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Abstract
The general problem of constructing regions that have a guaranteed coverage probabil-
ity for an arbitrary parameter of interest ψ ∈ � is considered. The regions developed
are Bayesian in nature and the coverage probabilities can be considered as Bayesian
confidences with respect to the model obtained by integrating out the nuisance param-
eters using the conditional prior given ψ. Both the prior coverage probability and the
prior probability of covering a false value (the accuracy) can be controlled by setting
the sample size. These coverage probabilities are considered as a priori figures of merit
concerning the reliability of a study while the inferences quoted are Bayesian. Several
problems are considered where obtaining confidence regions with desirable properties
have proven difficult to obtain. For example, it is shown that the approach discussed
never leads to improper regions which has proven to be an issue for some confidence
regions.
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1 Introduction

The confidence concept arises in statistics as follows: there is a statistical model
{ fθ : θ ∈ �} for data x ∈ X , a marginal parameter of interest ψ = �(θ), where

� : �
onto→ � (with the same notation used here for the function and its range), a

desired confidence level γ ∈ (0, 1) and the goal is to state a region C(x) ⊂ � such
that Pθ (�(θ) ∈ C(x)) ≥ γ for every θ ∈ �. While there can be different motivations
for reporting such a region, the one considered here is that there is an estimateψ(x) of
the parameter of interest such thatψ(x) ∈ C(x) and the “size” ofC(x), together with
the confidence γ, serve as an assessment of the accuracy of the recorded estimate.
It is well-known that confidence regions can sometimes give improper answers as
discussed, for example, in Plante (2020). By improper here is meant that C(x) could
be the null set or all of � with positive probability, and so be uninformative. In such
situations it is difficult to see how reportingC(x) can be regarded as a valid assessment
of the accuracy of ψ(x).

The problem of error assessment via quoting a regionC(x), can also be approached
by adding a prior π to the problem and providing a Bayesian credible region having
posterior content at least γ. The Bayesian approach has the virtues of the error assess-
ment being based on the observed data and such a region can always be constructed,
say via the hpd (highest posterior density) principle. There are criticisms that can be
leveled at this approach, however, as there is no assessment of the reliability of the
inference which is implicit in the frequentist approach via repeated sampling. While
the use of a prior is also sometimes criticized, the position taken here is that this is
no different than the use of a statistical model as, while the model can be checked
for its agreement with the observed data via model checking, similarly a prior can be
submitted to a check for prior-data conflict, see Evans and Moshonov (2006), Evans
(2015) and Nott et al. (2020). There is also the issue of bias which is interpreted here
as meaning that the ingredients to the analysis, namely, the data collection procedure
together with the model and prior, can be chosen in such a fashion as to produce
a foregone conclusion. That such bias is possible is illustrated in Evans (2015) and
Evans and Guo (2021) where also a solution to this issue is developed.

Rather than invoke something like the hpd principle to construct a credible region,
the approach taken here is somewhat different. This is based on the principle of evi-
dence: there is evidence in favor of a value ψ if its posterior probability has increased
over its prior probability, evidence againstψ if the posterior probability has decreased
and there is no evidence either way if they are equal. This simple principle has broad
implications not the least of which being that it makes little sense to allow any reported
region to include a value for which there is evidence against it being true. In fact, a
reported credible region can contain ψ values for which there is evidence against ψ

being the true value. As such, it is more appropriate to quote what is called here the
plausible region Pl�(x), namely, those values of ψ for which there is evidence in
favor of ψ being true, see Evans (2015) and Sect. 2. The principle of evidence also
leads to a direct method for measuring and controlling bias which comes in two forms
for this problem. Here the implausible region Im�(x), refers to the set of ψ values
for which evidence against is obtained.
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(i) Bias against refers to the prior probability that Pl�(x) does not contain the true
value.

(ii) Bias in favor refers to the prior probability that Im�(x) does not contain a
meaningfully false value as defined in Sect. 2.

As discussed in Evans and Guo (2021), the control of bias is equivalent to the
a priori control of coverage probabilities. The control over the biases is effected by
ensuring that an appropriate amount of data is collected as it can be shown that both
biases converge to 0 as the amount of data increases. So the biases are controlled at
the planning stage of a statistical investigation. Controlling bias against is equivalent
to controlling the prior probability of Pl�(x) containing the true value. This coverage
probability will be referred to here as the Bayesian confidence level of the plausible
region as the coverage probability is with respect to the marginal model obtained by
integrating out the nuisance parameters using the conditional prior given the parameter
of interest. This approach can also give a pure confidence, namely, with respect to the
original model, when the parameter of interest is the full model parameter θ = �(θ).

Controlling bias in favor is typically equivalent to setting the accuracy of Pl�(x)
where accuracy refers to the probability of a region covering false values. This is
better expressed through the prior probability of Im�(x) containing a meaningfully
false value of ψ where “meaningfully false” is defined in Sect. 2. Again the accuracy
is with respect to the marginal model obtained by integrating out nuisance parameters.
The definitions and results concerning the biases are more fully discussed in Sect. 2.

The end result of this approach is the best of both approaches to the problem, namely,
a Bayesian region with a particular posterior content that reflects the uncertainty in
the observed data, together with a guaranteed Bayesian confidence and accuracy, that
reflects the reliability of the inference. The reliability of an inference refers to the extent
towhich an inference is trustworthy and, in general, Bayesian inferences do not address
this issue. It is important to note that these results hold for any proper prior and, at least
up to computational difficulties, can always be implemented. In particular, there is no
need to search for a prior that will provide an appropriate Bayesian confidence. So, an
elicited prior can be used, and there is no need for the posterior content and theBayesian
confidence to agree, as they refer to different aspects of a statistical investigation. The
final inference is an estimate ψ(x) of ψ, the plausible region Pl�(x) and its posterior
content, where ψ(x) ∈ Pl�(x) and a measure of the “size” of Pl�(x). The posterior
content of Pl�(x) reflects how strongly it is believed that the true value is in this
set while the size measures how accurate the estimate is. The measurement of size
is context dependent and might simply be the Euclidean volume of Pl�(x) when
this makes sense. The overall point to be noted about the approach taken here is that
inferences are Bayesian but frequentism plays a key role in the design of the study
through the control of the biases.

Section 2 discusses some necessary background and establishes the new result that
a plausible region is never improper. Section3 applies this approach to several well-
known problems where the construction of frequentist confidence regions has proven
to be at the very least difficult and, one could argue, for which there is no current
satisfactory solution. The methodology is general and can be applied to any problem
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with a Bayesian formulation using proper priors and so this provides a degree of
unification between Bayes and frequentism.

It is to be noted that the problem considered can be characterized as one of scientific
inference. In this context there is no preferred utility or loss function employed but
rather a summary is required of what the evidence in the data has to say about the
quantity of interest ψ. It may be that a decision based on a loss or utility is relevant
in a problem but even then it is of interest to see what the evidence says, especially
if this results in a contradiction. For example, the evidence from a clinical trial may
indicate that a vaccine is efficacious in preventing a disease but a decision is made to
not market the vaccine due to side effects, costs, etc.

2 Relative belief inferences and bias

If the prior and posterior densities of ψ are denoted by π� and π�(· | x), then the
relative belief ratio of ψ is given by RB�(ψ | x) = π�(ψ | x)/π�(ψ). There is then
evidence in favor ofψ when RB�(ψ | x) > 1, evidence againstwhen RB�(ψ | x) < 1
and no evidence either way when RB�(ψ | x) = 1. This follows from the principle
of evidence when the prior distribution of ψ is discrete and the following limiting
argument in the general case. If Aε(ψ) is a sequence of sets converging nicely (see
Rudin (1974) for the definition) to {ψ} as ε → 0, then,with	� and	�(· | x) denoting
the prior and posterior measures of ψ,

lim
ε→0

RB(Aε(ψ) | x) = lim
ε→0

	�(Aε(ψ) | x)
	�(Aε(ψ))

= π�(ψ | x)
π�(ψ)

whenever the prior π� is positive and continuous at ψ. For example, taking Aε(ψ) to
be the ball centered at ψ of radius ε gives this result but other choices are possible.
Actually, for much of the discussion here, any valid measure of evidence can be used
instead of the relative belief ratio, where valid means there is a cut-off that determines
evidence against versus evidence in favor according to the principle of evidence. For
example, a Bayes factor is a valid measure of evidence also using the value 1 as the
cut-off. As will be seen, the plausible region and the measures of bias are independent
of the valid measure of evidence used so this is not an issue for the discussion here.

