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Abstract
The use of historical, i.e., already existing, estimates in current studies is common
in a wide variety of application areas. Nevertheless, despite their routine use, the
uncertainty associated with historical estimates is rarely properly accounted for in
the analysis. In this communication, we review common practices and then provide a
mathematical formulation and a principled frequentist methodology for addressing the
problem of drawing inferences in the presence of historical estimates. Three distinct
variants are investigated in detail; the corresponding limiting distributions are found
and compared. The design of future studies, given historical data, is also explored and
relations with a variety of other well-studied statistical problems discussed.

Keywords Bliss-independence · Double-sampling · Loewner order

1 Introduction

There are many circumstances in which a statistical analysis either requires, or can
greatly benefit, from the use of historical, that is existing, information. In this paper we
focus on the situation where the historical information consists of parameter estimates.
These may be essential for model fitting but impossible, and/or very expensive, to
collect in the context of the current study. Although related, we will not explicitly
discuss the large literature on data combination schemes or other two-stage plug-
in methods. An example of the former is Ridder and Moffitt (2007) comprehensive
review of methodologies for data combination common in econometrics whereas an
example of the latter is Genest et al. (1995) seminal paper on two-step semi-parametric
inference in copula models. These and similar problems have received considerable
attention and have a long history in Statistics, see, e.g., Cochran (1954).
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Historical estimates are used in a variety of applications in the social, physical, and
biomedical sciences. For example, some models for the spread of infectious diseases,
such as the SIR model (Becker 2017) popularized in connection with COVID-19,
e.g., Cooper et al. (2020), require the input of age-specific transmission parameters
which can be estimated from social contact networks (Edmunds et al. 1997; Wallinga
et al. 2006) and then used to fit epidemic models (Mossong et al. 2008; Goeyvaerts
et al. 2010, Yaari et al. 2018). Another interesting application is the optimization
of cancer treatment where Kronik et al. (2010) develop a framework for predicting
the outcome of prostate cancer immunotherapy by fitting personalized mathematical
models. Their model consists of a set of differential equations whose behavior is
governed by a collection of parameters, some of which are global parameters while
others are subject specific. The values of the global parameters were obtained from
at least ten different published studies, see their Table 2, whereas the subject level
parameters were estimated by fitting a model to each participant assuming that the
global parameterswere estimatedwithout error. SeeKogan et al. (2012) andKozłowska
et al. (2018) for similar applications. It is worth noting that the applications above
may be viewed as a model for situations in which knowledge collected in one setting,
experimental or observational, is then used to estimate quantities arising in a different
experiment and is quite common in the biomedical sciences. See Lee and Zelen (1998)
and Davidov and Zelen (2004) for a similar structure arising in the planning of early
detection programs.

Another very important application in which historical estimates are used is clinical
trials. Consider, for example, the situation in which the effect of a combination of
treatments is assessed (e.g., Tamma et al. 2012, Kanda et al. 2016). In such cases there
exists a collection of therapies which have been independently proven to be somewhat
successful at treating a medical condition. The objective of a new study may then be to
assess whether a combination of these therapies provides an even better outcome. In
the simplest case, one may view this problem as a three armed clinical trial comparing
treatments A,B and A+ B in which historical estimates on the efficacy of treatments
A and B already exist. An important example of such situations is the Food and Drug.
Administration (2006) guidelines for submitting applications for approval of fixeddose
combinations, i.e., co-packaged drug products, of previously approved antiretrovirals
for the treatment of HIV. In particular, Attachment A of the aforementioned document
considers the scenario in which a non-innovator, i.e., a generic drug company, wants to
obtain approval for a combination of already approved ingredients. In this case, only
efficacy data for the combination needs to be submitted.Wewill revisit and thoroughly
analyze two forms of this example later on. More broadly, the use of historical data
in the contexts of clinical trials has been investigated by numerous researchers using
multiple perspectives, cf., Pocock (1976), Peto et al. (1976), Neuenschwander et al.
(2010), Viele et al. (2014), and Piantadosi (2017) among many others. As noted by a
referee, a particularly relevant class of designs are platform trials which allow adding
new treatments to the experiment and thus controls may become non-concurrent, cf.
Lee and Wason (2020) and Roig et al. (2022).

The use of historical estimates is also widespread in the social sciences. For exam-
ple, in the fitting of some econometric models researchers may use values estimated
from previously collected survey data. We point to the paper of Newey et al. (2005)
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which focuses on the asymptotic bias of the estimated parameters. The complexity
of using historical estimates in the social sciences is further illustrated by the work
of Tasseva (2019). In a microsimulation study investigating the effect of the recent
expansion in higher education in Great Britain on household inequalities, previously
obtained estimates from the Family Resources Survey for Great Britain (GOV.UK
2019) were used. While sampling variability could be taken into account using boot-
strapmethods, as noted by the author, measurement error, inevitably present in income
information collected in surveys, see, e.g., Moore et al. (2000), could not be accounted
for using thismethod. Similarly, Douidich et al. (2016) describe an imputation-related-
method for incorporating estimates obtained in labor force surveys (which are easily
and cheaply conducted) into household expenditure surveys (which are much more
time consuming and expensive) in order to estimate poverty rates in Morocco. Like-
wise, demographic model fitting and projections rely on historical data. The standard
method of population projections (see United Nations 2014) is based on the combi-
nation of cohort survival rates, i.e., historical data, with current data on cohort sizes.
Raftery et al. (2014) proposed a Bayesian approach to take the uncertainty associated
with historical data into account. It is worth noting that in this case the uncertainty
accounted for by Bayesian modeling did not come from observational errors but rather
from the fact that the true population figures may have changed over time.

Researchers often do not adequately account for the variability of the historical
estimates when incorporating them into a current analysis. In fact, the practice of
plugging-in the estimated values for certain parameters is widespread. However, this
practice is often not disclosed as many practitioners view this strategy as a natural
way of “doing things”. Consequently, the objectives and contributions of this com-
munication are twofold: first, we draw attention to current practice, and secondly, and
more importantly, we provide a principled methodology for incorporating historical
estimates into a current analysis. Surprisingly, despite the ubiquity of historical data
and estimates and the many papers that touch on various aspects thereof, a general
methodology discussing the use of historical estimates, as given here, has been thus far
lacking. In particular we consider two broad settings in which historical estimates are
employed. Three such estimators are presented in Sect. 3 and one in Sect. 4.1. Their
limiting distributions are found and a theoretical analysis comparing their precision is
conducted. When comparable, a preference order among the different approaches is
established. Our paper goes beyond the existing knowledge by providing an inventory
of ways in which historical estimates can be used, and by quantifying the properties
of the resulting estimators. We also demonstrate how these results may be used in the
design of experiments.

The paper is organized as follows. Our notation and formulation are outlined in
Sect. 2. Section 3 provides our main theoretical findings which include the limiting
distributions of the estimates in the presence of historical estimates and a comparison
thereof. In Sect. 4 two applications are described in conjunction with accompany-
ing numerical experiments. The first application addresses the two-way analysis of
variance (ANOVA) problem introduced in Sect. 2. The second, related application,
deals with a drug interaction study within the framework of Bliss-independence (Bliss
1939), an old concept which has garnered much recent attention. We conclude with a
discussion in Sect. 5. All proofs are collected in an Appendix.
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2 Notation and formulation

Consider a designed experiment or observational study, denoted by S, in which dataD
consisting of n observations are collected. Usually, the observations are independent
and identically distributed. Suppose further that the model describing the distribution
of D is indexed by ωT = (θT , ηT ) where θ ∈ R

p and η ∈ R
q is the concatenation

of η1 ∈ R
q1 , . . . , ηK ∈ R

qK with q = q1 + · · · + qK . Let Φ(ω) be some function of
the model parameters which is of interest to the researchers. Clearly, Φ(ω) may be a
function of θ alone, η alone or of both θ and η. The primary goal of the study S, which
we refer to as the current study, is inference on Φ(ω) in the presence of historical data
which we view as a collection of K , independent estimates η̂1, . . . , η̂K obtained from
historical studies S1, . . . ,SK of sizes m1, . . . ,mK and m = m1 + · · · + mK denotes
the total sample size in the historical studies.

In some circumstances, it may not be possible to estimate ω using the data D.
However, if η were known in advance then it would be possible to estimate θ . As an
example, such a situationwould arise if themodel f (·; θ , η) is not identifiable whereas
the model f (·; θ , η0) is identifiable for every fixed value of η0. In other circumstances
given the data D both θ and η are estimable (e.g., Peddada et al. 2007). Thus, in
this communication we consider two distinct settings, the second of which has two
variants. In the first setting, referred to as a Type I Problem, only the parameter θ is
estimable using the data D, while (η1, . . . , ηK ) are fixed at their historical estimated
values (̂η1, . . . , η̂K ). In the second setting, referred to as Type II Problem, both θ

and η are estimable using D and a two-step procedure is utilized to estimate θ while
updating the estimates for (η1, . . . , ηK ). It may also happen that the available data
corresponds to a Type II problem and while a Type II analysis would be possible,
the researcher may decide to conduct a Type I Analysis, i.e., estimate θ as if the data
came from a Type I Problem. One of our results shows that this is an inferior strategy,
i.e., if the data D identifies ω it is always advisable to re-estimate η and the loss of
precision is quantified in terms of a simple decomposition of the variance matrices of
the resulting estimators. It is also important to emphasize that there are situations in
which the investigator, by means of the design of the study S, may control whether
the problem is of Type I or a Type II.

