) M−k−1∏
j=0

(
(M−ψ)ρ
(M−1) + j(C(ψ) − ρ)

)

M−2∏
i=0

(ρ + i(C(ψ) − ρ))

, (11)

where ρ ∈ [0,C(ψ)] and k ∈ {1, . . . , M}. The above formula can be rewritten as

PGρ (ε = k − ψ)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M−ψ
M−1

M−2∏
i=1

(M−ψ)ρ
(M−1) +i(C(ψ)−ρ)

ρ+i(C(ψ)−ρ)
for k = 1

(M−1
k−1

) (ψ−1)(M−ψ)ρ

(M−1)2

k−2∏
i=1

(
(ψ−1)ρ
(M−1) +i(C(ψ)−ρ)

) M−k−1∏
j=1

(
(M−ψ)ρ
(M−1) + j(C(ψ)−ρ)

)

M−2∏
i=1

(ρ+i(C(ψ)−ρ))

for

k = 2, . . . , M − 1

ψ−1
M−1

M−2∏
i=1

(ψ−1)ρ
(M−1) +i(C(ψ)−ρ)

ρ+i(C(ψ)−ρ)
for k = M

(12)
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Therefore, for ρ = 0 we obtain

PG0(ε = k − ψ) =

⎧
⎪⎨

⎪⎩

M−ψ
M−1 for k = 1

0 for k = 2, . . . , M − 1
ψ−1
M−1 for k = M

Proposition 1 If ε has Gρ distribution for fixed ψ ∈ [1, M] and ρ ∈ [0,C(ψ)], then

E(U ) = ψ, V(U ) = ρVmin(ψ) + (1 − ρ)Vmax(ψ), V(U ) ∈ [VBin(ψ), Vmax(ψ)],

where U = ψ + ε is supported on {1, . . . , M}.
The proof of Proposition 1 can be found in Appendix A.

Remark 1 Notice that for ρ → 0 the Gρ distribution approaches a two-point distribu-
tion supported on {1−ψ, M−ψ}, with the biggest possible variance equal to Vmax(ψ).
For ρ → C(ψ) the Gρ distribution approaches the shifted binomial distribution, with
variance equal to VBin(ψ).

For variances smaller than VBin(ψ) (cf. the blue vertical hatching and red coloured
dots in Fig. 2) we use a mixture technique. Specifically, we take a mixture of the
shifted binomial distribution and the distribution with the smallest possible variance
(i.e., a two-point or one-point distribution, depending on ψ). Of course, the mixture
parameter has to be reparameterised to fit the [C(ψ), 1] interval. The effect of such
reparameterisation gives us the distribution denoted by Fρ :

PFρ (ε = k − ψ)

= ρ − C(ψ)

1 − C(ψ)
[1 − |k − ψ |]+ + 1 − ρ

1 − C(ψ)

(
M − 1

k − 1

) (
ψ − 1

M − 1

)k−1 (
M − ψ

M − 1

)M−k

,

(13)

where ρ ∈ [C(ψ), 1], [x]+ = max(x, 0) and k ∈ {1, . . . , M}.
Proposition 2 If ε has Fρ distribution for fixed ψ ∈ [1, M] and ρ ∈ [C(ψ), 1], then

E(U ) = ψ, V(U ) = ρVmin(ψ) + (1 − ρ)Vmax(ψ), V(U ) ∈ [Vmin(ψ), VBin(ψ)],

where U = ψ + ε is supported on {1, . . . , M}.
The proof of Proposition 2 can be found in Appendix A.

Remark 2 Notice that for ρ → C(ψ) the distribution Fρ approaches the shifted bino-
mial distribution with variance equal to VBin(ψ). For ρ → 1 the distribution Fρ

approaches a two-point or one-point distribution (depending on ψ), with the smallest
possible variance equal to Vmin(ψ).

Finally, we obtain the distribution:

Hρ = Gρ I (ρ < C(ψ)) + Fρ I (ρ ≥ C(ψ)).
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Definition 1 If ε has Hρ distribution for fixed ψ ∈ [1, M] and ρ ∈ [0, 1], then we say
that U = ψ + ε has the GSD(ψ, ρ) distribution, where ψ is the expected value and
ρ ∈ [0, 1] is a confidence parameter, linearly dependent on the variance, i.e.,

ρ = Vmax(ψ) − V(U )

Vmax(ψ) − Vmin(ψ)

Proposition 3 If U supported on {1, . . . , M} has the GSD(ψ, ρ) distribution for ψ ∈
[1, M] and ρ ∈ [0, 1], then

E(U ) = ψ, V(U ) = ρVmin(ψ) + (1 − ρ)Vmax(ψ), V(U ) ∈ [Vmin(ψ), Vmax(ψ)].

The proof of Proposition 3 is an obvious consequence of Propositions 1 and 2.
In the following proposition, we show that our GSD class can be looked at from an

interesting angle. The GSD class can be represented as a distribution of the number
of successes in a sequence of M − 1 experiments.

Proposition 4 GSD distribution can be represented as a sum of dichotomous zero–one

random variables. Specifically, U = 1 +
M−1∑
i=1

Zi has the GSD(ψ, ρ) distribution if:

(a) in the case of ρ ≥ C(ψ), Z1, . . . , ZM−1 are zero–one independent random vari-
ables and

P(Zi = 1) = φψ,ρ(i),

where (see Fig. 3)

φψ,ρ(x) =

⎧
⎪⎨

⎪⎩

ρ−C(ψ)
1−C(ψ)

+ (1−ρ)(ψ−1)
(1−C(ψ))(M−1) for x ≤ ψ − 1

ρ−C(ψ)
1−C(ψ)

(ψ − x) + (1−ρ)(ψ−1)
(1−C(ψ))(M−1) for x ∈ (ψ − 1, ψ]

(1−ρ)(ψ−1)
(1−C(ψ))(M−1) for x > ψ

.

