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Abstract
Permutation methods offer an acceptable and convenient tool for inferring zero vari-
ance components in linear mixed models using the likelihood ratio test. However,
when data exhibit heavy-tailed distribution, heavy-skewed distribution or outliers,
maximum likelihood estimation may not be the best choice in constructing useful
test statistics. In this article, we propose the use of robust rank-based estimation as
an alternative. The finite sample distribution of our test statistic is well approximated
using suitable permutations of the cluster indices that are exchangeable when the null
hypothesis is true. Empirical results, comparing the new test to existing tests, indicate
that all tests maintain acceptable Type I error rates when data exhibit heavy-tailed or
heavy-skewed distributions. However, only our new test remains robust against the
presence of outlier in the response space. Besides, it is only the latter case where other
tests could show a competing power to our test. Otherwise, the new test is superior
with an outstanding power under the remaining settings.

Keywords Exchangeability · Robustness · Rank-based estimation · Permutation test ·
Outliers

1 Introduction

Statistical inference using linear mixed-effects (LME) models is usually encountered
in many applications where the structure of the data exhibits a clustering nature (Fitz-
maurice et al. 2007), accounts for blocking factors (Kloke et al. 2009), or is delivered
from a two-stage sampling design (Pfeffermann 2013). Inferring the need for random
effects or equivalently testing the nullity of variance components is an essential task
in LME models. Assuming the familiar chi-square distribution of the likelihood ratio
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test (LRT) statistic is usually criticized because the null value of the variance compo-
nents lies on the boundary of the parameter space (Self and Liang 1987). The limiting
distribution of the LRT statistic is derived in Self and Liang (1987) as a mixture of chi-
square distributed randomvariables formodels involving one variance component. For
models containing multiple random effects, Stram and Lee (1994) concluded that the
asymptotic distribution of the LRT statistic can be affected by the correlation between
the random effects. Investigation of this variance boundary problem is considered in
various studies involving Shapiro (1985, 1988) and Stoel et al. (2006). Using numer-
ical simulations, Fitzmaurice et al. (2007) suggested that even with large number
of clusters, the mixture chi-square distribution is a poor approximation. Crainiceanu
and Ruppert (2004) used a simulation-based algorithm to generate the finite sample
distribution using an eigen-decomposition of the LRT statistic. Recent tests for zero
variance components tend to approximate the finite sample distribution of the LRT
statistic using permutations methods (Arboretti et al. 2015). See for example Fitzmau-
rice et al. (2007) and Lee and Braun (2012). Permutation methods have been used also
in the tests proposed in Drikvandi et al. (2013) and Du and Wang (2020).

In practice, the presence of outliers, heavy-tailed distributions, or heavy-skewed
distributions is evident in various applications exhibiting hierarchical data structures.
In such cases, the superiority of likelihood-based estimation is questionable and hence
the use of the LRT. On another hand, to our knowledge, neither robust variance compo-
nents test procedures nor a relevant empirical assessment of the robustness of the LRT
has yet been considered in the literature under such distributional violations. Robust
rank-based estimation of LME models offers an attractive alternative to maximum
likelihood estimation (Hettmansperger and McKean 2010; Liu and McKean 2015).
Original developments for regression models with identically and independently dis-
tributed (iid) errors were considered in Jureckova (1971) and Jaeckel (1972). Kloke
et al. (2009) developed the theory for obtaining robust joint-rank (JR) estimators of the
unknown parameters under LME models with one variance component. The develop-
ment therein provides protection against outlying responses, heavy-tailed symmetric
distributions, and heavy-skewed distributions of the error components. Of note, robust
rank-based estimation has not been used in constructing test statistics for testing zero
variance components. Bridging this gap provides a reasonable alternative to the LRT
when it does not offer the best choice.

The objective of this article is to introduce a robust test that also does not suffer
from the variance boundary problem. To achieve this task, we use the robust rank-
based estimation method under LME models (Hettmansperger and McKean 2010;
Kloke et al. 2009). The task is fulfilled by introducing a test statistic with a well-
approximated finite sample distribution, i.e. controllable Type-I error rate, using a
permutation method. In other words, we propose a permutation test where calculation
of the test statistic is based on the robust rank-based parameter estimation theory. We
shall base the calculation of our test statistic on the estimators of thefixed effects and the
variance components as prescribed in Kloke et al. (2009). Under the null hypothesis
of zero variance components, the cluster indices are simply random labels. Thus,
any permutation of those indices is just equally likely, ensuring their exchangeability
(Fitzmaurice et al. 2007). As such permutation of the indices is nothing but permuting
the pairs (y, x) that include the response and the associated set of explanatory variables,
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then it is also a permutation of the residual errors that are iid when the null hypothesis
holds. Hence, the necessary condition of the exchangeability of the residual errors is
satisfied. An approximate finite sample distribution of the proposed test statistic is then
obtained using the permutation distribution (Pesarin and Salmaso 2010) generated in
conjunction with the robust estimation of the parameters of the LME model.

We shed light on situations where rank-based estimation is more efficient (pro-
duces smaller standard errors) than maximum likelihood estimation (Kloke et al.
2009; McKean and Kloke 2014; McKean and Hettmansperger 2016). In such situ-
ations, our empirical results show that robust rank-based estimation empowers the
use of permutation tests for testing zero variance components. We emphasize that our
development applies under LME models involving a single variance component. We
rely on simulation experiments via which we highlight the superiority of the proposed
test under all chosen schemes for comparisons. Simulation schemes are chosen such
that we violate many of the standard assumptions upon which maximum likelihood
estimation is known to lose efficiency. Using the proper score function for calculat-
ing the robust rank-based estimates, the proposed permutation test can be as doubly
powerful (or even more) as the remaining tests.

The rest of this paper is organized as follows. Section 2 introduces the LMEmodel.
The proposed test statistic is considered in Sect. 3. In Sect. 4, the results of the simu-
lation study are presented and a summary of the performance of the proposed test is
provided. An application to a real dataset is given in Sect. 5. Conclusions of this study
are summarized in Sect. 6.