To fix ideas consider the two-way ANOVA model in which the expected value of
an outcome Y is given by

E(Y |T1, T2) = η0 + η1T1 + η2T2 + θT1T2 (1)

where for i = 1, 2, Ti ∈ {0, 1} indicates whether treatment i is administered. Here
η0 denotes the mean of Y when neither treatment is administered, ηi models the
marginal increase in the expectation of Y when treatment i is administered and θ

models the interaction T1 × T2. Suppose, now that the historical data consists of two
studies S1 and S2 of sizes m1 and m2, respectively, where in the study Si treatment
i was compared with a control. Clearly the historical data provides no information
on θ . Thus inference on θ would require a new study S in which T1 = T2 = 1 for
some subset of the observations. For simplicity, interchangeability is assumed, i.e., all
experimental units, in S1 and S2 as well as S, are assumed to be drawn from the same

123



On the use of historical estimates 207

population, e.g., Peddada et al. (2007), and therefore any change in the mean response
may be attributed solely to the treatment combination received. The assumption of
interchangeability may be relaxed as discussed in Sect. 5.

One objective of this communication is to provide a methodology for effective
design and analysis of a new study S of size n which allows the estimation of θ and
utilizes the historical estimates of (η0, η1, η2) obtained from S1 and S2. Depending on
its objectives, the study S may be of various forms. For example, one may choose to
allocate all n observations to receive both treatments, i.e., T1 = T2 = 1. In this case,
the dataD is an IID sample of observations with mean η0 + η1 + η2 + θ and variance
σ 2. Although the parameter θ is not identifiable from D alone it is estimable given
the historical data, so this is clearly a Type I Problem. Alternatively, if S allocates
observation to all treatment combinations then θ as well as (η0, η1, η2) are estimable
from S and this falls within the framework of a Type II Problem. This example will
be further analyzed in Sect. 4.1.

3 Results

Our main theoretical findings, i.e., Theorems 3.1, 3.2, and 3.4 describe the limiting
distributions of estimators for ω which are then compared in Theorems 3.3, 3.5 and
3.6. Remark 7 provides a brief summary of the results of this Section.

3.1 Type I problems

Suppose first that we are in the setting of a Type I Problem. Recall that in such
circumstances only θ is estimated while (η1, . . . , ηK ) are fixed at their historical
values. Thus, let θ̄ A solve

Ψ (θ , η̂) = 0 (2)

where η̂ = (̂ηT
1 , . . . , η̂T

K )T . The estimating Eq. (2) may be a score equation motivated
by likelihood theory, a generalized estimating equation derived by quasi-likelihood
or any other statistical estimation framework. Observe that the solution θ̄ A of (2)
is obtained by plugging-in the sample values of the K independent estimators
η̂1, . . . , η̂K . For simplicity we may further assume that the dataD is a random sample
Y1, . . . ,Yn and (2) is of the form

Ψ (θ, η̂) = n−1
n

∑

i=1

ψ(θ, η̂,Yi ).

The function ψ is assumed to be: (i) continuously differentiable with respect to
both θ and η1, . . . , ηK ; it is further assumed to satisfy (i i) E0(ψ) = 0; (i i i)
E0(ψψT ) < ∞; (iv) the matrix E0(∂ψ/∂η) exists; and (v) the matrix E0(∂ψ/∂θ)

exists and is invertible. Here E0(·) denotes the expectation taken at ω0 = (θ0, η0) =
(θ0, η1,0, . . . , ηK ,0), the true value of all parameters. Conditions (i)− (v) are all stan-
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dard regularity conditions often imposed in the literature (cf., Heyde 2008, Van der
Vaart 2000). We now have the following:

Theorem 3.1 Let θ̄ A be a solution to (2) and set η̄A = η̂. Assume that: (i) θ̄ A is
consistent atω0; (ii) the estimating functionψ satisfies the regularity conditions listed
above; and (iii) the historical estimates satisfy

√
m j (̂η j − η j,0) ⇒ Nq j (0,Σ j ) and

are independent of each other and of the current study. Then if (m/m j ) → κ j < ∞
for all j = 1, . . . , K as m j → ∞ and n/m → ρ ∈ (0,∞) as n → ∞ we have

√
n(θ̄ A − θ0, η̄A − η0)

T ⇒ Np+q(0, A)

where

A =
(

Aθθ Aθη

Aηθ Aηη

)

with

Aθθ = (D−1
θ0

)[Σψ + ρDη0ΣDT
η0

](D−1
θ0

)T ,

Aθη = −ρ(Dθ0)
−1Dη0Σ,

Aηη = ρΣ .

where Dθ0 = E0(∂ψ/∂θ), Dη0 = E0(∂ψ/∂η), Σψ = E0(ψψT ) and Σ =
BlockDiag(κ1Σ1, . . . , κKΣK ).

Remark 1 Clearly, Aθθ is the p× p asymptotic variance matrix of θ̄ A, Aηη is the q×q
asymptotic variance matrix of η̄A and Aθη = AT

ηθ is their p×q asymptotic covariance
matrix.

Remark 2 As pointed out by a referee the application of Theorem 3.1 is predicated
on the fact that the historical studies report the estimates of the variance matrices
Σ1, . . . ,ΣK .

The proof of Theorem 3.1 is a straightforward, but somewhat involved, application
of the delta method. In contrast with Randles (1982) and Pierce (1982) which describe
the limiting distribution of statistics that are explicit functions of estimated parameters,
the estimator θ̄ A is an implicit function of η̄A. For a related but less general result
see Benichou and Gail (1989). Further note that (D−1

θ0
)Σψ (D−1

θ0
)T is the asymptotic

variance of θ̄ A when the true values of η1, . . . , ηK are known in advance. Thus the
term

ρDη0ΣDT
η0

may be viewed as the penalty for substituting estimates for the true values of
the parameters. The penalty may also be rewritten as ρ

∑K
j=1 κ j D jΣ j DT

j where
D j = E0(∂ψ/∂η j ) which expresses its dependence on the relative sample sizes,
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the asymptotic variances of the historical estimators and the sensitivity of the esti-
mation procedure with respect to the historical estimates, embodied in the matrices
D1, . . . , DK .

Remark 3 Note that if ρ is very small which occurs when m � n, then the penalty
is inconsequential, i.e., the asymptotic variance of θ̄ A is close to its variance when
η1, . . . , ηK are fully known.

3.2 Type II problems

Next, consider the case where both θ and η are estimable using the data D observed
in the current study S. Further assume that two estimating functions Ψ and Γ are
available to us; Ψ is an estimating function for θ given a known fixed value of η, as
in Type I Problems, whereas Γ is an estimating function for η given a known fixed
value of θ . For example, within the likelihood framework Ψ is the score with respect
to θ while Γ is the score with respect to η.

We propose estimating ω using a two step procedure. In the first step the data D is
used to obtain the pair (θ̃ , η̃)T which simultaneously solve

Ψ (θ , η) = 0 and Γ (θ , η) = 0. (3)

Under standard regularity conditions, cf., the conditions listed just before the state-
ment of Theorem 3.1, the estimators (θ̃ , η̃)T satisfy

√
n(θ̃ − θ0, η̃ − η0)

T ⇒ Np+q(0,Υ ) (4)

where Υ is assumed to be a non-singular variance matrix which can be consistently
estimated from the data by, say Υ̃ , the standard sandwich estimator (Van der Vaart
2000). For convenience, we may partition Υ as

Υ =
(

Υθθ Υθη

Υηθ Υηη

)

(5)

where Υθθ and Υηη denote the marginal asymptotic variances of θ̃ and η̃, respectively,
and Υθη is their asymptotic covariance. Naturally, a similar partition holds for Υ̃ .
Furthermore, as in Sect. 3.1, at our disposal are K independent historical estimates
of η1, . . . , ηK obtained using studies of sizes m1, . . . ,mK which satisfy

√
m j (̂η j −

η j,0) ⇒ Nq j (0,Σ j ), where, again, it is assumed that Σ j are non-singular and can be
consistently estimated for all j = 1, . . . , K . Thus

√
m (̂η − η0) ⇒ Nq(0,Σ) (6)

where Σ is given in the statement of Theorem 3.1. Let ̂Σ be a consistent estimator of
Σ .
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The historic and current estimates of η can be aggregated, or combined, in many
ways. Lemma 2, appearing in the Appendix, suggests using the estimator

η̄ = (nΥ̃ −1
ηη + m ̂Σ−1)−1(nΥ̃ −1

ηη η̃ + m ̂Σ−1η̂) (7)

which is the MLE under normality assuming that the matrices Υηη and Σ are known.
Note that

η̄ = W1η̃ + W2η̂ + op(1)

where the weights W1 and W2 are the symmetric matrices

W1 = (γΥ −1
ηη + (1 − γ )Σ−1)−1γΥ −1

ηη and

W2 = (γΥ −1
ηη + (1 − γ )Σ−1)−1(1 − γ )Σ−1 (8)

which satisfy I = W1 +W2 with γ = lim(n/(n +m)). Thus (7) differs from the best
linear unbiased estimator by at most an op(1) term.

In the second step we find θ̄ B by solving

Ψ (θ, η̄) = 0. (9)

where η̄ is given by (7). We now have:

Theorem 3.2 Let θ̄ B be a solution to (9) where η̄B = η̄ is given in (7). Assume that
the regularity conditions of Theorem 3.1 hold. Then

√
n(θ̄ B − θ0, η̄B − η0) ⇒ Np+q(0, B) (10)

where

B =
(

Bθθ Bθη

Bηθ Bηη

)

with

Bθθ = (D−1
θ0

)[Σψ + Dη0(Υ
−1
ηη + (ρΣ)−1)−1DT

η0
](D−1

θ0
)T ,

Bθη = −D−1
θ0

Dη0(Υ
−1
ηη + (ρΣ)−1)−1,

Bηη = (Υ −1
ηη + (ρΣ)−1)−1.

Although themechanics are slightlymore involved, the proof of Theorem 3.2 builds
on the proof of Theorem 3.1. Moreover, the structures of the asymptotic variance
matrices A and B are analogous with the exception that the variance matrix ρΣ

appearing in A is replaced with (Υ −1
ηη + (ρΣ)−1)−1 in B.

