
Statistical Papers (2023) 64:1861–1889
https://doi.org/10.1007/s00362-022-01365-1

REGULAR ART ICLE

A test for normality and independence based on
characteristic function

Wiktor Ejsmont1 · Bojana Milošević2 ·Marko Obradović2
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Abstract
In this article we prove a generalization of the Ejsmont characterization (Ejsmont in
Stat Probab Lett 114:1–5, 2016) of the multivariate normal distribution. Based on
it, we propose a new test for independence and normality. The test uses an integral
of the squared modulus of the difference between the product of empirical charac-
teristic functions and some constant. Special attention is given to the case of testing
for univariate normality in which we derive the test statistic explicitly in terms of
Bessel function and explore asymptotic properties. The simulation study also includes
the cases of testing for bivariate and trivariate normality and independence, as well
as multivariate normality. We show the quality performance of our test in compari-
son to some popular powerful competitors. The practical application of the proposed
normality and independence test is discussed and illustrated using a real dataset.
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1 Introduction

Some of classical and important problems in statistics are goodness-of-fit and inde-
pendence tests. The traditional approach to testing for independence is based on
Pearson’s correlation coefficient, but its lack of robustness to outliers and departures
from normality eventually led researchers to consider some alternative nonparamet-
ric procedures such as Savage, Spearman and van der Waerden, which in particular
rely on linear rank statistics. The traditional approach for testing normality includes
classical omnibus tests such as Kolmogorov–Smirnov and Anderson-Darling, and
quantile-based tests such as Shapiro–Wilk and Shapiro–Francia.

In many circumstances, such as checkingmodel assumptions, one needs to use both
types of tests for the same sample. This is usually done separately and then one needs
to be careful with multiple testing issues. In this paper we propose another way to test
for the independence and normality simultaneously.

A theoretical framework to study this aspect was given by Ejsmont (2016). Ejsmont
proved that the characterizations of a normal law are given by a certain invariance of
the noncentral chi-square distribution. Namely in Ejsmont (2016, Corollary 3.3) it
has been shown that if the random vectors (X1, . . . ,Xm, A) and (Y1, . . . ,Yn, B) are
independent and the distribution of

∑m
i=1 Xi ai + A + ∑n

j=1 Y j b j + B depends only

on
∑m

i=1 a
2
i + ∑n

j=1 b
2
j , then X1, . . . ,Xm,Y1, . . . ,Yn are independent and have the

samenormal distribution. This result is obtained under the assumption that allmoments
exist. In the current paper we weaken this condition considerably and propose a new
test of independence and normality.

The paper is organized as follows. In Sect. 2 we state and prove the main results
of Ejsmont (2016) under the weakened assumption. Next, in Sect. 3, using this result
we propose a new test for normality and explore its asymptotic properties. In Sect. 4
we present results of a wide empirical study in which we compare powers of our and
competing tests. Finally, in Sect. 5 we provide the real-data example and present the
list of potential application of the proposed tests. For all proofs, the readers are referred
to the Appendix.

2 The theoretical base for the construction of a test

Notation.The scalar product of vectors t, s ∈ R
p is denoted by 〈t, s〉 and the Euclidean

norm of t is ‖t‖ = √〈t, t〉. Throughout this paper X := (X1, . . . ,Xm) ∈ R
m and

Y := (Y1, . . . ,Yn) ∈ R
n are random vectors, where m and n are positive integers.

The characteristic functions of X and Y are denoted by ϕX(·) = Eei〈·,X〉 and ϕY(·) =
Eei〈·,Y〉, respectively. For complex-valued functions f (·), the complex conjugate of
f is denoted by f and | f |2 = f f . In order to simplify the notation, we will denote
[n] = {1, . . . , n}. The concatenation of the vectors a ∈ R

m and b ∈ R
n is denoted by

(a, b) ∈ R
m+n .

Our construction of a new test of normality is based on the following result. This is
a generalization of the main result of Ejsmont (2016), under omitted moment assump-
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tions (in Ejsmont (2016) we assume that random variables have all moments; the proof
is also different).

Theorem 2.1 Let (X1, . . . ,Xm, A) and (Y1, . . . ,Yn, B) be independent random vec-
tors, where Xi and Y j are nondegenerate for i ∈ [m], j ∈ [n], and let statistic

〈a,X〉 + 〈b,Y〉 + A + B =
m∑

i=1

aiXi +
n∑

j=1

b jY j + A + B,

have a distribution which depends only on ‖a‖2 + ‖b‖2, where a ∈ R
m and b ∈ R

n.
Then random variables X1, . . . ,Xm,Y1, . . . ,Yn are independent and have the same
normal distribution with zero means.