The set of values for which there is evidence in favor is the plausible region
Pl�(x) = {ψ : RB�(ψ | x) > 1}. When the ψ values are ordered by the amount
of evidence using the relative belief ratio, the natural estimate of ψ is given by
ψ(x) = arg supψ RB�(ψ | x) ∈ Pl�(x). The posterior content of Pl�(x) measures
how strongly it is believed that the true value is in Pl�(x). When � is an open subset
of a Euclidean space it typically makes sense to report the volume of Pl�(x) as a
measure of its size. Volume doesn’t work, however, in the non-Euclidean case, for
exampleψ is a graph, and so some other measure of size is required. The choice of the
size measure is context dependent and could simply be counting measure when ψ is
a discrete parameter, but the prior probability content of Pl�(x) also gives a general
measure of size. So ψ(x) can be considered a highly accurate estimate when the pos-
terior probability 	�(Pl�(x) | x) is high, as then there is a high degree of belief the
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true value is in Pl�(x), and the prior probability 	�(Pl�(x)) is small. Note that the
prior reflects initial beliefs about the true value of ψ so such an outcome indicates that
a great deal has been learned relative to the prior. Also, any other estimate determined
in this way from a valid measure of evidence will also lie in Pl�(x) and so produces
no gain in accuracy over ψ(x).

It is possible, however, that there is bias in Bayesian inferences. For example,
suppose that the goal is to assess the hypothesis H0 : �(θ) = ψ0. The relative belief
ratio RB�(ψ0 | x) indicates whether there is evidence in favor of or against H0 and
there are several approaches to measuring the strength of this evidence but this is
not considered further here, see Evans (2015). Suppose that evidence against H0 is
obtained but that there is a large prior probability of not getting evidence in favor even
when H0 is true, namely, the probability

bias against�(ψ0) = M(RB�(ψ0 | x) ≤ 1 |ψ0) (1)

is large where M(· | ψ0) denotes the conditional prior measure of the data given that
H0 is true, namely, M(A | ψ0) = ∫

A

∫
H© fθ (x)	(dθ | ψ0)dx and 	(· | ψ0) is the

conditional prior measure for θ given that �(θ) = ψ0. So M(· | ψ0) is obtained by
integrating out the nuisance parameters. It seems reasonable then to treat the finding
of evidence against H0 as unreliable and it can be said that there is an a priori bias
against H0. Similarly, using a metric d on �, if evidence in favor of H0 is obtained
but

bias in favor�(ψ0) = sup
ψ :d(ψ0,ψ)≥δ

M(RB�(ψ0 | x) ≥ 1 | ψ) (2)

is large, namely, there is a large prior probability of not obtaining evidence against H0
when it is meaningfully false, namely,

∫
A

∫
H© fθ (x)	(dθ | ψ0)dx where the specifi-

cation of δ is discussed in the following paragraph, then it is said that there is bias in
favor of H0.Note thatM(RB�(ψ0 | x) ≥ 1 | ψ) generally decreases asψ moves away
from ψ0, so it is then only necessary to consider values of ψ satisfying d(ψ0, ψ) = δ

to determine the bias in favor. Clearly there is some similarity between the frequentist
size and power of a test and the bias against and bias in favor here but there is no
suggestion that we are to accept or reject H0. The purpose of the biases is to measure
the reliability of what the evidence in the observed data tells us about H0.

The value of δ is not arbitrary but is determined by the application, as it represents
the accuracy to which it is desired to know the true value of ψ and is thus part of the
design. For example, if interest is in inference about the mean of a response variable
that is measured to the nearest centimeter in the data collected, then the true value of
the mean can only be known to the nearest centimeter, no matter how large the sample
size is, and the measurement process then determines that δ ≥ 0.5 cm. If greater
accuracy is desired then a more precise measurement process must be employed. The
value of δ can be considered as expressing what is meant by scientific significance
as opposed to statistical significance and the need for this distinction has long been
recognized, see Boring (1919). Although the specification of δ isn’t always made,
such usage does arise in studies where sample size is chosen to make the power of a
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test such that a meaningful deviation from a null hypothesis can be detected with high
probability. The point-of-view taken here is that specifying such a δ is part of good
statistical practice. If, for a variety of reasons δ is not available, then the analysis can
be carried out for several values to assess the sensitivity of the conclusions to such a
choice.

The probability measures M(· | ψ) depend on the prior π only through the condi-
tional prior π(· | ψ) and do not depend on the marginal prior π� for the parameter of
interest. As such the probabilities determined by M(· | ψ) are essentially frequentist in
nature and similar to the use of distributions on parameters in mixed models, namely,
π(· | ψ) is used to integrate out nuisance parameters. The bias probabilities (1) and (2)
are exactly frequentist but for the model given by {m(· | ψ) : ψ ∈ �}, where m(· | ψ)

is the density of M(· | ψ), and this corresponds to the original model when �(θ) = θ.

The average bias against a value of ψ ∼ π� can be written as

bias against� = E	� (M(RB�(ψ | x) ≤ 1 | ψ)) = E	� (M(ψ /∈ Pl�(x) | ψ))

= 1 − E	� (M(ψ ∈ Pl�(x) | ψ)). (3)

So (3) is determined by the prior coverage probability E	� (M(ψ ∈ Pl�(x) | ψ))

of the plausible region which will be referred to here as a Bayesian confidence as it
is the prior probability that Pl�(x) will contain the true value. Note that, typically
there is an upper bound for M(RB�(ψ | x) ≤ 1 | ψ) as a function of ψ, so 1 minus
this bound serves as a lower bound on the Bayesian confidence. This lower bound is
then a frequentist confidence but with respect to the model {m(· | ψ) : ψ ∈ �} which
gives a lower bound on the pure frequentist confidence when �(θ) = θ . Appendix A
contains some pseudocode that outlines a general computational procedures that can
be used to compute these quantities.

Also the average bias in favor can be written as

bias in favor� = E	�

(

sup
ψ∗:d(ψ,ψ∗)≥δ

M(RB�(ψ |x) ≥ 1 | ψ∗)
)

= E	�

(

sup
ψ∗:d(ψ,ψ∗)≥δ

M(ψ /∈ Im�(x) | ψ∗)
)

, (4)

which is the prior probability that a meaningfully false value is not in the implausible
region Im�(x) = {ψ : RB�(ψ | x) < 1}, the set of values forwhich there is evidence
against. In cases where the prior distribution of ψ is continuous, then typically ( 4)
is an upper bound on the prior probability of Pl�(x) covering a meaningfully false
value.

While it might be appealing to consider choosing the prior tomake both these biases
small, this is the wrong approach as indeed experience indicates that choosing a prior
to minimize bias against simply increases bias in favor and conversely. As discussed in
Evans and Guo (2021), as the diffuseness of the prior increases, typically bias in favor
increases and bias against decreases. The way to control these biases is, as established
in Evans (2015), through the amount of data collected as both biases converge to 0 as
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this increases. As such, it is possible to control both the prior probability of Pl�(x)
covering the true value and the prior probability of it covering a meaningfully false
value and so obtain a Bayesian inference with good frequentist properties. Of course,
this is similar to the use of coverage probabilities in frequentist inference but the
reported inferences are indeed Bayesian while the biases are concerned with ensuring
that the inferences are reliable from a frequentist perspective.