(b) in the case of ρ < C(ψ), Z1|B, . . . , ZM−1|B are conditionally independent zero–
one random variables, where P(Zi = 1|B) = B and B has the beta distribution

of the following form: B
(

(ψ−1)ρ
(M−1)(C(ψ)−ρ)

,
(M−ψ)ρ

(M−1)(C(ψ)−ρ)

)
.

The proof of Proposition 4 can be found in Appendix A.

Remark 3 If we consider a class of functions φψ,ρ satisfying the following conditions:

• ∀ x ∈ [1, M − 1] φψ,ρ(x) ∈ [0, 1],
•

M−1∑
i=1

φψ,ρ(i) = ψ − 1,

•
M−1∑
i=1

[φψ,ρ(i)]2 = ψ − 1 − (1 − ρ)Vmax(ψ) − ρVmin(ψ),

then we obtain a completely general response distribution suitable for representing
underdispersed data (cf. Fig. 2) with mean value ψ and confidence parameter ρ.
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1 2 ψ − 1 3 ψ 4
0

(1− ρ)(M − ψ)
(1− C(ψ))(M − 1)

1− (1− ρ)(ψ − 1)
(1− C(ψ))(M − 1)

1

φψ,ρ(x)

x

φ
ψ

,ρ
(x
)

Fig. 3 Example of φψ,ρ(x) for ψ = 3.3, ρ = 0.9, and M = 5

Fig. 4 Variance of the error term
ε for M = 5

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

ρ

V
(ε
)

ψ = 2.8 or ψ = 3.2
ψ = 2.1 or ψ = 3.9
ψ = 1.7 or ψ = 4.3
ψ = 1.3 or ψ = 4.7
ψ = 1.1 or ψ = 4.9

Themotivation behind constructing theGSDclass is to have a class thatwould prop-
erly describe response distributions observed when analysing responses from MQA
subjective experiments. There, the responses are often expressed on a 5-level scale,
with the following mapping between discrete consecutive numbers and textual labels:
1—Bad, 2—Poor, 3—Fair, 4—Good and 5—Excellent. Although initially designed
for the MQA research, we expect the GSD class to be useful for describing other,
more general processes (at least for measurement processes exhibiting a characteristic
similar to what is the case for the MQA subjective experiments) (Fig. 4). Examples
of specific incarnations of the GSD family of distributions (for M = 5) are shown in
Fig. 5. Note that for ψ close to 1 or M , regardless of ρ, the obtained distributions are
similar. This is because the maximum spread we can obtain is limited by a small range
of possible variances (see Fig. 2).
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1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

ψ = 1.30

Score s

P
( U

=
s)

ρ
0.95
0.88
0.81
0.72
0.61
0.38

(a)

1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

ψ = 2.10

Score s

P
(U

=
s)

ρ
0.95
0.88
0.81
0.72
0.61
0.38

(b)

1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

ψ = 2.85

Score s

P
(U

=
s )

ρ
0.95
0.88
0.81
0.72
0.61
0.38

(c)

1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

ψ = 3.90

Score s

P
(U

=
s)

ρ
0.95
0.88
0.81
0.72
0.61
0.38

(d)

Fig. 5 GSD distributions of U for M = 5 and for various values of ψ and ρ

2.3 Comparing ordered probit’s and GSD’s parametrisation

In this section, we present the interaction between ordered probit parameters, GSD
parameters, and the (E(U ), V(U )) space. Figure6 presents the interaction between
ordered probit parameters (μ and σ ) and summary statistics (E(U ) and V(U )). The
latter are calculated taking discrete responses generated by the ordered probit model
with a given μ and σ pair. The lines present in the left-hand-side of Fig. 6, correspond
to the same coloured lines in the right-hand-side of the same figure. Specifically, the
ordering of lines (when going from left to right in Fig. 6a and top to bottom in Fig. 6c)
in the left-hand-side of the figure is the same as the ordering of lines in the right-hand-
side of the figure. Figure7 presents the corresponding plots for the GSD class. Note,
however, that the ordering of lines in Fig. 7c is reversed to the ordering of lines in
Fig. 7d. Differently put, the top-most line in Fig. 7c corresponds to the bottom-most
line in Fig. 7d. Importantly, both Figs. 6 and 7 use M = 5.

Figure 6 is a graphical presentation of the problems inherent to the estimation and
interpretation of ordered probit parameters,when these are based on the observations of
the random variableU . First of all, the mapping from any bounded set of (μ, σ ) pairs,
results in a set of (E(U ), V(U )) pairs that does not cover the whole ghost-like area of
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Fig. 6 Mapping of ordered probit parameters to the (E(U ), V(U )) space. The violet ghost-like area marks
all possible (E(U ), V(U )) pairs for a discrete process with values {1, 2, 3, 4, 5}

all possible (E(U ), V(U )) pairs. Notice that the lines in Fig. 6b do not reach neither
the sides nor the top of the ghost-like area. Second of all, there is no analytical formula
mapping (E(U ), V(U )) pairs to (μ, σ ) pairs. It is difficult to even approximately guess
which (μ, σ ) pair corresponds to which (E(U ), V(U )) pair. This is a big limitation of
ordered probit’s parameterisation. The estimation of a (E(U ), V(U )) pair, based on
observations U1, . . . ,Un , is an easy task. Unfortunately, the results of this estimation
are not useful for estimating ordered probit parameters.