Remark 4 Observe that (Υ −1
ηη + (ρΣ)−1)−1 → 0 as ρ → 0 so the conclusions of

Remark 3 hold here as well.
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It is clear that whenever the model for D identifies ω, both (θ̄ B, η̄B) and (θ̄ A, η̄A)

can be computed. Next, using the concept of the Loewner order we show the former
is superior to the latter. Recall that the matrix V1 is said to be smaller in the Loewner
order compared with the matrix V2 if V2 − V1 is non-negative definite (Pukelsheim
2006). This relationship is denoted by V1 � V2. Suppose now that V1 and V2 are the
variances of two (asymptotically) unbiased estimators. Then V1 � V2 implies that the
estimator associated with V1 is more efficient than the estimator associated with V2.
This means, for example, that the confidence ellipsoid associated with V1 lies within
the confidence ellipsoid associated with V2.

Theorem 3.3 Whenever the data D identifies ω we have

B � A. (11)

Moreover, for any function Φ we have VΦ
B � VΦ

A where VΦ
A and VΦ

B are the
asymptotic variances of Φ(θ̄ A, η̄A) and Φ(θ̄ B, η̄B) respectively.

Theorem 3.3 indicates that, if possible, it is always asymptotically beneficial to
estimate both θ and η using the data D collected in the study S. Moreover, Theorem
3.3 holds also when only a sub-vector of η is identified by the data D.

Remark 5 As noted by a referee, an alternative approach to Type II Problems would be
to combine the first and second estimation steps. This can be done by simultaneously
solving the estimating equations

Ψ (θ , η) = 0 and Γ (θ, η) + m ̂Σ−1(̂η − η) = 0. (12)

The system (12) is obtained from (3) by augmenting the estimating function Γ with
the term m ̂Σ−1(̂η − η). The latter is a pseudo-score equation which follows directly
from (6). By appropriately modifying the proof of Theorem 3.2 it can be shown that
(θ̄ B, η̄B) have the same limiting distribution as the solution of (12). It thus follows
that the estimator (7) is asymptotically efficient up to the first order.

Another variant of Type II Problems occurs when the data D is not available, but
nevertheless the estimates (θ̃, η̃) from the current study as well as their estimated
variance, i.e., Υ̃ is given. The objective is then to combine the current estimators (4)
with the historical estimators (6). To this end we propose estimating θ by

θ̄C = θ̃ − Υ̃θηΥ̃
−1
ηη (η̃ − η̄C ) (13)

where η̄C = η̄ is given by (7). The estimators (7) as well as (13) are motivated by
Lemma 2 and Remark 8 appearing in the Appendix.

Theorem 3.4 Let (θ̄C , η̄C )T be defined by (7) and (13). Suppose further that (4) and
(6) hold and both Υ and Σ can be consistently estimated. Then as n → ∞ we have

√
n(θ̄C − θ0, η̄C − η0)

T ⇒ Np+q(0,C)
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where C = MVMT with

V =
(

Υ 0
0 ρΣ

)

and M =
(

I −RW2 RW2
0 W1 W2

)

. (14)

The matrices W1 and W2 are defined in (8) and R = ΥθηΥ
−1
ηη . Moreover, we have:

Cθθ = Υθθ − ΥθηΥ
−1
ηη W2Υ

T
θη,

Cθη = ΥθηW1

Cηη = (Υ −1
ηη + (ρΣ)−1)−1.

Theorem 3.4 describes the large sample behavior of the estimators (7) and (13).
Further insight is facilitated by considering the simplest possible situation, i.e., when
(θ, η) ∈ R

2, in which case
√
m (̂η − η0) ⇒ N(0, σ 2) for the historical data, whereas

for the current study
√
n(θ̃ − θ0, η̃ − η0)

T ⇒ N(0,Υ ) where

Υ =
(

υ2
θθ υθη

υθη υ2
ηη

)

.

It is not hard to see that (13) reduces to θ̄ = θ̃−(υ̃θη/υ̃
2
ηη)(η̃−η̄)where η̄ = w∗

1 η̃+w∗
2 η̂

with

w∗
1 = n/υ̃2

ηη

n/υ̃2
ηη + m/σ̂ 2 and w∗

2 = m/σ̂ 2

n/υ̃2
ηη + m/σ̂ 2 .

Furthermore Cθθ simplifies to

υ2
θθ − υ2

θη

υ2
ηη

w2 = υ2
θθ (1 − w2r

2), (15)

where r = υθη/(υθθυηη) is the asymptotic correlation between θ̃ and η̃ and

w2 = (1 − γ )/σ 2

γ /υ2
ηη + (1 − γ )/σ 2

is the limiting value of w∗
2 as n/(n + m) → γ . It follows that the asymptotic relative

efficiency of θ̄ to θ̃ is 1 − w2r2, which is at most unity (when υθη = 0) and no less
than 1 − r2 (when γ is close to 0). Clearly, the historical estimates are useful only
if the covariance υθη is non-zero and highly useful whenever w2 is close to unity. A
similar but more involved analysis applies when the parameters are multidimensional.

We emphasize that the structure of the estimators η̄C and θ̄C as well as the form of
C are related to, but much more general, than results obtained in the literature on both
double sampling and monotone missing normal data (Anderson 1957; Morrison 1971;
Kanda and Fujikoshi 1998). Double sampling is a widely used technique in survey
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sampling, where the estimator is also known as the generalized regression estimator
(Thompson 1997), as well as in other applications, cf. Davidov and Haitovsky (2000),
Chen and Chen (2000) and the references therein. We also note that Eq. (15) is a
generalization of the formulas obtained for the usual double sampling estimator (e.g.,
Tamhane 1978) where w2 = m/(n+m). The following Theorem substantially gener-
alizes on results obtained in the literature on both the double sampling and monotone
missing data.

Theorem 3.5 We have

C � Υ (16)

Moreover, for any function Φ we have VΦ
C � VΦ

Υ where VΦ
C and VΦ

Υ are the

asymptotic variances of Φ(θ̄C , η̄C ) and Φ(θ̃ , η̃) respectively.

In words, the estimator (θ̄C , η̄C ), incorporating the historical estimates and derived
by combining (θ̃, η̃) and η̂, is more precise than (θ̃, η̃), the estimator based only on
the current study.

Remark 6 It is also important to emphasize that in finite, typically small samples, the
estimatorCθθ may be in fact inferior toΥθθ . This typically occurswhen the “regression
matrix” R, see the statement of Theorem 3.4, is poorly estimated. This feature has
been also recognized in the double sampling literature (Tamhane 1978).

A little algebra shows that

Cθθ = Υθθ − ΥθηΥ
−1
ηη (Υ −1

ηη + (ρΣ)−1)−1(ρΣ)−1Υ T
θη,

Cθη = ΥθηΥ
−1
ηη (Υ −1

ηη + (ρΣ)−1)−1

Cηη = (Υ −1
ηη + (ρΣ)−1)−1.

so we can remove the dependence of C on the matrices W1 and W2.
Clearly, whenever the data D is available both (θ̄ B, η̄B) and (θ̄C , η̄C ) can be cal-

culated where η̄B = η̄C are given in (7). Recall that θ̄ B solves Ψ (θ , η̄) = 0 where
Ψ (θ , η) = n−1 ∑n

i=1 ψ(θ , η,Yi ). Similarly, we can view θ̄C as a solution to an esti-
mating equation Λ(θ , η̄) = 0 where Λ(θ , η) = n−1 ∑n

i=1 λ(θ , η,Yi ). The form of
Λ can be easily deduced from Lemma 2 and that of λ by plugging in the influence
functions for θ̃ and η̃ intoΛ. In fact, the precise form of the influence function of θ̄C is
readily derived, for more details see Remark 9 appearing in the Appendix. It is worth
noting that Ψ operates on the full data D whereas Λ operates on functions thereof
namely the estimators (θ̃ , η̃) and η̂. Thus (θ̄C , η̄C ) can be viewed as functions of a
coarsening of the data D and therefore is expected to be less efficient than (θ̄ B, η̄B).
This indeed is the case under mild regularity conditions. A formal statement requires
the introduction of some additional notation. Let h = h(θ , η,Y) denote any estimat-
ing function and denote Dθ0(h) = E0(∂h/∂θ) and Dη0(h) = E0(∂h/∂θ). Note that
earlier we referred to Dθ0(ψ) and Dη0(ψ) simply as Dθ0 and Dη0 . Now:
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Theorem 3.6 Suppose that both ω̄B and ω̄C can be obtained. If

Dθ0(ψ)−1Dη0(ψ) ≤ Dθ0(λ)−1Dη0(λ) (17)

component-wise and

(Dθ0(ψ)−1)E0(ψψT )(Dθ0(ψ)−1)T � (Dθ0(λ)−1)E0(λλT )(Dθ0(λ)−1)T (18)

in the Loewner order, then

B � C. (19)

Moreover, for any function Φ we have VΦ
B � VΦ

C where VΦ
B and VΦ

C are the
asymptotic variances of Φ(θ̄ B, η̄B) and Φ(θ̄C , η̄C ) respectively.

Condition (18) holds when the estimating equation Ψ (θ , η0) = 0 results in more
efficient estimators for θ than those resulting fromΛ(θ , η0) = 0when η = η0 is set to
its true value. This condition holds for any sensible choice ofΨ . In particular it holds for
the score equations associated with maximum likelihood estimation. Condition (17)
roughly means thatΨ is less sensitive to small perturbations in both θ and η compared
with Λ. Conditions (17) are (18) are not necessary. For example, the conclusion of
Theorem 3.6 may hold if ψ is more sensitive to small perturbations but at the same
time much more efficient. We believe that the aforementioned conditions hold broadly
and the estimators (θ̄C , η̄C ), described in Theorem 3.4, are generally less efficient
than (θ̄ B, η̄B), described in Theorem 3.2. For an additional discussion see Remark
9 in the Appendix. There are, however, situations in which B = C and situations
where ω̄B = ω̄C for any data D. As we shall see in the next section this is the case
in normal linear models in which the estimators (θ̃ , η̃) and η̂ are actually sufficient
statistics. Finally, it isworth noting that ifΥθη = 0 then the estimator (θ̄C , η̄C ) does not
improve θ̃ whereas there is always an improvement when the full data D is available.