A region C for � is called improper if it is possible that C(x) = φ or C(x) =
� with positive probability. Theorem 1 establishes that plausible regions can never
be improper in realistic statistical contexts. The result can be viewed as a logical
consistency result for this approach to assessing the error in an estimate. For this
let m(x) = ∫

�
fθ (x)	(dθ) denote the prior predictive density associated with the

corresponding measure M,m(x | ψ) = ∫
�

fθ (x)	(dθ | ψ) be the conditional prior
predictive density of the data given �(θ) = ψ and put

F = {x : RB�(ψ | x) = 1 a.e. 	�} = {x : m(x | ψ) = m(x) a.e. 	�}

where a.e. 	� means the condition holds with 	� probability 1. The last
equality follows from the Savage-Dickey ratio result, namely, using J�(θ) =
| det(d�(θ)(d�(θ))t )|−1/2,where d�(θ) is the Jacobianmatrix of the transformation
�, then

RB�(ψ | x) = π�(ψ | x)
π�(ψ)

=
∫
�−1{ψ} π(θ | x)J�(θ) dθ

π�(ψ)

=
∫

�−1{ψ}
fθ (x)

m(x)

π(θ)J�(θ)

π�(ψ)
dθ =

∫

�−1{ψ}
fθ (x)π(θ | ψ)

m(x)
dθ = m(x | ψ)

m(x)

where the integration is with respect to volume on �−1{ψ} and the conditional prior
density of θ given �(θ) = ψ equals π(θ | ψ) = π(θ)J�(θ)/π�(ψ). See Appendix
A of Evans (2015) for the smoothness conditions required for the formulas used here
for π�(ψ | x) and π(θ | ψ). In particular, in the discrete case the integral is a sum and
J�(θ) ≡ 1. Note that, the conditional prior distribution of the data given F has no
dependence on the parameter of interest and, except in extraordinary circumstances,
this set will have prior probability 0, namely, M(F) = 0. For, if x ∈ F, then nothing
can be learned as there is no evidence in either direction for any value of ψ.

Theorem 1 The plausible region for ψ = �(θ) (i) never satisfies Pl�(x) = � and
(ii) satisfies Pl�(x) = φ with prior probability 0 when M(F) = 0.

Proof (i) Suppose that Pl�(x) = �. This is true iff RB�(ψ | x) > 1 for every ψ and
so

1 <

∫

�

RB�(ψ | x)	�(dψ) =
∫

�

π�(ψ | x)
π�(ψ)

	�(dψ) =
∫

�

	�(dψ | x) = 1

which is a contradiction. (ii) Now suppose Pl�(x) = φ, which is true iff
RB�(ψ | x) ≤ 1 for every ψ. Since M(F) = 0, this implies that for any x /∈ F,
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the set A(x) = {ψ : RB�(ψ | x) = 1} has 	�(A(x)) < 1 which implies
0 < 1 − 	�(A(x)) = 	�( Im�(x)). Then

1 = 	�(A(x)) + 	�( Im�(x))

>

∫

A(x)
RB�(ψ | x)	�(dψ) +

∫

Im�(x)
RB�(ψ | x)	�(dψ)

=
∫

�

RB�(ψ | x)	�(dψ) =
∫

�

	�(dψ | x) = 1

which is a contradiction. ��

It is also possible to construct credible regions based on the relative belief ratio
as in Cγ (x) = {ψ : RB�(ψ | x) ≥ rγ } where rγ = sup{r : 	�(RB�(ψ | x) <

r | x) ≤ 1− γ } as then 	�(Cγ (x) | x) ≥ γ. As with all relative belief inferences, the
relative belief credible regions are invariant under smooth reparameterizations while
hpd regions are not. Thismeans that the computation of aγ -relative belief region can be
carried out in any parameterization while each parameterization leads to a potentially
different hpd credible region. With both approaches, however, it is impossible to say
a priori that all the elements of the region will have evidence in their favor. For
relative belief regions, however, it is guaranteed that for any γ ≤ 	�(Pl�(x) | x) then
Cγ (x) ⊂ Pl�(x) and there is evidence in favor of each element of Cγ (x) so such a
region can be also be reported. There are also a variety of optimality properties satisfied
by relative belief credible regions, see Evans (2015). The property of importance for
the discussion here, however, is that for the plausible region it can be determined a
priori how much data to collect to ensure appropriate coverage probabilities and that
doesn’t seem to be available for a credible region in general.

It is also the case, as established in Evans and Guo (2021), that plausible regions
possess additional good, and even optimal, properties beyond those already cited like
parameterization invariance and no dependence on the valid measure of evidence
used. For example, the prior probability of Pl�(x) covering the true value is always
greater than or equal to the prior probability of Pl�(x) covering a false value which
in frequentist theory is known as the unbiasedness property for confidence regions.
As an example of an optimal property, when the prior 	� is continuous, then among
all regions C satisfying M(ψ ∈ C(X) | ψ) ≥ M(ψ ∈ Pl�(X) | ψ) for every ψ,

namely, the conditional prior probability that C covers the true value is as large as this
probability for Pl�, then Pl� maximizes the prior probability of not covering a false
value and there is a similar optimality property for the discrete case. The implication of
this is that, if one considers another way of expressing evidence that leads to the region
C, then provided its coverage probabilities are as large as those of Pl�, as otherwise it
presumably wouldn’t be considered, then C cannot do better than Pl� with respect to
accuracy. This is really an optimality property for the principle of evidence and there
are many other such results.
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3 Examples

There are a variety of problems discussed in the literature where issues concerning
either improper confidence regions are obtained or it is unclear how to construct a
γ -confidence region for a general parameter ψ = �(θ). The following examples
show that the approach via the principle of evidence can deal successfully with such
problems.

3.1 Fieller’s problem

This is a well-known problem, as discussed in Geary (1930), Fieller (1954), Hinkley
(1969) and more recently in Pham-Gia et al. (2006) and Ghosh et al. (2006) where a
wide range of applications are noted. Ghosh et al. (2006) is concerned with confidence
intervals for ratios of regression coefficients in a normal linear model and it is shown
that certain integrated likelihoods do not produce improper intervals and this is now
a consequence of the general Theorem 1. This problem is also discussed in Fraser
et al. (2018) where it appears as problems A and B of a set of problems for inference
proposed by D. R. Cox.

For this there are two samples x = (x1, . . . , xnx ) i .i .d. N (μ, σ 2
0 ) independent of

y = (y1, . . . , yny ) i .i .d. N (ν, σ 2
0 ) where (μ, ν) ∈ R

2 is unknown. So it is supposed
that the means are unknown but the variances are known and common. The discussion
can be generalized to allow for unknown variances as well, with no changes to the
basic results, but the essential problem arises in the simpler context. The problem then
is to make inference about the ratio of means ψ = �(μ, ν) = μ/ν and, in particular,
construct a confidence interval for this quantity. It is assumed here that model checking
has not led to any suspicions concerning the validity of the models. As such the data
can be reduced to the minimal sufficient statistic (x̄, ȳ) where x̄ ∼ N (μ, σ 2

0 /nx )
independent of ȳ ∼ N (ν, σ 2

0 /ny).
Confidence regions for ψ can be obtained via a pivotal statistic given by (x̄ −

ȳψ)/σ0

√
1/nx + ψ2/ny ∼ N (0, 1) but this can produce improper regions. For exam-

ple, if a γ -confidence interval is required for ψ then, with z p denoting the p-th

quantile of a N (0, 1), the region equals R
1 whenever |ȳ| < σ0z(1+γ )/2/n

1/2
y and

nx x̄2 + ny ȳ2 < z2(1+γ )/2σ
2
0 . Sometimes the region can be a so-called exclusive region

of the form (−∞, a(x̄, ȳ)) ∪ (b(x̄, ȳ),∞) with a(x̄, ȳ) < b(x̄, ȳ). While an interval
might be preferred, there is nothing illogical about an exclusive region as can be seen
by considering the γ -confidence interval x̄ ± σ0z(1+γ )/2/n

1/2
x for μ. If this interval

includes 0, then necessarily the γ -confidence region for 1/μ has the exclusive form
(−∞, 1/(x̄−σ0z(1+γ )/2/n

1/2
x ))∪(1/(x̄+σ0z(1+γ )/2/n

1/2
x ),∞). The same reasoning

applies in Fieller’s problem and one can always reparameterize by making inference
instead about ψ−1 to obtain an interval. The problem of exclusive regions is a conse-
quence of the parameterization but that is not the case with improper regions as this
represents a defect in the inference.

