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Abstract
This paper studies the problem of simultaneously testing that each of k independent
samples come fromanormal population. Themeans and variances of those populations
may differ. The proposed procedures are based on the BHEP test and they allow k to
increase, which can be even larger than the sample sizes.

Keywords Goodness-of-fit · Normality · Large number of populations

1 Introduction

Testing for normality is a topic of interest that has generated and is still generating a
vast literature. Some recent contributions are Ebner et al. (2022), Henze and Jiménez-
Gamero (2019), Henze et al. (2019), Henze and Koch (2020), and Jelito and Pitera
(2021); see the paper by Ebner and Henze (2020) for a review on normality tests. Most
papers on this issue deal with testing normality for a sample, and the properties of
the proposed procedures are stated as the sample size increases. This paper studies
the problem of simultaneously testing normality of k univariate samples, where k can
increase with the sample sizes. Moreover, k will be allowed to be even larger than the
sample sizes. Specifically, we will consider the following general setting:

LetX1 = {X1,1, . . . , X1,n1}, . . . ,Xk = {Xk,1, . . . , Xk,nk } be k independent samples

with sizes n1, . . . , nk, which may be different, coming from X1, . . . , Xk ∈ R ,

with continuous distribution functionsF1, . . . , Fk, respectively, and E(X2
j )

< ∞, 1 ≤ j ≤ k. (1)

The elements of each sample in (1) are assumed to be independent. In this setting,
we deal with the problem of testing
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H0 : F1, . . . , Fk ∈ N ,

against general alternatives,

H1 : Fj /∈ N , for some 1 ≤ j ≤ k,

whereN is the set of univariate normal populations,N = {N (μ, σ 2), μ ∈ R, σ > 0}
and, as said before, k is allowed to be large (the precise meaning of “large” will be
stated in the following sections).

The main motivation for testing normality comes from the fact that, under this
distributional assumption, many statistical procedures become simpler and more effi-
cient than their non-parametric counterparts, mainly due to the good properties of the
normal law. Nevertheless, the efficiency of those procedures may decrease, or even
disappear, if the normality assumption fails. For example, if one can assume that the
populations are normal, then the classical k-sample problem becomes that of testing
the equality of variances and the equality of means, for which more tests can be found
in the statistical literature than for testing the equality of the k distributions when
k is large (Zhan and Hart 2014; Jiménez-Gamero et al. 2022). As another instance,
let us consider the problem of testing the equality of the means of a large number k
of univariate normal populations, that may have different variances. Park and Park
(2012) proposed two tests for this problem, whose associated statistics, conveniently
normalized, are asymptotically normal. Here by asymptotic it is meant as k → ∞.
The assumption that the populations have all of them a normal distribution is cru-
cial in order to derive the asymptotic distribution of those test statistics. In fact, the
simulations in Jiménez-Gamero and Franco-Pereira (2021) show that, when the data
meets the normality assumption, these tests can be more powerful than nonparametric
competitors but, when data come from non-normal populations, the empirical type I
errors of the tests in Park and Park (2012) can be far apart from the nominal value.

The problem of simultaneously testing goodness-of-fit for k populations has been
studied in Gaigall (2021) by using test statistics based on comparing the empirical
distribution function of each sample with a parametric estimator derived under the null
hypothesis. The asymptotic properties studied in Gaigall (2021) are for fixed k and
increasing sample sizes. Jiménez-Gamero et al. (2005) studied the problem of testing
normality of the errors in multivariate, homoscedastic linear models. The test statistic
in Jiménez-Gamero et al. (2005) is based on comparing the empirical characteristic
function (ECF) of the studentized residuals with the characteristic function (CF) of
a standard normal law. The asymptotic properties studied in Jiménez-Gamero et al.
(2005) allow k to increase with the sample sizes in such a way that k2/n = o(1), where
n is the sample size. Specifically, they show that the asymptotic null distribution of
the considered test statistic coincides with that derived for independent, identically
distributed (iid) data in Baringhaus and Henze (1988) and Henze and Wagner (1997).
The normality test in Baringhaus and Henze (1988) and Henze and Wagner (1997) is
usually called the BHEP test, since it was first proposed for the univariate case by Epps
and Pulley (1983), and then extended to themultivariate case byBaringhaus andHenze
(1988); moreover, due to its nice properties, it has been extended in several directions:
to testing normality of the errors in homoscedastic linear models in Jiménez-Gamero
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et al. (2005), as explained before; to testing normality of the errors in nonparametric
regression inHušková andMeintanis (2010) andRivas-Martínez and Jiménez-Gamero
(2018); to testing normality of the innovations in GARCHmodels in Jiménez-Gamero
(2014), Klar et al. (2012); and to testing Gaussianity of random elements taking values
in a Hilbert space in Henze and Jiménez-Gamero (2021), just to cite a few.

In this paper we first study the test in Jiménez-Gamero et al. (2005) for test-
ing H0, without assuming that the populations are homoscedastic. Not assuming
homoscedasticity greatly complicates theoretical derivations, since instead of estimat-
ing one variance from the pooled data, now we must dealt with k variance estimators.
With this aim, it will be assumed that the sample sizes are comparable in the following
sense:

ni = cim, 0 < c0 ≤ ci ≤ C0 < ∞, ∀i, for some fixed constants c0 andC0.

(2)

It is shown that the asymptotic null distribution of the test statistic also coincides with
that derived for iid data, whenever k/m = o(1). Notice that if the sample sizes satisfy
(2), then the condition k/m → 0 is equivalent to k2/n → 0.

Since the practical calculation of the BHEP test statistic involves O(n2) sums (see
Section 2), its computation can be rather time-consuming for large k. So, for the case
k/m → � ∈ (0,∞], we try other strategies for testing H0. First, inspired by the random
projection procedure in Cuesta-Albertos et al. (2006), we could test H0 using not all
data sets but a “small" number k0 of samples (small in the sense that k0/m = o(1))
randomly selected from all of the k population samples. Finally, we consider a test
statistic which combines the BHEP test statistics calculated in each sample.

As said before, this paper studies BHEP-based statistics for testing H0. Other test
statistics could be considered. The main reason for our choice is the good properties
enjoyed by this test. This is why, Section 2 starts by reviewing its definition and
some properties. This section also derives new properties that will be used in Section
5. Specifically, it is shown that the two first moments of the null distribution of the
BHEP test statistic converge to those of the asymptotic null distribution, and sufficient
conditions are given for such convergence to hold under alternatives. Section 3 studies
the test that compares the ECF of the studentized data with the CF of the standard
normal law which, in our view, is the natural extension of the BHEP test statistic
to the setting in (1). Section 4 studies the test in the previous section when it is
calculated in a subset of randomly selected samples. Section 5 studies a test whose
test statistic is based on the sum of the BHEP test statistics calculated in each sample.
The properties investigated in Sects. 3–5 are asymptotic. In order to assess the finite
sample performance of the proposals, a simulation studywas carried out, whose results
are reported in Sect. 6. Section 7 summarizes the paper and comments on extensions
and further research. All proofs are deferred to the last section.

Throughout the paperwewillmakeuse of the following standard notation: i = √−1
is the imaginary unit; for any complex number x = a+ib ∈ C, with a, b ∈ R,�x = a
denotes the real part and 	x = b denotes the imaginary part; all random variables and
random elements will be defined on a sufficiently rich probability space (�,A, P);
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the symbols E and V denote expectation and variance, respectively; P0, E0 and V0
denote probability, expectation and variance under the null hypothesis, respectively;
D→ means convergence in distribution of random vectors and random elements.

2 The BHEP test

2.1 The test

This section revisits the BHEP test for univariate data. Let X1, . . . , Xn (n ≥ 2) be
a sample from a random variable X with continuous distribution function F and
E(X2) < ∞. For testing the hypothesis H0,1 : F ∈ N , the rationale of the BHEP
test is as follows: write X = n−1∑n

j=1 X j and S2 = n−1∑n
j=1(X j − X)2 for

the sample mean and the sample variance, respectively, and let Y j = (X j − X)/S,
1 ≤ j ≤ n, be the so-called scaled residuals of X1, . . . , Xn , which provide an
empirical standardization of X1, . . . , Xn . Notice that, under the assumptions made,
P(S > 0) = 1, and thus Y1, . . . ,Yn are well defined. Since, under H0,1 and for
large n, the distribution of the scaled residuals should be close to the standard normal
distribution, it is tempting to compare the ECF of Y1, . . . , Yn ,

ϕn(t) = 1

n

n∑

j=1

exp(itY j ), t ∈ R,

with ϕ0(t) = exp(−t2/2), which is the CF of the standard normal distribution. The
BHEP test rejects H0,1 for large values of the weighted L2-statistic

Tn,β =
∫

|ϕn(t) − ϕ0(t)|2 wβ(t) dt, (3)

where an unspecified integral stands for an integral over the whole real line, wβ(t) is
the probability density function of the normal distribution N(0, β2), and β > 0 is a
parameter, that must be fixed by the user. The test statistic Tn,β may be written as

Tn,β = 1

n2

n∑

j,k=1

exp

(

−β2

2
(Y j − Yk)

2
)

− 2

n(1 + β2)1/2

n∑

j=1

exp

(

− β2

2(1 + β2)
Y 2
j

)

+ 1

(1 + 2β2)1/2
,

(4)

which is a useful expression for the practical computation of Tn,β . Notice that the
computation of Tn,β involves a double sum, so the number of required calculations is
of order O(n2).

