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Abstract
We propose three new estimators of the Weibull distribution parameters which lead
to three new plug-in estimators of quantiles. One of them is a modification of the
maximum likelihood estimator and two of them are based on nonparametric estima-
tors of the Gini coefficient. We also make some review of estimators of the Weibull
distribution parameters and quantiles. We compare the small sample performance (in
terms of bias and mean squared error) of the known and new estimators and extreme
quantiles. Based on simulations, we obtain, among others, that the proposed modifi-
cation of the maximum likelihood estimator of the shape parameter has a smaller bias
and mean squared error than the maximum likelihood estimator, and is better or as
good as known estimators when the sample size is not very small. Moreover, one of the
proposed estimator, based on the nonparametric estimator of the Gini coefficient, leads
to good extreme quantiles estimates (better than the maximum likelihood estimator)
in the case of small sample sizes.
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2 A. Jokiel-Rokita, S. Pia̧tek

1 Introduction

TheWeibull distribution appears in many fields of science such as reliability (Almeida
1999; Fok et al. 2001; Queeshi and Sheikh 1997), survival analysis (Carroll 2003),
hydrology (Heo et al. 2001), social sciences (Roed and Zhang 2002), wind energy
industry (Kang et al. 2018), actuarial science (Bolancé and Guillen 2021), financial
mathematics (Chen and Gerlach 2013; Gebizlioglu et al. 2011). In the last one, it may
be used to describe the distribution of the return rates of certain investments.

This paper is concerned with estimation of the parameters and quantiles of the
Weibull distribution on the basis of complete data. Let X1, X2, . . . , Xn be indepen-
dent identically distributed (i.i.d.) random variables from the two-parameter Weibull
distribution with the probability density function defined by

f (x) = β

σ

( x

σ

)β−1
exp

[
−

( x

σ

)β ]
, x ≥ 0, β > 0, σ > 0.

We propose three estimators of the shape parameter β of the Weibull distribution
defined above, when the scale parameter σ is unknown. One of them is based on
a modification of the equation from which the maximum likelihood estimator of the
shape parameter is determined. The other two estimators are obtained on the basis of
the non-parametric estimators of the Gini coefficient. The estimators proposed lead
to new estimators of the scale parameter and new plug-in estimators of quantiles.
The main purpose of this paper is to compare the performance of these estimators
of the Weibull distribution parameters and plug-in estimators of Weibull distribution
quantiles with those recommended in the literature. We use the bias and the mean
squared error as criteria for comparison.

The paper is organized as follows. In Sect. 2 we present a review of known estima-
tors of the Weibull distribution parameters and papers in which their accuracy were
compared. In Sect. 3 we propose new estimators of the shape parameters of theWeibull
distribution which lead to new estimators of the scale parameter and plug-in estimators
of quantiles. Some comments on plug-in estimators of quantiles of the Weibull distri-
bution are provided in Sect. 4. The estimators of the parameters and quantiles of the
Weibull distribution are compared in the simulation study, and results of this study are
presented in Sect. 5. Section 6 includes a real data analysis. Some concluding remarks
are presented in Sect. 7.

2 A review of estimators in two-parameterWeibull distributionmodel

In the literature, over a dozen methods have been applied to estimation of the Weibull
distribution parameters. These methods include: the method of moments (MM) (Cran
1988), the modified MM (Cohen and Whitten 1982), the method of probability
weighted moments (Greenwood et al. 1979; Singh et al. 1990), the maximum like-
lihood estimation (ML) (Cohen 1965; Balakrishnan and Kateri 2008), the weighted
maximum likelihood estimation (Jacquelin 1993), a few modifications of the ML
estimation (Cohen and Whitten 1982), specially the Tiku’s modified ML (TMML)
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Estimation of parameters and quantiles of the Weibull distribution 3

estimator (Gebizlioglu et al. 2011), method based on L-moments (LM) (Teimouri
et al. 2013), the logarithmic moments (Johnson et al. 1994), the method of entropy
(Singh 1987), the least squares (LS) (Bain and Antle 1967; Swain et al. 1988), the
weighted least squares (WLS) (Hung 2001; Lu et al. 2004; Swain et al. 1988; Van
Zyl and Schall 2012; Zhang et al. 2008; Kantar 2015), the generalized least squares
(Engeman and Keefe 1982; Kantar 2015), the percentiles method (Hassanein 1971;
Seki and Yokoyama 1993), a method based on U -statistics (U) (Sadani et al. 2019),
the median rank regression method (Genschel and Meeker 2010; George 2014), the
method based on second-kind statistics (log-cumulant estimator) (Sun and Han 2010),
the generalized spacing method (GS) (Ghosh and Jammalamadaka 2001; Gebizlioglu
et al. 2011). In parentheses, we gave abbreviations of estimators, which we will con-
sider in the simulation study.