The relative belief approach requires the specification of a prior and for this conju-
gate priorsμ ∼ N (μ0, τ

2
10) independent of ν ∼ N (ν0, τ

2
20),will be used. This requires
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an elicitation for the quantities (μ0, τ
2
10, ν0, τ

2
20) which can proceed as follows. First

specify (m1,m2) such that the true value of μ ∈ (m1,m2) with virtual certainty, say
with prior probability γ = 0.99. Note that the data arises via a measurement process
and the particular process used is part of the design of the study. For example, the par-
ticular instrumentation used places bounds on what the possible measurements will be
as these can’t be arbitrarily large. Based on this information (m1,m2) can be chosen
and a small probability is allowed for the true mean to fall outside this interval to
reflect the fact that such a specification is not categorical. If this was an inappropriate
choice, then this will be detected when a check is made for prior-data conflict (see the
following paragraph) and a modification is required. After choosing (m1,m2) then
put μ0 = (m1 + m2)/2 and solve �((m2 − μ0)/τ10) − �((m1 − μ0)/τ10) = γ for
τ10, which can be done iteratively via bisection, so the prior on μ is now determined.
This step could also be applied to obtain the prior for ν but it is supposed instead that
there is information about the true value of ψ expressed as ψ ∈ (r1, r2) with virtual
certainty for fixed constants r1 < r2. A value ψ0 ∈ (r1, r2) is then selected, which
could be a hypothesized value for this quantity or just the central value, and then take
ν0 = μ0/ψ0. Finally, requiring ν ∈ (m1/r2,m2/r1) with virtual certainty determines
τ20 via �((m2/r1 − ν0)/τ20) − �((m1/r2 − ν0)/τ20) = γ and this gives the prior
for ν. This is just one method for eliciting the prior and an alternative could be more
suitable in a given application.

Once a prior has been determined and the data obtained, the prior is subjected to
a check for prior-data conflict and it is assumed here that the prior has passed such
a check. For example, as discussed in Evans and Moshonov (2006), a check for the
prior on μ leads to computing the tail probability

M(m(X̄) ≤ m(x̄)) = 2

(

1 − �

(

|x̄ − μ0|/
√

τ 210 + σ 2
0 /nx

))

(5)

since x̄ is aminimal sufficient statisticwith prior distribution x̄ ∼ N (μ0, τ
2
10+σ 2

0 /nx ).
If (5) is small, then the observed x̄ is in the tails of its prior distribution and so indicates
a problemwith the prior given that themodel has passed its checkswhich are conducted
first. It is clear that as nx → ∞, then (5) converges to 2(1 − �(|μtrue − μ0|/τ10)
which is the tail probability based on the prior for μ and this measures whether or not
the true value of the parameter is in the tails of the prior. A general consistency result
for this approach to checking for prior-data conflict is established in Evans and Jang
(2011a).

Methodology for replacing a defective prior is developed inEvans and Jang (2011b).
This entails specifying, before seeing the data, a hierarchy of progressively more
weakly informative priors, starting from a base elicited prior, where the concept of
one prior being weakly informative with respect to another is in terms of the new
prior producing fewer prior-data conflicts. The degree of weak informativity can be
quantified so that a sequence of priors πi for i = 0, 1, . . . , can be constructed where
π0 is the base prior, and πi is, for example, 20% more weakly informative than πi−1.

Then, if a prior-data conflict is obtained with π0, this prior is replaced by one higher
up the hierarchy until the conflict is avoided. Strictly speaking these priors are not data
dependent but the need to replace a prior is as is the point where this process stops.
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For the N (μ0, τ
2
10) prior the hierarchy is given by a sequence of N (μ0, τ

2
1i ) priors

where τ 21i > τ 21i−1, namely, where the priors are increasingly diffuse. The necessary
computations for this and other examples can be found in Evans and Jang (2011b).

One concern with checks for the model or prior is whether or not the coverage
probabilities for regions need to be adjusted to reflect this step. For the developments
here, however, such adjustments are not relevant because the inferences reported are
not the coverage probabilities but rather these are the estimate, the plausible region
and its posterior content and a measure of its size. The bias computations are measures
of the reliability of the inferences reported and indeed, if it is determined that either
the model or prior are not appropriate and new ingredients are specified, then these
computations need to be performed again based on the new choices and this may entail
more data being collected to ensure that the biases are small. It is to be noted too that,
even without specifying a prior, the modification of coverage probabilities based on
checking the model, a step that is part of good statistical practice, is rarely, if ever,
carried out and the approach taken here justifies this as the coverage probabilities are
not the inferences reported.

Some numerical examples are carried along for illustration purposes.

Example 1 Simulation example (the data, model and prior).
Suppose nx = ny = 10, μ = 20, ν = 10, σ 2

0 = 1 so the true value is ψ =
20/10 = 2. Data was generated leading to the mss (x̄, ȳ) = (20.188, 10.699). For
the prior elicitation suppose (m1,m2) = (10, 25), so μ0 = 17.5, τ10 = 2.912 and
with (r1, r2) = (1, 3), ψ0 = 2 then ν0 = 8.75, τ20 = 2.336. The value ψ0 = 2 is
chosen as the hypothesis H0 : �(μ, ν) = 2 will be subsequently assessed to see how
the approach performs with a true hypothesis. Inverting the pivotal leads to the 0.95-
Bayesian confidence region (1.770, 2.016) for ψ which just includes the true value. ��
Example 2 Cox’s examples (the data, model and prior). For the Cox A problem,
nx = ny, σ 2

0 /ny = 1, (x̄, ȳ) = (10, 0.5) which produces the exclusive 0.95-Bayesian
confidence region (−∞,−6.752) ∪ (3.968,∞) via the pivotal. For Cox B the only
change is that now (x̄, ȳ) = (0.5, 0.5) and the 0.95-Bayesian confidence region is
R
1 and so is improper. No priors were prescribed for either problem, so here we take

fairly noninformative priors that avoid prior-data conflict. For problem A suppose
μ ∼ N (12, 3) independent of ν ∼ N (0, 3) and for problem B suppose both priors are
N (0, 3). ��

Putting

τ 220(ψ) =
(
ψ2/τ 210 + 1/τ 220

)−1
, ν0(ψ) = τ 220(ψ)

(
ψμ0/τ

2
10 + ν0/τ

2
20

)
, (6)

then the exact prior density of ψ is

π�(ψ) = 2τ 220(ψ)√
2πτ10τ20

exp

{

−1

2

τ 220(ψ)(μ0 − ν0ψ)2

τ 210τ
2
20

}

×
{

ϕ

(
ν0(ψ)

τ20(ψ)

)

+ ν0(ψ)

τ20(ψ)
�

(
ν0(ψ)

τ20(ψ)

)

− 1

2

}

.
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Note that when μ0 = ν0 = 0 then π� is a (rescaled) Cauchy density so in general
this distribution has quite long tails. The same formula works for the posterior with
substitutions as in (6) since

μ | x̄ ∼ N (

⎛

⎝μ(x̄),

(
nx
σ 2
0

+ 1

τ 210

)−1
⎞

⎠ with μ(x̄) =
(
nx
σ 2
0

+ 1

τ 210

)−1 (
nx x̄

σ 2
0

+ μ0

τ 210

)

independent of

ν | ȳ ∼ N

⎛

⎝ν(ȳ),

(
ny
σ 2
0

+ 1

τ 220

)−1
⎞

⎠ with ν(ȳ) =
(
ny
σ 2
0

+ 1

τ 220

)−1 (
ny ȳ

σ 2
0

+ ν0

τ 220

)

.