The construction of a new test is based directly on the Proposition below, that
follows, in a sense, from Theorem 2.1; namely if A = B = 0, then Theorem 2.1 can
be rewritten as follows.

Proposition 2.2 Let (X1, . . . ,Xm) and (Y1, . . . ,Yn) be independent random vectors,
where Xi and Y j are nondegenerate, E(X2

i ) = 1, E(Y2
j ) = 1 for i ∈ [m], j ∈ [n].

Then the following statements are equivalent:

(i) a statistic 〈a,X〉 + 〈b,Y〉 has a distribution which does not depend on

(a1, . . . , am, b1, . . . , bn),

whenever ‖a‖2 + ‖b‖2 = 1;
(ii) random variables X1, . . . ,Xm,Y1, . . . ,Yn are independent and have the same

normal distribution N (0, 1).

3 The test statistic

In this section we propose a new class of test statistics for testing the null hypothe-
sis that the sample comes from a multivariate normal distribution with independent
components. In a univariate case it reduces to the normality null hypothesis.

Our methodology applied in this construction is based on distances between empir-
ical and theoretical quantities. In the theory of hypothesis testing there are many
types of distances that can be defined between statistical objects. One of the best
known and mostly applied is the L2 distance (used e.g. for the construction of Cramér
(1928) and Anderson and Darling (1952) tests). If we want to test for multivariate
normality, then we can also use the L2 distance between empirical and theoretical
characteristic function; see Baringhaus and Henze (1988) and Epps and Lawrence
(1983). More recently, the characterization of a test for multivariate independence
was given in Székely et al. (2007) and Székely and Rizzo (2009). Suppose that
X ∈ R

m,Y ∈ R
n are real-valued random vectors with characteristic functions ϕX

and ϕY, respectively. Then, for measuring independence, we can use the following
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distance
∫
Rm+n |ϕX,Y(t, s) − ϕX(t)ϕY(s)|2w(t, s)dtds, where w(t, s) is an arbitrary

positive weight function for which the integral above exists. We put forward a test
that is also based on the distance between a function of the empirical characteristic
function and some constant, and it was inspired by the articles (Baringhaus and Henze
1988; Székely et al. 2007; Székely and Rizzo 2009; Epps and Lawrence 1983). Our
approach is based on the following reasoning.

The condition (i) from Proposition 2.2 simply means that we get the statement (i i)
if the distribution of the statistic 〈a,X〉+〈b,Y〉 is constant on the (n+m)-sphere with
radius 1. This requirement can be rewritten using the characteristic function, namely,
we get statement (i i) if and only if the function

Eei〈a,X〉+i〈b,Y〉 = ϕX(a)ϕY(b)

is constant on the unit sphere ‖a‖2 + ‖b‖2 = 1, where a ∈ R
m and b ∈ R

n . We also

know from the proof of Proposition 2.2 that this constant function must equal e− 1
2 ,

namely

ϕX(a)ϕY(b) − e− 1
2 = 0

for all ‖a‖2 + ‖b‖2 = 1 or equivalently,

∫
Sn+m

|ϕX(a)ϕY(b) − e− 1
2 |2dSn+m = 0, (1)

where
∫
Sn+m

·dSn+m is the surface integral over Sn+m = {t ∈ R
n+m | ‖t‖ = 1}.

Finiteness of the integral above follows directly from |ϕX(a)ϕY(b)| ≤ 1 and e− 1
2 < 1,

namely we see that

∫

Sn+m

|ϕX(a)ϕY(b) − e− 1
2 |2dSn+m ≤ (1 − e− 1

2 )2|Sn+m |.

Let us assume that we have a simple random sample X = (X1, . . . , XN ) from a
multivariate distribution withm components, i.e. the data have the following structure:

X =

⎡

⎢
⎢
⎣

x1,1 x1,2 . . . x1,m
x2,1 x2,2 . . . x2,m
. . . . . . . . . . . . . . . . . . . . . .
xN ,1 xN ,2 . . . xN ,m

⎤

⎥
⎥
⎦ . (2)

We want to test the null hypothesis

H(m)
0 : H(m)

1 :
all columns of X are independent, and have vs. H(m)

0 is not true.
normal N (μk, σ

2
k ) distributions, k = 1, . . . ,m;
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For this purposewe use Proposition 2.2 form = n. Let X̃ denote thematrix obtained
from X by column-wise standardization, i.e.