Closed form expressions of estimators are only given for L-moments estimators,
estimators of logarithmic moment method, percentile estimators, Tiku’s modified ML
estimators, and the estimators based on U -statistics.

Comparisons of various estimators of the Weibull distribution parameters have
been performed in the following papers (in chronological order): Gross and Lurie
(1977), Gibbons and Vance (1981), Al-Baidhani and Sinclair (1987), Singh et al.
(1990), Wu et al. (2006), Genschel and Meeker (2010), Gebizlioglu et al. (2011),
Teimouri et al. (2013), Akram and Hayat (2014), George (2014), Pobocikova and
Sedliackova (2014), Kantar (2015), and Sadani et al. (2019). However, the conclusions
of these comparisons differ. For example, Al-Baidhani and Sinclair (1987) compared
the generalised least squares, maximum likelihood, two estimators proposed in Bain
and Antle (1967), and two mixed methods of estimating the parameters of the two-
parameter Weibull distribution. The comparison was made using the observed relative
efficiency of parameter estimates to summarize the results of 1000 simulated samples
of sizes 10 and 25. The results were that: generalised least squares is the best method
of estimating the shape parameter, the best method of estimating the scale parameter
depends on the size of the shape parameter. Gebizlioglu et al. (2011) compared nine
estimators and recommended ML estimator and TMML as the best for estimating
both parameters. Teimouri et al. (2013) proposed LM and compared it with four other
methods. They concluded that LM and ML estimators had the best performance.
Pobocikova and Sedliackova (2014) generally recommended ML estimators, but for
small samples (n = 10 or n = 20) suggested using WLS estimators. Wu et al.
(2006) comparedML estimators with methods based on linear regression, considering
different approximations to obtain them. They noticed that ML and MM estimators
have tendency to overestimate rather than underestimate the parameters. Furthermore
they showed that certain approximations are better than others in methods based on
linear regression.

To the best of our knowledge, comparisons of various estimators of the Weibull
distribution quantiles of order p have been performed only in the following papers:
(Gibbons and Vance 1981) (n = 10, n = 25 and p = 0.1, p = 0.9), Al-Baidhani
and Sinclair (1987) (n = 10, n = 25), Singh et al. (1990) (n ∈ {10, 50, 100, 1000},
p ∈ {0.9, 0.99, 0.999}). Gibbons and Vance (1981) concluded that for estimating
quantile of order .9, the best are theMLestimator and the best linear invariant estimator,
followed by the best linear unbiased estimator. The results of their simulations suggest
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4 A. Jokiel-Rokita, S. Pia̧tek

that estimator proposed by Bain and Antle (1967) and Gumbel (1958) are the best for
estimating the quantile of order. 1. Al-Baidhani and Sinclair (1987) showed that ML
estimator outperforms the least squares estimator and the generalised least squares
estimator of quantiles of order 0.95 and 0.99.

3 New estimators of the shape parameter

3.1 Modifiedmaximum likelihood estimators

Let x1, . . . , xn be the realizations of i.i.d. random variables X1, . . . , Xn from the
Weibull distribution with the scale parameter σ and the shape parameter β, and denote
by L the likelihood function. The likelihood equations are

∂ ln L

∂σ
= −nβ

σ
+ β

σβ+1

n∑
i=1

xβ
i = 0, (1)

∂ ln L

∂β
= n

β
− n ln σ +

n∑
i=1

ln xi + ln σ

σβ

n∑
i=1

xβ
i − 1

σβ

n∑
i=1

xβ
i ln xi = 0. (2)

From Eq. (1) we have a closed-form expression for the ML estimator of σ, namely

σ̂ML =
(1
n

n∑
i=1

x β̂ML
i

)1/β̂ML
, (3)

where the ML estimator β̂ML of the parameter β is a solution to the equation

n∑
i=1

xβ
i + 1

n

[ n∑
i=1

ln(xβ
i )