Remark 7 To summarize, the proposed estimators are designed to extract as much
information as possible from the data. Recall that in Type I Problems the parameter
η is not estimable given the current data D. The pair (θ̄ A, η̄A) solves the system of
equations Ψ (θ̄ A, η̄A) = 0 with η̄A = η̂ where η̂ is the historical estimator. In Type II
problems the pair (θ̄ B, η̄B) solves the system of equations Ψ (θ̄ B, η̄B) = 0 where η̄B ,
given by (7), is a weighted combination of η̂ and η̃. Moreover, as noted earlier it can be
shown that the resulting estimators are asymptotically efficient. Our approach to Type
I and the first variant of Type II problems are of similar structure: plug into Ψ the best
available estimator of η. In the second variant of Type II Problems the pair (θ̄C , η̄C )

solves a different system of estimating equations which we denote byΛ(θ̄C , η̄C ) = 0.
These equations are the likelihood equations given in Lemma 2 assuming that the
variance matrices Σ and Υ are fully known. Since (θ̄C , η̄C ) are based on further
coarsening of the data they are generally less efficient.
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4 Illustrations, applications and numerical results

In this section two applications are discussed in detail. In Sect. 4.1 the two-way
ANOVA problem introduced in Sect. 2 is investigated. In particular, various design
options for the current study S are evaluated. It is worth noting that although the
abovementioned ANOVA problem is among the simplest possible, its analysis is far
from trivial. Next, in Sect. 4.2 we discuss the use of historical estimates in the design
of drug interaction studies in the context of Bliss independence. A simple algorithm
for the design of such studies is proposed.

4.1 Twoway ANOVA

Recall the ANOVA model of Sect. 2 where the studies S1 and S2 were designed to
estimate η1 = (η0, η1)

T and η2 = (η0, η2)
T , respectively. Note that the parameter η0

is estimated in both studies so η1 and η2 are not distinct. Therefore employing any
of the aforementioned findings requires the aggregation of the historical estimates as
if they came from a single experiment. The historical studies result in the estimates
(̂η0(S1), η̂1(S1)) and (̂η0(S2), η̂2(S2)) as well as their standard errors. Given these
we can easily back calculate the unobserved means and sample sizes in the studies S1
and S2 and estimate (η0, η1, η2) by:

η̂1 = Ȳ1(S1) − η̂0, η̂2 = Ȳ2(S2) − η̂0, and η̂0 = m1,0Ȳ0(S1) + m2,0Ȳ0(S2)

m1,0 + m2,0
,

(20)

where the quantity Ȳ j (Si ) is the average response on treatment j ∈ {0, 1, 2} in study
i ∈ {1, 2} and mi, j is the size of of treatment group j in study i . Under the usual
conditions

√
m(η̂0 − η0, η̂1 − η1, η̂2 − η2)

T ⇒ N(0,Σ),

for some matrix Σ . Furthermore, if (1) is a homoscedastic model with variance σ 2

and m1,0 = m1,1 = m2,0 = m2,2, i.e., the studies S1 and S2 are balanced and of the
same size, then it is easy to see that

Σ = σ 2

⎛

⎝

2 −2 −2
−2 6 2
−2 2 6

⎞

⎠ .

Wewill now investigate various designs for a new study S. When the primary focus
of S is inference on θ then it may be advantageous in some circumstances to allocate
all n observations to the treatment arm receiving both treatments one and two, i.e.,
T1 = T2 = 1 for all observations. This is clearly a Type I problem since ω is not
identifiable from D but given η the parameter θ is estimable. Note that an unbiased
estimator for θ is
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θ̄A = Ȳ12(S) − (̂η0 + η̂1 + η̂2) (21)

and it is not hard to see that (21) solves (2) when ψ(θ, η0, η1, η2,Yi ) = Yi − η0 −
η1 − η2 − θ . Thus, Σψ = σ 2, Dθ0 = 1 and Dη0 = −(1, 1, 1) and it follows that Aθθ ,
the asymptotic variance of (21) as described in Theorem 3.1, reduces to

σ 2 × (1 + 10ρ) where ρ = lim
n

m
.

The second term appearing in the parentheses in the above display is an inflation fac-
tor, i.e., the price to pay for substituting estimates for the unknownvalue of (η0, η1, η2).
Note that when n/m → 0 as bothm → ∞ and n → ∞ the asymptotic variance of θ̄A
approaches σ 2. In practice this requires a large current study and even larger historical
data. Incidentally, since θ̄A is a linear function of Ȳ12(S) and (̂η0, η̂1, η̂2) it is not hard
to see that its exact variance is σ 2(1/n + 10/m) which coincides with the asymptotic
form.

Alternatively, suppose that the study S allocates n/4 observations to all treatment
combinations. In this case the data D identifies ω = (θ, η0, η1, η2)

T , so this is a
Type II problem. The usual estimators for this design are η̃0 = Ȳ0(S), η̃1 = Ȳ1(S) −
Ȳ0(S), η̃2 = Ȳ2(S) − Ȳ0(S) and

θ̃ = Ȳ12(S) − (Ȳ1(S) + Ȳ2(S)) + Ȳ0(S)

and thus the limiting variance of (θ̃ , η̃)T is

Υ = σ 2

⎛

⎜

⎜

⎝

16 4 −8 −8
4 4 −4 −4

−8 −4 8 4
−8 −4 4 8

⎞

⎟

⎟

⎠

.

Next we aggregate the historical and current estimates for η. As in Sect. 3 we estimate
η by η̄ = W1η̃ + W2η̂ where

W1 = (nΥ −1
ηη + mΣ−1)−1nΥ −1

ηη and W2 = (nΥ −1
ηη + mΣ−1)−1mΣ−1.

Note that the weight matrices are functions of the variances Υηη and Σ as well as the
ratio n/(n + m). Since D is fully available to us then we can estimate θ by

θ̄B = Ȳ12(S) − (η̄0 + η̄1 + η̄2). (22)

Note that the estimators (21) and (22) are of the same functional form. Further note that
the statistic Ȳ12(S) in (22) is a function of the n12 observations Y1, . . . ,Yn12 receiving
the treatment combination T1 = T2 = 1. A straightforward calculation shows that
Bθθ is given by

σ 2 × (ξ−1
11 + 1T (Υ −1

ηη + (ρΣ)−1)−11) where ρ = lim
n

m
,
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Table 1 Asymptotic variances for θ for Type I and Type II Problems (with a balanced design) as function
of the sizes of the historical and current studies

m 100 200 500 1000 2000 5000
n Aθθ Bθθ Aθθ Bθθ Aθθ Bθθ Aθθ Bθθ Aθθ Bθθ Aθθ Bθθ

100 11.0 9.30 6.0 7.50 3.0 5.70 2.0 4.90 1.5 4.50 1.2 4.20

200 21.0 11.33 11.0 9.33 5.0 6.95 3.0 5.70 2.0 4.92 1.4 4.39

500 51.0 13.52 26.0 11.94 11.0 9.33 6.0 7.47 3.5 6.04 2.0 4.39

1000 101.0 14.61 51.0 13.52 21.0 11.3 11.0 9.33 6.0 7.47 3.0 5.70

2000 201.0 15.26 101.0 14.61 41.0 13.07 21.0 11.33 11.0 9.33 5.0 6.95

5000 501.0 15.69 251.0 15.40 101.0 14.61 51.0 13.52 26.0 11.94 11.0 9.33

where ξ11 is the fraction of the observations which are assigned to receive both treat-
ments. In situations where the full data is not available to us but (θ̃ , η̃0, η̃1, η̃2) are
known we may estimate θ by θ̄C = θ̃ − ΥθηΥ

−1
ηη (η̃ − η̄). It can be verified that in

this application, in which a normal linear model is involved and all estimators are
functions of sufficient statistics, the estimators θ̄B and θ̄C coincide. Therefore θ̄C is
not discussed any further.

Table 1 provides a comparison of the asymptotic variances of (21) and (22) for
a range of values of m and n. Table 1 displays asymptotic variances; the variances
themselves are found by dividing any entry in the table by the size of the current
study in the relevant row. Observe that both Aθθ and Bθθ decrease as a function of
m for any fixed value of n and increase in n for any fixed m. For example when
n = m = 100 then Aθθ = 11 and Bθθ = 9.3 whereas when m = 100 and n = 5000
then Aθθ = 501 and Bθθ = 15.69 and when m = 5000 and n = 100 then Aθθ = 1.2
and Bθθ = 4.2. Thus going down the first column of Table 1 the asymptotic variance
Aθθ increases by a factor of approximately 45 whereas that of Bθθ by the much more
modest 1.4. Similarly going across the first row the asymptotic variances of Aθθ and
Bθθ are reduced by a factor of 9.2 and 2.2 respectively. Each pair (n,m) provides
a direct comparison between the two proposed designs (design A, say, in which all
experimental units in the current study receive both treatments and design B, say,
which is a balanced design). Clearly, design A seems preferable in situations where
m is much larger that n, otherwise design B is to be preferred.