The problems described above do not apply to GSD’s parameterisation. The ψ

parameter is the expected value of the observations (U1, . . . ,Un). Thus, for any
(E(U ), V(U )) pair, we immediately know the corresponding ψ . This is because
ψ is equal to E(U ). Notice that the vertical lines in Fig. 7a and b are in identical
positions along the horizontal axis. The second GSD class’ parameter, ρ, is the con-
fidence parameter. Its value of 0 corresponds to the biggest possible variance (the
upper bound of the violet coloured ghost-like area in Fig. 7b) and 1 corresponds to
the smallest possible variance (the lower bound of the violet coloured ghost-like area
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Fig. 7 Mapping ofGSDparameters to the (E(U ), V(U )) space. The violet ghost-like areamarks all possible
(E(U ), V(U )) pairs for a discrete process with values {1, 2, 3, 4, 5}

in Fig. 7b) of the observations. Moreover, the range of ρ values is linear. For exam-
ple, ρ = 0.7 can be interpreted as 70%, in terms of the available variance. That is,
V(U ) = 70%Vmin(ψ) + 30%Vmax(ψ). Therefore, to obtain ρ from a (E(U ), V(U ))

pair, it is enough to calculate the distance between V(U ) and the upper bound of the
violet coloured ghost-like area in Fig. 7b. This distance should be then divided by the
distance between the upper and lower bounds of the violet coloured ghost-like area
in Fig. 7b. Differently put, ρ = Vmax(ψ)−V(U )

Vmax(ψ)−Vmin(ψ)
. Value of ρ is thus simply a ratio

between the distance between the observed variance (V(U )) and the maximum pos-
sible variance (Vmax) and the available range of variance (Vmax(ψ) − Vmin(ψ)). The
easy mapping of (E(U ), V(U )) pairs to (ψ, ρ) pairs makes the estimation of (ψ, ρ)

pairs (when based on U1, . . . ,Un observations) much easier than the estimation of
(μ, σ ) pairs for the ordered probit model.

Wewould also like to draw the reader’s attention to the violet horizontal bars present
in Figs. 6a, c, and 7a, c. In all cases, the violet bars span the range from 1 to 5. This
range corresponds to the width of the violet ghost-like area in the right-hand side
of Figs. 6 and 7. Please note that GSD’s parameterisation is bounded to this 1 to 5
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range, whereas ordered probit’s one is not. This is yet another advantageous feature of
GSD’s parameterisation. Being bounded to the same range as the range of observable
responses, GSD class parameters are easier to interpret and understand.

3 GSD parameters estimation

Ordered probit and GSD models cannot be used without an accurate and efficient
parameter estimation procedure. The simplest approach is to use the method of
moments. As we mentioned in the previous section, the method of moments for the
ordered probit model is rather problematic. However, for the GSD class, moments
based estimation is quite simple, i.e.,

(ψ̂, ρ̂) =
(

Ê(U ),
Vmax(Ê(U )) − V̂(U )

Vmax(Ê(U )) − Vmin(Ê(U ))

)
,

where Ê(U ), V̂(U ) are expectation value and variance of the empirical distribution. To
compare theGSDwith ordered probit and to apply the likelihood ratio test of goodness-
of-fit, we actually use Maximum Likelihood Estimator (MLE) for both models. To
make the comparison between the two models fair, when fitting them to real data, we
use the same numerical estimation method for both, i.e., we use the estimation using
a dense grid of points. Specifically, we first compute probabilities of all response
categories for a set of (ψ, ρ) (or (μ, σ )) pairs and then search through the resultant
grid to find the pair best matching the sample of interest. In the multidimensional case
(cf. Appendix E), for generated data, we use the gradient based estimation method
for the GSD class. The moments based estimator serves as a starting point. The exact
formulae for the log-likelihood function and gradient that were used in the estimation
algorithm are in Appendix B.

3.1 Numerical experiments for the GSD class

To validate ourMLE procedure, we perform a simulation study.We draw data from the
proposed distribution and then estimate the distribution parameters using the samples
generated. Importantly, we do so for the case of M = 5.

In Fig. 8 we present the risk measured as Root Mean Square Distance (RMSD)
between true value ψ and estimated ψ̂ , for sample sizes n = 12, 24, 50, 200. As one
can see, the hardest case is when ρ is small and ψ is in the middle of the [1, M] scale.
This behaviour is expected, since in the middle of the scale, the possible variance is the
largest (cf. Fig. 6b). One can also see that the parameter ψ is rather easy to estimate.
That is, the risk is rather small for ψ ∈ [1, 5], even for small sample sizes.

In Fig. 9 we present the risk measured as the RMSD between true value ρ and
estimated ρ̂, for sample sizes n = 12, 24, 50, 200. In this case, the situation is slightly
more complicated (than that presented above for ψ). The hardest case is when ψ is on
the edge of the [1, M] interval. As one can see in Fig. 4, when ψ is close to the edge
of the [1, M] interval, variance expressed as a function of ρ is almost horizontal. This
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Fig. 8 Root mean square distance (RMSD) between the input ψ and the estimated ψ̂ for different (ψ, ρ),
different sample sizes, and M = 5. For every sample size we generated 500,000 samples to obtain the figure

means that even small changes in sample variance correspond to large changes of ρ.
Simply put, the smaller the [Vmin(ψ), Vmax(ψ)] interval, the harder the estimation of
ρ. It is worth pointing out, however, that even for hard cases the risk is getting smaller,
the larger is the sample size.

We also validate the MLE procedure for the multidimensional case. Specifically,
we generate responses of n raters (also referred to as subjects), each having assigned
a confidence parameter ρ1, . . . , ρn . The subjects rate m objects (also referred to as
stimuli), each having assigned an expectation value ψ1, . . . , ψm (which can be, for
example, interpreted as latent true qualities of a set ofm videos presented to n subjects).
Based on the responses generated, we used the multidimensional MLE to recover the
GSD parameters. More details and estimation results are in Appendix E.

4 Real data example for multimedia quality assessment

In the previous sections, we presented a new GSD family of distributions and showed
that the estimation method properly extracts GSD parameters when applied to the
simulated data. In this section, we validate if the proposed GSD class can be used to
model real subjective data (i.e., subjective responses coming fromMQAexperiments).