2 Linear mixed-effects model

Consider a data set ofm clusters, with nk observations in the kth cluster, k = 1, . . . ,m.
Let Y k and Xk , denote, respectively, the nk × 1 vector of responses and the nk × p
design matrix. Let bk denotes the kth random cluster effect, and εk the nk × 1 vector
of errors. The model for Y k is

Y k = Xkβ + bk1nk + εk, (1)

where β is the vector of regression coefficients that usually contains an intercept term.
Alternatively, the model can be written in a compact form as Y = Xβ + Zb+ε where
Y = (Y ′

1, . . . ,Y
′
m)

′, X = (X ′
1, . . . , X

′
m)

′, ε = (ε′
1, . . . , ε

′
m)

′, b = (b1, . . . , bm)′,
and Z = diag(11, . . . , 1m) such that 1k denotes an nk × 1 vector of ones. Further,
denote by N = ∑m

k=1nk the total sample size and let E(ε) = 0, var(ε) = σ 2
ε I ,

E(b) = 0, var(b) = σ 2
b I , and cov(ε, b) = 0. Independence is assumed among the

random effects in b, among the residual errors in ε, and between b and ε.
The objective of this article is to test whether the random effects are needed in

model (1). Thus, the hypothesis of interest can be formulated as

H0 : σ 2
b = 0 versus H1 : σ 2

b > 0. (2)
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Let lH0 and lH1 denote, respectively, the log-likelihood functions maximised over
H0 and H1. The LRT statistic is given by

LRT = −2
[
lH0 − lH1

]
(3)

Crainiceanu and Ruppert (2004) proposed a finite sample distribution of the LRT in
(3) under null hypotheses and provided an algorithm for simulating that distribution.
Fitzmaurice et al. (2007) proposed a permutation test for variance components using
(3), which provides a one-sided p-value and has the correct empirical size regardless of
the number of clusters or the cluster size. The latter test randomly permutes the cluster
indices, holding the number of observations within each cluster as structured in the
original dataset. The authors showed, using simulation studies, that this permutation
test controls the Type-I error rate when the null hypothesis holds. We shall follow the
same permutation method given therein.

As we focus on situations where the common assumptions underlying maximum
likelihood estimation are severely violated, one immediately thinks of robust estima-
tion methods. We mainly consider robust rank-based estimation. The statistical theory
for rank-based estimation under (1) is developed in Kloke et al. (2009). We provide
a brief overview of this method. The subsequent steps to generate the finite sample
distribution of the proposed test statistic are given in Sect. 3.

For notational convenience, let η denote the intercept term to be excluded from β

and rewrite model (1), following the notations in Kloke et al. (2009), such that

Y k = η1nk + Xkβ + ek (4)

where

ek = bk1nk + εk . (5)

Combining (4) and (5) for all clusters, then

Y = η1N + Xβ + e, (6)

where e = (e′
1, . . . , e

′
m)

′
. The following assumptions are needed. The random vectors

in e are independent and the univariate marginal distribution of ek is continuous and is
the same for all k. Let Fe(.) and fe(.) denote, respectively, this common distribution
function and density function about ek . Further, assume that fe(.) is absolutely con-
tinuous and that the usual regularity (likelihood) conditions hold. Assume further that
Huber’s condition holds for the design matrix X [i.e. the leverage values get uniformly
small as N goes large (Kloke et al. 2009)]. Under a LME modelling framework, the
ordinary rank-based estimator of β is given by

β̂ϕ = Argmin‖Y − Xβ‖ϕ, (7)

where ‖v‖ϕ = ∑N
t=1{a[R(vt )]vt } for v ∈ R

N , R(vt ) denotes the rank of vt among
v1, . . . , vN and the scores a[.] are generated as a[t] = ϕ[t/(N + 1)] for ϕ(u) a
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nondecreasing bounded square-integrable function defined on the interval (0,1) such

that
∑

t a[t] = 0,
1∫

0
ϕ(u)du = 0 and

1∫

0
ϕ2(u)du = 1. The estimator in (7) satisfies the

solution to SX (β) = 0 where

SX (β) = X ′a[R(Y − Xβ)]. (8)

The estimator of the intercept term η, denoted by η̂, is given by the median over
the residuals where

η̂ = mediank j
{
yk j − x′

k j β̂ϕ

}
. (9)

Consequently, the residuals are defined as

êJ R = Y − (
1N η̂ + Xβ̂ϕ

)
. (10)

The estimate of σ 2
b using these residuals can be calculated as follows. Rewrite

model (4) in element-wise form as

yk j −
(
η + x′

k jβ
)

= bk + εk j (11)

for j = 1, . . . , nk . Since the residuals êk j in (10) provide estimates of the left side in
(11), a predictor of bk for a given cluster, say k, is the median over the nk residuals in
that cluster. That is, b̂k = median1≤ j≤nk {̂ek j }. The robust estimator of σ 2

b is given by

σ̂ 2
b = (

1.483median1≤k≤m |̂bk − median1≤r≤m {̂br }|
)2

The last formula for σ̂ 2
b denotes the squared scaled median absolute deviations of

b̂k’s from their overall median. See Kloke et al. (2009) and Liu and McKean (2015)
for thorough details and references on the derivation of σ̂ 2

b and the rationale behind it.

3 New test based on robust estimation

Permutation tests (Pesarin and Salmaso 2010, 2012; Hahn and Salmaso 2017) are non-
parametric computationally intensive tests. In regression contexts, permutation tests
possess the nominal size (Schmoyer 1994) when the sample data are correctly per-
muted such that the null distribution of the test statistic is approximated by repeatedly
computing its values using each permuted sample. Specifically, those tests assume the
exchangeability of the values being permuted (Basso et al. 2009) where exchangeabil-
ity is less stringent than being iid.