We now look a bit deeper into the question of optimal design. Suppose for simplicity
that the historical sample satisfies m1,0 = m1,1 = m2,0 = m2,2. Note that Table 1
considers only designs with ξ = (0, 0, 0, 1) and ξ = (1/4, 1/4, 1/4, 1/4). Therefore
we next consider designs for the study S where ξ = (ξ00, ξ10, ξ01, ξ11) is any value in
the unit simplex. Clearly here ξi j denotes the proportion of observations who received
treatment combination i × j where i and j are in {0, 1}. It is not hard to see that the
optimal design in the interior of the simplex, i.e. for a Type II Problem, is attained by
Theorem 3.2 when ξ−1

11 + 1T (Υ −1
ηη + (ρΣ)−1)−11 is minimized where
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Table 2 Optimal design for
Type II problems as a function
of the sampling ratio ρ

Sampling Minimal variance Optimal
ratio (ρ) Bθθ design (ξ)

1/8 2.27 (0.020, 0.001, 0.001, 0.978)

1/4 3.51 (0.020, 0.001, 0.001, 0.978)

1/2 5.53 (0.020, 0.160, 0.160, 0.660)

1 8.00 (0.020, 0.243, 0.243, 0.494)

2 10.66 (0.125, 0.250, 0.250, 0.375)

4 12.80 (0.187, 0.250, 0.250, 0.313)

8 14.22 (0.219, 0.250, 0.250, 0.281)

Υ = σ 2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
ξ00

+ 1
ξ10

+ 1
ξ01

+ 1
ξ11

1
ξ00

−
(

1
ξ00

+ 1
ξ10

)

−
(

1
ξ00

+ 1
ξ01

)

1
ξ00

1
ξ00

− 1
ξ00

− 1
ξ00

−
(

1
ξ00

+ 1
ξ10

)

− 1
ξ00

(

1
ξ00

+ 1
ξ10

)

1
ξ00

−
(

1
ξ00

+ 1
ξ01

)

− 1
ξ00

1
ξ00

1
ξ00

+ 1
ξ10

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Symmetry considerations imply that under optimality ξ01 = ξ10 and since ξ00 =
1 − 2ξ10 − ξ11 the minimization involves only a two dimensional search. Table 2
provides the optimal design, i.e., the vector ξ for estimating θ for various values of
the ratio ρ = n/m found by a grid search with step size 0.001 and the restriction that
ξ00 ≥ 0.02. This restriction is necessary; otherwise the matrix Υ can not be inverted.

Table 2 provides the optimal design for estimating θ as a function of the sampling
ratio. Note that for large ρ, i.e., when n is larger than m, we find that ξ01 = ξ10 = 1/4
and that the difference between ξ11 and ξ00 decreases in ρ.We believe that the balanced
design is optimal when ρ → ∞. It is also clear that for large ρ the designs appearing
in Table 2 are generally superior to those in Table 1. For example when ρ = 1 we find
that the asymptotic variances in Table 1 are 11.0 and 9.3 whereas the corresponding
optimal asymptotic variance given in Table 2 is 8.0. However, for values of ρ smaller
than a 1/4, i.e., when n is rela.tively small tom, then the optimal design sets ξ00 = 0.02,
and ξ01 = ξ10 = 0.001 which are the smallest possible values allowed by our search
algorithm. This suggest that further, at most minor, improvements are possible by
setting ξ00 = 0 and/or ξ01 = ξ10 = 0. Clearly when ξ01 = ξ10 = ξ00 = 0 we have a
Type I Problem.

Therefore we next consider the situation that ξ00 = 0 and ξ01 = ξ10 > 0, in which
case the current study comprises of three arms and thus three group means: Ȳ1(S),
Ȳ2(S) and Ȳ12(S). We emphasize that this estimation problem is neither a Type I nor
a Type II problem. Further observe that with these data alone we can not estimate
ω. Nevertheless, the pair (Ȳ1(S), Ȳ2(S))T whose mean is (η0 + η1, η0 + η2) can be
aggregated with η̂ the historical estimate of η. By an appropriate modification of
Lemma 2 it can be shown that η can be estimated by

η† = (nAT V−1A + mΣ−1)−1(nAT V−1S + mΣ−1η̂) (23)
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where S = (Ȳ1(S), Ȳ2(S))T , V = σ 2diag(ξ−1
01 , ξ−1

10 ) is its asymptotic variance and

A =
(

1 1 0
1 0 1

)

.

is the matrix which satisfies E(S) = Aη. Note that (23) is of the same form as (7)
but with ATV−1A instead of Υηη. Now, let θ̄D denote the solution to Ψ (θ, η†) = 0
which is nothing but

θ̄D = Ȳ12(S) − (η
†
0 + η

†
1 + η

†
2) (24)

A straightforward calculation shows that the asymptotic variance of θ̄D is given by

σ 2 × (ξ−1
11 + 1T (ATV−1A + (ρΣ)−1)−11) where ρ = lim

n

m
.

The formula above is useful in finding the optimal design for small values of ρ when
ξ00 = 0. For example when ρ = 1/8 then the design ξ = (0, 0.0005, 0.0005, 0.9990)
results in a variance of 2.25 (actually 2.250751) which is slightly smaller than 2.27 the
reported variance in the first row of Table 2. Finally we note that when ρ = 1/8 then
Aθθ equals (precisely) 2.25 which means that in this application a design for Type I
Problem would be the most effective.

As noted by a referee, in addition to the above mentioned three arm trial one could
choose various two arm designs for S. For example, one can choose a design for
which ξ00 > 0 , ξ11 > 0 and ξ01 = ξ10 = 0. Or alternatively designs for which
ξ01 > 0, ξ11 > 0 and ξ00 = ξ10 = 0 . It can be shown, however, that for small values
of ρ, where such designs are of interest, these two armed designs are not superior to
a Type I design.

4.2 Using historical estimates in drug interaction studies

This subsection deals with the optimal design of drug interaction studies. Consider
two drugs D1 and D2 with no-effect probabilities η1 and η2, respectively and let θ

denote the no-effect probability when both drugs are administered together. The drugs
are called Bliss independent, see, Bliss (1939), Liu et al. (2018), if

θ = η1η2. (25)

If (25) does not hold and θ < η1η2 there is synergy among the drugs, otherwise
there is antagonism. The concept of Bliss independence has seen a recent resurgence
of interest as the need to assess the benefit of combination therapies and drug–drug
interactions has increased. Some current references are Pallmann and Schaarscmidt
(2016), Palmer and Sorger (2017), Russ and Kishony (2018) and Niu et al. (2019).
Drug interaction studies are often carried out as single-dose experiments, e.g., Ansari
et al. (2008), where the interaction is assessed by considering a single dose of each
of the two drugs. A more elaborate design, which we will not consider here, assesses
multiple drugs and doses using response surface methodology as in Lee (2010).

123



220 O. Davidov, T. Rudas

Naturally, the quantity of interest in drug interaction studies is

Φ(θ, η) = log(θ) − log(η1) − log(η2). (26)

The formulation in (26) links the problem discussed here to the ANOVA setup con-
sidered earlier. In many applications of single dose interaction tests, whether using
historical data or not, an explicit or implicit asymptotic argument is used, and the
theoretical results for the asymptotic case presented above are relevant. For example,
Demidenko and Miller (2019) describes a Daphnia acute test with two stressors, sin-
gle doses of CuSO4 and of NiCl, where the numbers of surviving organisms in water
were counted after 48 hours. The observations reported were the surviving fractions of
organisms only, without reporting their original numbers thus, essentially, assuming
their original numbers were very high, i.e., applying an asymptotic argument. But as
pointed out by Pallmann and Schaarscmidt (2016), in single-dose experiments, correct
statistical analysis should rely on the observed frequencies, and not on the observed
rates of success or failure. Therefore the sample sizes used in each arm of the experi-
ment are of crucial importance and in this subsection we provide finite sample results.

For simplicity suppose that there exist historical estimates of η1 and η1 based on
independent binomial experiments with sizes m1 and m2. Suppose further that the
current study allows for the recruitment of n experimental units, n1 of which will
receive D1, n2 will receive D2 and n12 will receive both drugs. Obviously

n = n1 + n2 + n12 (27)

and θ can not be estimated unless n12 > 0. However it is possible that n1 = n2 = 0.
The goal is to allocate the experimental units optimally, which is equivalent to the
problem of optimally allocating n +m1 +m2 observations in an experiment in which
the single dose arms are no smaller than m1 and m2, respectively. The optimal design
problem can be approximated as the minimization of the large sample variance of (26)

1

n12

1 − θ

θ
+ 1

n1 + m1

1 − η1

η1
+ 1

n2 + m2

1 − η2

η2
, (28)

subject to the constraint (27).
In contrast with the design problem encountered in Sect. 4.1 the design criterion

depends on the unknown parameters, i.e., the probabilities θ and η. We propose allo-
cating observations as if η1 = η̂1, η2 = η̂2 and θ = η̂1η̂2 is equal to its estimated
value under the hypothesis of Bliss independence.

One simple approach to the minimization of (28) is the following greedy iterative
procedure, which sequentially allocates observations into the condition where the
variance is reduced most:
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ALGORITHM
n12 ← 1, n1 ← 0, n2 ← 0
if n = n1 + n2 + n12 then
stop

else
R12(n12) ← 1

n12
1−η̂1η̂2
η̂1η̂2

R1(n1) ← 1
n1+m1

1−η̂1
η̂1

R2(n2) ← 1
n2+m2

1−η̂2
η̂2

C ← min{R12(n12 +1)− R12(n12), R1(n1 +1)− R1(n1), R2(n2 +1)− R2(n2)}

if C = R12(n12 + 1) − R12(n12) then
n12 ← n12 + 1

end if
if C = R1(n1 + 1) − R1(n1) then
n1 ← n1 + 1

end if
if C = R2(n2 + 1) − R2(n2) then
n2 ← n2 + 1

end if
end if

For example, if m1 = 30, m2 = 50, η̂1 = 0.7 and η̂2 = 0.8, and one had 56
observations, then 55 observations would be put in the arm where both treatments are
administered, and only one would be used to improve the estimate of η̂1. Table 3 con-
tains a tabulation of the optimal allocation of (n12, n1, n2). For selected combinations
of the values ofm1,m2, η1, η2 the table gives the minimal value of n, denoted as nmin,
for which replications of the historic observations are needed, and then the optimal
allocation for nmin. As one would expect, when θ is closer to 0.5 than η1 or η2, a larger
sample size n12 is allocated in the optimal design to estimating θ , than m1 or m2. In
the opposite case, n12 is smaller than m1 or m2.