In MQA experiments, multiple participants assess the quality of multiple stimuli.
To be more precise, there are usually around 24 participants, who assess the quality
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Fig. 9 Root mean square distance (RMSD) between the input ρ and the estimated ρ̂ for different (ψ, ρ),
different sample sizes, and M = 5. For every sample size we generated 500,000 samples to obtain the figure

of roughly 160 stimuli, using the five-level assessment scale (cf. Sect. 2.2.1). In the
great majority of experiments, each participant assesses the quality of each stimulus
exactly once. Thanks to this, and since our focus in this paper is on the per stimulus
analysis, we treat responses as independent observations of a random variable of
interest. MQA experiments measure subjectively perceived quality. Hence, there is
no perfect agreement between participants. Even the same person assessing the same
stimulus multiple times tends to assign to it different response categories (Perez et al.
2021).

4.1 Comparing goodness-of-fit of ordered probit and GSD

We want to compare the GSD with the ordered probit model and one state-of-the-art
solution. We come up with the latter by adapting the model presented in Li et al.
(2020). We call the adapted version of the model Simplified Li2020 or SLI for short.3

To check whether a distribution fits specific data, we have to perform a two-step
procedure. The first step is to estimate distribution parameters for a sample of interest.
The second step is to test a null hypothesis, saying that the sample truly comes from the
assumed distribution (GSD, ordered probit or SLI), given the parameters estimated in
the first step.We choose a standard likelihood ratio approach to test the goodness-of-fit

3 For a detailed description regarding how did we transform the model from Li et al. (2020), we refer the
reader to Sect. III-D of Nawała et al. (2022).
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Fig. 10 p-Value P–P plot for typical multimedia quality assessment (MQA) experiments. p-Values come
from the G-test of goodness-of-fit applied to the GSD, ordered probit and Simplified Li2020 (SLI) models
fitted to responses from24 real-life subjective experiments. Ecdf stands for empirical cumulative distribution
function

(GoF) of the models. Specifically, we use the G-test of GoF (cf. Sect. 14.3.4 of Agresti
(2002)). Since sample sizes we consider are mostly small (less than 30 observations
per sample), we do not use the asymptotic distribution for calculating the p-value.
Conversely, we estimate the p-value using a bootstrapped version of the G-test (see
Appendix C). (For comprehensive theoretical considerations on the topic please take
a look at Efron and Tibshirani (1993).)

The data we use to perform the analysis come from sixMQA studies: (i) ITU (TU-T
Study Group 12 1998), (ii) HDTV (Pinson et al. 2010), (iii) MM2 (Pinson et al. 2012),
(iv) 14-505 (Pinson and Janowski 2014), (v) ITS4S (Pinson 2018) and (vi) NFLX.
We do not provide here extensive details regarding each study. Instead, we refer the
reader to publications cited next to each acronym. Since the NFLX study does not
have a dedicated publication, we refer the reader to Sect. II.C of Nawała et al. (2022).
Two important features of the six studies is that they all focus on Multimedia Quality
Assessment (MQA) and follow best practices and recommendations in the field. In
other words, we can safely call them typical MQA studies. Some studies represent
data frommore than one subjective experiment. Differently put, one studymay consist
of multiple experiments. In total, we use data from 24 subjective experiments. This
amounts to more than 100,000 individual scores (exactly 111,198) for more than 3500
stimuli (exactly 3643).

In Fig. 10 we present the cumulative distribution function (CDF) of GoF test p-
values for the GSD, ordered probit, and SLI models. The black line is the upper
bound of 95% right-sided confidence interval for the CDF of p-values under the null
hypothesis. Specifically, under the null hypothesis, the CDF of p-values is not greater
than the uniform distribution function (for more details see Nawała et al. (2020)). As
one can see, there is no evidence that the GSD is not the correct way of modelling
subjective responses from MQA experiments. On the other hand, there is evidence
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that the distributions modelled by the ordered probit and SLI models are not suitable
here.

4.2 Bootstrapping

If we would like to use the bootstrap technique in some testing problems with data
expressed on a Likert scale, there are two approaches to resampling that one can
consider. One can either use the empirical distribution or fit a distribution coming
from some assumed parametric class. Here, we show that for at least one type of
real data, specifically responses coming fromMQA experiments, it is better to use the
estimated GSD than it is to use the empirical distribution. This holds at least in the case
of relatively small sample sizes. (In the field of MQA, usually only up to 30 responses
per stimulus are available.) To compare the behaviour of empirical probability mass
function (EPMF) and the GSD, we use the following algorithm.

Let us denote by N the number of observations in the large sample (e.g., N = 200)
and by n the number of observations in the subsample of this large sample (e.g.,
n = 24). Now, we denote by (N1, N2, N3, N4, N5) the frequencies of each response
category in the large sample. We denote by (p1, p2, p3, p4, p5) the EPMF of the large
sample. The test procedure is as follows (assuming there are five response categories):

1. Generate MC bootstrap samples (e.g., MC = 10,000) of size n from the EPMF
of the large sample (p1, p2, p3, p4, p5).

2. For the r -th bootstrap sample (r = 1, 2, . . . , MC) do the following.

(a) Estimate response category probabilities using maximum likelihood estima-
tion for the model of interest (e.g., the GSD model). Denote the estimated
probabilities by

(
q̂1, q̂2, q̂3, q̂4, q̂5

)
.

(b) Denote by
(
v̂1, v̂2, v̂3, v̂4, v̂5

)
the EPMF of the bootstrap sample.

(c) Find the likelihood Lm of the estimated model for the large sample. In other
words, calculate

Lm =
5∏

k=1,Nk �=0

q̂ Nk
k .