] n∑
i=1

xβ
i −

n∑
i=1

xβ
i ln(xβ

i ) = 0. (4)

Lemat 1 The equation (4) is not an unbiased estimating equation, i.e.,

Eσ,β

{ n∑
i=1

Xβ
i + 1

n

[ n∑
i=1

ln(Xβ
i )

] n∑
i=1

Xβ
i −

n∑
i=1

Xβ
i ln(Xβ

i )
}

�= 0. (5)

Proof Let us denote Yi = Xβ
i . Then the left side of (5) is equal to

Eσ,β

[ n∑
i=1

Yi + 1

n

( n∑
i=1

ln Yi
) n∑

i=1

Yi −
n∑

i=1

Yi ln Yi
]
. (6)

Using the fact that if X has theWeibull distribution with the shape parameter β and the
scale parameterσ then Xβ has the exponential distributionwith the scale parameterσβ,
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Estimation of parameters and quantiles of the Weibull distribution 5

we have that

Eσ,β(Yi ) = σβ, (7)

Eσ,β(ln Yi ) = ψ(1) − ln(σβ) (8)

and

Eσ,β(Yi ln Yi ) = σβ [ψ(1) + 1 − ln(σβ)], (9)

i = 1, . . . , n, where ψ is the digamma function. Thus, expression (6) is equal to

n∑
i=1

Eσ,β(Yi ) + 1

n

n∑
i=1

Eσ,β(Yi ln Yi ) + 1

n

∑
i �= j

Eσ,β(Yi ln Y j ) −
n∑

i=1

Eσ,β(Yi ln Yi ) = σβ.

��
From the proof of Lemma 1, it can be easily seen that the following equation

n − 1

n

n∑
i=1

xβ
i + 1

n

[ n∑
i=1

ln(xβ
i )

] n∑
i=1

xβ
i −

n∑
i=1

xβ
i ln(xβ

i ) = 0 (10)

is an unbiased estimating equation for the parameter β.

Theorem 1 The solution to equation (10) exists and is unique.

Proof The existence and uniqueness of the solution to equation (10) can be proved
analogously to the existence and uniqueness of theMLestimator given inBalakrishnan
and Kateri (2008). ��

We take the unique solution to equation (10) as the modified maximum likelihood
(MML) estimator β̂MML of the shape parameter β. As the MML estimate of the
parameter σ we take

σ̂MML =
(1
n

n∑
i=1

x β̂MML
i

)1/β̂MML
. (11)

Theorem 2 With probability 1, β̂MML < β̂ML , and σ̂MML < σ̂ML .

Proof Equation (4) can be expressed alternatively as

1 =
∑n

i=1 x
β
i ln(xβ

i )
∑n

i=1 x
β
i

− 1

n

n∑
i=1

ln(xβ
i ) =: Hx(β), (12)

and equation (10) as

n − 1

n
= Hx(β). (13)

123



6 A. Jokiel-Rokita, S. Pia̧tek

It can be shown that for each x = (x1, . . . , xn), the function Hx(β) of the argument
β increases from 0 to infinity. Hence β̂MML < β̂ML with probability 1. The second
part of the theorem follows from the form of σ̂ML , σ̂MML , the relation between β̂ML

and β̂MML , and the power mean inequality. ��

Remark 1 It can be easily shown that β̂MML(X1, . . . , Xn) = β̂MML(cX1, . . . , cXn),

and σ̂MML(cX1, . . . , cXn) = cσ̂MML(X1, . . . , Xn), for an arbitrary c > 0.

Remark 2 In Cohen and Whitten (1982) five modifications of the ML estimator of the
three-dimensional Weibull distribution parameter are considered. They were obtained
by replacing one of the likelihood equations (the one derived by differentiating the
likelihood function with respect to the location parameter) with alternate functional
relationships. Two of these modifications, under the assumption that the location
parameter equals zero, are considered in Gebizlioglu et al. (2011) in the case of the
two-parameter Weibull distribution. In Gebizlioglu et al. (2011) the TMML estimator
is also considered which is based on linearizing the likelihood equations around the
first two terms of the Taylor series. The proposed MML estimator is constructed by
a slight modification of the equation used to determine the ML estimate of the shape
parameter and differs from the modifications of the ML estimator considered in the
literature.