As pointed out by a reviewer, the optimal design may not be unique. For example,
in the first entry of the table, when η1 = η2 = 0.3, m + 1−m2 = 10, and one has 23
observations to allocate, 22 observations should be used for estimating joint effect θ

and one observation should be used to improve the estimate of either of the individual
effects η1 or η2.

5 Summary and discussion

This paper focuses on the situation when historically available information in the
form of parameter estimates are either incorporated in the analysis of a current study
or used to plan a future experiment.We did not explicitly discuss the large literature on
data combination schemes or other two-stage plug-in methods. As mentioned, when
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Table 3 The minimal sample
size nmin , at which optimal
allocation requires to repeat
historical observations, for
selected values of the no-success
probabilities η1, η2 and
historical sample sizes m1, m2
in a test of drug interaction

m1 m2 nmin n12 n1 n2 m1 m2 nmin n12 n1 n2

(η1, η2) = (0.3, 0.3) (η1, η2) = (0.5, 0.7)

10 10 23 22 1 0 10 10 15 14 1 0

20 10 23 22 0 1 10 20 15 14 1 0

30 10 23 22 0 1 10 30 15 14 1 0

20 10 23 22 0 1

(η1, η2) = (0.3, 0.5) 30 10 23 22 0 1

10 10 17 16 1 0 (η1, η2) = (0.5, 0.9)

20 10 26 25 0 1

30 10 27 26 0 1 10 10 13 12 1 0

10 20 17 16 1 0 10 20 13 12 1 0

10 30 17 16 1 0 10 30 13 12 1 0

20 10 24 23 1 0

(η1, η2) = (0.3, 0.7) 30 10 35 34 1 0

10 10 14 13 1 0 (η1, η2) = (0.7, 0.7)

10 20 14 13 1 0

10 30 14 13 1 0 10 10 17 16 1 0

20 10 28 27 1 0 20 10 17 16 0 1

30 10 32 31 0 1 30 10 17 16 0 1

(η1, η2) = (0.3, 0.9) (η1, η2) = (0.7, 0.9)

10 10 12 11 1 0 10 10 18 17 1 0

10 20 12 11 1 0 20 10 25 24 1 0

10 30 12 11 1 0 30 10 25 24 0 1

20 10 23 22 1 0 10 20 13 12 1 0

30 10 34 33 1 0 10 30 13 12 1 0

historical estimates are incorporated in an analysis their variability is rarely accounted
for in the analysis. A partial list of examples, drawn from the scientific literature
was furnished earlier and many more exist. However, it seems very difficult to find
published research where the details are given to the extent which would make the
replication of the analysis possible. This limits one’s ability to apply the results of this
paper to published research. However, the results presented here will inform future
researchers of the scope and use of historical estimates and provide a toolkit for doing
so. We hope that our investigation may have an effect on the quality of future analyses
and publication standards.

We also agree with a referee who has noted that an estimate is always a coarsening
of the full data, and it is clear that having only access to a historical estimate instead
of the entire data leads to less efficient inferences.

Different disciplines exhibit different modes of using historical estimates. Social
scientists often incorporate estimates from surveys in the process of model fitting,
whereas biologists and engineers may use parameters estimated in experiments which
are very different than their own. One way, of course, of incorporating historical esti-
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mates is using prior distributions within the Bayesian framework. For recent examples
see Hoff (2019) and Bryan and Hoff (2020). Our approach, however, is frequentist, as
are most of the applications in the literature. In particular, we show how to incorpo-
rate historical estimates in a principled way in scenarios which we classify at Type I
Problems, where the historical parameters are not re-estimated, and Type II Problems,
where they are. Two variants of Type II Problems are described. See Theorems 3.1,
3.2 and 3.4. We also show that if, given the current dataD, it is possible to re-estimate
the historical parameters then it is beneficial to do so at least for large sample sizes
(Theorem 3.3). Other preference relations, in fact a hierarchy, among the estimators
and any function thereof, were also established, cf. Theorems 3.5, 3.6. The loss of
precision in the above mentioned settings is quantified in terms of a decomposition
of the variance matrices. It was also demonstrated that the availability of historical
estimates should be taken into account when an optimal experiment is designed. In
particular, relevant methods for a two-way ANOVA and for testing drug interaction
were discussed. Thus the results of this paper go beyond the existing knowledge on
the use of historical estimates.

In our analysis we have assumed that the current dataD is a random sample and that
the estimating Eq. (2) is of an additive form. These assumptions have been usedmerely
to simplify the exposition and are easily modified to dependent data and various other
estimating functions. It is clear that Type I and II Problems describe a broad range
of possibilities, nevertheless they are insufficient for describing the rich collection of
problems in which historical estimates may play a role. For example, our formulation
assumes that the historical parameters η1, . . . , ηK are distinct. However, in many
situations this is not so. In fact, some of the historical studies may be full or partial
replicates of each other. In cases when the current study is a partial replicate of a
historical study, simple plug-in methods or re-estimation methods may be used. One
has to be careful, though, about the choice of the estimates. We are aware of situations
where a simple plug-in estimator performs better than a less than optimal re-estimating
method. Throughout, we have assumed interchangeability. Clearly there are many
experimental settings, especially in the sciences, where this assumption is realistic. In
other situations, say clinical trials, heterogeneity rather than interchangeability is the
rule. In such cases some modification of the methods proposed, using random effect
models, may be possible. See Rukhin (2007) and the references therein.

Finally, it is also worth mentioning that the problem of accounting for historical
estimates is naturally related, for obvious reasons, to sequential analysis, where data is
collected over time, to meta-analysis, where the effort is to combine information from
different sources and double sampling, and especially non-nested double sampling
(Hidiroglou 2001), which attempts to provide better inferences by augmenting and
predicting unobserved quantities from existing data sets. The literature on combining
surveys (Kim and Rao 2012) is also relevant. Further understanding can be possibly
attained by incorporating ideas from these fields.
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Appendix: Proofs

Proof of Theorem 3.1:

Proof Since θ̄ A solves (2) we have

Ψ (θ̄ A, η̂) = 0. (29)

By assumption ψ is continuous and differentiable with respect to θ and η1, . . . , ηK .
Thus, so is Ψ . Hence, by the mean value theorem

Ψ (θ̄ A, η̂) = Ψ (θ0, η̂) + ∂

∂θ
Ψ (θ0, η̂)(θ̄ A − θ0) + o(||θ̄ A − θ0||).

Applying the mean value theorem to Ψ (θ0, η̂) in the display above yields

Ψ (θ0, η̂) = Ψ (θ0, η0) + ∂

∂η
Ψ (θ0, η0)(̂η−η0) + o(||̂η − η0||),

so (29) can be rewritten as

Ψ (θ0, η0) + ∂

∂η
Ψ (θ0, η0)(̂η − η0) + ∂

∂θ
Ψ (θ0, η̂)(θ̄ A − θ0) + R = 0

where, assuming consistency R = o(||θ̄ A − θ0||) + o(||̂η − η0||) = op(1). Now, by
the continuous mapping theorem and the law of large numbers we have:

∂

∂θ
Ψ (θ0, η̂) = 1

n

n
∑

i=1

∂

∂θ
ψ(θ0, η̂,Yi )

= 1

n

n
∑

i=1

∂

∂θ
ψ(θ0, η0,Yi ) + op(1) = E0(∂ψ/∂θ) + op(1)
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which is a p × p matrix. Similarly,

∂

∂η
Ψ (θ0, η0) = 1

n

n
∑

i=1

∂

∂η
ψ(θ0, η0,Yi ) = E0(∂ψ/∂η) + op(1),

which is a p × q matrix. For convenience we set Dθ0 = E0(∂ψ/∂θ) and Dη0 =
E0(∂ψ/∂η). Hence we can reexpress (29) more concisely as

Ψ (θ0, η0) + Dη0 (̂η − η0) + Dθ0(θ̄ A − θ0) + op (1) = 0

from which it follows, by the invertibility of Dθ0 , that

√
n(θ̄ A − θ0) = −D−1

θ0

{

1√
n

n
∑

i=1

ψ(θ0, η0,Yi ) +
√
n√
m

Dη0

√
m (̂η − η0)

}

+ op (1) .

(30)

Since the first term in the curly brackets above is a function of the data D collected in
S and the second term depends on the historical data, i.e., the studies S1, . . . ,SK the
two terms are independent. Now, by the central limit theorem

1√
n

n
∑

j=1

ψ(θ0, η0,Yi ) ⇒ Np(0,Σψ )

where Σψ = E0(ψψT ). By assumption
√
m j (̂η j − η j,0) ⇒ Nq j (0,Σ j ) for each

j . Thus
√
m (̂η − η0) ⇒ Nq(0,Σ) where Σ = BlockDiag(κ1Σ1, . . . , κKΣK ) with

κ j = lim(m/m j ) for j = 1, . . . , K . Thus,

√
n√
m

Dη0

√
m (̂η − η0) ⇒ Np(0, ρDη0ΣDT

η0
). (31)

Collecting terms shows that
√
n(θ̄ A−θ0) ⇒ Np(0, Aθθ )where Aθθ is as stated. Now,

recall that η̄A = η̂. Thus, marginally
√
n(η̄A − η0) ⇒ Nq(0, ρΣ), so Aηη = ρΣ .