(d) Find the likelihood Le of the bootstrap sample’s EPMF for the large sample.
In other words, calculate

Le =
5∏

k=1,Nk �=0

v̂
Nk
k .

(e) Find the natural logarithm of the ratio of the two likelihoods and denote it by
Wr

Wr = ln

(Lm

Le

)
.

123
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Note that the above simplifies to

Wr =
5∑

k=1,Nk �=0

Nk
(
ln q̂k − ln v̂k

)
.

3. Calculate the estimator of pGSD − pe = P(Wr > 0) − P(Wr < 0), which is the
difference between the probability that the GSD has greater likelihood than the
EPMF and the probability that the EPMF has greater likelihood than the GSD.
This can be formally described by the following.

p̂GSD − p̂e =

MC∑
r=1

I (Wr > 0)

MC
−

MC∑
r=1

I (Wr < 0)

MC
,

where I (x) is one if x is true or 0 if x is false.
4. Calculate .95 confidence interval for pGSD − pe i.e.,

L = p̂GSD − p̂e − 1.96

√
p̂GSD + p̂e − ( p̂GSD − p̂e)2

MC

R = p̂GSD − p̂e + 1.96

√
p̂GSD + p̂e − ( p̂GSD − p̂e)2

MC

For L > 0 theGSDperforms better. For R < 0 theEPMFperforms better. If [L, R]
contains zero there is no significant difference between the GSD and EPMF.

We use data from fourMQA studies: (i) MM2 (Pinson et al. 2012), (ii) HDTV (Pin-
son et al. 2010), (iii) NFLX (cf. Sect. II.C of Nawała et al. (2022)) and (iv)
ITERO (Perez et al. 2021). We describe the first three studies in Sect. 4.1. The last
study, contrary to the first three, is not a typical MQA study. We decide to use it
anyway for two reasons. First, being atypical, it should not not give unfair advantage
to the GSD. Second, it provides real data with many responses per stimulus. This
last property also stands behind our choice to use the other three studies (i.e., MM2,
HDTV and NFLX). Specifically, we only select from these stimuli with at least 144
responses. This results in 234 stimuli, each assigned between 144 and 228 responses.

We use three small sample sizes, i.e., n = {12, 24, 50}. This way we can observe
how the GSD performs (when compared to the empirical distribution) for different
fractions of the large sample information available. Intuitively, we expect the empirical
distribution’s performance to improve as the small sample size increases. If the GSD
proofs to perform differently than the empirical distribution wewould observe how the
increasing small sample size influences the difference between the two approaches.
We emphasise here that the increasing small sample size always favours the empirical
distribution. On the other hand, the performance of the GSD depends on how well
it fits to the distribution of responses observed in the large sample. If the fit is good,
increasing small sample size also favours the GSD. If the fit is poor, increasing small
sample size does not necessarily improve GSD’s performance.
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Fig. 11 Histograms depicting the distribution of probability differences p̂GSD − p̂e for three different
small sample sizes (i.e., 12, 24 and 50) and for the case of the (unmodified) GSD being compared with
the (unmodified) empirical distribution. Blue-coloured parts of the bars represent statistically insignificant
probability differences

Figure 11 presents results of the analysis. It contains three histograms of probability
differences p̂GSD − p̂e. Each histogram shows results for one of the investigated small
sample sizes (i.e., 12, 24, and 50). Larger probability mass to the right of zero means
the GSD outperforms the empirical distribution. Larger probability mass to the left
of zero means the empirical distribution performs better than the GSD. As can be
seen, the GSD outperforms the empirical distribution for all three small sample sizes
considered.

We theorise that the reason the GSD outperforms the empirical distribution is
because the latter assigns a larger than theGSDprobability to empty cells (i.e., response
categories with no responses assigned to them in the sample of interest). To verify this
claim, we run our analysis once again, this time modifying the estimation procedure
both for the GSD and empirical distribution. This modification does not allow any
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Fig. 12 Histograms depicting the distribution of probability differences p̂GSD − p̂e for three different
small sample sizes (i.e., 12, 24 and 50) and for the case of the corrected GSD being compared with
the corrected empirical distribution. Blue-coloured parts of the bars represent statistically insignificant
probability differences

empty cells. In other words, the estimated probability of any response category has to
be necessarily in the interval (0, 1). The details are in Appendix D. Figure12 presents
results for the case of the corrected GSD being compared with the corrected empiri-
cal distribution. Again, the GSD outperforms the empirical distribution, although this
time by a smaller margin.

The results clearly show that the GSD is a better choice than the empirical distri-
bution when it comes to resampling of subjective responses from MQA studies.
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5 Conclusion

In this paper, we propose a Generalised Score Distribution (GSD) class. It is a family
of discrete distributions with: finite support, two parameters, and no more than one
change in probability monotonicity. The distribution parameters are: ψ determining
the mean, and ρ determining the spread of the responses.

We show the usefulness of the GSD class for modelling, with a special focus on the
Multimedia Quality Assessment (MQA) field. The class is a convenient regularisation
of the multinomial distribution. The GSD class has only two parameters and covers
all possible first- and second-order moments for a distribution defined on a discrete
finite support. We also evidence that the GSD class can be useful in testing problems
using the parametric bootstrap technique.

The advantage of the GSD class is that its ρ parameter can be used to determine the
type of the underlining process. With ρ close to 1, we know that the process is similar
to the Bernoulli distribution. Likewise, for ρ < C(ψ) we know the process rather
resembles the beta-binomial distribution. This information can be used as a diagnostic
tool, answering the following question: “What is the spread of the responses?” Note
that the GSD class can be easily used outside of the MQA field, wherever information
about responses spread is relevant.