Representation (4) also shows that Tn,β is a function of the products Y jYk =
(X j − X)(Xk − X)/S2, 1 ≤ j, k ≤ n, and thus it is invariant with respect to affine
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transformations of X1, . . . , Xn . This property implies that the null distribution of Tn,β

only depends on the sample size n, and on the value of β.
Critical points for several sample sizes, β = 1 and the usual values for the proba-

bility of type I error (level) can be found in Baringhaus and Henze (1988) and Henze
(1990). The function cv.quan of the package mnt (Butsch and Ebner 2020) of
the R language (Core Team 2020) can be used to calculate critical points of the null
distribution of nTn,β for any sample size, any value of β and any level. The critical
points can be also approximated by those of the asymptotic null distribution of nTn,β .
Under the null hypothesis, nTn,β is asymptotically (when n → ∞) distributed as
Wβ = ∑∞

�=1 λβ,�Z2
� , where λβ,1, λβ,2, . . . are the descending sequence of positive

eigenvalues of certain integral operator, and Z1, Z2, . . . are independent standard nor-
mal random variables. Since those eigenvalues can be estimated (see, for example,
Ebner and Henze 2021, 2022; Meintanis et al. 2022) and hence the cumulants of Wβ ,
one could approximate the asymptotic critical values by using the Pearson system of
distributions (with the help of the package PearsonDS (Becker and Klößner 2022)
of the R language (Core Team 2020)). This idea was proposed by Henze (1990), who
(exactly) calculated the first four cumulants of Wβ with β = 1.

The BHEP test is consistent against any fixed alternative and it is able to detect
continuous alternatives converging to the null at the rate n−1/2, see (Henze andWagner
1997). Ebner andHenze (2021) andMeintanis et al. (2022) have obtained approximate
Bahadur efficiencies of the BHEP test, showing that it outperforms tests based on the
empirical distribution function over certain close alternatives to normality. All these
properties are for n → ∞.

2.2 Themean and the variance of the BHEP test statistic

Henze andWagner (1997) (see also Henze (1990) for β = 1) have (exactly) calculated
the mean and the second a third centred moments of Wβ . Specifically, for β = 1, the
mean and the variance of the asymptotic null distributionofnTn,1 areμ0 = 1−√

3/2 ≈
0.13397 and σ 2

0 = 2/
√
5 + 5/6 − 155/64

√
2 ≈ 0.015236, respectively. So, it is

tempting to approximate μ0,n = E0(nTn,1) by means of μ0 and τ 20,n = V0(nTn,1)

by σ 2
0 , where E0 and V0 are both understood under H0,1. Next proposition shows

that those approximations are asymptotically valid, which implies that {(nTn,β)2} is
uniformly integrable.

Proposition 1 Let X1, . . . , Xn be a random sample from X ∼ N (0, 1). Let Tn,β be
as defined in (3). Let μ0,β and σ 2

0,β denote the mean and the variance of the asymp-
totic distribution (as n → ∞) of nTn,β , respectively. Then, E0(nTn,β) → μ0,β and
V0(nTn,β) → σ 2

0,β , as n → ∞.

As in the first paragraph of this subsection, when β = 1 we denoteμ0,β and σ 2
0,β as

μ0 and σ 2
0 , respectively. We have numerically checked the approximations for β = 1,

μ0,n ≈ μ0 and τ 20,n ≈ σ 2
0 , in finite sample sizes. For each n, the true values of μ0,n

and τ 20,n were calculated by simulation, based on 100,000 samples of size n from a
standard normal law: nTn,1 were computed at each sample, and then the sample mean
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Fig. 1 True values for μ0,n (left panel) and τ20,n (right panel), 5 ≤ n ≤ 100. The line y = μ0 (left panel)

and the line y = σ 2
0 (right panel) are in red

and the sample variance of these 100,000 values were used to approximate μ0,n and
τ 20,n , respectively. Figure 1 displays μ0,n , joint with the line y = μ0 in red, and τ 20,n ,

joint with the line y = σ 2
0 in red, for 5 ≤ n ≤ 100. Looking at this figure one can see

that the approximation for the mean, μ0,n ≈ μ0, is almost exact for n ≥ 20, and the
approximation for the variance, τ 20,n ≈ σ 2

0 , works really well for n ≥ 50.
Now assume that E(X) = 0, V (X) = 1, and that the CF of X is ϕX = ϕ0,

which is tantamount to 	X ,β = ∫ |ϕX (t) − ϕ0(t)|2wβ(t) dt > 0. In this setting,
if E(X2) < ∞, the proof of Theorem 3.1 in Ebner and Henze (2021) shows that
μn,β = E(Tn,β) → 	X ,β and V (Tn,β) → 0, as n → ∞. So, we can approximate
μn,β ≈ 	X ,β . Example 1 in Baringhaus et al. (2017) shows that if E(X4) < ∞, then
√
n(Tn,β −	X ,β)

D→ N (0, σ 2
X ,β), as n → ∞. The expression of σ 2

X ,β > 0 is given in

Baringhaus et al. (2017). If, in addition, {(√n(Tn,β −	X ,β)
)2} is uniformly integrable,

then we can approximate τ 2n,β = V (
√
nTn,β) ≈ σ 2

X ,β . Similar steps to those given in
the proof of Proposition 1 show that a sufficient condition for the uniform integrability
of {(√n(Tn,β − 	X ,β)

)2} is that

E{|√n(S − 1)|4+δ} < ∞ and E{|√n X̄ |4+δ} < ∞, (5)

for some δ > 0.

3 The BHEP test for H0

The tests in Baringhaus and Henze (1988), Epps and Pulley (1983) chose β = 1. In
order to simplify notation, in our developments we will also choose β = 1, although
all results keep on being true for arbitrary (but fixed) β.

Let Y j,r = (X j,r − X j )/S j , 1 ≤ r ≤ n j , 1 ≤ j ≤ k, where X j and S2j stand for the
sample mean and the sample variance of the sample from X j , respectively, 1 ≤ j ≤ k.
As in the one-sample case, under H0, the distribution of the scaled residuals should

123



Testing normality of a large number of populations 441

be close to the standard normal distribution. So we consider as test statistic

Tk,n =
∫

|ϕn(t) − ϕ0(t)|2 w(t) dt,

where now ϕn is the ECF of Y1,1, . . . ,Y1,n1 , . . . ,Yk,1, . . . ,Yk,nk ,

ϕn = 1

n

k∑

j=1

n j∑

r=1

exp(itY j,r ), t ∈ R,

andw(t) = w1(t) is the probability density function of the standard normal law.Notice
that, to be more precise, the proposed test statistic should be denoted as Tn1,...,nk but,
to simplify notation, we just write Tk,n . Let n = ∑k

i=1 ni . With this notation, the
one-sample test statistic is T1,n .

Since we are assuming that E(X2
j ) < ∞, 1 ≤ j ≤ k, we can write X j,r = μ j +

σ jW j,r , where μ j = E(X j ), σ 2
j = V (X j ), E(Wj,r ) = 0, V (Wj,r ) = 1, 1 ≤ r ≤ n j ,

1 ≤ j ≤ k; moreover, the scaled residuals Y j,r calculated from X j,1, . . . , X j,n j

coincide with those calculated from Wj,1, . . . ,Wj,n j . Because of this reason, we can
assume that E(X j ) = 0 and V (X j ) = 1, 1 ≤ j ≤ k. Accordingly, from now on,
instead of (1), it will be assumed that the setting is as follows:

LetX1 = {X1,1, . . . , X1,n1}, . . . ,Xk

= {Xk,1, . . . , Xk,nk } be k independent samples with sizes n1, . . . , nk,

which may be different, coming from X1, . . . , Xk,

with continuous distribution functions F1, . . . , Fk, respectively,

E(X j ) = 0 andV (X j ) = 1, 1 ≤ j ≤ k. (6)

Another consequence of assuming that E(X j ) = 0 and V (X j ) = 1, 1 ≤ j ≤ k, is
that the null distribution of Tk,n only depends on the sample sizes n1, . . . , nk .

As in the one-sample case, rejection of the null hypothesis H0 is for large values of
Tk,n , say Tk,n > tk,n,α where tk,n,α is the α upper percentile of the null distribution of
Tk,n . So, to test H0 we must calculate upper percentiles of the null distribution of Tk,n .
Although the critical points can be calculated by simulation, from a practical point of
view it would be nice if they could be approximated in some fashion. The next result
is useful in that sense.