Clearly the joint asymptotic distribution of
√
n(θ̄ A−θ0, η̄A−η0)

T , is alsomultivariate
normal. Thus,

Aθη = lim
n

Cov(
√
n(θ̄ A − θ0),

√
n(η̄A − η0)) = lim

n
[−D−1

θ0
Dη0Cov(

√
n(η̄A − η0),

√
n(η̄A − η0))] = −ρD−1

θ0
Dη0Σ,

as required, completing the proof. 
�
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Proof of Theorem 3.2:

Proof Since θ̄ B solves (9) where η̄ is given in (7) we have

Ψ (θ̄ B, η̄) = 0. (32)

Following the derivations in the proof of Theorem 3.1, but with η̄ instead of η̂, we find
that (32) can be rewritten as

Ψ (θ0, η0) + Dη0(η̄ − η0) + Dθ0(θ̄ B − θ0) + op (1) = 0

from which it follows, by the invertibility of Dθ0 , that

√
n(θ̄ B − θ0) = −D−1

θ0
{ 1√

n

n
∑

j=1

ψ(θ0, η0,Yi ) + Dη0

√
n(η̄ − η0)} + op (1) .

(33)

Now using (7) and (8) we find that

√
n(η̄ − η0) = √

n(W1(η̃ − η0) + W2(̂η − η0)) + op(1)

which we may substitute into (33) yielding

√
n(θ̄ B − θ0) = −D−1

θ0

⎧

⎨

⎩

1√
n

n
∑

j=1

ψ(θ0, η0,Yi ) + Dη0W1
√
n(η̃ − η0)

+Dη0W2

√

n

m

√
m (̂η − η0)

}

+ op (1) . (34)

The three terms in the curly brackets in (34) satisfy:

1√
n

n
∑

i=1

ψ(θ0, η0,Yi ) ⇒ Np(0,Σψ ),

Dη0W1
√
n(η̃ − η0) ⇒ Nq(0, Dη0W1ΥηηWT

1 DT
η0

),

Dη0W2

√
n√
m

√
m (̂η − η0) ⇒ Nq(0, ρDη0W2ΣWT

2 DT
η0

).

Now, since η̃ is a solution to (3) the quantity
√
n(η̃ − η0) may be expressed as

1√
n

n
∑

i=1

ϕ(θ0, η0,Yi ) + op(1)
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for some function ϕ which is known as the influence function (cf. Van der Vaart 2000).
For more details see Remark 9. It follows by the central limit theorem, that

1√
n

n
∑

i=1

ψ(θ0, η0,Yi ) and
1√
n

n
∑

i=1

ϕ(θ0, η0,Yi )

are asymptotically jointly multivariate normal, thus so are the first two terms in the
curly brackets of (34). Moreover the third term, which depends on the historical data
is independent of the first two terms and normally distributed. Now the covariance
among the first two terms is

Cov

(

1√
n

n
∑

i=1

ψ(θ0, η0,Yi ),
√
n(η̃ − η0)

)

= Cov(
n

∑

i=1

ψ(θ0, η0,Yi ), (η̃ − η0))

= Cov(nψ(θ0, η0,Y1), (η̃ − η0))

= E0(ψ(θ0, η0,Y1)n(η̃ − η0)) = E0(E0(ψ(θ0, η0,Y1)n(η̃ − η0)|Y1))
= E0(ψ(θ0, η0,Y1)E0(n(η̃ − η0)|Y1)).

However, by assumption η̃ is asymptotically unbiased and
√
n-consistent, i.e.,E0(η̃) =

η0 + b/n + o(1/n) so E0(n(η̃ − η0)|Y1)) = nE0((η̃ − η0)) + o(1) = O(1). Plugging
the latter into the above display shows that covariance above converges to 0 as n → ∞.
It now follows that all three terms appearing in (34) are asymptotically independent.

Set η̄B = η̄ and observe that using (34) we have
√
n(η̄B − η0) ⇒ Nq(0, Bηη)

where

Bηη = W1ΥηηWT
1 + ρW2ΣWT

2 .

Since γ /(1 − γ ) = ρ we may reexpress the weight matrices as W1 = (Υ −1
ηη +

(ρΣ)−1)−1Υ −1
ηη and W2 = (Υ −1

ηη + (ρΣ)−1)−1(ρΣ)−1. Now, using the fact that
products of symmetric matrices commute and a bit of algebra it can be shown that

Bηη = (Υ −1
ηη + (ρΣ)−1)−1.

Collecting terms shows that
√
n(θ̄ B − θ0) ⇒ Np(0, Bθθ ) where Bθθ is as stated. The

stochastic representation (30) shows that the joint asymptotic distribution of
√
n(θ̄ −

θ0, η̄ − η0) is also multivariate normal with

Cov(
√
n(θ̄ B − θ0),

√
n(η̄B − η0)) = −D−1

θ0
Dη0Cov(

√
n(η̄B − η0),√

n(η̄B − η0)) → −D−1
θ0

Dη0Bηη

as required, completing the proof. 
�

123



228 O. Davidov, T. Rudas

Proof of Theorem 3.3:

The following preliminary Lemma will be used.

Lemma 1 Let X1 and X2 be random vectors with variances V1 = V(X1) and V2 =
V(X2) with V1 � V2. Then for any matrix A we have V(AX1) � V(AX2). As a
consequence we also have V−1

1 � V−1
2 .

Proof of Lemma 1:

Proof Observe that

uTV(AX1)u = uT AV1AT u = (AT u)T V1(AT u) = vT V1v � vT V2v

= (AT u)T V2(AT u)

= uT AV2AT u = uTV(AX2)u.

for any vector u. The inequality vT V1v � vT V2v holds since V2 −V1 is non-negative
definite by assumption. Thus V(AX1) � V(AX2) as claimed.

Now choose A = V−1/2
1 V−1/2

2 and note that

V(AX1) = (V−1/2
1 V−1/2

2 )V1(V
−1/2
1 V−1/2

2 )T = V−1
2

V(AX2) = (V−1/2
1 V−1/2

2 )V2(V
−1/2
1 V−1/2

2 )T = V−1
1 .

The equalities abovehold since products of symmetricmatrices commute. The inequal-
ity V−1

1 � V−1
2 follows immediately. 
�

We now continue with the proof of Theorem 3.3:

Proof Observe that A is the variance matrix of the random vector

T1 =
(−D−1

θ0
−D−1

θ0
Dη0

0 I

)(

S1
S2

)

where S1 ∼ Np(0,Σψ ) and S2 ∼ Nq(0, ρΣ) are independent. Similarly, B is the
variance matrix of the random vector

T2 =
(−D−1

θ0
−D−1

θ0
Dη0

0 I

)(

S1
S3

)

where S1 ∼ Np(0,Σψ ) and S3 ∼ Nq(0, (Υηη + (ρΣ)−1)−1 are independent. Now,

V

(

S1
S2

)

− V

(

S1
S3

)

=
(

0 0
0 ρΣ − (Υηη + (ρΣ)−1)−1

)

123



On the use of historical estimates 229

It is easy to verify that Υηη + (ρΣ)−1 � (ρΣ)−1 so by the second part of Lemma 1
we have ρΣ � (Υηη + (ρΣ)−1)−1 and therefore

V

(

S1
S3

)

� V

(

S1
S2

)

.

Applying Lemma 1 we find that

B = V(T2) � V(T1) = A

as required.
Next, an application of the δ-method and Theorems 3.1 and 3.2 shows that√
n(Φ(θ̄ A, η̄A)−Φ(θ0, η0)) ⇒ Nr (0, P APT ) and

√
n(Φ(θ̄ B, η̄B)−Φ(θ0, η0)) ⇒

Nr (0, PBPT ) where r is the dimension of Φ and P = E0(∂Φ/∂ω). Observe that
P APT is the variance of the random vector PT1 whereas PBPT is the variance PT2.
Since B � A it follows from Lemma 1 that PBPT � P APT concluding the proof.


�
The following lemma motivates the use of the estimators (7) and (13)

Lemma 2 Let W ∼ Nq(η,m−1Σ) and (U, V )T ∼ Np+q((θ, η)T , n−1Υ ) be inde-
pendent random vectors where

Υ =
(

Υθθ Υθη

Υηθ Υηη

)

.

Then the MLEs of θ and η are

θ̄ = U − ΥθηΥ
−1
ηη (V − η̄) and η̄ = (nΥ −1

ηη + mΣ−1)−1(nΥ −1
ηη V + mΣ−1W).(35)

Proof of Lemma 2:

Proof The likelihood is given by

L(θ, η) = f (U, V ; θ , η) f (W; η)

= f (U |V ; θ , η) f (V ; η) f (W; η).

Now U |V ∼ Np(λ,Λ) with

λ = E(U |V ) = θ + ΥθηΥ
−1
ηη (V − η),

Λ = V(U |V ) = n−1(Υθθ − ΥθηΥ
−1
ηη Υηθ ),

soλ is linear in both θ and η. Thuswemay reparameterize f (U |V ; θ , η) as f (U |V ;λ)

where

f (U |V ;λ) ∝ exp{−1

2
(U − λ)TΛ−1(U − λ)}.

123



230 O. Davidov, T. Rudas

Also marginally V follows a Nq(η, n−1Υηη) distribution so

f (V ; η) f (W; η) ∝ exp{−1

2
(V − η)T nΥ −1

ηη (V − η)} exp{−1

2
(W − η)TmΣ−1(W − η)}

It now follows that the MLEs for (λ, η) are

λ̄ = U,

η̄ = (nΥ −1
ηη + mΣ−1)−1(nΥ −1

ηη V + mΣ−1U).