We strongly believe that the GSD class can be of use for modelling results similar
in nature to those reported in the field of MQA. More specifically, the GSD can
be potentially useful for modelling subjective responses, where the population of
observers generally agree about a given trait of a stimulus presented to them (e.g.,
about the visual quality of a distorted image). To put this differently, the GSD will
not likely work in cases where there are evident subgroups of observers. For example,
when there are two groups that have opposing views on a stimulus trait, they are asked
to assess. The only exception to GSD’s inability of modelling opposing views is the
so-called “love or hate” case. In this case, a significant proportion of the population
of observers either scores a stimulus trait extremely high or extremely low (cf. Fig. 5,
the GSD distribution with ψ = 2.85 and ρ = 0.38).

In the future research, we would like to add more parameters to the GSD class.
One idea is to add a parameter related to a potential personal bias of each observer
(similarly to what is done in Janowski and Pinson (2015) and Li and Bampis (2017)).
This subject bias parameter may, for example, show whether a person is generally
more optimistic than other raters are. Another interesting direction of research would
be using the GSD for data other than that coming from MQA subjective experiments.
We would like to collaborate with scientists working in different fields, from audio
and image quality, through student performance assessment, and up to psychology and
sociology. In all those fields, a proper modelling of the response generation process
would help to gain new insights. Our results obtained for MQA subjective data might
be treated as a proof of concept, showing that the GSD class may be of use for those
other fields as well.
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Appendix A: Proofs

Proof of Proposition 1 First notice that PGρ (ε = k − ψ) (see formula (11)) can be
rewritten as

PGρ (ε = k − ψ) =
(
M − 1

k − 1

)B
(

(ψ−1)ρ
(M−1)(C(ψ)−ρ)

+ k − 1, (M−ψ)ρ
(M−1)(C(ψ)−ρ)

+ M − k
)

B
(

(ψ−1)ρ
(M−1)(C(ψ)−ρ)

,
(M−ψ)ρ

(M−1)(C(ψ)−ρ)

)

Now observe that ε +ψ −1 has the beta-binomial distribution BB(M −1, α, β) with
parameters

α = (ψ − 1)ρ

(M − 1)(C(ψ) − ρ)
, β = (M − ψ)ρ

(M − 1)(C(ψ) − ρ)
.

Using formula for beta-binomial expectation value we obtain

E(U ) = E(ψ + ε) = (M − 1)α

α + β
+ 1 = ψ.

Using formula for beta-binomial variance we obtain

V(U ) = V(ψ + ε) = V(ψ + ε − 1) = (M − 1)αβ(α + β + M − 1)

(α + β)2(α + β + 1)

= (ψ − 1)(M − ψ)

M − 1

(
1 + M − 2

C(ψ)
(C(ψ) − ρ)

)
.
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Since (ψ − 1)(M − ψ) = Vmax(ψ) and C(ψ) = M−2
M−1

Vmax(ψ)
Vmax(ψ)−Vmin(ψ)

(see formulas
(6), (7) and (10)) we have

V(U ) = Vmax(ψ)

M − 1
+ (Vmax(ψ) − Vmin(ψ))

(
M − 2

M − 1

Vmax(ψ)

Vmax(ψ) − Vmin(ψ)
− ρ

)

= ρVmin(ψ) + (1 − ρ)Vmax(ψ).

��
Proof of Proposition 2 In Fρ distribution case (see formula (13)) notice that the random
variable ε is a mixture of random variables ε1 and ε2, i.e.,

ε = Dε1 + (1 − D)ε2,

where

P(D = 1) = ρ − C(ψ)

1 − C(ψ)
, P(D = 0) = 1 − ρ

1 − C(ψ)
,

P(ε1 = k − ψ) = [1 − |k − ψ |]+,

P(ε2 = k − ψ) =
(
M − 1

k − 1

) (
ψ − 1

M − 1

)k−1 (
M − ψ

M − 1

)M−k

,

and ε1, ε2, D are independent. If ψ is an integer P(ε1 = 0) = 1 so E(ε1) = 0. In case
ψ is not an integer we have

E(ε1) = (1 + �ψ	 − ψ)(�ψ	 − ψ) + (ψ − �ψ	)(1 + �ψ	 − ψ) = 0.

In both cases E(ε1) = 0. Now, observe that ε2 + ψ − 1 has the binomial distribution
B(M − 1, p) with p = ψ−1

M−1 . Therefore

E(ε2) = (M − 1)
ψ − 1

M − 1
− ψ + 1 = 0.

We have then

E(U ) = E(ε + ψ) = E(ε1

+ψ |D = 1)P(D = 1) + E(ε2 + ψ |D = 0)P(D = 0) = ψ

Now, notice that V(ε1) = Vmin(ψ) and V (ε2) = VBin(ψ) (see formulas (6), (7) and
(8)). Therefore

V(U ) = V(ε) = E(ε2) = E(ε21)
ρ − C(ψ)

1 − C(ψ)
+ E(ε22)

1 − ρ

1 − C(ψ)

= Vmin(ψ)
ρ − C(ψ)

1 − C(ψ)
+ VBin(ψ)

1 − ρ

1 − C(ψ)
=: fψ(ρ).
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We want to show that for every fixed ψ ∈ [1, M], the variance V(U ) is the linear
function of ρ equal to ρVmin(ψ) + (1 − ρ)Vmax(ψ). Notice that the fψ function is a
linear function of variable ρ. It is easy to see that fψ(1) = Vmin(ψ) so let us check the
derivative. Since C(ψ) = M−2

M−1
Vmax(ψ)

Vmax(ψ)−Vmin(ψ)
and VBin(ψ) = Vmax(ψ)

M−1 , we obtain

d

dρ
fψ(ρ) = (Vmax(ψ) − Vmin(ψ))((M − 1)Vmin(ψ) − Vmax(ψ))

(M − 1)(Vmax(ψ) − Vmin(ψ)) − (M − 2)Vmax(ψ)

= Vmin(ψ) − Vmax(ψ) = d

dρ
(ρVmin(ψ) + (1 − ρ)Vmax(ψ))

Therefore

V(U ) = ρVmin(ψ) + (1 − ρ)Vmax(ψ).