So the relative belief ratio RB�(ψ | x̄, ȳ) is available in closed form.
For a general problem, a closed form is typically not available for the prior and

posterior densities of marginal parameters of interest. In an application, however,
there is a difference δ > 0 that represents the accuracy with which it is desired to
know the true value. This quantity is a major input into sample size considerations.
The approach then is to partition the effective prior range of ψ, as determined via a
simulation from the prior of (μ, ν), into subintervals of length δ with the midpoint
of each interval taken as representative of the values in that subinterval. The prior
and posterior contents of these subintervals are determined via a simulation and then
density histograms are used to approximate π�(ψ) and π�(ψ | x̄, ȳ) which in turn
gives an approximation to RB�(ψ | x̄, ȳ) that can be used to determine the inferences.

Example 1 Simulation example (the inferences).
Theabove approximationprocedurewas carriedout, using thevalues recordedwhen

δ = 0.1 was chosen for the accuracy. Figure1 provides plots of π� and π�(· | x̄, ȳ)
and RB�(· | x̄, ȳ). Due to the long-tailed feature of the prior some extreme values of
ψ are obtained and this is reflected in the range over which these distribution have
been plotted. Relatively smooth estimates are obtained based on Monte Carlo sample
sizes of N = 105 and these can be seen to closely approximate the true functions.
One approach for coping with the long-tail is to calculate the ecdf F̂� of ψ based on
a large simulation sample and take (ψmin, ψmax) = (F̂−1

� (0.0005), F̂−1
� (0.9995)) so

this ignores 0.001 of the probability in the tails which is what was done here. Another
possibility, which avoids the truncation, is to transform to ω = G(ψ) where G is a
long-tailed cdf like aCauchy (or even sub-Cauchy) and transform the initial partition to
(G(ψmin−δ/2),G(ψmin+δ/2)], . . . , (G(ψmax−δ/2),G(ψmax+δ/2)].All inferences
for ψ can then be obtained from those for ω via the transformation ψ = G−1(ω) due
to the invariance of relative belief inferences under reparameterizations.

The relative belief estimate is given by ψ(x) = 1.90 with plausible region
Pl�(x, y) = (1.75, 2.05) having posterior content 0.982 and prior content 0.200.
So the plausible region contains the true value, and note that the estimate is reason-
ably accurate for a relatively small amount of data. ��
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Fig. 1 Plots (left panel) of the prior (- - -) and the posterior (–) densities and (right panel) of the relative
belief ratio of ψ in Example 1

Example 2 Cox’s examples (the inferences).
For the Cox A problem, the plausible region is (−∞,−17.60) ∪ (6.40,∞) having

posterior content 0.791 and prior content 0.515. So the inferences are not very precise.
For the Cox B problem, the plausible region is (0.10,∞) having posterior content
0.534 and prior content 0.498 and the improper interval is avoided. Both cases can be
considered extreme as there is little data relative to the variance σ 2

0 . ��
Now consider the bias calculations. To compute the biases for hypothesis assess-

ment it is necessary to compute

M(RB�(ψ0 | x̄, ȳ) ≤ 1 | ψ) (7)

for various values ofψ where (x̄, ȳ) is generated from the conditional prior predictive
given ψ and to compute the biases for estimation we need to be able to compute (7)
for values of ψ0 ∼ π� and then average. So it is necessary to: (i) generate (x̄, ȳ) from
its conditional prior predictive M(· | ψ) and (ii) compute RB�(ψ | x̄, ȳ) and compare
it to 1.

For (i) the following sequential algorithm will work: 1. generate ν | ψ ∼ π(· | ψ),

2. generate ȳ | (ψ, ν) ∼ N (ν, σ 2
0 /ny), 3. generate x̄ | (ψ, ν, ȳ) ∼ N (ψν, σ 2

0 /nx ).
Steps 2 and 3 are straightforward while step 1 requires the development of a suitable
algorithm and this is done in Appendix B.

To determine (7) the value RB�(ψ0 | x̄, ȳ) needs to be computed for each generated
value of (x̄, ȳ). This can be carried out as previously using the discretized version but
using the closed form version is much more efficient. It might seem more appropriate
to use the exact form also for inferences but, because we wish to incorporate the
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Fig. 2 Density histogram of a sample of 105 from the conditional prior of ν given ψ0 = 2.

meaningful difference δ into the inferences, the discretized version is much more
efficient for those computations. Note too that a high degree of accuracy is not required
for the bias computations.

Now consider the biases in the numerical problems being considered.

Example 1 Simulation example (the biases).
The hypothesis assessment problem is H0 : ψ0 = 2 then, using the elicited values

of (μ0, τ
2
10, ν0, τ

2
20), leads to τ 220(2) = 1.5239, ν0(2) = 8.7502 and z0 = −7.0883.

Figure 2 is a density histogram of a sample of 105 from π(· | ψ0).

To get the bias against H0, use the sequential algorithm to generate (x̄, ȳ) ∼
M(· | ψ0), compute and compare RB�(ψ0 | x̄, ȳ) to 1 for a large number of repe-
titions recording the proportion of times RB�(ψ0 | x̄, ȳ) ≤ 1. In this problem the
value M(RB�(ψ0 | x̄, ȳ) ≤ 1 | ψ0) = 0.04 was obtained based on a Monte Carlo
sample of 105 and so there is no real bias against H0 : ψ0 = 2. Figure 3 is a plot
of M(RB�(ψ | x̄, ȳ) ≤ 1 | ψ) versus ψ which is maximized at ψ = 2.0 and takes
the value 0.040 there. This implies that the conditional prior probability the plausible
region contains the true value is at least 0.960 for all ψ and so can be considered as a
0.96-confidence interval for ψ. If instead we had nx = ny = 20, then the maximum
bias against is 0.028 and the plausible region would then be 0.972-Bayesian confi-
dence interval for ψ and of course larger sample sizes will just increase the coverage
probability.

To get the bias in favor of H0, use the sequential algorithm to generate (x̄, ȳ) ∼
M(· | ψ0 + δ/2), compute and compare RB�(ψ0 | x̄, ȳ) to 1, for a large number of
repetitions, record the proportion of times RB�(ψ0 | x̄, ȳ) ≥ 1, and also do this for
(x̄, ȳ) ∼ M(· | ψ0 − δ/2) and the maximum of the two is an upper bound on the bias
in favor. In this case the value 0.92 is obtained which is very high indicating that there
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Fig. 3 The bias against as a function of ψ in Example 1

is substantial bias in favor of the hypothesis. In other words, there is a substantial prior
probability that evidence in favor of the hypothesis will be obtained even when it is
meaningfully false as determined by δ. Of course, sample size is playing a role here
as well as δ. For nx = ny = 20 the upper bound equals 0.91, for nx = ny = 100
the upper bound equals 0.71, while for nx = ny = 500 the upper bound equals 0.09.
So nx = ny = 10 is not enough data to ensure that evidence in favor of H0 will not
be obtained when it is meaningfully false with δ = 0.1 and more data needs to be
collected to avoid this. For the bias in favor for estimation a sample of ψ ∼ π� values
is generated and the bias in favor of ψ at ψ ± δ/2 is determined and then averaged.
Figure4 is a plot of the bias in favor as a function of ψ and the average value is 0.94
which is an upper bound on the the prior probability that the plausible region contains
a meaningfully false value. When nx = ny = 20 the upper bound equals 0.92, when
nx = ny = 100 the upper bound equals 0.69 and when nx = ny = 500 the upper
bound equals 0.26. The value of δ is determined by the application and taking it too
small clearly results in the requirement of overly large sample sizes to get the bias in
favor small. For example, with nx = ny = 10 and δ = 0.5, then the bias in favor for
estimation is 0.33 while for δ = 1.0 it is 0.12, and with nx = ny = 20 these values
are 0.21 and 0.07, respectively. ��

Example 2 Cox’s examples (the biases). For the first problem an upper bound on the
bias against is given by 0.18 so the coverage probability for the plausible region is at
least 0.82. For the second problem an upper bound on the bias against is given by 0.24
so the coverage probability for the plausible region is at least 0.76. These coverages
are quite reasonable given the small sample sizes relative to σ 2

0 . ��
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Fig. 4 Bias in favor as a function of ψ in Example 1

3.2 Mandelkern’s Examples

Mandelkern (2002) discusses several problems in physics where confidence intervals
are required but for which no acceptable solution exists. These are problems where
standard statistical models are used and, in the unconstrained case, well-known confi-
dence intervals are available for ψ but physical theory demands that the true value lie
in �0 ⊂ � for a proper subset �0. Such problems have long been recognized and, for
example, Quenouille (1958) discusses inferences for restricted parameters as well as
Zhang and Woodroofe (2003) where Bayesian credible intervals based on improper
priors are shown to have good coverage probabilities in some contexts.