We propose a robust permutation test for (2), utilizing the fact that permutation tests
are distribution free. To investigate the robustness, we consider the error components in
(1) to follow a symmetric distribution with heavy tails, a heavy skewed distribution, or
to contain outliers. To fulfill this proposal,we replace the unknownvariance component

123



340 Y. S. El-Horbaty, E. M. Hanafy

σ 2
b by its robust rank-based estimator σ̂ 2

b as described inSect. 2,which canbe calculated
from the available data (Y , X). Letting Z = diag(1n1 , . . . , 1nm ), the proposed test
statistic is given by

TJ R = trace(̂σ 2
b ZZ

′
) (12)

where the test offers the calculation of a one-sided p-value in a way that yields the
correct Type-I error rate under the null hypothesis. As the expression in (12) will be
applied to random intercept models, TJ R is simply proportional to σ̂ 2

b since TJ R =
σ̂ 2
b

∑m
k=1nk .

Construction of the permutation distribution of TJ R is needed to calculate the
p-value. To do so, The marginal errors in (6) are permuted where, under the null
hypothesis, the errors e are iid with zero mean and variance equal to σ 2

ε and thus they
are exchangeable. Note that the subtraction of the fixed effects term in (6) from Y
resolves the problems of requiring the continuous covariates to be identical among the
clusters and the necessity of having equal number of observations per cluster. Hence,
the errors can be permuted within and between clusters. Since η and β need to be
replaced by their estimates in practice, the estimated errors are calculated from the
alternative model. It is shown by Schmoyer (1994) that, under the null hypothesis,
the residuals are also asymptotically exchangeable both within and among clusters.
Since σ̂ 2

b is a function of the residuals êk j , as shown below (11), a straightforward
permutation distribution for TJ R can be generated.

Since the number of permutations grows with N = ∑m
k=1nk , we use a general

algorithm for obtaining a Monte Carlo estimate of the permutation p-value as follows:

(i) Under H0 : σ 2
b = 0, calculate TJ R from the original sample.

(ii) Randomly permute the cluster indices over all clusters, holding fixed the cluster
sizes as nk in the new permuted sample. Then, recalculate the test statistic, say
T (r)
J R where the superscript r denotes that the rth permutation sample has been

constructed.
(iii) Repeat the process a large number of times, say R̃ times, producing R̃ test

statistics T (r)
J R , r = 1, . . . , R̃.

(iv) The one-sided p-value, according to steps (i)–(iii), is calculated as the proportion
of permutation samples (out of R̃) such that T (r)

J R exceeds the original sample
value of the test statistic.

In implementing of the Monte Carlo algorithm, the pooled set of pairs{(
yk j , xk j

); k = 1, . . . ,m; j = 1, . . . , nk
}
are exchangeable when the null hypoth-

esis in (2) is true. The set of all residuals
{
êk j ; k = 1, . . . ,m; j = 1, . . . , nk

}
are also

exchangeable under the null hypothesis because both η̂ and β̂ϕ are permutation invari-
ant. Indeed, this invariance applies under any suitable regression estimation method
when σ 2

b = 0. When the distribution of the error components in the right-hand side
of (5) is contaminated, our proposed test is thus based on the invariant values of η̂

and β̂ϕ using robust rank-based estimation of σ̂ 2
b . The generated permutation distri-

bution is valid regardless of (i) the distributional assumptions that are made about the
error components in model (1) except for the first two moments, (ii) the estimation
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method that can be used to fit the model provided that the estimator is invariant to
data permutations when the null hypothesis is true, and (iii) the cluster size, nk , which
may change from one cluster to another in unbalanced data. Beside TJ R , the above
algorithm also applies to obtain the sampling distribution of σ̂ 2

b = (∑m
k=1nk

)−1
TJ R .

4 Simulation study

Simulation experiments are conducted to investigate the performance of the proposed
test (TJ R-test hereafter). The empirical size and power are evaluated and compared
to the permutation LRT (pLRT) (Fitzmaurice et al. 2007), the LRT and the restricted
LRT (RLRT) (Crainiceanu and Ruppert 2004). The simulation setup covers various
schemes such that focus is on the violations of the standard distributional assumptions
about the error terms that are known to reduce the efficiency of themaximum likelihood
estimators.

4.1 Simulation setup

Let the model for the response variable yk j given the random effect bk be given by

yk j = η + bk + εk j j = 1, . . . , nk, k = 1, . . . ,m (13)

where we choose m = 30, 40 clusters, nk = 3, 10 observations within a cluster
and η = 2. Assume that the intra-cluster correlation (ICC) takes on the values 0.10,
0.20, and 0.30 where ICC = σ 2

b /(σ 2
b + σ 2

ε ). For every test under consideration, the
value of ICC = 0 is used to examine the empirical size (Type-I error) while the
empirical power (ICC > 0). Both size and power are explored under the violation
schemes given next. Assume that bk ∼ N (0, σ 2

b ) and that the residual error term εk j
follows a symmetric contaminated normal distribution, a skewed contaminated normal
distribution, a normal distribution while allowing for the presence of outliers, and a
skewed distribution. The detailed setup under each scheme, involving the value of σ 2

ε ,
is given below.

4.1.1 Symmetric contaminated normal distribution

Asymmetric contaminated normal distribution is amixture of two normal distributions
with mixing probabilities (1 − δ) and δ where 0 < δ < 1. For any random variable,
say ε, that follows a normal distribution with density function g(ε;μ, σε) where μ

and σ denote, respectively, the mean and the standard deviation of the distribution,
the contaminated normal density can be expressed as f ∗(ε) = (1 − δ)g(ε;μ, σε) +
δg(ε;μ, λσε)where λ > 1 is a parameter that determines the standard deviation of the
wider component. In the simulations, we apply the definition of f ∗(.) to the residual
errors εk j in (13). We consider δ = 20% as a commonly used level of contamination
in the distribution of εk j (Kloke et al. 2009), λ = 5, μ = 0 and σ 2

ε = 1. Table 1
summarizes the simulation results of this scheme.