��
Proof of Proposition 4 First notice that in the case of ρ ≥ C(ψ)

P(Zi = 1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ−C(ψ)
1−C(ψ)

+ 1−ρ
1−C(ψ)

ψ−1
M−1 for i ≤ �ψ	 − 1

ρ−C(ψ)
1−C(ψ)

(ψ + 1 − �ψ�) + 1−ρ
1−C(ψ)

ψ−1
M−1 for i = �ψ� − 1

1−ρ
1−C(ψ)

ψ−1
M−1 for i ≥ �ψ�

.

Random variables Zi can be written as Zi = DXi + (1 − D)Yi where Xi ,Yi , D are
independent zero–one random variables and

P(D = 1) = ρ − C(ψ)

1 − C(ψ)

P(Xi = 1) =

⎧
⎪⎨

⎪⎩

1 for i ≤ �ψ	 − 1

ψ + 1 − �ψ� for i = �ψ� − 1

0 for i ≥ �ψ�
P(Yi = 1) = ψ − 1

M − 1
.

Now, observe that

P

(
M−1∑

i=1

Xi = k − 1

)
= [1 − |k − ψ |]+

and

P

(
M−1∑

i=1

Yi = k − 1

)
=

(
M − 1

k − 1

) (
ψ − 1

M − 1

)k−1 (
M − ψ

M − 1

)M−k
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for k = 1, . . . , M . Since

U − 1 =
M−1∑

i=1

Zi =
M−1∑

i=1

(DXi + (1 − D)Yi ) = D
M−1∑

i=1

Xi + (1 − D)

M−1∑

i=1

Yi

then

P(U = k)

= ρ − C(ψ)

1 − C(ψ)
[1 − |k − ψ |]+ + 1 − ρ

1 − C(ψ)

(
M − 1

k − 1

) (
ψ − 1

M − 1

)k−1 (
M − ψ

M − 1

)M−k

for k = 1, . . . , M . The case ρ < C(ψ) is an easy consequence of the fact that U − 1
has the beta-binomial distribution BB(M − 1, α, β) with parameters

α = (ψ − 1)ρ

(M − 1)(C(ψ) − ρ)
, β = (M − ψ)ρ

(M − 1)(C(ψ) − ρ)
.

��

Appendix B: Formula for the gradient of GSD’s log-likelihood function

Denote by (n1, . . . , nM ) numbers of observed responses and

V ′
min(ψ) = −2ψ + �ψ� + �ψ	,

V ′
max(ψ) = −2ψ + M + 1,

C ′(ψ) := M − 2

M − 1

Vmax(ψ)V ′
min(ψ) − V ′

max(ψ)Vmin(ψ)

(Vmax(ψ) − Vmin(ψ))2
.

The Log-Likelihood function for ρ < C(ψ) is equal to

l(ψ, ρ) =
M∑

k=1

nk

[
log

((
M − 1

k − 1

))
+

k−2∑

i=0

log

(
(ψ − 1)ρ

M − 1
+ i(C(ψ) − ρ)

)

+
M−1−k∑

i=0

log

(
(M − ψ)ρ

M − 1
+ i(C(ψ) − ρ)

)

−
M−2∑

i=0

log (ρ + i(C(ψ) − ρ))

]
,

and for ρ ≥ C(ψ) is equal to

l(ψ, ρ) =
M∑

k=1

nk

[
log

(
(ρ − C(ψ))[1 − |k − ψ |]+
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+ (1 − ρ)

(
M − 1

k − 1

) (
ψ − 1

M − 1

)k−1 (
M − ψ

M − 1

)M−k )
− log(1 − C(ψ))

]
.

The gradient for ρ < C(ψ) is equal to

∂l

∂ψ
(ψ, ρ) =

M∑

k=1

nk

[ k−2∑

i=0

ρ
M−1 + iC ′(ψ)

(ψ−1)ρ
M−1 + i(C(ψ) − ρ)

+
M−1−k∑

i=0

− ρ
M−1 + iC ′(ψ)

(M−ψ)ρ
M−1 + i(C(ψ) − ρ)

−
M−2∑

i=0

iC ′(ψ)

ρ + i(C(ψ) − ρ)

]
,

∂l

∂ρ
(ψ, ρ) =

M∑

k=1

nk

[ k−2∑

i=0

ψ−1
M−1 − i

(ψ−1)ρ
M−1 + i(C(ψ) − ρ)

+
M−1−k∑

i=0

M−ψ
M−1 − i

(M−ψ)ρ
M−1 + i(C(ψ) − ρ)

+
M−2∑

i=0

i − 1

ρ + i(C(ψ) − ρ)

]
,

and for ρ ≥ C(ψ) the gradient is equal to

∂l

∂ψ
(ψ, ρ)

=
M∑

k=1

nk

[
(ρ − C(ψ))(�[k−1,k](ψ) − �[k,k+1](ψ)) − C ′(ψ)[1 − |k − ψ |]+

(ρ − C(ψ))[1 − |k − ψ |]+ + (1 − ρ)
(M−1
k−1

) (
ψ−1
M−1

)k−1 (
M−ψ
M−1

)M−k

+
(k−1)(1−ρ)

M−1

(M−1
k−1

) (
ψ−1
M−1

)k−2 (
M−ψ
M−1

)M−k

(ρ − C(ψ))[1 − |k − ψ |]+ + (1 − ρ)
(M−1
k−1

) (
ψ−1
M−1

)k−1 (
M−ψ
M−1

)M−k

−
(M−k)(1−ρ)