Before stating it, we introduce some notation. Since w(t) = w(−t) we can write
Tk,n = ∫

Z2
k,n(t)w(t) dt, with

Zk,n(t) = 1

n

∑

j,r

cos(tY j,r ) + 1

n

∑

j,r

sin(tY j,r ) − ϕ0(t), t ∈ R. (7)

Let L2
w denote the separable Hilbert space of (equivalence classes of) measurable

functions f : R �→ C satisfying
∫ | f (t)|2w(t)dt < ∞. The scalar product and the
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resulting norm in L2
w will be denoted by 〈 f , g〉w = ∫

f (t)g(t)w(t)dt and ‖ f ‖2w =∫ | f (t)|2w(t)dt , respectively. With this notation, Tk,n = ‖Zk,n‖2w.
Theorem 1 Suppose that (6) holds, that H0 is true, that the sample sizes satisfy (2),

and that k/m → 0, as m → ∞. Then nTk,n
D→ ‖Z‖2w, as m → ∞, where Z is a

centred Gaussian random element of L2
w having covariance kernel

C(t, s) = exp{−0.5(t − s)2} − (1 + st + 0.5s2t2) exp{−0.5(t2 + s2)}, t, s ∈ R.

(8)

Theorem 1 says that, under certain assumptions, the asymptotic null distribution of
Tk,n coincides with that of the one-sample test statistic, T1,n (see Henze and Wagner
1997). Therefore, at least for large n, we can approximate the percentiles of Tk,n either
by those of T1,n or by those of the asymptotic null distribution of T1,n . In both cases,
as commented in Sect. 2, the percentiles can be calculated using packages of the R
language.

Next we study the behavior of the test under alternatives. To this end, we first state
the following result that gives the a.s. behavior of Tk,n .

Theorem 2 Suppose that (6) holds, that X1, . . . , Xk have CFs ϕ1, . . . , ϕk , respec-
tively, that the sample sizes satisfy (2) and that k/m → 0, as m → ∞, then

Tk,n − ‖ϕ0,k − ϕ0‖2w a.s.→ 0,

as m → ∞, where ϕ0,k = (1/n)
∑k

j=1 n jϕ j .

Notice that if X1, . . . , Xk have all of them the same CF, say ϕ, then ϕ0,k = ϕ and,
from Theorem 2, it follows that

Tk,n
a.s.→ ‖ϕ − ϕ0‖2w, (9)

as m → ∞. In particular, under H0 we have that Tk,n
a.s.→ 0.

Nextwe see that the power of the test goes to 1 for alternatives so that‖ϕ0,k−ϕ0‖2w >

0. With this aim, it will be assumed w.l.o.g. that

X1, . . . , Xr have alternative distributions with CFs ϕ1, . . . , ϕr ,

while the other k − r populations obey H0, for some 1 ≤ r ≤ k. (10)

In the above setting, r is allowed to vary with m, r = rm , but such dependence on m
will be skipped. Let

fr = 1

n

r∑

i=1

ni , ϕ0,r = 1

n fr

r∑

i=1

niϕi .
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Testing normality of a large number of populations 443

We have that

ϕ0,k − ϕ0 = fr (ϕ0,r − ϕ0). (11)

Assume that the CFs of the alternative distributions satisfy

inf
α1+···+αr=1,
α1,...,αr≥0

‖
r∑

i=1

αiϕi − ϕ0‖w ≥ τ > 0, ∀r ≥ 1, (12)

and that the sample sizes satisfy (2), then from (11) it follows that

r

k
M1 ≤ ‖ϕ0,k − ϕ0‖w ≤ r

k
M2, (13)

where M1 and M2 are two positive constants (depending on τ , c0 and C0).
As a consequence of Theorem 1, Theorem 2 and (13), we have the following result.

Corollary 1 Suppose that (6), (10) and (12) hold, that the sample sizes satisfy (2), and
that k/m → 0 and r/k → p ∈ (0, 1], as m → ∞. Then the power of the test that
rejects H0 when Tk,n ≥ tk,n,α goes to 1, as m → ∞.

The result inCorollary 1 remains true if tk,n,α is replacedwith a consistent estimator.

Remark 1 Assumption (12) may not be satisfied under alternatives. To see this fact, let
us recall that if X has CF ϕX = �ϕX +i	ϕX then−X has CF ϕ−X = �ϕX −i	ϕX . On
the other hand, if X is a continuous random variable with probability density function
(pdf)

2φ(x)π(x), (14)

where φ(x) is the pdf of a standard normal law and π is a skewing function (i.e.
a function satisfying 0 ≤ π(x) ≤ 1 and π(−x) = 1 − π(x)), then the real part
of the CF of X is equal to ϕ0 (see e.g. Jiménez-Gamero et al. 2016), and therefore
0.5ϕX +0.5ϕ−X = ϕ0. An example of a continuous law having a pdf of the form (14)
is the skew normal law, for which π(x) = �(λx), where � denotes the cumulative
distribution function of a standard normal law and λ ∈ R is a constant. Thus, if
X1 = X , X2 = −X (say) and the pdf of X satisfies (14), then

inf
α1+···+αr=1,
α1,...,αr≥0

‖
r∑

i=1

αiϕi − ϕ0‖w = 0, ∀r ≥ 2.

The sameproblemarises in the one-sample case if the assumption that the data are iden-
tically distributed is dropped. If, as in the one-sample case, we assume that X1, . . . , Xr

have the same alternative distribution, then (12) is satisfied.
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444 M. D. Jiménez-Gamero

Remark 2 Theorem 1 states that, under certain assumptions on k and the sample sizes,
the asymptotic null distribution of nTk,n coincides with that of the BHEP test statistic.
On the other hand, if X1, . . . , Xk have all of them the same CF, say ϕ, then we saw that
(9) holds. As a consequence of these two facts, in this setting, the Bahadur efficiencies
computed in Ebner and Henze (2021) and Meintanis et al. (2022) for the BHEP test,
also apply to the test proposed in this section.

Remark 3 As explained before, the main motivation for considering Tk,n is that it can
be seen as the natural extension of the BHEP test statistic. Nevertheless, other test
statistics can be used for testing H0. For example, if we denote by Ti to the BHEP test
statistic calculated on the sample from Xi , following the approach in Gaigall (2021),
other possible choices are

∑k
i=1 Ti or (1/n)

∑k
i=1 niTi . As for the studied proposal,

the null distribution of these two test statistics only depends on n1, . . . , nk . We will
come back to a test statistic of this type in Sect. 5.

The results in this section allow k to increase with the sample size, but at a lower
rate. A key result to prove Theorem 1 is Lemma 2 in Sect. 8. If k/m → � > 0 then,
it can be checked that the results in Lemma 2 are no longer true. Moreover, since in
such a case, even the practical calculation of Tk,n can be very time-consuming, Sects.
4 and 5 explore other strategies to build a test of H0.

4 Random selection

Because, as observed before, for large k the calculation of Tk,n can be very time-
consuming, here we study a more efficient way (from a computational point of view)
of testing H0, which consists in randomly selecting a subset of samples, and then
applying the test studied in the previous section to the selected data. Specifically, the
method proceeds as follows: for some (fixed) k0 < k (the precise order of k0 will be
specified later), select randomly (without replacement) I1, . . . , Ik0 from 1, . . . , k and
then apply the test in Sect. 3 to the samples XI1 , . . . ,XIk0

. Let n0 = nI1 + . . . + nIk0
be the total size of the selected data. Notice that when not all sample sizes are equal
(unbalanced samples), n0 is a random quantity. Let Tk0,n0 = Tk0,n0(XI1 , . . . ,XIk0

)

denote the test statistic calculated on the selected samples. Then, H0 is rejected if
Tk0,n0 ≥ tk0,n0,α , where tk0,n0,α is the α upper percentile of the null distribution of
Tk0,n0 for n0 fixed (non-random) and equal to its observed value.

To study properties of this procedure we first introduce some notation. For each
i = (i1, . . . , ik0), with 1 ≤ i1 < · · · < ik0 ≤ k, let

a(i) = P(Tk0,n0(Xi1 , . . . ,Xik0
) ≥ tk0,n0,α | I1 = i1, . . . , Ik0 = ik0),

and a0(i) = P0(Tk0,n0(Xi1 , . . . ,Xik0
) ≥ tk0,n0,α | I1 = i1, . . . , Ik0 = ik0). (15)

By construction and the definition of tk0,n0,α , a0(i) = α, ∀i, and thus the test has level
α because

P0(Tk0,n0 ≥ tk0,n0,α) = 1
( k
k0

)
∑

1≤i1<···<ik0≤k

a0(i) = α.
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Now we study the power.

Theorem 3 Suppose that (6), (10) and (12) hold, that the sample sizes satisfy (2), and
that k0 → ∞, k0/m → 0, k0/k → ρ0 ∈ [0, 1), and r/k → p ∈ (0, 1], as m → ∞.
Then the power of the test that rejects H0 when Tk0,n0 ≥ tk0,n0,α goes to 1, as m → ∞.