123



342 Y. S. El-Horbaty, E. M. Hanafy

Table 1 Empirical rejection rates of tests when the residual errors are generated from symmetric contami-
nated normal distribution

m nk ICC Level of contamination (20%)

TJ R(%) pLRT (%) LRT (%) RLRT (%)

30 3 0.00 04.60 07.00 04.40 04.60

0.1 0 07.20 04.00 05.20 05.60

0.2 0 11.60 04.00 07.40 07.00

0.3 0 14.80 05.00 09.80 09.60

10 0.00 05.40 03.00 06.20 05.60

0.1 0 14.60 04.00 08.80 13.40

0.2 0 32.40 06.00 20.40 22.00

0.3 0 52.80 08.00 36.00 36.80

40 3 0.00 05.80 03.50 06.20 06.00

0.1 0 08.00 05.50 06.00 05.80

0.2 0 10.00 05.50 07.60 07.40

0.3 0 13.60 07.00 10.20 11.40

10 0.00 05.60 05.50 04.60 03.00

0.1 0 18.40 07.00 13.20 10.40

0.2 0 36.20 07.50 25.20 20.80

0.3 0 58.80 13.50 43.60 37.60

4.1.2 Skewed contaminated normal distribution

Here, we investigate the performance of the tests when εk j are generated from a skewed
normal distribution which can be defined as

f (ε) = 2φ(ε)�(sε), (14)

where φ(ε) and�(sε) denote the standard normal density function and its distribution
function that are defined at point sε respectively (Azzalini and Valle 1996). The com-
ponent s represents the shape/skewness parameter because it regulates the shape of
the density function. In the empirical study, εk j are generated from a skewed normal
distribution that is contaminated, as defined in Sect. 4.1.1, with level of contamination
being equal to δ = 20%, where λ = 5, μ = 0, σ 2

ε = 1 and skewness parameter equal
to 10 (McKean and Kloke 2014). The simulation results of this scheme are given in
Table 2.
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Table 2 Empirical rejection rates of tests when the residual errors are generated from skewed contaminated
distribution

m nk ICC Level of contamination (20%)

TJ R(%) pLRT (%) LRT (%) RLRT (%)

30 3 0.00 04.20 05.00 07.80 08.00

0.10 13.60 08.50 06.60 05.60

0.20 19.60 10.50 09.80 07.20

0.30 27.60 14.50 15.40 11.80

10 0.00 05.00 06.50 05.40 04.20

0.10 37.00 16.00 14.20 13.80

0.20 66.20 29.00 30.20 33.40

0.30 80.20 53.00 51.60 57.00

40 3 0.00 04.70 05.00 04.60 04.60

0.10 13.80 07.00 07.80 08.20

0.20 25.00 08.50 11.00 11.00

0.30 32.40 12.00 16.20 16.20

10 0.00 05.80 06.50 03.20 05.00

0.10 38.80 13.50 16.20 14.00

0.20 73.80 30.50 35.20 33.80

0.30 87.60 64.00 65.20 62.00

4.1.3 Outliers

Assuming that εk j ∼ N (0, σ 2
ε ) where σ 2

ε = 0.5, under this scheme we replace 5% of
the residual errors by residual errors drawn from N (5, 152).We adopt this replacement
for εk j while maintaining bk ∼ N (0, σ 2

b ). Maximum likelihood estimation is known
to produce inefficient estimates under the presence of outliers of this form. Table 3
emphasizes the consequences of this fact by displaying the empirical Type-I error rates
that are achieved by each of the competing tests. The corresponding empirical power
results are also reported.

4.1.4 Skewed distribution

Wealso investigate the performance of the competing testswhen εk j are generated from
heavily skewed distributions such as the Cauchy distribution with location parameter
zero and scale parameter 0.5 [i.e. C(0, 0.5)], the chi-square distribution with 1 degree
of freedom and the log-normal distribution with parameters (μ = 0, σ = 1). The
results of Cauchy distribution are provided in Table 4 while those for the chi-square
and log-normal distributions are provided in Table 5.
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Table 3 Empirical rejection rates of tests when data involved outliers

m nk ICC Outliers scheme

TJ R(%) pLRT (%) LRT (%) RLRT (%)

30 3 0.00 06.40 01.60 00.60 00.40

0.1 0 13.00 04.00 02.00 01.40

0.2 0 15.30 11.50 07.20 06.80

0.3 0 28.30 21.50 15.40 15.00

10 0.00 05.30 00.30 00.40 00.20

0.1 0 38.00 13.50 16.20 14.20

0.2 0 68.70 50.50 58.80 57.40

0.3 0 84.70 78.50 87.80 83.80

40 3 0.00 06.30 00.60 00.20 00.40

0.1 0 12.00 08.50 04.60 03.80

0.2 0 20.70 19.50 13.00 13.40

0.3 0 31.70 31.00 32.60 31.20

10 0.00 06.60 01.00 00.40 00.20

0.1 0 47.30 01.50 26.20 20.40

0.2 0 78.30 28.00 74.20 69.20

0.3 0 91.30 70.50 93.80 94.60

4.2 Simulation results

Though not restricted to, the simulation outcomes obtained for the proposed test are
based on defining ϕ(u) = √

12[u − (1/2)] where ϕ(u) is mentioned below (7) which
denotes the Wilcoxon score function (Hettmansperger and McKean 2010; Kloke et al.
2009). Applying JR estimation, presented in Sect. 2, to calculate σ̂ 2

b under the working
model (13) is essential for computing TJ R as given in (12). Note that the vector of
residuals êJ R is calculated under the working model as êJ R = Y − 1N η̂, where
η̂ = mediank j {yk j }. For the remaining tests, we use maximum likelihood estimation
as recommended in their corresponding references. To evaluate the size or the power of
each test, we generate 10,000 original samples. Besides, 10,000 permutation samples
per each original sample are generated to test the null hypothesis and obtain the
p-values using the TJ R-test and the pLRT. The empirical size is calculated as the
proportion of times in which a given p-value is less than or equal the nominal level
α = 5%.