X̃ j,k = x j,k − μ̂k

σ̂k
, k = 1, . . . ,m, j = 1, . . . , N , (3)

where

μ̂k = 1

N

N∑

j=1

x j,k and σ̂ 2
k = 1

N − 1

N∑

j=1

(x j,k − μ̂k)
2. (4)

Let ϕX̃(a) be the empirical characteristic function of X̃ defined by

ϕX̃(a) = 1

N

N∑

k=1

ei〈a,X̃k 〉,

where X̃k is the kth row of the matrix X̃. Similarly, the empirical counterpart of
characteristic function of random variable 〈a, X〉 + 〈b,Y 〉 is

1

N 2

∑

j,k

ei(〈a,X j 〉+〈b,Xk 〉),

where a = (a1, ..., am)T and b = (b1, ..., bm)T. Assuming that X and Y are both
distributed as X1, the natural test statistics based on (1) is

Mm = N
∫

∣
∣
∣
∣
∣
∣

1

N 2

∑

j,k

ei(〈a,X̃ j 〉+〈b,X̃k 〉) − e− 1
2

∣
∣
∣
∣
∣
∣

2

dS2m(a, b), (5)

which can be further expressed as

Mm = N
∫ (

1

N 2

∑

j,k

(cos
(〈a, X̃ j 〉 + 〈b, X̃k〉

) − e− 1
2

)2

+
(

1

N 2

∑

i, j

sin
(〈a, X̃ j 〉 + 〈b, X̃k〉

)
)2

dS2m(a, b),

(6)

where a = (a1, ..., am)T and b = (b1, ..., bm)T such that 〈a, a〉 + 〈b, b〉 = 1.
We are interested in the one-sided test, i.e. the right-tailed test, because we see from

the above construction that we reject the null hypothesis for large values of Mm . It
is clear that the distribution of the test statistic, under the null hypothesis, does not
depend on the null distribution location and scale parameters μk and σk , k = 1, ...,m,
hence we may derive critical values using the Monte Carlo approach.
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1866 W. Ejsmont et al.

When the sample is univariate, the test statistic M1 can be expressed in a closed
form.

Proposition 3.1 Let X̃ = (X̃1, . . . , X̃n) be the standardized sample. The statistic M1
has the form

M1 = 2πN

[
1

N 4

N∑

n, j,k,l=1

J (d(X̃n − X̃k , X̃ j − X̃l)) − e− 1
2

2

N 2

N∑

n, j=1

J (d(X̃n, X̃ j )) + e−1
]

.

(7)

where J is the Bessel function (of order zero) of the first kind, namely J (z) =
∑∞

k=0(−1)k (z2/4)k

(k!)2 and d is the distance from origin to point (x, y), i.e. d(x, y) =
√
x2 + y2.

3.1 Asymptotic properties

In this section we discuss some asymptotic properties of the proposed tests. First, we
show their consistency against fixed alternatives.

Theorem 3.2 Let X1, ..., XN be an i.i.d. sample of m-variate random vectors with
finite second moments. Denote the vectors of means and variancesμ = (μ1, ..., μm)T

and σ = (σ 2
1 , ..., σ 2

m)T . Define ϕZ (·) as the characteristic function of the columnwise
standardized random vector Z = Diag((σ−1

1 , ..., σ−1
m ))(X1 − μ). Then

Mm

N
a.s.→ � =

∫

|ϕZ (a)ϕZ (b) − e− 1
2 |2dS2m(a, b) ≥ 0,

and � = 0 if and only if the null hypothesis holds.

Next we examine the asymptotic distribution under the null hypothesis. The test
statistic (6) is an integral of a sum of squares of two empirical processes. Denote them
by U (m)

1,N and U (m)
2,N , respectively. Then (6) can be expressed as

Mm = N
∫ ∣

∣
∣U

(m)
1,N (a, b) + i ·U (m)

2,N (a, b)
∣
∣
∣
2
dS2m(a, b), (8)

which is convenient for exploring the asymptotic properties.
Here we focus on the case m = 1. The generalization to the multivariate case can

be obtained analogously. Before formulating results about the limit null distribution
we introduce the following notation.