The result in Theorem 3 remains true if tk0,n0,α is replaced with a consistent esti-
mator.

The consistency result in Theorem 3 is very similar to that in Corollary 1, in the
sense that, besides some assumptions on k0, both tests are consistent under the same
assumptions, namely, (12) and r

k → p ∈ (0, 1]. The comments in Remarks 1 and 2
also apply here.

Notice that two different random selections of I1, . . . , Ik0 from 1, . . . , k could
induce to opposite conclusions. To avoid this inconvenience, we follow Cuesta-
Albertos and Febrero-Bande (2010) for tests based on random projections with
functional data. These authors have proposed to take several random projections, cal-
culate the p-value for each projection, and then apply some correction, as for example
the procedure in Benjamini and Yekutieli (2001), which controls the false discovery
rate. The same approach can be applied here.

5 Sum of BHEP test statistics

As observed in Remark 3, we could consider test statistics based on the sum of test
statistics calculated on each sample. Here we study a test whose test statistic is of that
type. Recall from Sect. 2.2 the definition of μ0,n and τ 20,n , and that 0 < μ0,n → μ0

and 0 < τ 20,n → σ 2
0 , as n → ∞.

Let Ti = niTi , where Ti = Tni ,1 (see (3)), 1 ≤ i ≤ k, and let

T0,k =
∑k

i=1(Ti − μ0,ni )√∑k
i=1 τ 20,ni

.

As seen in Sect. 2.2, if Fi /∈ N then E(Ti ) = ni	Xi ,ni , with 	Xi ,ni → 	Xi =
‖ϕi − ϕ0‖2w > 0, as ni → ∞, where ϕi is the CF of Xi . Hence, for large enough ni ,
E(Ti ) is bigger than E0(Ti ) = μ0,ni . Thus, it seems reasonable to reject H0 for large
values of T0,k .

To test H0 wemust calculate upper percentiles of the null distribution ofT0,k , which
depends on n1, . . . , nk . Although the critical points can be calculated by simulation,
from a practical point of view it would be nice if they could be approximated in some
fashion, at least for large k, since n1, . . . , nk can take many values. The next result
shows that, under H0, T0,k converges in law to a standard normal law, as k → ∞,
no matter how large (or small) are the sample sizes n1, . . . , nk , it only assumes that
ni ≥ 3. If ni = 2 then the two scaled residuals take the values -1 and 1, for any possible
values of Xi,1, Xi,2 (whenever they are different, which happens with probability 1 as
Xi is assumed to be continuous), and thus Ti is a degenerate random variable.
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Theorem 4 Suppose that (6) holds, that ni ≥ 3, and that H0 is true. Then T0,k
D→

Z ∼ N (0, 1), as k → ∞.

From Theorem 4, the test that rejects H0 when T0,k ≥ z1−α, for some α ∈ (0, 1),
where �(z1−α) = 1 − α, has (asymptotic) level α, where here asymptotic means for
large k.

Now we study the power of this test. As in the previous sections, we will suppose
that (10) holds. The r alternative distributions will be assumed to satisfy the following
assumption.

Assumption 1 (a) {(√ni (Ti − 	Xi ,ni )
)2} is uniformly integrable, 1 ≤ i ≤ r .

(b) There exist 0 < ς1 < ς2 < ∞ such that ς1 ≤ inf
1≤i≤r

τ 2Xi ,ni ≤ sup
1≤i≤r

τ 2Xi ,ni ≤ ς2,

∀r , where τ 2Xi ,ni
= V (

√
niTi ), 1 ≤ i ≤ r .

(c) There exists 0 < η such that 1
r

∑r
i=1(	Xi ,ni − μ0,ni /ni ) ≥ η, ∀r .

Recall from Sect. 2.2 that, for alternative distributions with E(X4
i ) < ∞,

√
ni (Ti −

	Xi ) converges in law to a zero-mean normal distribution. Thus, it makes sense to
consider Assumption 1 (a) and (b).Moreover, (5) (for each i) was seen to be a sufficient
condition for Assumption 1 (a) to hold. Since 	Xi ,ni is positive and close to 	Xi ,
Assumption 1 (c) is saying that ni must large enough so that E(T0,k) > 0. Table 1
below displays the values of μ0,n and n	X ,n , for some alternative distributions and
some small values of n, that were calculated by simulation based on 100,000 samples
in each case. The considered alternative distributions are:

• The beta distribution with parameters (2,2) (b(2, 2)), whose pdf is f (x) = 6x(1−
x) if x ∈ [0, 1],

• the Laplace distribution (Lap) with pdf f (x) = 0.5 exp(−|x |), x ∈ R,
• the uniform distribution (unif) with pdf f (x) = 1 if x ∈ [0, 1],
• the logistic distribution (log) with pdf f (x) = exp(−x)/{1 + exp(−x)}2, x ∈ R,
• the Student t-distribution with ν degrees of freedom (tν), whose pdf is given by

f (x) = �{(ν+1)/2}√
νπ�(ν/2)

(
1 + x2/ν

)−(ν+1)/2
, x ∈ R, where � is the gamma function,

• a scale mixture of two normal populations (SMN): pN (0, σ 2) + (1− p)N (0, 1),
with p = 0.2 and σ = 3,

• the negative exponential distribution (exp) with pdf f (x) = exp(−x), x ∈ [0,∞),
and

• the chi-squared distribution with ν degrees of freedom (χ2
ν ), whose pdf is given

by f (x) = 1
2ν/2�(ν/2)

xν/2−1 exp(−x/2), x ∈ [0,∞).

Looking at Table 1 we see that Assumption 1(c) is not restrictive at all: it suffices to
take ni ≥ 5 for all considered alternatives.

To derive the asymptotic null distribution of T0,k no assumption was made on the
sample sizes n1, . . . , nk (except that all of then are greater than or equal to 3). To study
the power, we will assume that the sample sizes are comparable, in the sense that they
satisfy (2). Nevertheless, in contrast to the results for the power in the previous sections
(see Corollary 1 and Theorem 3), here m is not assumed to increase, it only must be
large enough so that Assumption 1(c) holds true.
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Table 1 Values of μ0,n and n	X ,n , for 3 ≤ n ≤ 10 and some alternative distributions for X

n μ0,n n	X ,n

b(2, 2) Lap unif log t7 t20 t30 SMN exp χ2
4 χ2

20 χ2
40

3 0.33 0.34 0.34 0.34 0.33 0.33 0.33 0.33 0.34 0.36 0.35 0.34 0.33

4 0.49 0.49 0.52 0.51 0.49 0.50 0.49 0.49 0.53 0.61 0.54 0.50 0.49

5 0.13 0.63 0.73 0.68 0.66 0.66 0.64 0.64 0.74 0.93 0.78 0.66 0.65

6 0.13 0.77 0.94 0.85 0.82 0.83 0.79 0.78 0.99 1.33 1.06 0.83 0.80

7 0.13 0.91 1.18 1.02 0.99 1.00 0.94 0.93 1.26 1.79 1.37 1.01 0.96

8 0.13 1.04 1.44 1.21 1.16 1.18 1.09 1.07 1.56 2.33 1.73 1.18 1.12

9 0.13 1.18 1.70 1.40 1.34 1.37 1.23 1.21 1.89 2.93 2.11 1.38 1.28

10 0.13 1.33 1.97 1.61 1.52 1.55 1.37 1.36 2.25 3.60 2.54 1.58 1.45

Theorem 5 Suppose that (6), (10) and Assumption 1 hold, that the sample sizes satisfy
(2), and that r/k → p ∈ (0, 1], as k → ∞. Then the power of the test that rejects H0
when T0,k ≥ z1−α goes to 1, as k → ∞.

6 Simulation results

This section presents the results of several simulation experiments designed to study
the finite sample performance of the three tests studied in this paper. We first study
the goodness of the approximations given to the null distribution of the proposed
test statistics, and then their powers, which are also compared with the following
procedures for testing H0:

• Compute the BHEP test for testing H0i : Xi ∈ N , 1 ≤ i ≤ k. Then one can apply
either the Bonferroni method, which controls the family-wise error rate, or the
Benjamini-Hochberg method (see Benjamini and Yekutieli 2001), which controls
the false discovery rate when the k tests are independent. Both procedures agree in
rejecting H0 if min1≤i≤k pi ≤ α/k, where p1, . . . , pk are the p-values obtained
when testing H01, . . . , H0k , respectively. The results for this procedure are headed
in the tables by BH (and we will also refer to that test as the test BH).

• The tests in Gaigall (2021).