3.2 Estimators based on the Gini index

Both equations (4) and (10) can only be solved numerically. Motivated by the need
to determine an appropriate starting point for finding solutions to these equations,
we look for a simple estimate of the shape parameter β. We took into account the
fact that the Lorenz curve (see for example Sarabia 2008), and consequently the Gini
index G, does not depend on the scale parameter (here σ ). For theWeibull distribution
G = 1 − 2−1/β , so

β = [− log2(1 − G)]−1. (14)

One of the nonparametric estimators of G is

Ĝ = 1

n2 X̄

n∑
i=1

(2i − n − 1)Xi :n,

where Xi :n is the i-th order statistic of the sample (X1, . . . , Xn). The estimator Ĝ is
biased and in Davidson (2007) an approximated expression for bias of Ĝ is given.
Based on the result in Davidson (2007), in Mirzaei et al. (2017) the following bias-
corrected estimator of G is proposed

G̃ = n

n − 1
Ĝ.
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Estimation of parameters and quantiles of the Weibull distribution 7

The estimator G̃ is not unbiased, but its bias is of order 1
n . We consider the following

two simple estimators of the parameter β

β̂Ĝ = [− log2(1 − Ĝ)]−1 and β̂G̃ = [− log2(1 − G̃)]−1.

As the estimates of the parameter σ we take

σ̂Ĝ =
(
1

n

n∑
i=1

x
β̂Ĝ
i

)1/β̂Ĝ

and σ̂G̃ =
(
1

n

n∑
i=1

x
β̂G̃
i

)1/β̂G̃

.

It can be easily shown that β̂Ĝ > β̂G̃ with probability 1, and based on the power
mean inequality, it implies that σ̂Ĝ > σ̂G̃ with probability 1.

Fact 1 The estimator β̂G̃ has the same form as the L-moment estimator β̂LM proposed
by Teimouri et al. (2013).

Proof The estimator β̂LM of the parameter β, proposed by Teimouri et al. (2013), is
of the form

β̂LM = − log 2

log(1 − m0
2/m

0
1)

,

where

m0
1 = X̄ and m0

2 = 2

n(n − 1)

n∑
i=1

(i − 1)Xi :n − X̄ . (15)

Hence,

β̂LM = − 1

log2(1 − m0
2/m

0
1)

=
⎡
⎣− log2

⎛
⎝1 − 1

n(n − 1)X̄

n∑
i=1

(2i − 2)Xi :n − X̄

⎞
⎠

⎤
⎦

−1

=
⎡
⎣− log2

⎛
⎝1 − 1

n(n − 1)X̄

n∑
i=1

(2i − 2)Xi :n − 1

n(n − 1)X̄

n∑
i=1

(n − 1)Xi :n

⎞
⎠

⎤
⎦

−1

=
⎡
⎣− log2

⎛
⎝1 − 1

n(n − 1X̄

n∑
i=1

(2i − n − 1)Xi :n

⎞
⎠

⎤
⎦

−1

= [− log2(1 − G̃)]−1 = β̂G̃ .

��
Remark 3 Although β̂LM = β̂G̃ , the estimator of the parameter σ proposed by
Teimouri et al. (2013) is not of the same form as σ̂G̃ .
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8 A. Jokiel-Rokita, S. Pia̧tek

4 Estimators of quantiles of theWeibull distribution

Another issue we investigated is the estimation of the extreme quantiles of theWeibull
distribution. We decided to investigate the extreme quantiles, as they are widely used
for durability tests (Gibbons and Vance 1981), in hydrology (Smith 1987), and in
financial mathematics, specifically for estimating risk measures (Gebizlioglu et al.
2011; Alemany et al. 2013).

The quantile of order p of the Weibull distribution is given by

Q(p) = σ [− ln(1 − p)]1/β,

where p ∈ (0, 1). The plug-in estimators Q̂ of the quantiles can be obtained substi-
tuting the unknown parameters by their estimators. For example, the MML estimator
of the quantile of order p is

Q̂MML(p) = σ̂MML [− ln(1 − p)]1/β̂MML =
[

− 1

n
ln(1 − p)

n∑
i=1

x β̂MML
i

]1/β̂MML
.