Thus by the invariance property of MLEs we find that the MLE of θ is

θ̄ = U − ΥθηΥ
−1
ηη (V − η̄)

which completes the proof. 
�

Remark 8 To obtain the estimators (7) and (13) apply Lemma 2 and substitute θ̃ for
U , η̃ for V and η̂ for W . Further substitute Υ̃ and ̂Σ for Υ and Σ , respectively.

Proof of Theorem 3.4:

Proof First note that the difference η̃ − η̄C in (13) is a linear combination of η̃ and η̂

given by

(nΥ̃ −1
ηη + m ̂Σ−1)−1m ̂Σ−1(η̃ − η̂).

Therefore,

(

θ̄C
η̄C

)

=
(

I −Υ̃θηΥ̃
−1
ηη (nΥ̃ −1

ηη + m ̂Σ−1)−1m ̂Σ−1 Υ̃θηΥ̃
−1
ηη (nΥ̃ −1

ηη + m ̂Σ−1)−1m ̂Σ−1

0 (nΥ̃ −1
ηη + m ̂Σ−1)−1nΥ̃ −1

ηη (nΥ̃ −1
ηη + m ̂Σ−1)−1m ̂Σ−1

)

⎛

⎝

θ̃

η̃

η̂

⎞

⎠ .

Since Υ and Σ can be consistently estimated it follows that

(

θ̄C
η̄C

)

=
(

I −ΥθηΥ
−1
ηη (nΥ −1

ηη + mΣ−1)−1mΣ−1 ΥθηΥ
−1
ηη (nΥ −1

ηη + mΣ−1)−1mΣ−1

0 (nΥ −1
ηη + mΣ−1)−1nΥ −1

ηη (nΥ −1
ηη + mΣ−1)−1mΣ−1

)

⎛

⎝

θ̃

η̃

η̂

⎞

⎠ + op(1).
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Clearly, the fact that n/(n + m) → γ implies that (nΥ −1
ηη + mΣ−1)−1nΥ −1

ηη → W1

and (nΥ −1
ηη + mΣ−1)−1mΣ−1 → W2 so we may rewrite the display above as

(

θ̄C
η̄C

)

= M

⎛

⎝

θ̃

η̃

η̂

⎞

⎠ + op(1) (36)

where M is given in (14). Further observe that

M

⎛

⎝

θ0
η0
η0

⎞

⎠ =
(

θ0
η0

)

(37)

and that
√
n(θ̃ − θ0, η̃ − η0, η̂ − η0) ⇒ Np+2q(0, V ) (38)

where V is given by (14). Now (36), (37) and (38) together imply that
(

θ̄C − θ0
η̄C − η0

)

⇒ Np+q(0, MVMT ) (39)

as stated. In particular Cθθ is the appropriate submatrix of MVMT . Multiplying out
we find that

Cθθ = Υθθ − ΥθηW2RT − RW2Υηθ + RW2ΥηηW2RT + ρRW2ΣW2RT . (40)

ThematricesΥηη,Σ andW2 are symmetric and thus their products commute. It follows
that RW2ΥηηW2RT equals RΥηηW2

2 R
T and ρRW2ΣW2RT equals ρRΣW2

2 R
T . It

is also easy to verify that ΥθηW2RT = RW2Υηθ so

ΥθηW2RT + RW2Υηθ = 2ΥθηW2RT = 2RΥηηW2RT .

Combining and simplifying we obtain

Cθθ = Υθθ − RΥηηSRT .

where

S = 2W2 − W2
2 − ρW2

2 ΣΥ −1
ηη . (41)

Now, using symmetry, standard algebraicmanipulation and the fact thatρ = γ /(1−γ )

we have

S = (γΥ −1
ηη + (1 − γ )Σ)−2{2(1 − γ )Σ−1(γΥ −1

ηη + (1 − γ )Σ) − (1 − γ )2Σ−2

− γ

1 − γ
ΣΥ −1

ηη (1 − γ )2Σ−2}
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= (γΥ −1
ηη + (1 − γ )Σ)−2(1 − γ )(γΥ −1

ηη + (1 − γ )Σ)

= (γΥ −1
ηη + (1 − γ )Σ)−1(1 − γ )Σ−1 = W2

Thus Cθθ = Υθθ − RΥηηW2RT = Υθθ − ΥθηΥ
−1
ηη W2Υ

T
θη as required. It is also clear

that Cηη = Bηη and that

Cθη = lim
n

Cov(
√
n(θ̄C − θ0),

√
n(η̄C − η0)) = lim

n
nCov(θ̄C , η̄C )

= lim
n

nCov(θ̃ − R̃(η̃ − η̄), η̄)

= lim
n

n(Cov(θ̃ , η̄) − R̃Cov(η̃ − η̄, η̄))

where R̃ = Υ̃θηΥ̃
−1
ηη . Now nCov(θ̃, η̄) = nCov(θ̃ ,W1η̃ + W2η̂ + op(1)) → ΥθηW1.

Further note that nCov(η̃ − η̄, η̄) = nCov(η̃,W1η̃ + W2η̂ + op(1)) − nCov(η̄, η̄) →
ΥηηW1 − (Υ −1

ηη + (ρΣ)−1)−1 = 0 since

ΥηηW1 = Υηη(γΥ −1
ηη + (1 − γ )Σ−1)−1γΥ −1

ηη = (Υ −1
ηη + (ρΣ)−1)−1

where we have used the fact that ρ = γ /(1− γ ). Thus Cθη = ΥθηW1 concluding the
proof. 
�

Proof of Theorem 3.5:

Proof Suppose that (U, V )T ∼ N((θ, η)T ,Υ ) and W ∼ N(η, ρΣ) are independent.
Let Iω(U, V ) and Iω(U, V ,W) denote the Fisher Information about ω = (θ , η)T

in (U, V ) and (U, V ,W) respectively. It is clear that Iω(U, V ) = Υ −1. Moreover,
repeating the calculations in proofs of Lemma 2 and Theorem 3.4 we deduce that
Iω(U, V ,W) = C−1. The additivity of Fisher’s Information implies that

Iω(U, V ,W) � Iω(U, V ). (42)

Equation (42) and Lemma 1 imply that

C � Υ

as stated. The fact that VΦ
C � VΦ

Υ now follows as in Theorem 3.3. 
�

Proof of Theorem 3.6:

Proof By Equation (33) in the proof of Theorem 3.2 we have

√
n(θ̄ B − θ0) = −(Dθ0 (ψ))−1

{

1√
n

n
∑

i=1

ψ(θ0, η0,Yi ) + Dη0 (ψ)
√
n(η̄ − η0)

}

+ op (1) ,
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and similarly,

√
n(θ̄C − θ0) = −(Dθ0 (λ))−1

{

1√
n

n
∑

i=1

λ(θ0, η0,Yi ) + Dη0 (λ)
√
n(η̄ − η0)

}

+ op (1) .

The analysis in the proof of Theorem 3.2 shows that in both equations above the
terms in the curly brackets are asymptotically independent. Conditions (18) and (17)
immediately imply the conclusion of the Theorem. 
�
Remark 9 Recall that (θ̃ , η̃) simultaneously solveΨ (θ , η) = 0 andΓ (θ, η) = 0where
Γ (θ , η) = n−1 ∑n

i=1 γ (θ , η,Yi ). Standard calculations show that
(

θ̃

η̃

)

=
(

θ0
η0

)

+ D−1
( 1

n

∑n
i=1 ψ(θ , η,Yi )

1
n

∑n
i=1 γ (θ , η,Yi )

)

+ op(1) (43)

where

D =
(

D11 D12
D21 D22

)

=
(

Dθ (ψ) Dη(ψ)

Dθ (γ ) Dη(γ )

)

.

Using the above notations and rewriting Eq. (33) we have

θ̄ B = θ0 + 1

n

n
∑

i=1

D−1
11 ψ(θ , η,Yi ) − D−1

11 D12(η̄ − η0) + op(1). (44)

As demonstrated in the proof of Theorem 3.2 the two terms above are asymptotically
independent so we can re-express θ̄ B as

θ̄ B = θ0 + 1

n

n
∑

i=1

{D−1
11 ψ(θ, η,Yi ) − D−1

11 D12Qi } + op(1) (45)

where Qi are IID N(0,W1ΥηηWT
1 + ρW2ΣWT

2 ) are random variables which are
independent of D. Further note that by (43)

θ̃ = θ0 + D11 1

n

n
∑

i=1

ψ(θ , η,Yi ) + D12 1

n

n
∑

i=1

γ (θ, η,Yi ) + op(1),

η̃ = η0 + D21 1

n

n
∑

i=1

ψ(θ, η,Yi ) + D22 1

n

n
∑

i=1

γ (θ , η,Yi ) + op(1),

where Di j is the appropriate submatrix of D−1. Substituting the formulas above into
Eq. (13) for θ̄C and simplifying we find that

θ̄C = θ0 + 1

n

n
∑

i=1

{(D11 − ΥθηΥ
−1
ηη D21)ψ(θ , η,Yi ) + (D21 − ΥθηΥ

−1
ηη D22)γ (θ , η,Yi )
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+ΥθηΥ
−1
ηη Qi } + op(1). (46)

Therefore comparing the estimators θ̄ B and θ̄C amounts to comparing their influence
functions implicit in (45) and (46), i.e.,

D−1
11 ψ(θ, η,Yi ) − D−1

11 D12Qi

and

(D11 − ΥθηΥ
−1
ηη D21)ψ(θ , η,Yi ) + (D21 − ΥθηΥ

−1
ηη D22)γ (θ , η,Yi ) + ΥθηΥ

−1
ηη Qi ,

respectively. Also note that

Υ = (D−1)

(

E0(ψψT ) E0(ψγ T )

E0(γψT ) E0(γ γ T )

)

(D−1)T

so although in principle it is possible to always compare the above influence functions
in practice this comparison is very difficult unless some further simplifying assump-
tions are imposed.
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