6.1 Simulations for the level

We first consider the test in Sect. 3, which rejects H0 when Tk,n > tk,n,α . By construc-
tion, if one uses that critical region, then the test will have exactly level α. So, to check
the actual level of this test has no interest. Recall that Theorem 1 states that, under
certain assumptions, the asymptotic null distribution of Tk,n coincides with that of
the one-sample test statistic, T1,n . Therefore, we could approximate the percentiles of
Tk,n by those of T1,n . Here we study that approximation by simulation, and hence we
consider the test that rejects H0 when Tk,n > t1,α where t1,α is the α upper percentile
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of the null distribution of T1,n . The results for such test are headed in the tables by
T as
k,n (and we will also refer to that test as the test T

as
k,n).

The critical point tk,n,α can be also approximated by the α upper percentile of the
asymptotic null distribution of Tk,n , say tα . As explained by the end of Sect. 2.1, tα
can be estimated by using the Pearson system of distributions, as proposed in Henze
(1990). The results for such test are headed in the tables by T Pe

k,n (and we will also

refer to that test as the test T Pe
k,n ).

We also consider the test that rejects H0 when T0,k ≥ z1−α . The results for such
test are headed in the tables by T0,k (and we will also refer to that test as the test T0,k).

The test statistics in Gaigall (2021) are sum of the Kolmogorov-Smirnov test statis-
tics and the Cramér-von-Mises test statistics in each sample, and so, it is expected
that, conveniently normalized (subtracting the mean and dividing by the square root
of their variances, as we did in Sect. 5 to obtainT0,k) those statistics are asymptotically
normal as k → ∞. Notice that the null distribution of the Kolmogorov-Smirnov and
the Cramér-von-Mises test statistics in each sample does not depend on the values
of the population mean and variance, but only on the sample size. We calculated by
simulation, the means and the variances of the these statistics in a sample, and con-
sidered the test that rejects H0 when K S ≥ z1−α and the test that rejects H0 when
CM ≥ z1−α , where K S and CM are the Kolmogorov-Smirnov and the Cramér-von-
Mises analogues of T0,k , respectively. The results for such tests are headed in the
tables by K S and CM (and we will also refer to those tests as the test K S and the test
CM), respectively.

In each case we did the following experiment: k random samples with size ni = m,
1 ≤ i ≤ k, were generated from a standard normal law and the tests K S, CM , T as

k,n ,

T Pe
k,n , T0,k and BH were applied with α = 0.05. The experiment was repeated 10,000

times (all simulations for the level in this paper are based on 10,000 samples). Table
2 displays the proportion of times that H0 was rejected for k = 2, 3, 5, 10, 20 and
ni = 5, 10, 15, . . . , 45. Looking at Table 2 we conclude that: (a) for the test T as

k,n : as
expected, the approximation works when k is small in relation to ni , the distortion of
the level may be important if such relation is not met; (b) the same can be concluded
for the test T Pe

k,n , whose performance is quite close to T as
k,n ; (c) for the test T0,k : the

approximation works better for larger values of k (as expected), nevertheless, the
empirical levels are not far apart from the nominal level even for k = 2; its behavior
does not seem to be influenced by the sample sizes; (d) the same can be concluded
for the tests K S and CM ; (e) for the test BH: the levels are reasonably close to the
nominal level.

The above experiment was repeated for larger values of k (specifically, for k =
100, 200) and ni = 5, 10, 15, 20, but instead of the test T as

k,n (and T
Pe
k,n ) we considered

the random selection test studied in Sect. 4 with k0 = 10, 20, headed in the tables
by RP (and we will also refer to that test as the test RP). We tried that test with one
and more than one random selections. In view of the results of Table 2 for the test
T as
k,n (and T Pe

k,n ), and since the sample sizes considered are not very large compared
to k0, we used the exact critical values of the null distribution of Tk0,n0 ; when several
random selections are taken into account (5, 10, 20 and 30), we proceed as explained
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before for the test BH. The results obtained are displayed in Table 3. In all cases, the
empirical levels match quite closely the nominal value.

6.2 Simulations for the power

As said at the beginning of Sect. 3, in our developments we chose β = 1, although
all results keep on being true for arbitrary (but fixed) β. It is well-known that, for
finite sample sizes, the power of the BHEP test strongly depends on the value of
the parameter β and on the alternative. Tenreiro (2009) observed that for short-tailed
alternatives, high power is obtained for large (but not too large) values of β, and
for long-tailed (symmetric or asymmetric) alternatives a small value for β should be
chosen. Since the tests studied in this paper are all of them based on the BHEP test, it
is expected that they inherit their characteristics. So, in the power study, we tried the
proposed tests for several values of β. As in Ebner and Henze (2021), we considered
β ∈ {0.25, 0.5, 0.75, 1, 2, 3, 5, 10}.

To examine the power we repeated the experiments in the previous section, but now
r samples where taken from an alternative distribution and the other k − r samples
were generated from a standard normal distribution. r is taken so that the percentage
of alternative distributions equals 20%, 40%, 60% and 80%. All simulations for the
power in this paper are based on 2,000 samples. For the test that rejects H0 when
Tk,n > tk,n,α (the dependence on β is skipped to simplify notation), we calculated the
exact critical values (headed in the tables by T ex

k,n , we will also refer to that test as the
test T ex

k,n). The columns headed as RP1 and RP2 display the results for the random
selection method with k0 = 10 and k0 = 20, respectively, both with 30 random
selections because, in most cases, that number of selections gave the higher power
(taken among 1, 3, 5, 10, 20 and 30 random selections).

As for the alternatives, we considered several short-tailed and some long-tailed
distributions. The picture in each case is very similar and agree with Tenreiro (2009)
observations. Due to space limitations, next we just summarize the experiment results.
All tables and a detailed description of the numerical results can be found in the
Supplementary Material.

Looking at the tables for the power in the Supplementary Material, in general,
it can be concluded that: (a) the power of all tests increases with the percentage of
alternative distributions, with the sample sizes and with k; (b) the test BH gives the
poorest results; (c) there is no test giving the highest power for all alternatives; (d)
among the BHEP-based tests, we again see that there is no one giving the highest
power for all alternatives; nevertheless, T0,k gives powers (for adequate choices of β)
that are either optimal of reasonably close to the optimal; (e) K S is less powerful than
CM ; their powers are smaller than those of T ex

k,n and T0,k (for adequate choices of β),
for small k, and of RP2 and T0,k (for adequate choices of β), for larger k.

From a computational point of view, among BHEP-based tests, the test T0,k is the
best choice, since the number of required computations for the calculation of its test
statistic is of order O(km2), and its application does not involve the calculation of
critical points.
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6.3 Further simulation results

In the above experiments all samples have the same size n1 = n2 = . . . = nk := m,
so the data can be also seen as

Y1 =

⎛

⎜
⎜
⎜
⎝

X1,1

X2,1
.
.
.

Xk,1

⎞

⎟
⎟
⎟
⎠

, Y2 =

⎛

⎜
⎜
⎜
⎝

X1,2

X2,2
.
.
.

Xk,2

⎞

⎟
⎟
⎟
⎠

, . . . , Ym =

⎛

⎜
⎜
⎜
⎝

X1,m

X2,m
.
.
.

Xk,m

⎞

⎟
⎟
⎟
⎠

which are iid from Y =

⎛

⎜
⎜
⎜
⎝

X1

X2
.
.
.

Xk

⎞

⎟
⎟
⎟
⎠

∈ R
k .

An anonymous referee asked us to apply the BHEP test to the Y -data.With this aimwe
needm ≥ k+1 , so we only considered the cases k = 10 with ni = 15, 20, 25, 30 and
k = 20 with ni = 25, 30. Tenreiro (2009) performed an extensive simulation study
on the power of the BHEP test for a wide range of data dimension. He recommends
using βk = √

2/(1.376 + 0.075k). We repeated the power simulation study for the
Y -data using βk and the critical points of the BHEP test for each value of k (that now
becomes the dimension) andm (the sample size). The obtained results are displayed in
the SupplementaryMaterial. Comparing themwith those yielded by the tests proposed
in this paper, CM and KS, applied to the X -data, we see that when the BHEP is applied
to the Y -data the power is really poor.

The above Y -data description assumes that the components of Y are independent.
To numerically study the effect on the level of the tests considered in Sect. 6.1 when
the independence assumption is dropped, the following simulation experiment was
carried out: we generated data from Y ∼ Nk(0, �ρ), where �ρ is the equicorrelation
matrix, and then applied the tests in Table 2 to the associated X -data. The obtained
results are displayed in the Supplementary Material. Looking at them we see that as
the dependence between the components of Y becomes stronger, the empirical levels
move further away from the nominal value 0.05. As a consequence, the case of Y -data
with correlated components requires the development of new procedures that take into
account such dependence.