In the simulation study, presented in Sect. 5, we compare various plug-in estimators
of quantiles obtained by using estimators of parameters which are recommended in
the literature and those proposed in Sect. 3.

5 Simulation study

To investigate the performance of the new proposed estimators of theWeibull distribu-
tion parameters and quantiles relative to the estimators recommended in the literature
we conducted a simulation study. The measures that we use to compare the estimators
are the mean squared error (MSE) and bias. We performed the simulations using the
R programming language.

5.1 Simulation design

For 26 values of shape parameter varying between 0.5 and 3 and 20 sample sizes
varying between 10 and 200, we simulated 2000 samples from Weibull distribution.
Without loss of generality we set scale parameter equal to 1. For each sample we
calculated the values of the following parameter estimators recommended in the lit-
erature: MM, ML, WLS, LM TMML, GS, LS, U and the new estimators proposed:
MML, G1, G2. Then we used the estimates of the parameters to compute the plug-in
estimates of quantiles of order .9, .95, .99 and .999.

Most of the estimators considered require numeric computation. To execute them
we used functions uniroot from library rootSolve and optim from library stats in R
package. Some of the estimators considered, namelyMM,ML, GS, LM and U estima-
tors, are implemented in the ForestFit (Teimouri et al. 2020) library in R. Determining
the values of some estimators considered in the literature may be problematic due to
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Fig. 1 Empirical MSE’s ratios of selected estimators of β to ML estimator and empirical biases of the
estimators of β for different values of β and σ = 1, for n = 10 (on the left), n = 50 (in the middle),
n = 200 (on the right)

the lack of roots or having many roots, resulting in nonconvergence or convergence
to incorrect values. This issue was discussed in Kantar and Şenoğlu (2008) (in the
case of estimating the location and scale parameters with known shape parameter
of the Weibull distribution) and Gebizlioglu et al. (2011). For example the equation
used to determine the MML2 estimator of the shape parameter (proposed in Cohen
and Whitten (1982), considered in Gebizlioglu et al. (2011) but not considered in this
paper) often has no solution when the sample size and shape parameter are small. The
estimators given by explicit formulas (i.e. G1, G2, TMML) and those whose existence
and uniqueness has been theoretically proven (e.g. ML and MML) do not show such
problems. During the simulation study, no problems with computing the values of
other compared estimators (MM, WLS, LM, GS, LS, U) have been encountered.

5.2 Comparison of the estimators of the parameters

In Fig. 1 we present the empirical MSE’s ratios of selected estimators of β with
respect to the ML estimator and empirical biases of the estimators of β for different
values of β and σ = 1. Lines denoted by G1 and G2 correspond to estimators based
on Ĝ and G̃, respectively. The values on the x axis has been customised to present
explicitly the results of several best estimators. Consequently, when a certain estimator
is significantly worse than others only a fragment of its plot is included in the chart
(e.g. the plot corresponding to the LS estimator in the top right chart in Fig. 1) or it
is not included at all (e.g. the plot corresponding to the LS estimator in the top right
chart in Fig. 2).

Figure 2 contains a comparison of the scale parameter estimators analogous to the
one presented in Fig. 1.
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Fig. 2 Empirical MSE’s ratios of selected estimators of σ to ML estimator and empirical biases of the
estimators of σ for different values of β and σ = 1, for n = 10 (on the left), n = 50 (in the middle),
n = 200 (on the right)
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Fig. 3 Comparison of empirical MSE’s of MML estimator and selected estimators of the shape parameter
when σ = 1

Figures 3 and 4 include heatmap plots related to the empirical MSE’s of the shape
and scale parameter estimators, respectively. The closer the color is to blue, the better
the MML estimator is compared to the selected estimator. The closer the color is to
red, the worse the MML estimator is compared to the selected estimator. If the color
is white, the compared estimators have comparable empirical MSE’s.