If C(x) is a γ -confidence region for unconstrained ψ, then it is certainly the case
that C(x) ∩ �0 is a γ -confidence region under the constraint. While this has the
correct coverage probability, however, in general C(x)∩�0 can equal φ with positive
probability and so this solution is improper. As is now demonstrated the approach
discussed here provides an effective solution to this problem.

Mandelkern’s examples are now described together with the solutions.

Example 3 Location-normal with constrained mean.
The model here is that a sample x = (x1, . . . , xn) has been obtained from a dis-

tribution in {N (μ, σ 2
0 ) : μ ∈ (l0, u0)} where σ 2

0 is known and μ is known to lie in
the interval (l0, u0) where l0, u0 ∈ R

1 ∪ {−∞,∞} with l0 < u0. Mandelkern dis-
cusses inferences concerning the mass μ of a neutrino so in that case l0 = 0. The
measurements are taken to a certain accuracy and this is reflected in the specification
of the quantity δ which is the accuracy to which it is desired to know μ which may
indeed be larger than the accuracy of the measurements. This leads to a grid of pos-
sible values for μ, say μ1 < μ2 < · · · and such that |μi − μi+1| = δ. So when l0
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and u0 are both finite the possible values of μ are given by μi = l0 + (i − 1/2)δ for
i = 1, . . . , (u0 − l0)/δ, and it is supposed that these values are such that (u0 − l0)/δ
is an integer. It is certainly possible for one or both of l0, u0 to be infinite but typically
there are lower and upper bounds on what a measurement can equal. So in practice
a finite number of such intervals with possibly two tail intervals, which contain very
little prior probability, suffices. For example, consider measuring a length to the near-
est centimeter so it would make sense to take δ = 1 cm and the μi are consecutive
integer values in centimeters and all values in [μi − δ/2, μi + δ/2) are considered
effectively equivalent. For the neutrino problem there is undoubtedly a guaranteed
upper bound on the mass. As discussed for Fieller’s problem, priors are chosen via
elicitation and continuous priors are considered here with the previously described
discretization applied for computations when necessary. Results for two priors are
presented for comparison purposes.

The first prior π1 is taken to be a beta(α0, β0) distribution on the interval (l0, u0)
with the elicitation procedure as described in Evans et al. (2017) although others are
possible. For this μ = l0 + (u0 − l0)z where z ∼ beta(α0, β0). The values of (α0, β0)

are specified as follows. First it is required that α0, β0 ≥ 1 to ensure unimodality and
no singularities. Next a proper subinterval (l1, u1) ⊂ (l0, u0) is specified such that
μ ∈ (l1, u1) with prior probability γ. Typically γ will be a large probability (like 0.99
or higher) reflecting the fact thatμ ∈ (l1, u1) is known to be true with virtual certainty.
Then the modem0 is taken to be equal to a value in (l1, u1), such asm0 = (l1+u1)/2,
which implies m0 = l0 + (u0 − l0)(α0 − 1)/τ0 ∈ (l, u) where τ0 = α0 +β0 − 2. This
leads to values for α0 and β0 as

α0 = τ0(m0 − l0)/(u0 − l0) + 1, β0 = τ0(u0 − m0)/(u0 − l0) + 1

that are fully specified once τ0 is chosen. The value of τ0 controls the dispersion of the
beta(α0, β0) and, with the cdf denoted beta(·, α0, β0), we want beta((u1 − l0)/(u0 −
l0), α0, β0)−beta((l1−l0)/(u0−l0), α0, β0) = γ , and this is easily solved for τ0 by an
iterative procedure based onbisection. For example,with (l0, u0) = (0, 10), (l1, u1) =
(0.5, 9.5),m0 = 5 and γ = 0.99 this leads to (α0, β0) = (2.20, 2.20). Note that if
(l1, u1) = (l0, u0), then use the uniform prior, namely, α0 = β0 = 1 which is the
noninformative case.

The second prior π2 is taken to be a N (μ0, τ
2
0 ) constrained to the interval (l0, u0).

The interval (l1, u1) is selected as before and μ0 ∈ (l1, u1) is specified while τ0
is chosen to satisfy (�((u1 − μ0)/τ0) − �((l1 − μ0)/τ0))/(�((u0 − μ0)/τ0) −
�((l0 − μ0)/τ0)) = γ using the cdf of the prior. As τ0 → 0 the prior content of
(l1, u1) goes to 1 and as τ0 → ∞ the limit, using L’Hôpital, is (u1 − l1)/(u0 −
l0). So provided (u1 − l1)/(u0 − l0) ≤ γ there is a solution for τ0. For example,
with (l0, u0) = (0, 10), (l1, u1) = (0.5, 9.5),m0 = 5 and γ = 0.99 this leads to
(μ0, τ

2
0 ) = (5, 1.922).

The bias against hypothesis H0 : μ = μ∗ is given by M(RBi (μ∗ | x̄) ≤ 1 | μ∗)
where M(· | μ∗) is the N (μ∗, σ 2

0 /n) measure, RBi (μ∗ | x̄) = mi (x̄ | μ∗)/mi (x̄) and
mi (x̄) = (n/σ 2

0 )1/2
∫ u0
l0

ϕ
(
n1/2(x̄ − μ)/σ0

)
πi (μ) dμ is the prior predictive density

of x̄ using prior πi . The difficulty in evaluating M(RBi (μ∗ | x̄) ≤ 1 | μ∗) arises
from the need to evaluate mi (x̄) to obtain RBi (μ∗ | x̄) for each x̄ generated from the
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Table 1 Bias against values in Example 3 for testing H0 : μ∗ = 4 for various sample sizes

n Bias against H0 : μ∗ = 4 with π1 Bias against H0 : μ∗ = 4 with π2

10 0.039 0.047

20 0.026 0.032

50 0.015 0.019

100 0.011 0.013

500 0.004 0.005

N (μ∗, σ 2
0 /n) distribution. For this we proceed via an approximation where a sample

of N is obtained from the Mi distribution by generatingμ ∼ πi , x̄ | μ ∼ N (μ, σ 2
0 /n),

the interval (l0 − 3σ0/
√
n, u0 + 3σ0/

√
n) is divided into k equal length subintervals

and the proportion of x̄ values falling in each of the k intervals is recorded. The prob-
abilities p1, . . . , pk of these intervals with respect to the N (μ∗, σ 2

0 /n) are computed
and the relative belief ratios RB(μ∗ | x̄) are then estimated by the ratios of the pi to
the relevant proportion obtained from sampling from Mi . Finally, the pi probabilities
for the intervals, where the estimated relative belief ratio is less than or equal to 1,
are summed to give the estimate of the bias against. Clearly as k and N increase this
approximationwill converge toM(RBi (μ∗ | x̄) ≤ 1 | μ∗). For these computations val-
ues of N = 106 and of k of at least 103, where the choice depended on n, were used.
For example, with σ 2

0 = 1, the other constants as previously specified and μ∗ = 4,
Table 1 gives the values of the bias against for different sample sizes and two different
priors. It is seen that bias against is not a problem with either prior.