7 Concluding remarks and further research

This paper proposes and studies three procedures for simultaneously testing that k
independent samples come from normal populations, which can have different means
and variances. All of them are based on the BHEP test and allow k to increase. The first
test, based on the test statistic Tk,n , can be seen as the direct extension of the BHEP
test. Its null distribution only depends on k and the sample sizes, so that exact critical
points can be calculated by simulation, but when the sample sizes are large relative
to k, one can use the critical points of the BHEP test. If k is very large, the practical
calculation of the test statistic Tk,n is very time-consuming, so one can randomly
select k0 samples (one or more times) and apply the previous test to the selected
samples. One can also calculate the BHEP test statistic in each sample and then sum
the obtained values, which conveniently centred and scaled (T0,k) converges in law
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to a standard normal law when the null hypothesis is true. The normal approximation
works reasonably well even for not too large k, so its practical use does not require
the calculation of critical points. All test are consistent against alternatives where the
fraction of samples not obeying the null goes to a positive constant. The test based on
T0,k is, from a computational point of view, the best choice.

This paper is centered in studying BHEP-based procedures for simultaneously test-
ing that k independent samples come from normal populations. Other normality tests
could be used to build similar procedures to those developed in Sects. 3–5. More-
over, parallel approaches could be used for simultaneously testing that k independent
samples come from any location-scale family.

As observed in Remark 2, in certain specific settings, the Bahadur efficiencies
calculations made in Ebner and Henze (2021) and Meintanis et al. (2022) for the
BHEP test, also apply to the tests proposed in Sects. 3 and 4. It would be interesting
to study Bahadur efficiencies in more general settings, and also for the test in Sect. 5.
Those calculations could help to determine optimal values of β and k0.

Finally, in simulations we saw that the tests studied in this paper are not valid for
dependent data. New procedures that take into account such dependence should be
developed.

8 Proofs

Along this section M is a generic positive constant taking many different values
throughout the proofs.

8.1 Auxiliary results

Lemma 1 Suppose that (6) holds and that H0 is true. Then

(a) E{n j (1 − S j )
2} = 0.5 + O(1/n j ),

(b) E{(1 − 1/S j )
2} = 1/n j + O(1/n2j ),

(c) E{(1 − 1/S j )
4} = O(1/n2j ),

as n j → ∞, 1 ≤ j ≤ k.

Proof (a) Under H0, n j S2j ∼ χ2
n j−1, thus E(n j S2j ) = n j − 1 and E(n j S j ) =

√
n j

√
2�(n j/2)/�((n j −1)/2), where � stands for the gamma function. Using Leg-

endre duplication formula (see display 5.5.5 ofOlver et al. 2010) and Stirling’s formula
(see display 5.11.3 of Olver et al. 2010), one gets that, for large n j ,

E(n j S j ) =
√
n j (n j − 1)

(

1 + 1

4n j
+ O

(
1

n2j

))

.

Thus

E{n j (1 − S j )
2} = 2n j − 1 − 2

√
n j (n j − 1)

(

1 + 1

4n j
+ O

(
1

n2j

))

.
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Finally, taking into account that 2n j −1−2
√
n j (n j − 1) = 2

(
1 + √

1 − 1/n j
)−1−1,

√
n j (n j − 1)/n j = √

1 − 1/n j and
√
1 − 1/n j = 1−1/(2n j )+O(1/n2j ), the result

follows.
(b, c) The proof is similar to that of part (a). ��
Remark 4 The result in Lemma 1 (a) can be also derived from pages 421–422 of
Johnson et al. (1994).

Let 	 j,r = Y j,r − X j,r = X j,r (1/S j − 1) − X j/S j , 1 ≤ r ≤ n j , 1 ≤ j ≤ k.

Lemma 2 Suppose that (6) holds, that H0 is true, that the sample sizes satisfy (2), and
that k/m → 0, as m → ∞. Then,

(a) 1√
n

∑
j,r 	2

j,r = oP (1),

(b) ‖Wn‖w = oP (1), for

(b.1) Wn(t) = t 1√
n

∑k
j=1(X j/S j )

∑n j
r=1 sin(t X j,r ), t ∈ R,

(b.2) Wn(t) = t 1√
n

∑k
j=1(X j/S j )

∑n j
r=1

{
cos(t X j,r ) − ϕ0(t)

}
, t ∈ R,

(b.3) Wn(t) = t 1√
n

∑k
j=1(1 − 1/S j )

∑n j
r=1 X j,r cos(t X j,r ), t ∈ R,

(b.4) Wn(t) = t 1√
n

∑k
j=1(1 − 1/S j )

∑n j
r=1

{
X j,r sin(t X j,r ) + ϕ′

0(t)
}
, t ∈ R,

(b.5) Wn(t) = tϕ0(t)
1√
n

∑k
j=1 n j X j (1 − 1/S j ), t ∈ R,

(b.6) Wn(t) = tϕ′
0(t)

1√
n

∑k
j=1

∑n j
r=1{(1/S j − 1) + 0.5(X2

j,r − 1)}, t ∈ R,

as m → ∞, where ϕ′
0(t) = d

dt ϕ0(t).

Proof (a) We first observe that

n j∑

r=1

	2
j,r = n j {(1 − S j )

2 + X
2
j }, 1 ≤ j ≤ k.

From (2),

n =
k∑

j=1

ni = m
k∑

j=1

ci = c̄km, with 0 < c0 ≤ c̄ = (1/k)
k∑

j=1

c j ≤ C0 < ∞.(16)

Taking into account (16), the result in Lemma 1(a), and that E(n j X
2
j ) = 1, 1 ≤ j ≤ k,

one gets

0 ≤ E

⎛

⎝ 1√
n

∑

j,r

	2
j,r

⎞

⎠ ≤ M

√
k

m
.

Since we are assuming that k/m → 0, the result follows.
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(b.1) We have that E{Wn(t)2} = t2(1/n)
∑k

j,v=1 E jv , where

E jv = E

(
X j

S j

Xv

Sv

n j∑

r=1

sin(t X j,r )

nv∑

s=1

sin(t Xv,s)

)

.

If j = v, then

E jv = E

⎛

⎝
X j

S j

n j∑

r=1

sin(t X j,r )

⎞

⎠ E

(
Xv

Sv

nv∑

s=1

sin(t Xv,s)

)

≤ E1/2

⎛

⎝
X
2
j

S2j

⎞

⎠ E1/2

(
X
2
v

S2v

)

E1/2

⎛

⎜
⎝

⎧
⎨

⎩

n j∑

r=1

sin(t X j,r )

⎫
⎬

⎭

2
⎞

⎟
⎠ E1/2

⎛

⎝

{ nv∑

s=1

sin(t Xv,s)

}2
⎞

⎠ .

Since
√
n j − 1 X j/S j ∼ tn j−1, one gets that E

(
X
2
j/S

2
j

)
= 1/(n j −3). We also have

that E

({∑n j
r=1 sin(t X j,r )

}2
)

= n j E{sin2(t X j )} = 0.5n j {1 − ϕ0(2t)} ≤ Mn j .

Thus, E jv ≤ M , 1 ≤ j = v ≤ k. If j = v, then

E j j ≤ E1/2

⎛

⎝
X
4
j

S4j

⎞

⎠ E1/2

⎛

⎝

{ n j∑

r=1

sin(t X j,r )

}4
⎞

⎠ .

Since

E

⎛

⎝

{ n j∑

r=1

sin(t X j,r )

}4
⎞

⎠ =
n j∑

r ,s=1

E
{
sin2(t X j,r ) sin

2(t X j,s)
}

≤ n2j ,

and, for n j ≥ 6,

E

⎛

⎝
X
4
j

S4j

⎞

⎠ = 1

(n j − 1)2

(
6

n j − 5

(n j − 1)2

(n j − 3)2
+ 3

)

≤ M
1

n2j
,

we get that E j j ≤ M , 1 ≤ j ≤ k, whenever n j ≥ 6. Therefore, E{Wn(t)2} ≤
t2Mk2/n, whenever n j ≥ 6, 1 ≤ j ≤ k. From (16), it follows that k2/n ≤ Mk/m.
Since

∫
t2w(t)dt = 1 and k/m → 0, as m → ∞, it follows that ‖Wn‖w = oP (1), as

m → ∞.
(b.2) The proof is similar to that of (b.1).
(b.3, b.4) The proof is similar to that of (b.1) using Lemma 1 (b) and (c).
(b.5) We have that E{Wn(t)2} = t2ϕ0(t)2(1/n)

∑k
j,v=1 E jv , where

E jv = n jnvE
{
X j (1 − 1/S j )Xv(1 − 1/Sv)

}
.
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If j = v, then

E jv = n jnvE(X j )E{(1 − 1/S j )}E(Xv)E{(1 − 1/Sv)} = 0.

If j = v, then

E j j = n2j E(X
2
j )E{(1 − 1/S j )

2}.