Under the first contamination scheme, Table 1 summarizes the empirical sizes (ICC
= 0) of the proposed TJ R-test, which are close to the nominal level α = 5%. The LRT
is the next closest test to the nominal level followed by RLRT. The empirical power
(ICC > 0) of the TJ R-test exceeds the power of the remaining tests where the poorest
performance is provided by pLRT. We can see that when m = 30, 40 and nk = 3, the
power (as the ICC departs from zero) of the TJ R-test increases, though not with high
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Table 4 Empirical rejection rates of tests when the residual errors are generated from Cauchy distribution

m nk ICC C(0, 0.5)

TJ R(%) pLRT (%) LRT (%) RLRT (%)

30 3 0.00 06.50 10.00 02.00 02.50

0.1 0 08.50 07.50 01.50 02.00

0.2 0 14.50 08.50 01.50 02.00

0.3 0 20.00 11.50 01.50 02.00

10 0.00 05.40 07.00 03.00 01.50

0.1 0 42.00 08.00 02.50 01.50

0.2 0 62.00 10.00 04.00 02.00

0.3 0 79.00 16.50 05.50 03.50

40 3 0.00 05.50 09.50 02.50 01.50

0.1 0 11.00 10.50 02.00 01.50

0.2 0 14.00 11.00 02.60 02.00

0.3 0 18.50 13.50 02.80 02.90

10 0.00 05.00 06.50 03.00 00.50

0.1 0 48.00 07.50 01.50 02.00

0.2 0 75.50 08.50 02.50 03.00

0.3 0 90.00 09.50 04.50 03.90

jumps, at faster rate compared to the remaining three tests. However, as the cluster
size increases (nk = 10), both the rate of increase in the power of the TJ R-test and the
gap from the other tests increase, confirming the superiority of the proposed test. It is
obvious that the increase in the cluster size is the factor that most discriminates the
performance of the competing tests where the best performance is always dedicated
to the proposed TJ R-test.

Table 2 presents the results under the second scheme in where the residual errors
have a skewed contaminated normal distribution. The size of each of the four compet-
ing tests remains not too distant from the nominal level. The TJ R-test, in particular,
preserves an acceptable performance along with the chosen cluster sizes and number
of clusters. The power of the TJ R-test remains the highest in all experiments. We also
note that the power performance of the other three tests remains very close to each
other as the value of the ICC increases. Unlike the comparisons made under the first
scheme, the pLRThere possesses a competitive power to the LRT and theRLRT.Main-
taining all other factors fixed at their level under this scheme, we note that the imposed
skewness on the distribution of the residual error widens the gap between the TJ R-test
and the remaining tests if compared to the situation when residual errors follow a
symmetric contaminated distribution (i.e. Table 1). This considerable discrimination
holds for every power comparison (i.e. for every ICC > 0).

As mentioned in Sect. 4.1.3, the third scheme in our simulation experiments is
concerned with the presence of outliers in the y-space and its implications on the
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Table 5 Empirical rejection rates of tests when the residual errors are generated from chi-square and log-
normal distributions

m nk ICC (χ2
(1)) Log-normal (0, 1)

TJ R(%) pLRT
(%)

LRT
(%)

RLRT
(%)

TJ R(%) pLRT
(%)

LRT
(%)

RLRT
(%)

30 3 0.00 04.50 05.50 05.00 06.50 04.50 04.50 07.00 04.50

0.1 0 16.50 08.00 08.50 05.00 16.00 06.50 07.00 04.70

0.2 0 25.00 14.00 13.50 10.00 22.00 10.00 09.50 05.00

0.3 0 34.00 22.50 19.00 23.50 25.00 14.50 14.50 08.00

10 0.00 04.50 005.50 03.50 07.00 06.50 1.50 01.00 02.50

0.1 0 45.50 27.50 26.00 29.00 27.50 14.00 09.00 07.50

0.2 0 76.00 60.00 56.50 60.50 56.50 30.00 22.00 21.50

0.3 0 90.50 81.50 87.50 86.00 77.00 48.50 46.50 40.50

40 3 0.00 05.50 04.50 06.00 05.00 06.00 05.50 06.00 02.50

0.1 0 21.00 09.00 08.50 12.00 12.00 7.50 05.50 04.00

0.2 0 25.50 13.00 14.50 20.00 19.50 13.00 10.50 08.50

0.3 0 42.00 26.00 30.00 32.50 30.00 19.00 15.50 15.50

10 0.00 05.90 05.00 06.50 07.00 06.00 04.50 03.00 02.50

0.1 0 59.00 32.50 30.00 29.50 33.50 13.50 16.00 08.00

0.2 0 85.00 64.50 63.00 67.50 64.00 38.00 30.50 16.50

0.3 0 95.00 93.00 88.50 91.00 84.00 60.00 63.00 43.50

performance of the competing tests. Table 3 provides the empirical sizes and powers
of the four tests.We observe that the presence of outliers has a dramatic effect on Type-
I error rates produced by the pLRT, LRT and RLRT (i.e. when ICC = 0). Obviously,
the TJ R-test is the only robust test with reasonable rates that are close to the nominal
level of 5%. The empirical sizes of the remaining three tests are far distant from this
nominal level, indicating how poor and unreliable might the performance of these tests
be when outliers are suspected in the available data.

Although the three tests (pLRT, LRT, and RLRT) do not possess correct error rates
under null hypothesis when outliers are present, results on their rejection rates are
reported when the alternative hypothesis in (2) holds. It is obvious that as any of the
three factors (i.e. ICC level, the cluster size, and the number of clusters) increases, the
corresponding rejection rates increase. Noticeably, when ICC = 0.30, the proportion
of rejecting the nullity of the variance component using the LRT and the RLRT is
either close to the power of the TJ R-test or even higher. Nevertheless, we recommend
the use of the TJ R-test due to its robust performance in the presence of outliers.

The results of the fourth scheme are provided in Tables 4 and 5. Assuming the
Cauchy distribution for εk j , we conclude from Table 4 that the TJ R-test proceeds to
control Type-I error rates when ICC = 0. As in the previous scheme, the other three
tests do not guarantee an acceptable rejection rates under the null hypothesis. The
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TJ R-test proceeds to outperform the remaining tests in terms of its power under the
alternative hypothesis. Indeed, the remaining tests fail to reject the null hypothesis
due to the poor estimates produced using the maximum likelihood method under this
scheme.