Figure 5 is a graph of M(RBi (μ | x̄) ≤ 1 | μ) as a function of μ when using
π1 for various n and Fig. 6 is the graph using π2. It is seen that the bias against
is maximized at a value μmax which implies that M(RBi (μmax | x̄) ≤ 1 | μmax)

serves as an upper bound on the bias against for estimation purposes. As such
M(RBi (μmax | x̄) > 1 | μmax) is a lower bound on the coverage probabilities M(μ ∈
Pli (x̄) | μ) for μ ∈ (l0, u0) where Pli (x̄) is the plausible region based on πi . There-
fore Pli (x̄), as a Bayesian and frequentist confidence region, has coverage probability
M(RBi (μmax | x̄) > 1 | μmax) or greater. Table 2 contains the confidence values for
Pli (x̄) for various sample sizes. So it is seen that a 95%frequentist coverage is achieved
fairly easily. It is to be noted, however, that the confidence is a priori and the correct
measure of belief that the true value is in Pli (x̄), based on the principle of conditional
probability, is the posterior probability. The Bayesian a priori coverage probability for
Pli (x̄) is also recorded in Table 2. In many ways these coverage probabilities can be
considered as more appropriate than the pure frequentist coverage as they take into
account what is known about μ through the prior. There is very little difference in this
example.

It is also necessary to be concerned about bias in favor of H0 : μ = μ∗. Generally
this bias is the more serious concern because of a predilection towards the use of
diffuse priors as these generally induce bias in favor. Table 3 presents the bias in favor
for different n and δ and Fig. 7 is a plot of the bias in favor when using π2 and a
similar plot is obtained with π1. Similar results are obtained for the bias in favor for
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Fig. 5 Bias against in Example 3 when using prior π1 for various sample sizes

Fig. 6 Bias against in Example 3 when using prior π2 for various sample sizes

Table 2 Frequentist and Bayesian confidence that Pli (x̄) contains the true value in Example 3 for various
sample sizes

n
Confidence level of Pl(x̄)

using π1 (Bayes)
Confidence level of Pl(x̄)

using π2 (Bayes)

10 0.958 (0.969) 0.945 (0.961)

20 0.973 (0.979) 0.962 (0.974)

50 0.984 (0.988) 0.977 (0.985)

100 0.988 (0.991) 0.985 (0.989)

500 0.995 (0.997) 0.994 (0.996)
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Fig. 7 Bias in favor in Example 3 with prior π2 for various n and δ.

Table 3 Bias in favor of μ∗ in Example 3 for various sample sizes and meaningful differences

n
Bias in favor of H0 : μ∗ = 4

using π1, δ = 0.5 (0.1)
Bias in favor of H0 : μ∗ = 4

using π2, δ = 0.5 (0.1)

10 0.700 (0.954) 0.686 (0.947)

20 0.515 (0.962) 0.495 (0.957)

50 0.136 (0.957) 0.123 (0.951)

100 0.008 (0.941) 0.006 (0.934)

500 0.000 (0.744) 0.000 (0.716)

estimation as presented in Table 4. It is seen that the bias in favor in both problems
can be substantial and for a given prior and δ this can only be decreased by increasing
the sample size. One needs to be realistic about what accuracy is necessary, both to
make sure the study is returning results of sufficient accuracy and that resources are
not being wasted. For estimation the bias in favor is measured by averaging the bias
in favor of a false value with respect to the prior. As Table 4 indicates, large sample
sizes are needed to make sure the bias in favor is small, although this can be mitigated
by taking δ larger. ��

Example 4 Poisson with constrained mean.
Suppose that countmeasurements x1, . . . , xn are i .i .d.Poisson(λ)whereλ is known

to lie in the interval (l0, u0). The Poisson distribution arises as follows: suppose an
event occurs in a time interval of length 1 unit with probability p and there are N
independent opportunities for such events to occur. Then λ ≈ Np for large N and so
λ represents the rate at which the event occurs in such a time interval. As discussed
in Mandelkern (2002) sometimes this rate is known to be at least l0 > 0 and, as with
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Table 4 Bias in favor for estimation in Example 3 for various sample sizes and meaningful differences

n
Bias in favor for estimation
using π1, δ = 0.5 (0.1)

Bias in favor for estimation
using π2, δ = 0.5 (0.1)

10 0.756 (0.965) 0.686 (0.947)

20 0.569 (0.969) 0.495 (0.956)

50 0.176 (0.966) 0.123 (0.951)

100 0.012 (0.951) 0.006 (0.934)

500 0.000 (0.763) 0.000 (0.716)

Table 5 Bias against values in
Example 4 for testing
H0 : λ = 6.2 for various sample
sizes and meaningful differences

n Bias against H0 : λ = 6.5 with δ = 0.5(1)

1 0.287 (0.286)

10 0.193 (0.180)

20 0.085 (0.045)

50 0.045 (0.011)

100 0.001 (0.000)

500 0.000 (0.000)

the normal example, without loss of generality, it will be supposed that u0 is finite as
well. Again it is necessary to specify δ > 0 such that two values of λ that differ less
than this are effectively equivalent and also specify the grid of λi values as was done
as in Example 3.

Many possibilities exist for a prior π but attention is restricted here to a
gammarate(α0, β0) prior. Again an interval (l1, u1) ⊂ (l0, u0) is specified together
with a probability γ = 	((l1, u1)) and the mode m0 ∈ (l1, u1). Any value in
(l1, u1) is allowed for the mode but the value m0 = (l1 + u1)/2 is selected here.
Then m0 = (α0 − 1)/β0 and π is a gammarate(1 + m0β0, β0) with β0 determined
by γ which can be solved for iteratively using bisection. As a specific example sup-
pose (l0, u0) = (3, 10) and (l1, u1) = (3.5, 9.5). This implies that the prior is a
gammarate(37.20, 5.57) distribution.

The bias against H0 : λ = 6.2 is recorded in Table 5 and for modest sample sizes it
is seen that this is well-controlled. Table 6 provides the lower bounds on the Bayesian
and frequentist confidence levels and the exact Bayesian coverages for the plausible
interval for various n and δ. The coverage probabilities are reasonable for n ≥ 10.

Table 7 presents values of the bias in favor of the hypothesis H0 : λ = 6.2 for
various n and δ. It is seen that there is appreciable bias in favor of H0 when δ = 0.5
unless n ≥ 500. When δ = 1.0, however, much smaller sample sizes give reasonable
values. Table 8 provides values of for the bias in favor for estimation for various n and
δ and large sample sizes are needed to get the bias in favor down to acceptable levels.

��
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Table 6 Frequentist and Bayesian confidence that Pli (x̄) contains the true value in Example 4 for various
sample sizes and meaningful differences

n
Confidence level of Pl(x̄)
using π, δ = 0.5 (Bayes)

Confidence level of Pl(x̄)
using π, δ = 1.0 (Bayes)

1 0.581 (0.667) 0.614 (0.663)

10 0.811 (0.840) 0.828 (0.858)

20 0.843 (0.878) 0.865 (0.903)

50 0.908 (0.935) 0.948 (0.966)

100 0.950 (0.966) 0.986 (0.991)

500 0.998 (0.999) 0.998 (1.000)

Table 7 Bias in favor of H0 : λ = 6.2 in Example 4 for various sample sizes and meaningful differences

n Bias in favor of H0 : λ = 6.2 using π, δ = 0.5 (1.0)

1 0.781 (0.840)

10 0.800 (0.673)

20 0.667 (0.218)

50 0.522 (0.074)

100 0.105 (0.000)

500 0.016 (0.000)

Table 8 Bias in favor for
estimation in Example 4 for
various sample sizes and
meaningful differences

n Bias in favor for estimation using π, δ = 0.5 (1.0)

1 0.732 (0.744)

10 0.865 (0.778)

20 0.850 (0.652)

50 0.775 (0.404)

100 0.662 (0.197)

500 0.204 (0.002)