Taking into account that E(n j X
2
j ) = 1 and Lemma 1(b), we get that, for large m,

E j j ≤ M .
Therefore, for large m, E{Wn(t)2} ≤ Mt2ϕ0(t)2k/n. Since

∫
t2w(t)ϕ0(t)2dt <

∞, from (16), it follows that ‖Wn‖w = oP (1), as m → ∞.
(b.6)WecanwriteWn(t) = tϕ′

0(t){An+0.5Bn},where An = (1/
√
n)
∑k

j=1 n j (1/S j−
1) and Bn = (1/

√
n)
∑k

j=1
∑n j

r=1(X
2
j,r − 1). Since

∫
t2w(t)ϕ′

0(t)
2dt < ∞, to show

the result it suffices to see that An = oP (1) and Bn = oP (1), as m → ∞.
We have that E{A2

n} = (1/n)
∑k

j,v=1 E jv , where E jv = n jnvE
{
(1/S j − 1)2

(1/Sv − 1)2
}
. From Lemma 1 (b) and (c), it follows that for large m, E jv ≤ M ,

1 ≤ j, v ≤ k, and thus E{A2
n} ≤ Mk2/n. Now using (16) one gets that An = oP (1),

as m → ∞.
Since

E{(X2
j,r − 1)(X2

v,s − 1)} =
{
2 if j = v and r = s,
0 otherwise,

and using (16), we have that E{B2
n } = 2k/n = 2/(c̄m) → 0, as m → ∞. Therefore,

Bn = oP (1), as m → ∞. ��

Lemma 3 Suppose that (6) holds, that the sample sizes satisfy (2), and that k/m → 0,
as m → ∞. Then (1/n)

∑
j,r |	 j,r | a.s.→ 0, as m → ∞.

Proof To stress the dependence onω ∈ �wewrite	 j,r (ω). By the strong law of large
numbers (SLLN) and the fact that the intersection of a countable collection of sets of
probability one has probability one, there is a measurable subset �0 of � such that
P(�0) = 1, and for each ω ∈ �0 we have a j = a j (ω) = (1/n j )

∑n j
r=1 |	 j,r (ω)| →

0, as m → ∞, 1 ≤ j ≤ k. Using (16) we get that

1

n

∑

j,r

|	 j,r | = 1

n

∑

j

n j a j = 1

c̄

1

k

k∑

j=1

c ja j ≤ C0

c0

1

k

k∑

j=1

a j ,

and the result follows. ��
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8.2 Proof of main results

Proof of Proposition 1 We have that Tn,β = ∫
Z2
n(t)wβ(t)dt , with Zn(t) = Z1,n and

Zk,n is as defined in (7). By Taylor expansion we can write

cos(tY j ) = cos(t X j ) − t sin(t X̃ j )	 j ,

sin(tY j ) = sin(t X j ) + t cos(t X̆ j )	 j ,

where	 j = X j (1/S−1)− X/S, X̃ j and X̆ j both lie between Y j and X j , 1 ≤ j ≤ n.
Thus, Zn(t) = Zn,1(t) + Zn,2(t) + 2tZn,3(t), t ∈ R, with

Zn,1(t) = 1

n

n∑

j=1

{cos(t X j ) − ϕ0(t)},

Zn,2(t) = 1

n

n∑

j=1

sin(t X j ),

Zn,3(t) = 1

2n

n∑

j=1

{cos(t X̃ j ) − sin(t X̆ j )}	 j .

Let Tn,i,β = n
∫
Z2
n,i (t)wβ(t)dt , 1 ≤ i ≤ 3. Since nTn,β converges in law to its limit

distribution, from Lemma 1.4.A and Theorem 1.4.A in Serfling (2009), a sufficient
condition for the convergence of the two first moments of nTn,β to those of the limit
distribution is that E{(nTn,β)r } < ∞, ∀n, for some r > 2. With this aim, we will see
that E{|nTn,i,β |3} = E{(nTn,i,β)3} < ∞, 1 ≤ i ≤ 3.

Notice that Zn,1(t) is the average of independent elements with zero mean and
hence, routine calculations show that E{(nTn,1,β)3} < ∞. The same argument can be
used to see that E{(nTn,2,β)3} < ∞. Finally, since

|Zn,3(t)| ≤
⎛

⎝1

n

n∑

j=1

�2
j

⎞

⎠

1/2

=
{
(S − 1)2 + X

2
}1/2 ≤ |S − 1| + |X |,

to show that E{(nTn,3,β)3} < ∞, it suffices to see that E[{√n(Sn − 1)}6] < ∞ and
that E{(√n X̄)6} < ∞. As

√
n X̄ ∼ N (0, 1), it follows that E{(√n X̄)6} = 15 < ∞.

On the other hand,
√
nSn has a chi-distribution with n − 1 degrees of freedom (see

Chap. 18 of Johnson et al. (1994)). Deutler (1984) has calculated the first six cumulants
of the chi-distribution. Using the results in Deutler (1984) it can be easily seen that
E[{√n(Sn − 1)}6] < ∞. The proof is concluded. �

Proof of Theorem 1 By Taylor expansion we can write

cos(tY j,r ) = cos(t X j,r ) − t sin(t X j,r )	 j,r − 0.5t2 sin(t X̃ j,r )	
2
j,r ,

sin(tY j,r ) = sin(t X j,r ) + t cos(t X j,r )	 j,r − 0.5t2 cos(t X̆ j,r )	
2
j,r ,
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where X̃ j,r and X̆ j,r both lie between Y j,r and X j,r . Thus,

√
nZk,n(t) = 1√

n

∑

j,r

{
cos(t X j,r ) + sin(t X j,r ) − ϕ0(t) − t sin(t X j,r )	 j,r

+t cos(t X j,r )	 j,r
} + r1(t),

where |r1(t)| ≤ t2(1/
√
n)
∑

j,r 	2
j,r . Since

∫
t2w(t)dt < ∞, from Lemma 2 (a), it

follows that ‖r1‖w = oP (1), as m → ∞.
We have that

−t
1√
n

∑

j,r

sin(t X j,r )	 j,r = r2(t) − r3(t) − r4(t) + r5(t),

where r2 is the process in Lemma 2 (b.1), r3 is the process in Lemma 2 (b.4), r4 is the
process in Lemma 2 (b.6), and

r5(t) = t2ϕ0(t)0.5
1√
n

∑

j,r

(X2
j,r − 1).

We also have that

t
1√
n

∑

j,r

cos(t X j,r )	 j,r = −r6(t) − r7(t) + r8(t) + r9(t),

where r6 is the process in Lemma 2 (b.2), r7 is the process in Lemma 2 (b.3), r8 is the
process in Lemma 2 (b.5), and

r9(t) = −tϕ0(t)
1√
n

∑

j,r

X j,r .

Summarizing,

√
nZk,n(t) = Wk,n(t) + r10(t), t ∈ R,

with ‖r10‖w = oP (1), as m → ∞, and

Wk,n(t)

= 1√
n

∑

j,r

{

cos(t X j,r ) + sin(t X j,r ) − ϕ0(t) + 1

2
t2ϕ0(t)(X

2
j,r − 1) − tϕ0(t)X j,r

}

, t ∈ R.

Notice that {cos(t X j,r )+ sin(t X j,r )−ϕ0(t)+ 1
2 t

2ϕ0(t)(X2
j,r − 1)− tϕ0(t)X j,r , t ∈

R, 1 ≤ r ≤ n j , 1 ≤ j ≤ k} are n iid random elements taking values in L2
w with

covariance kernel C(t, s) in (8). By the central limit theorem in Hilbert spaces (see
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Theorem 2.7 in Bosq 2000), Wk,n
D→ Z in L2

w, as m → ∞. Finally, the assertion
follows by applying the continuous mapping theorem. ��

Proof of Theorem 2 By Taylor expansion, proceeding as in the proof of Proposition 1,
we can write

Zk,n(t) = 1

n

∑

j,r

{
cos(t X j,r ) + sin(t X j,r ) − ϕ0(t)

} + r1n(t),

where Zk,n is as defined in (7) and |r1n(t)| ≤ t 1n
∑

j,r |	 j,r |. Since
∫
t2w(t)dt = 1,

from Lemma 3, one gets that ‖r1n‖w
a.s.→ 0.