Our simulations concerning the parameter β show that:
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Fig. 4 Comparison of empirical MSE’s of MML estimator and selected estimators of the scale parameter
when σ = 1

• the MML estimator has the smallest empirical MSE’s for samples of sizes n ≥ 50
(see Fig. 3);

• the MML estimator has the smaller empirical MSE’s than ML estimator for all
cases considered; for n = 10 the ratio of these errors is approximately 3/4 and
increases to 1 as n increases;

• for all considered cases, the empirical bias of theMML estimator is approximately
half that of the ML estimator;

• the G2, LM, TMML, GS estimators have smaller empirical MSE’s than MML
estimator when n = 10 (see Fig. 3);

• the LS estimator has the smallest empirical bias, close to zero (see Fig. 1);
• most of the estimators tend to overestimate the shape parameter,whileGSestimator
underestimates it (see Fig. 1).

5.3 Comparison of the estimators of extreme quantiles

Figure 5 contains a comparison of MSE’s and biases of selected estimators of quantile
q = Q(p) of order p = .99. The values displayed in the plots are the ratios of MSE’s
(on top) (or biases — bottom) of quantile estimator considered and ML estimator of
q. This means, that if the curve corresponding to the estimator, say q̂, is below 1, the
estimator q̂ is better (in terms of MSE) than ML estimator of q.

The results are similar for all four investigated orders (.9, .95, .99 and .999) of
quantiles, hence we only present results for one order p = .99 of quantile. The
conclusions are as follows:

• when n ≥ 50 and β ≥ 1.5ML,MML and TMML estimators have almost identical
values of MSE’s (see Figs. 5, 6);
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Fig. 5 Empirical MSE’s ratios and empirical biases ratios of quantiles of order .99 estimators to ML
estimator for different values of β and σ = 1, for n = 10 (on the left), n = 50 (in the middle), n = 200
(on the right)
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Fig. 6 Comparison of empirical MSE’s of the MML estimator and selected estimators of the quantile of
order .99 when σ = 1

• when β > 0.8 MML estimator has much smaller, and TMML estimator has much
larger bias than ML estimator (see Fig. 5);

• for small sample sizes (n = 10 and n = 20) the G1 estimator has the smallest
MSE (see Figs. 5, 6);

• the LM,G2, U estimators and for larger sample sizes theWLSE havemuch smaller
bias thanML,MMLandTMMLestimators, although they have significantly larger
MSE’s (see Fig. 5);
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Table 1 The average CPU times
(in miliseconds) per sample for
selected sample sizes and
estimators when β = 2

10 20 50 100 200

MM 0.258 0.252 0.250 0.223 0.260

ML 0.477 0.772 1.374 2.596 4.686

LS 3.670 4.141 4.735 5.665 7.901

WLS 3.841 4.105 4.953 5.899 8.386

G1 0.175 0.159 0.189 0.228 0.253

G2 0.157 0.153 0.174 0.214 0.281

GS 2.384 2.914 4.246 6.142 10.499

MML 0.398 0.578 1.093 2.001 3.828

LM 0.166 0.144 0.147 0.174 0.203

TMML 0.179 0.151 0.184 0.208 0.312

U 1.346 2.158 6.447 20.172 76.534

• for all cases considered, the MML estimator has slightly larger MSE’s than ML
estimator;

• for β > 0.75 theMML estimator has much smaller bias (50%) thanML estimator;
• the G2 estimator has the smallest bias when β > 1.5.

5.4 Comparison of the CPU times of the estimators

We consider the central processing unit (CPU) times to compare the computational
complexity of the considered estimators. Some estimators, namely G1, G2, LM, and
TMML, are given by explicit formulas, while others require iterative methods to find
the root of the corresponding equation. For most estimators (except MM, G1, G2, LM,
and TMML), the time required increases significantly with sample size. Table 1 shows
the comparison of average CPU times (in miliseconds) when shape parameter is equal
to 2. Similar results have been achieved with several different values of this parameter.
CPU times of the estimators given by explicit formulas (i.e. G1, G2, TMML) and
the MM estimator are much shorter than those of other estimators, especially when
the sample size is large. The shape and scale estimators based on U-statistic, which
outperform several other estimators in the sense of bias, when the sample size is large
is the slowest one in the experiment and it might be extremely slow (see (Sadani et al.
2019)). In case when two estimators have similar efficiency, the one which requires
less time to be computed may be chosen.

6 Real data analysis

The data, given in Table 2, has been taken from Murthy et al. (2004) (data set 4.1). It
consists of 20 observations of the time till failure. The data is complete, which means
that it has not been censored.