4 Conclusions

The approach taken here to the construction of regions, whether confidence or credible,
is somewhat different than what is typically done where a probability γ is stated,
whether as a coverage probability or as a posterior probability, and then the region is
constructed based on the observed data and this probability. Rather, using the principle
of evidence, the plausible region is obtained as consisting of those values for which
there is evidence in favor of these being the true value and then quoting the posterior
probability of the region as a measure of the degree of belief that the true value is in
the stated region. Confidence here is an a priori concept which the experimenter uses,
before the data is collected, to ensure the experiment will lead to reliable results.
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Mandelkern (2002) states five desiderata that an assessment of the accuracy of
an estimate via a confidence interval should satisfy. These are now stated with an
assessment of how well the methodology described here meets a requirement.
(i) Confidence bounds are determined using a well-defined principle, which is neither
arbitrary nor subjective. The bounds stated here are fully determined by the principle
of evidence. This principle is universal in the sense that it is applicable to all statistical
problems and is not tailored to problems with bounded parameters. No optimality
criteria are required although the regions obtained do have optimal properties.
(ii) They do not depend upon prior knowledge of the parameter apart from its domain.
The principle of evidence requires that a proper prior probability distribution be stated
so the methodology presented here does not satisfy this. It is to be noted, however, that
the methodology used here includes an elicitation algorithm for the choice of the prior,
the measurement and control of the bias induced by the prior-model combination and
the checking of the model and prior against the data to see if they are contradicted.
It is also the case that the check on the prior is a check on any bounds assumed
for the parameter. Objectivity is a necessary aspect of scientific work although diffi-
cult to characterize precisely. For example, frequentist methods are not objective as
these involve subjective choices made by a statistician. While objectivity is the ideal
it is necessary to recognize that, while it is unattainable, it can be approached via
methodologies that check subjective choices against the objective data and measure
and control the bias that such choices may induce.
(iii) They are equivariant under one-to-one transformation of the data. The inference
methods described here are fully invariant under all smooth reparameterizations. The
intervals are (integrated) likelihood intervals but with the additional characteristic that
these intervals contain only values for which there is evidence in favor of being the
true value. Confidence, likelihood and credible intervals do not possess this property.
(iv) They convey an estimate of the experimental uncertainty. In addition to their
lengths, the intervals here satisfy a Bayesian confidence condition as well as providing
the posterior probability that the true value is in the interval. The Bayesian confidence
is seen as an a priori assessment of the quality of the experiment while the posterior
probability and the length of the interval are assessments of the accuracy of the estimate
based upon the observed data. Nomatterwhat data is obtained, these intervals are never
improper.
(v) They correspond to a precise statement of probability. The Bayesian a priori cov-
erage is precise and a precise (sharp) lower bound is determined for the conditional,
given the true value, prior coverage. These coverages can be set a priori by choice of
sample size. The intervals also have a precise posterior probability which is the correct
measure of belief that the interval based on the observed data contains the true value.
The biases are a priori probabilities that provide an assessment of the quality of an
experiment. So, for example, if the a priori coverage is low, then this suggests that
the results have to be treated with caution even if the interval is short and has a high
posterior probability.
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Appendix A: Algorithms for the coverages

The following general computational procedure can be used to determine the coverage
probabilities of Pl�(x) = {ψ : RB�(ψ | x) > 1} as given by (3) and (4).

1. Based on a sample from 	� construct a grid ψ1 < ψ2 < · · · < ψm that
effectively spans the support of 	� and is such that d(ψi , ψi+1) = δ and then
estimate the prior contents of the intervals (ψ1 − δ/2, ψ1 + δ/2], . . . , (ψm −
δ/2, ψm + δ/2].
2. For each ψi generate xi ∼ M(· | ψi ), which can be done by generating θ ∼
	(· | ψi ), xi ∼ fθ . Then generate a sample from the posterior 	�(· | xi ) and
estimate the posterior contents of (ψ1 − δ/2, ψ1 + δ/2], . . . , (ψm − δ/2, ψm +
δ/2].
3. Use the estimates obtained in steps 1 and 2 to construct estimates of
RB�(ψ j | xi ) for j = 1, . . . ,m.

4. Repeat steps 2 and 3 many times to approximate M(RB�(ψi | x) ≤ 1 | ψi )

and max j :d(ψi ,ψ j )≥δ{M(RB�(ψi | x) ≥ 1 | ψ j )} for i = 1, . . . ,m.

5. Compute the averages

m∑

i=1

M(RB�(ψi | x) > 1 | ψi )π�(ψi )δ,

m∑

i=1

max
j :d(ψi ,ψ j )≥δ

{M(RB�(ψi | x) ≥ 1 | ψ j )}π�(ψi )δ

to estimate (3) and (4) respectively where the estimates of the quantities in the
sums are obtained in steps 1–4.

As described in the text, in step 4 estimating maxi M(RB�(ψi | x) ≤ 1 | ψi ) gives
a lower bound on the coverage probability of Pl�(x) with respect to the model
{M(· | ψ) : ψ ∈ �} and this is a pure frequentist coverage when �(θ) = θ. This
algorithm can be made more efficient when there are closed form expressions avail-
able that can be used instead of approximations. Also, the bias calculations do not
have to be highly accurate as rough estimates clearly illustrate whether or not there is
substantial bias.
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Appendix B: Algorithm for Fieller’s problem

The joint prior density of (ψ, ν, x̄, ȳ) is proportional to

|ν| exp
{

−1

2

[
m(x̄ − ψν)2 + n(ȳ − ν)2

σ 2
0

+ (ψν − μ0)
2

τ 210
+ (ν − ν0)

2

τ 220

]}

which implies that π(ν | ψ) ∝ |ν| exp{−(ν − ν0(ψ))2/2τ 220(ψ)} where τ 220(ψ) and
ν0(ψ) are as specified in (6). Therefore, π(· | ψ) is close to a normal density but for the
factor |ν|.Transforming ν → z = (ν − ν0(ψ)) /τ20(ψ)we need to be able to generate
z from a density of the form g(z) ∝ |ν0(ψ) + τ20(ψ)z|ϕ(z) ∝ |z − z0|ϕ(z) where
z0 = −ν0(ψ)/τ20(ψ). Using dϕ(z)/dz = −zϕ(z), then

∫ z0
−∞ −(z − z0)ϕ(z) dz =

z0�(z0) + ϕ(z0) and
∫ ∞
z0

(z − z0)ϕ(z) dz = −z0(1 − �(z0)) + ϕ(z0) which implies

g(z) = p(z0)I(−∞,z0](z)g1(z) + (1 − p(z0))I(z0,∞)(z)g0(z), where

g1(z) = (z0 − z)ϕ(z)

z0�(z0) + ϕ(z0)
when z ≤ z0,

g0(z) = (z − z0)ϕ(z)

−z0(1 − �(z0)) + ϕ(z0)
when z > z0, and

p(z0) = z0�(z0) + ϕ(z0)

−z0 + 2(z0�(z0) + ϕ(z0))
.

So with probability p(z0), generate z from g1 and otherwise generate z from g0. The
cdf of g1 for z ≤ z0 equals

G1(z) =
∫ z

−∞
g1(x) dx = z0�(z) + ϕ(z)

z0�(z0) + ϕ(z0)

and to generate from g1 via inversion generate u ∼ U (0, 1) and solve G1(z) = u for z
by bisection. To start the bisection set zup = z0 and for some ε > 0 iteratively evaluate
G1(−i |z0 − ε|) for i = 0, 1, . . . until G1(−i |z0 − ε|) ≤ u setting zlow = −i |z0 − ε|
as this guarantees G1(zlow) ≤ u ≤ G1(zup) = 1 so bisection will work. The cdf of
g0 is for z > z0

G0(z) =
∫ z

z0
g0(x) dx = z0(�(z) − �(z0)) + (ϕ(z) − ϕ(z0))

z0(1 − �(z0)) − ϕ(z0)

and for this start bisection with zlow = z0 and iteratively evaluate G0(i |z0 + ε|)
until u ≤ G0(i |z0 + ε|) setting zup = i |z0 + ε| so bisection will work. Finally,
when z is obtained put ν = ν(ψ) + τ20(ψ)z to get the appropriately generated value
of ν. An interesting consequence of this algorithm is that it must be true that 0 <

−z(1−�(z))+ϕ(z) for every z and this implies the well-knownMills ratio inequality
(1− �(z))/ϕ(z) < 1/z when z ≥ 0 and �(z)/ϕ(z) < 1/|z| when z ≤ 0 which gives
useful bounds on tail probabilities for the normal distribution when |z| is large.
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