M−1

(M−1
k−1

) (
ψ−1
M−1

)k−1 (
M−ψ
M−1

)M−1−k

(ρ − C(ψ))[1 − |k − ψ |]+ + (1 − ρ)
(M−1
k−1

) (
ψ−1
M−1

)k−1 (
M−ψ
M−1

)M−k

+ C ′(ψ)

1 − C(ψ)

]
,

∂l

∂ρ
(ψ, ρ)

=
M∑

k=1

nk
[1 − |k − ψ |]+ − (M−1

k−1

) (
ψ−1
M−1

)k−1 (
M−ψ
M−1

)M−k

(ρ − C(ψ))[1 − |k − ψ |]+ + (1 − ρ)
(M−1
k−1

) (
ψ−1
M−1

)k−1 (
M−ψ
M−1

)M−k
.
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Appendix C: G-test, bootstrap procedure

Denote by (n1, . . . , nM ) numbers of observed responses, i.e., nk is the number of

responses assigned to response category k and
M∑
k=1

nk = n. By (p1, . . . , pM ) denote

unknown probabilities of the response categories 1, . . . , M . We want to test

H0 : (p1, . . . , pM ) are from the GSD

against

H1 : (p1, . . . , pM ) are not from the GSD.

One should not use the chi-squared test in case of small numbers in selected cells,
i.e., small nk for some k ∈ {1, . . . , M}. We use a bootstrap version of the standard
likelihood ratio test, i.e., the G-Test. The procedure is as follows:

1. Estimate probabilities of the response categories ( p̂1, . . . , p̂M )using themaximum
likelihood GSD estimator.

2. Calculate test statistic T =
M∑
k=1

nk log(nk/(n p̂k)), where 0 log(0/(n p̂k)) = 0.

3. Generate MC (for example, MC = 10,000) bootstrap samples of size n from
the distribution ( p̂1, . . . , p̂M ). Obtain (mr

1, . . . ,m
r
M ), r = 1, . . . , MC , where mr

k
is the number of responses assigned to response category k in the r -th bootstrap
sample.

4. Estimate probabilities of the response categories (q̂r1, . . . , q̂
r
M ) for every bootstrap

sample (mr
1, . . . ,m

r
M ) using the maximum likelihood GSD estimator.

5. Calculate bootstrap statistics

Tr =
M∑

k=1

mr
k log(m

r
k/(nq̂

r
k )),

where 0 log(0/(nq̂rk )) = 0.
6. Calculate bootstrap p-value using the following equation

p = 1

MC

MC∑

r=1

I (Tr ≥ T ),

where I (x) is one if x is true or 0 if x is false.
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Appendix D: Modified EPMF and GSD

To resolve the problem of empty cells for the empirical distribution, we can simply
add 0.5 to all response category counts (cf. Pagano and Gauvreau (2018)), i.e.,

∀k ∈ {1, . . . , M}, v̂k = nk + 0.5

n + M
2

,

where nk is the response count of category k in a bootstrap sample.
For the GSD it is enough to estimate parameters ψ, ρ on the set [1 + εψd (n), 5 −

εψu (n)] × [0 + ερd (n), 1− ερu(n)], where εψ·(n) > 0, ερ·(n) > 0 and lim
n→∞ εψ·(n) =

lim
n→∞ ερ·(n) = 0.

To define εψ·(n) and ερ·(n) we introduce a limit for the maximum probability any
two response categories can add up to (and call it pmax). Importantly, when assessing
pmax, we only take into account two most probable response categories. This can be
formally written as follows:

pmax = max
(i, j)∈{1,...,M}2:i �= j

P(U = i) + P(U = j) (D1)

Fig. 13 Boundary for ψ and ρ for a given sample size n and pmax ≤ 1 − 1
n . Yellow color marks (ψ , ρ)

pairs considered in the MLE algorithm
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The final algorithm for fitting the GSD to a sample is as follows. Find such (ψ̂ , ρ̂)
that satisfies the following two criteria:

1. pmax ≤ 1 − 1
n , where pmax is given by Eq. (D1) and n is the sample size, and

2. the likelihood function has the maximum value.

An example of ψ and ρ ranges for different sample sizes and M = 5 is shown in
Fig. 13.

Appendix E: mulitidimensional case

Let us consider a multidimensional model of responses with n raters (also referred to
as subjects) and m objects (also referred to as stimuli), i.e.,

Ui j = ψ j + εi j , i ∈ 1, . . . , n, j ∈ 1, . . . ,m

where εi j + ψ j has the GSD(ψ j , ρi ) distribution. In this model, every object (e.g., a
video) has its own quality ψ j and every rater has their own confidence parameter ρi .

For numerical experiments,we generated 100,000 responsematricesUi, j according
to the following generative process: ψ j ∼ Uniform(1, 5), ρi ∼ Uniform(0, 1). For
each sample a probabilistic matrix factorisation Ui j ∼ GSD(ψ̂ j , ρ̂i ) done by MLE
yields recovered estimates ψ̂ j and ρ̂i .

Fig. 14 Estimation accuracy for ψ estimation for the multidimensional model with n subjects scoring
m = n objects
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Fig. 15 Estimation accuracy for ρ estimation for themultidimensional model with n subjects scoringm = n
objects

In Fig. 14we present the estimation accuracy for a fixedψ of one object in amultidi-
mensional numerical experiment for n = m = 12, 24, 50, 200. All other parameters
where random (uniformly distributed). For estimation, we used the gradient based
method, using the formulae for the gradient of GSD log-likelihood function from
Appendix B. In Fig. 15 we present estimation accuracy for fixed ρ of one rater in the
same multidimensional numerical experiment. As one can see, our multidimensional
estimator of GSD parameters is very accurate even for relatively small sample sizes.
Notice that in case of n = m = 200, we estimate 400 parameters using the MLE,
i.e., we estimate ψ1, . . . , ψ200, ρ1, . . . , ρ200. The accuracy of the estimator is higher
if both n and m are larger.
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