Further investigation under the fourth scheme is provided where εk j are generated
from two heavily skewed distributions, namely the χ2

(1) and lognormal(0,1) distribu-
tions. In Table 5, the empirical sizes of the three competing tests remain unstable but
generally improve over their corresponding performance in Table 4. Noticeably, their
power improves as we depart from the null hypothesis. The proposed TJ R-test remains
the champion in terms of power comparisons, as is the case in all previous settings.

To sum up, the simulation experiments that are conducted in this section show a
strong evidence that favors the use of the proposed TJ R-test, based on size-power
comparisons, to the other three tests. Our proposal remains robust when the other
tests fail to do so, preserving a considerable power increase in all the schemes under
consideration as we depart form the nullity of the ICC.

5 Rat pup data

In this section, the rat pup dataset (Pinheiro and Bates 2006) is used. The study consid-
ers the experimental compound effects on the birth weights of 322 pups for 30 mother
rats. The data consists of 27 litters, which were randomly assigned to a specific level
of treatment (high, low, control), and 322 rat pups were nested within these litters.
The study had an unbalanced design such that the number of pups per litter is not the
same. The smallest litter had a size of 2 pups while the largest litter had a size of 18
pups. In addition, the number of litters per treatment is not the same (i.e. 10 litters
were assigned to the control treatment, 7 to the high dose treatment and 10 litters were
assigned to the low dose treatment).

A summary of the weights-by-treatment and sex is provided in Table 6 and Fig. 1.
We note that the experimental treatments (high and low) appear to have a negative
effect on mean birth weight. The averages (also the medians) of the birth weights for
the pups born in litters that received high and low treatments are lower than the those
of the birth weights for rats born in litters that received the control dose. Besides, the

Table 6 Summary statistics for rat pup birth weights by treatment and sex

Treatment Sex Number of
observation

Mean Standard
deviation

Minimum Maximum

Control Female 54 6.12 0.69 3.68 7.57

Male 77 6.47 0.75 4.57 8.33

High Female 32 5.85 0.60 4.48 7.68

Male 33 5.92 0.69 5.01 7.70

Low Female 65 5.84 0.45 4.75 7.73

Male 61 6.03 0.38 5.25 7.13
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Fig. 1 Box plots for rat pup birth weights by treatment and sex

sample means of birth weights of male pups are higher than those of females within
all levels of treatment.

Figure 2 describes the litter effect on the rat pup birth weights using 27 box plots
such that, from left to right, the first 10 belong to control level followed by 7 box plots
that belong to a high level and the last 10 belong to the low level of treatment. It is
obvious that the means/medians of the 27 box plots are not same where the largest
means/medians appear in litters 8, 17 and 27 and the smallest means/medians are in
litters 1, 11, 12 and 18. Potential outliers are also recognized in both Figs. 1 and 2
since some pups appear to have either lower or higher weights than the other pups that
belong to the same group (treatment/litter).

Fig. 2 Box plots for rat pup birth weights by litter
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5.1 LMEmodel for the rat pup data

Figure 2 indicates a potential varying litter effect on the distribution of the values of the
rat pup birth weights in each litter. Considering this effect to be random, the individual
birth weight observation (WE IGHT kj ) of the jth rat pup within the kth litter can be
modeled using the following two-level random intercept regression model:

WE IGHTkj =β0 + β1 T RE AT 1k + β2 T RE AT 2k + β3SEXkj + β4L I T SI Z Ek

+ β5T RE AT 1k SEXkj + β6T RE AT 2k SEXkj + bk + εk j

j = 1, . . . , nk, k = 1, . . . , 27 (15)

where nk refers to the litter size that ranges between 2 and 18 pups per litter,
WE IGHT kj is the response variable, T RE AT 1k and T RE AT 2k denote respec-
tively level-2 indicator variables for receiving the high and low levels of treatment,
SEXkj is a level-1 indicator variable for female rat pup and, L I T SI Z Ek refers to the
size of litter k, where k = 1, . . . , 27. The random litter effect, bk , is assumed to have
normal distribution with mean zero and constant variance σ 2

li t ter and the residual error
term, εk j , is also assumed to have a normal distribution with mean zero and constant
variance σ 2

residuals (Pinheiro and Bates 2006).

5.2 Parameter estimation

Former analyses of this dataset focused on using the restricted maximum likelihood
(REML) estimation method to infer about the effect of the different treatment levels
on the birth weight (Pinheiro and Bates 2006). REML estimation also represents the
basic method on which the competing tests were based, and is preferred to maximum
likelihood estimation as it takes into account the loss in degrees of freedom due to
estimation of fixed effect parameters (Patterson and Thompson 1971). Nevertheless,
REMLestimation does not figure out the potential effect of outliers and other violations
of the distributional assumptions on the efficiency of the estimates and the consequent
inference under the LME framework. In the remainder of this section, we highlight the
gains from using the robust rank-based estimation method in terms of estimating both
the fixed effects and the variance components with higher efficiency when compared
to likelihood-based estimates.

The results of fitting model (15) are reported in Table 7 using the REML method
versus the robust non-parametric JR method. The main effects (high vs. control) and
(low vs. control) have a significant negative magnitude, indicating a negative effect on
the birth weights of rat pups. The litter size is also found to have a significant negative
effect on the birth weights of rat pup. The study shows a strong tendency for birth
weights to decrease as a function of litter size in all litters.