We applied the Anderson-Darling test (implemented in goftest package) to verify
the null hypothesis that the observed times to failure are realizations of the random
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Table 2 Real data consisting of 20 observations of the time till failure

11.24 1.92 12.74 22.48 9.60 11.50 8.86 7.75 5.73 9.37

30.42 9.17 10.20 5.52 5.85 38.14 2.99 16.58 18.92 13.36

Table 3 Estimates of the
parameters and extreme
quantiles

β̂ σ̂ q = .9 q = .99 q = .999

MM 1.42 13.87 24.99 40.77 54.28

ML 1.55 14.12 24.20 37.86 49.19

LS 1.73 12.98 21.02 31.37 39.64

WLS 1.61 13.40 22.48 34.56 44.44

G1 1.58 14.20 24.09 37.38 48.33

G2 1.48 13.93 24.48 39.11 51.45

MML 1.51 14.00 24.36 38.60 50.53

LM 1.48 13.95 24.52 39.18 51.54

TMML 1.57 13.83 23.55 36.67 47.50

U 1.72 14.07 22.87 34.25 43.37

variables from the Weibull distribution. The obtained p value in this test is equal to
0.8257, so we do not reject it on the significance level 0.05.

Table 3 includes the estimates of the shape and scale parameters and quantiles.
The estimated values of the shape parameter β are between 1.42 and 1.73. Accord-

ing to the results of our simulations, the MM and G1 estimators of quantiles are
recommended for such combination of the sample size n = 20 and the shape parame-
ter β. The MM estimator though gives significantly greater values of quantiles, so we
recommend using the G1 estimator of quantiles.

7 Concluding remarks

Weproposed threeWeibull distribution shape parameter estimators,which lead to three
scale parameter estimators and three new quantile estimators of this distribution. One
of the proposed estimators (theMML) is a modification of theML estimator. Based on
the simulations performed, we can conclude that it has both a smaller mean squared
error and a smaller bias in relation to theMLestimator. However, the plug-in estimators
of the Weibull distribution quantiles based on the proposed modification of the ML
estimator of the shape parameter turned out to beworse (due to themean squared error)
compared to the plug-in estimators based onML estimators of the parameters.We also
proposed two estimators of the shape parameter which have closed form expressions.
The main aim of this proposal was to obtain a good starting point for the numerical
computation of the ML and MML estimators. They are based on the nonparametric
estimators of the Gini coefficient, thus we did not expect that they would have smaller
errors than known estimators, in particular the ML estimator. It turned out, however,
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that one of the proposed estimators leads to good extreme quantile estimates (better
than the ML) in the case of small sample sizes.

In general, the plug-in estimator of extreme quantiles based on the ML estimators
of the parameters is the best or as good as other estimators (due to the mean squared
error), except the case of small samples (up to 30), where we recommend G1 andMM
estimators. For parameters estimation we recommend using MML estimator.

The approach presented in this paper can also be applied to censored data. For
example, in case of Type-I censoring, Type-II censoring or progressive Type-II cen-
soring, the ML estimator of the scale parameter σ can be expressed as a function
of the ML estimator of the parameter β (see e.g. Cohen (1965), Balakrishnan and
Kateri (2008)), which is the solution to an equation (depending on the censoring type)
which can only be solved numerically. However, analogously to the case of complete
data, relationship (14) between this parameter and the Gini index can be used. As the
estimator of the Gini index we can take one of the non-parametric estimators of this
index with right censored data considered, for example, in Gigliarano and Muliere
(2013), Lv et al. (2017), Hong et al. (2018), and recently (Kattumannil et al. 2021).
To the best of our knowledge, this approach has not been used to estimate the Weibull
distribution parameters based on censored data. Applying the approach analogous to
that presented in Sect. 3.1, especially in the case of Type-I censored data, seems to be
a more difficult task. This is because it results in having a sum of a random number of
functions of order statistics in an equation for the ML estimator of the parameter β.
Comparison of estimators of the parameters and quantiles of the Weibull distribution
based on censored data, obtained using the methods sketched above with the estima-
tors known from the literature, e.g. Gibbons and Vance (1981), Zhang et al. (2008),
Balakrishnan and Kateri (2008), Genschel and Meeker (2010), Guure and Ibrahim
(2013), Yu and Peng (2013), Jia (2020), Jiang (2022), is an interesting task which we
intend to undertake.
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Kantar YM, Şenoğlu B (2008) A comparative study for the location and scale parameters of the Weibull