Let R0k(t) = �ϕ0k(t) and Wn,1(t) = 1
n

∑
j,r

{
cos(t X j,r ) − R0k(t)

}
. The reason-

ing in the proof of Lemma 3 can be used to prove (using now the SLLN in Hilbert
spaces, see Theorem 2.4 in Bosq (2000)) that Wn,1

a.s.→ 0 in L2
w. Analogously, it can

be seen that Wn,2
a.s.→ 0 in L2

w, with Wn,2(t) = 1
n

∑
j,r

{
sin(t X j,r ) − I0k(t)

}
and

I0k(t) = 	ϕ0k(t).
Summarizing,

Zk,n(t) = R0k(t) + I0k(t) − ϕ0(t) + r2n(t), t ∈ R,

with ‖r2n‖w
a.s.→ 0. Recalling that Tk,n = ‖Zk,n‖2w and noticing that ‖R0k + I0k −

ϕ0‖w = ‖ϕ0k − ϕ0‖w < ∞, we get that

∣
∣
∣Tk,n − ‖ϕ0k − ϕ0‖2w

∣
∣
∣ =

∣
∣
∣‖r2n‖2w + 2〈R0k + I0k − ϕ0, r2n〉w

∣
∣
∣

≤ ‖r2n‖2w + 2‖r2n‖w‖ϕ0k − ϕ0‖w
a.s.→ 0,

which proves the result. ��

Proof of Theorem 3 We have that

power := P(Tk0,n0 ≥ tk0,n0,α) = �0 + �1 + · · · + �k0 ,

where

� j = 1
( k
k0

)
∑

i∈I j

a(i),

I0 = {i = (i1, . . . , ik0) : r < i1 < · · · < ik0 ≤ k}, I j = {i = (i1, . . . , ik0) : 1 ≤ i1 <

· · · < i j ≤ r < ir+1 < · · · < ik0 ≤ k}, 1 ≤ j ≤ k0, and a(i) is as defined in (15). If,
for some j , I j is empty, then we define � j = 0.
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Suppose that I j is not empty. Let i ∈ I j , n0 = ni1 + · · · + nik0 , fi =
(1/n0)

∑ j
v=1 niv ,

ϕ̃i = 1

n0

j∑

v=1

nivϕiv + (1 − fi)ϕ0, ϕi = 1

n0 fi

j∑

v=1

nivϕiv .

Then, ϕ̃i − ϕ0 = fi(ϕi − ϕ0), and thus, if the sample sizes satisfy (2) and ϕ1, . . . , ϕr
satisfy (12), we obtain

j

k0
M1 ≤ ‖ϕ̃i − ϕ0‖w ≤ j

k0
M2, ∀i ∈ I j , 1 ≤ j ≤ min{r , k0},

where M1 and M2 are two positive constants (depending on τ , c0 and C0).
Let 0 < p0 < p. We have that

power =
∑

u: u≤p0k0

�u +
∑

u: u>p0k0

�u := �≤p0 + �>p0 .

Let H ∼ H(k, r , k0), where H(k, r , k0) stands for a hypergeometric distribution:
from a population with k units, r of type A and k − r of type B, a sample without
replacement of size k0 is selected, H is the number of units type A in the sample. Let
I(p0) = {i ∈ Iu, u > p0k0} and Np0 = card{I(p0)}. We can write

�>p0 =
∑

u: u>p0k0

P(H = u) + 1
( k
k0

)
∑

i∈I(p0)
(a(i) − 1) := W1 + W2.

We can write W1 = 1− P(H ≤ k0 p0). Since (see Hoeffding 1963) P(H ≤ k0 p0) ≤
exp{−2(p − p0)2k0}, it follows that W1 converges to 1, as m → ∞. On the other
hand, from Corollary 1, for each i ∈ Iu , with u > p0k0, we have that a(i) → 1 and
thus

ā = 1

Np0

∑

i∈I(p0)
a(i) → 1.

Since W2 = (ā − 1)Np0/
( k
k0

)
and 0 ≤ Np0/

( k
k0

) ≤ 1, it follows that W2 → 0.
Therefore, power → 1. ��
Proof of Theorem 4 T0,k is a sum of independent zero-mean random variables. Thus,
it suffices to see that Lindeberg condition below is met,

h(ε) =
∑k

i=1 E0

{
(Ti − μ0,ni )

21[(Ti − μ0,ni )
2 > ε

∑k
i=1 τ 20,ni ]

}

∑k
i=1 τ 20,ni

→ 0, ∀ε > 0, as k → ∞,
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where 1(·) stands for the indicator function. From Proposition 1 it follows that∑k
i=1 τ 20,ni ≥ kτ0, ∀k, for some τ0 > 0. As a consequence, we have that,

0 < h(ε) ≤ H(ε) = 1

kτ0

k∑

i=1

μ(ni , k, ε),

with μ(ni , k, ε) = E0
{
(Ti − μ0,ni )

21[(Ti − μ0,ni )
2 > ετ0k]

}
. From Proposition 1,

it also follows that lim
k→∞ sup

n
μ(n, k, ε) = 0. This fact implies that H(ε) → 0 as

k → ∞, and thus the result is proven. ��
Proof of Theorem 5 We first prove that

Tr ,k =
∑k

i=1(Ti − μni )√∑k
i=1 τ 2ni

D→ Z ∼ N (0, 1), as k → ∞, (17)

where

μni =
{
ni	Xi ,ni if 1 ≤ i ≤ r ,
μ0,ni if r + 1 ≤ i ≤ k,

τ 2ni =
{
niτ 2Xi ,ni

if 1 ≤ i ≤ r ,
τ 20,ni if r + 1 ≤ i ≤ k.

With this aim, we prove that the Lindeberg condition below is met,

h(ε) =
∑k

i=1 E
{
(Ti − μni )

21[(Ti − μni )
2 > ε

∑k
i=1 τ2ni ]

}

∑k
i=1 τ2ni

→ 0, ∀ε > 0, as k → ∞.

We can write h(ε) = h1(ε) + h2(ε), with

h1(ε) =
∑r

i=1 E
{
(Ti − μni )

21[(Ti − μni )
2 > ε

∑k
i=1 τ 2ni ]

}

∑k
i=1 τ 2ni

,

and h2(ε) = h(ε) − h1(ε).
From Proposition 1 and Assumption 1(b), there exists 0 < ς1 ≤ ς2 < ∞ such that

ς1 ≤ min{inf
n

τ 20,n, infi
τ 2Xi ,ni } ≤ max{sup

n
τ 20,n, sup

i
τ 2Xi ,ni } ≤ ς2. (18)

As a consequence,
∑k

i=1 τ 2ni ≥ kς1. Now proceeding as in the proof of Theorem 4,
we have that h2(ε) → 0, ∀ε > 0.

Taking into account that the sample sizes satisfy (2), we can write

k∑

i=1

τ 2ni ≥
r∑

i=1

τ 2ni =
r∑

i=1

niτ
2
Xi ,ni ≥ mrc0ς1,
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and hence

h1(ε) ≤ H1(ε) =
∑r

i=1 E
{(√

ni (Ti − 	Xi ,ni )
)21[(√ni (Ti − 	Xi ,ni )

)2
> εrς1c0/C0]

}

mrc0ς1,

Because r/k → p ∈ (0, 1], as k → ∞, it implies that r → ∞ as k → ∞. From
Assumption 1(a), if follows that

lim
r→∞ E

{(√
ni (Ti − 	Xi ,ni )

)21[(√ni (Ti − 	Xi ,ni )
)2

> εrς1c0/C0]
}

= 0, 1 ≤ i ≤ r .

As a consequence, we have that h1(ε) → 0, as k → ∞, ∀ε > 0. Therefore, (17) has
been proven.

Now we can study the power. We have that

power = P(T0,k ≥ z1−α) = P

⎛

⎝Tr ,k ≥ z1−α

√∑k
i=1 τ20,ni

√∑k
i=1 τ2ni

−
∑r

i=1(ni	Xi ,ni − μ0,ni )√∑k
i=1 τ2ni

⎞

⎠ .

From (17), we can write

power ≈ �

⎛

⎝

∑r
i=1(ni	Xi ,ni − μ0,ni )√∑k

i=1 τ 2ni

− z1−α

√∑k
i=1 τ 20,ni

√∑k
i=1 τ 2ni

⎞

⎠ .

From (18) and using that the sample sizes satisfy (2), we can write

1

r

k∑

i=1

τ 2ni = 1

r

r∑

i=1

niτ
2
Xi ,ni + 1

r

k∑

i=r+1

τ 20,ni ≤ C0mς2
k

r
.

Let ε > 0 be such that p − ε > 0. Since r/k → p, as k → ∞, we have that
p − ε ≤ r/k, ∀k ≥ k(ε), for some large enough k(ε). Thus, ∀k ≥ k(ε),

1

r

k∑

i=1

τ 2ni ≤ C0mς2/(p − ε),

and hence, using Assumption 1(c), we have that

∑r
i=1(ni	Xi ,ni − μ0,ni )√∑k

i=1 τ 2ni

≥ √
r

ηc0
√
m√

C0ς2/(p − ε)
, (19)
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∀k ≥ k(ε). On the other hand, from (18),

∑k
i=1 τ 20,ni

∑k
i=1 τ 2ni

=
∑k

i=1 τ 20,ni
∑r

i=1 niτ
2
Xi ,ni

+ ∑k
i=r+1 τ 20,ni

≤ ς2

ς1
< ∞. (20)

From (19) and (20),

∑r
i=1(ni	Xi ,ni − μ0,ni )√∑k

i=1 τ 2ni

− z1−α

√∑k
i=1 τ 20,ni

√∑k
i=1 τ 2ni

≥ √
r

ηc0
√
m√

C0ς2/(p − ε)
− ς2

ς1
|z1−α|,

∀k ≥ k(ε), and the right-hand side of the above inequality goes to ∞ as k → ∞,
implying that power→ 1, as k → ∞. ��

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00362-022-01384-y.
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