Estimates of the variance components are also given in Table 7. We note that the JR
estimate of σ 2

li t ter has smaller standard error compared to the corresponding REML
estimator. The same conclusion holds for the estimated value of σ 2

residuals . Next, we
examine the effect of the outliers and the distributional assumptions on each estimation
method.
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Table 7 REML and JR estimates and standard errors of effects for rat pup data

Estimation method REML JR

Estimate SE p value Estimate SE p value

Fixed effects

β0(intercept) 8.32 0.27 0.00 8.39 0.07 0.00

β1(high vs. control) − 0.91 0.19 0.00 − 1.00 0.06 0.00

β2(low vs. control) − 0.47 0.16 0.01 − 0.46 0.04 0.00

β3(female vs. male) − 0.41 0.07 0.00 − 0.23 0.06 0.00

β4(litter size) − 0.13 0.02 0.00 − 0.14 0.01 0.00

β5(high × female) 0.11 0.13 0.42 0.05 0.10 0.59

β6(low × female) 0.08 0.11 0.43 − 0.03 0.09 0.75

Random effects

σ 2
li t ter 0.0965 0.3107 0.0018 0.0431

σ 2
residuals 0.1635 0.4043 0.0863 0.2938

5.3 Robustness of estimationmethods

Here, we explore whether two features might have led to the superiority of the JR
estimators in Table 7 over the REML estimators. First, we test the assumption of nor-
mality of data using Shapiro–Wilk test. Based on the original data, the Shapiro–Wilk
test produces a test statistic of 0.8448 with p-value < 0.001, which reveals a viola-
tion of the normality assumption. This result asserts the tendency of the JR method
to outperform the REML method as concluded from Table 7 where the considerable
departure from the normality assumption can be one of the reasons that favors the use
of the JR fit.

The second feature of concern is the presence of potential outliers in the rat pup data
as concluded from Fig. 2. In exploring the second feature, we follow the procedures
in Kloke et al. (2009) to study the effect of changing the magnitude of the suspicious
outliers on the efficiency of the REML and JR fits. The results are provided in Table
8. Moreover, we study the effect of removing these potential outliers, hence reducing
the total sample size, by refitting the model to the reduced dataset. The corresponding
results are provided in Table 10.

In order to assess the effect of the presence of the potential outliers in the rat pup
data, we change their magnitudes in two dimensions as follow. For pups with weights
larger than the majority of the other pups in the same litter, their magnitudes have been
doubled. For those with weights less than the majority of the other pups in the same
litter, their values have been divided by 2. From the results in Table 8, we note that
according to each estimation method, the significance/insignificance status of fixed
effects estimates remained unchanged. However, for the variances components, the
REML standard errors became less efficient than their corresponding values using the
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Table 8 REML and JR estimates and standard errors of effects for the changed rat pup data

Estimation method REML JR

Estimate SE p value Estimate SE p value

Fixed effects

β0(intercept) 13.25 0.77 0.00 10.57 0.08 0.00

β1(high vs. control) − 2.37 0.53 0.00 − 1.39 0.06 0.00

β2(low vs. control) − 1.28 0.43 0.00 − 0.57 0.05 0.00

β3(female vs. male) − 1.06 0.26 0.00 − 0.21 0.06 0.00

β4(litter size) − 0.42 0.05 0.00 − 0.28 0.01 0.00

β5(high × female) 0.50 0.47 0.29 0.17 0.10 0.10

β6(low × female) 0.71 0.37 0.54 − 0.05 0.09 0.57

Random effects

σ 2
li t ter 0.5906 0.7685 0.0035 0.0594

σ 2
residuals 2.0695 1.4386 0.0879 0.2965

Table 9 Summary of variance components parameter estimates

Method Original data Changed data

σ 2
li t ter σ 2

residuals σ 2 ICC σ 2
li t ter σ 2

residuals σ 2 ICC

REML 0.0965 0.16349 0.2599 0.371 0.59059 2.0695 2.6601 0.222

JR 0.0018 0.0863 0.0881 0.020 0.0035 0.0879 0.0914 0.038

original data. The JR standard errors remain approximately unchanged, confirming
that their robustness to the presence of the outliers.

Table 9 provides a summary of the estimates of variance components and interclass
correlation coefficients under REML and JR estimation methods for the original and
changed rat pup datasets. The results show that, the JR variance components estimates
under the changed data are σ̂ 2

li t ter = 0.0035, σ̂ 2
residuals = 0.0879 and the estimate

of the total model variance is σ̂2 = 0.0914, where σ̂2 = σ̂ 2
li t ter + σ̂ 2

residuals , and
ICC = 0.038. These are essentially unchanged compared to their corresponding values
in the original data and remain smaller than their corresponding results produced by
REML estimation.

Model (15) has been refitted using the REML and JR methods to the reduced data,
i.e. after removing the potential outliers from the original data. From Table 10, we
conclude that the JR results remain better (in terms of the standard errors of the variance
components) than their corresponding REML results. The conclusions made about the
estimated fixed effects using both estimation methods do not change.

To sum up, it seems that the violation of the normality assumption was the main
cause to advocate the use of the JR method in obtaining the results of the original
data (Table 7) rather than the presence of potential outliers (Fig. 2). This conclusion
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Table 10 REML and JR estimates and standard errors of effects after removing the potential outliers from
the original rat pup data

Estimation method REML JR

Estimate SE p value Estimate SE p value

Fixed effects

β0(intercept) 7.86 0.27 0.00 9.83 0.08 0.00

β1(high vs. control) − 0.80 0.18 0.00 − 1.17 0.06 0.00

β2(low vs. control) − 0.38 0.15 0.02 − 0.52 0.04 0.00

β3(female vs. male) − 0.28 0.06 0.00 − 0.23 0.06 0.00

β4(litter size) − 0.10 0.02 0.00 − 0.23 0.01 0.00

β5(high × female) 0.01 0.11 0.90 0.23 0.10 0.22

β6(low × female) − 0.06 0.09 0.53 − 0.05 0.08 0.54

Random effects

σ 2
li t ter 0.0899 0.2998 0.0033 0.0572

σ 2
residuals 0.1077 0.3282 0.0879 0.2965

has been enhanced by investigating the original data after changing the magnitude of
these outliers (Table 8) and after their exclusion (Table 10).