distribution with given shape parameter. Comput Geosci 34:1900–1909
Kattumannil SK,Dewan I, SreelaksmiN (2021)Non-parametric estimation ofGini indexwith right censored

observations. Stat Probab Lett 175:109113
Lu H-L, Chen C-H, Wu J-W (2004) A note on weighted least-squares estimation of the shape parameter of

the Weibull distribution. Qual Reliab Eng Int 20(6):579–586
Lv X, Zhang G, Ren G (2017) Gini index estimation for lifetime data. Lifetime Data Anal 23:275–304
Mirzaei S, Mohtashami Borzadaran GR, Dehak M (2017) A comparative study of the Gini coefficient

estimators based on the linearization and U-statistics methods. Revista Colombiana de Estadistica
40:205–221

Murthy D, XieM, Jiang R (2004)Weibull models.Wiley series in probability and statistics.Wiley, Hoboken
Pobocikova I, Sedliackova Z (2014) Comparison of four methods for estimating the Weibull distribution

parameters. Appl Math Sci 8(83):4137–4149
Queeshi FS, SheikhAK (1997) Probabilistic characterization of adhesive wear inmetals. IEEETrans Reliab

46:38–44
Roed K, Zhang T (2002) A note on the Weibull distribution and time aggregation bias. Appl Econ Lett

9:469–472
Sadani S, Abdollahnezhad K, Teimouri M, Ranjbar V (2019). A new estimator for Weibull distribution

parameters: comprehensive comparative study for Weibull distribution. arXiv:1902.05658
Sarabia JM (2008) Parametric Lorenz Curves: models and applications. Springer, New York
Seki T, Yokoyama S (1993) Simple and robust estimation of the Weibull parameters. Microelectron Reliab

33:45–52
Singh VP (1987) On application of the Weibull distribution in hydrology. Water Resour Manag 1:33–43
Singh VP, Cruise JF, Ma M (1990) A comparative evaluation of estimators of the Weibull distribution by

Monte Carlo simulation. J Stat Comput Simul 36(4):229–241
Smith JA (1987) Estimating the upper tail of flood frequency distributions. Water Resour Res 23(8):1657–

1666
SunZ,HanC (2010) Parameter estimation ofWeibull distribution based on second-kind statistics. JCommun

Softw Syst 6(3):109–114
Swain JJ, Venkatraman S, Wilson JR (1988) Least-squares estimation of distribution functions in Johnson’s

translation system. J Stat Comput Simul 29(4):271–297
Teimouri M, Hoseini SM, Nadarajah S (2013) Comparison of estimation methods for the Weibull distribu-

tion. Statistics 47(1):93–109
Teimouri M, Doser JW, Finley AO (2020) Forestfit: an R package for modeling plant size distributions.

Environ Model Softw 131:104668
Van Zyl JM, Schall R (2012) Parameter estimation through weighted least-squares rank regression with

specific reference to the Weibull and Gumbel distributions. Commun Stat Simul Comput 41(9):1654–
1666

Wu D, Zhou J, Li Y (2006) Methods for estimating Weibull parameters for brittle materials. J Mater Sci
41:5630–5638

Yu H-F, Peng C-Y (2013) Estimation for Weibull distribution with Type-II highly censored data. Qual
Technol Quant Manag 10(2):193–202

Zhang L, Xie M, Tang L (2008) Recent advances in reliability and quality in design, chapter on weighted
least squares estimation for the parameters of Weibull distribution. Springer, London, pp 57–84

123

http://arxiv.org/abs/1902.05658


18 A. Jokiel-Rokita, S. Pia̧tek

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Estimation of parameters and quantiles of the Weibull distribution
	Abstract
	1 Introduction
	2 A review of estimators in two-parameter Weibull distribution model
	3 New estimators of the shape parameter
	3.1 Modified maximum likelihood estimators
	3.2 Estimators based on the Gini index

	4 Estimators of quantiles of the Weibull distribution
	5 Simulation study
	5.1 Simulation design
	5.2 Comparison of the estimators of the parameters
	5.3 Comparison of the estimators of extreme quantiles
	5.4 Comparison of the CPU times of the estimators

	6 Real data analysis
	7 Concluding remarks
	Acknowledgements
	References