5.4 Testing litter effect

Testing the need of random effect is conducted to decide whether the random effects
that are associated with the intercepts for each litter can be omitted from model (15).
Based on the original rat pup dataset, the proposed TJ R-test is calculatedwith 5000 per-
mutation samples. The test produces a test statistic of 0.5796 with a p-value = 0.001.
The competing tests are also conducted such that the test statistics pLRT, LRT, and
RLRT are 84.213 (p-value = 0.001), 89.406 (p-value = 0.0001) and 84.461 (p-value
= 0.002), respectively. Thus, we reject the null hypothesis at the 5% nominal level
which allows the random effect bk (k = 1, . . . , 27) interpretation. This recommends
retaining the random litter effects in this model. It should be emphasized that the role
of the test is to decide about the need for the variance components in any further
inferential procedures about the fixed effects under the potential presence of outliers
or the absence of the normality. Retaining the variance components also validates the
recommendation of using the JR estimationmethod. For further inferential procedures
about the fixed effects under this method, the reader is then referred to Kloke et al.
(2009).

6 Conclusion

In this article, our proposed variance components test is provided via a novel combi-
nation of tools that can play an important role in preserving a correct size meanwhile
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producing a competitive power using a permutation test. The exchangeability of the
cluster indices, hence of the estimated residuals, along with the robustness of the esti-
mation of both fixed effects and variance of the random effects are jointly utilized.
This combination seems to be overlooked or not recognized in the literature. Our
test statistic seems to be a natural choice for evaluating the nullity of the variance
components in the LME model using a permutation-based test. The robust estimation
theory for obtaining the test statistic is readily available when the model involves a
single variance component. Particularly, the robustness of the underlying parameter
estimation method controls the size of the proposed test to remain at an acceptable
level compared to the poor size (invalidity) of the competing tests under the presence
of outliers. Aside from outliers, the power of the proposed TJ R-test always exceeds
its competitors under the remaining simulation schemes.

Needless to say, the proposed test remains limited to LME models involving one
random effect per cluster. The lack of robust rank-based estimation theory under
general linear mixed models with complex/unknown covariance structures restricts
our proposal from potential extensions to test multiple variance components. This
includes the challenging problem of testing a subset of them. It shall be a demanding
point for future research. Extensions should at least cover the cases where the present
subset of random effects under the null hypothesis possess the nonstandard properties
considered in our simulation schemes.
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Appendix

Validity of the permutation test

The test statistic TJ R is computed based on σ̂ 2
b which is a function of the estimated

residuals êk j . Under the null hypothesis of zero variance components, the order by
which the cluster indices are arranged in the sampled dataset is just one possible
arrangement (permutation) π ∈  where  denotes the set of all N ! permutations
of cluster indices. Denote by T π

J R the value of TJ R under permutation π . For each
permutation π , the parameters η and β are estimated and can be represented by η̂π

and β̂
π

ϕ . Interestingly, under the null hypothesis we have

β̂
π

ϕ = β̂ϕ (A1)
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and

η̂π = η̂ (A2)

for all π ∈  where β̂ϕ and η̂ are given in (7) and (9).
The exchangeability requirement for running a permutation test based on TJ R can

be proved based on the assumption of independence (hence the exchangeability) of
the errors

ek j = yk j −
(
η + x′

k jβ
)

under the null hypothesis where (11) reduces to

yk j −
(
η + x′

k jβ
)

= εk j .

Unfortunately, the errors ek j are unobservable random variables. However, the esti-
mates êk j can replace the corresponding errors in approximating the permutation
distribution of TJ R if those estimates are exchangeable too. Observing that

êπ
k j = yπ

k j −
(
η̂π + x′

k j β̂
π

ϕ

)

= yπ
k j −

(
η̂ + x′

k j β̂ϕ

)
. (A3)

Then, the possible permutations of êπ
k j are equiprobable because the cluster indices

(i.e. over k and j) are equiprobable when the null hypothesis is true. Hence, it suffices
to prove the exchangeability of êk j to validate the approximation of the permutation
test using êπ

k j for all π ∈ . That is, their joint distribution is the same irrespective of
their existing order.

For fixed j and k = 1, . . . ,m, the joint distribution of êπ
k j over all clusters is given

by

f
(
êπ
1 j , . . . , ê

π
mj

)
=

¨
f
(
êπ
1 j , . . . , ê

π
mj |η̂π , β̂

π

ϕ

)
dF

(
η̂π , β̂

π

ϕ

)

=
¨

f
(
êπ
1 j , . . . , ê

π
mj |η̂π , β̂

π

ϕ

)
dF

(
η̂π |β̂π

ϕ

)
dF

(
β̂

π

ϕ

)

=
¨

f
(
êπ
1 j , . . . , ê

π
mj |η̂, β̂ϕ

)
dF

(
η̂|β̂ϕ

)
dF

(
β̂ϕ

)

=
¨ ∏m

k=1
f
(
êπ
k j |η̂, β̂ϕ

)
dF

(
η̂|β̂ϕ

)
dF

(
β̂ϕ

)
, (A4)

where under the null hypothesis, the last equation (A4) indicates that the estimated
residuals êπ

k j are independent and identically distributed given η̂ and β̂ϕ . Let π
∗ ∈ 

be another permutation. Then,

f
(
êπ
1 j , . . . , ê

π
mj

)
=

¨ ∏m

k=1
f
(
êπ
k j |̂ηπ∗

, β̂
π∗
ϕ

)
dF

(
η̂π∗

, β̂
π∗
ϕ

)
dF

(
β̂

π∗
ϕ

)
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and due to the conditional independence, then

=
¨ ∏m

k=1
f
(
êπ∗
k j |̂ηπ∗

, β̂
π∗
ϕ

)
dF

(
η̂π∗

, β̂
π∗
ϕ

)
dF

(
β̂

π∗
ϕ

)
(A5)

where the last equation (A5) implies f
(
êπ
1 j , . . . , ê

π
mj

)
= f

(
êπ∗
1 j , . . . , ê

π∗
mj

)
for any

nonidentical permutations π 	= π∗.
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