Let L2[0, 2π ] denote the Hilbert space of all complex-valued functions such that
∫ 2π
0 |g(t)|2dt < ∞, with the inner product defined as

〈g1, g2〉 =
∫ 2π

0
g1(t)g2(t)dt .
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Let also ||·||L2 denote the norm in this space. Following the idea from Jammalamadaka
et al. (2019), and moving to polar coordinates, our statistics can be expressed as

M1 = ||ZN ||2L2 ,

where ZN (α) = √
N (U (1)

1,N (cosα, sin α)) + i ·U (1)
2,N (cosα, sin α)), α ∈ [0, 2π ].

Theorem 3.3 Let X1, ..., XN be an i.i.d. sample from normal N (μ, σ 2) distribution.
Then M1

w→ ||Z ||2
L2 , where Z is a zeromeanGaussian randomelement from L2[0, 2π ]

with the covariance function

K (α1, α2) = lim
N→∞ EZN (α1)ZN (α2) = E�(X;α1)�(X;α2), (9)

where

�(x;α) = e− 1
2 cos

2 α cos(x sin α) + e− 1
2 sin

2 α cos(x cosα) − 2e− 1
2 + 1

2
e− 1

2 (x2 − 1)

+ i · (
e− 1

2 sin
2 α sin(x cosα) + e− 1

2 cos
2 α sin(x sin α) − e− 1

2 x
)
.

(10)

From the Karhunen–Loève expansion of Gaussian process, the distribution of
||Z ||2

L2 can be further expressed as
∑∞

i=1 λiW 2
i , where {λi } is the sequence of positive

eigenvalues of the integral operator with kernel (9) and {Wi } is the i.i.d. sequence of
standard normal random variables.

4 Simulation study

In this section we calculate empirical powers of the proposed tests and compare them
with several competitors.

4.1 Testing for univariate normality

In Tables 1 and 2 we present power study results for the test based on M1, with sample
sizes n = 20, 50 and 100. The empirical sizes and powers are presented as percentages
with ’*’ signifying 100%. The results are obtained using theMonte Carlo method with
N = 5000 replications.

Among the plethora of normality tests, in order to evaluate the performance of our
test versus the most popular normality tests, we selected the Shapiro–Wilk test (SW),
see Shapiro and Wilk (1965), the Shapiro–Francia test (SF), see Shapiro and Francia
(1972), and the Anderson-Darling test (AD), see Anderson and Darling (1952). Those
tests are implemented in the R-package nortest by Gross and Ligges (2015). Addi-
tionally, we consider recent powerful tests based on empirical characteristic function
(BHEP), see Henze and Wagner (1997), quantile correlation test based on the L2-
Wasserstein distance, see Del Barrio et al. (1999), the moment generating function

123
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(HJGβ ) proposed in Henze and Jiménez-Gamero (2019) and a test based on Stein’s
fixed point characterization proposed in Betsch and Ebner (2020).

The alternatives we consider are normal mixtures MixN(p, μ, σ 2) = (1 −
p)N (0, 1) + pN (μ, σ 2), Student tν distribution, uniform U (a, b) distribution, chi-
squared χ2

ν , beta B(a, b), gamma �(a, b), Gumbel Gum(μ, σ ) and lognormal
LN(μ, σ ),where all parameters are standard distribution parameters. This set of alter-
natives was also used in Betsch and Ebner (2020).

It can be seen fromTables 1 and 2 that the powers are reasonably high in comparison
to other tests for all alternatives except for the uniform and normal mixtures. In the
case of the Gumbel distribution our test outperforms the competitors, and for gamma
and chi-squared it is one of the best.

4.2 Testing for normality and independence

Consider first a bivariate simple random sample X = (X1, . . . , XN ), where X j =
(X j1 , X j2), j = 1, . . . , N . Let X̃ = (X̃1, . . . , X̃N ) be its column-wise standardization
(3). Here, the test statistic (5) becomes

M2 =
∫ (

1

N 2

∑

j,k

(cos
(
a1 X̃ j1 + a2 X̃ j2 + b1 X̃k1 + b2 X̃k2

) − e− 1
2

)2

+
(

1

N 2

∑

i, j

sin
(
a1 X̃ j1 + a2 X̃ j2 + b1 X̃k1 + b2 X̃k2

)
)2

dS4(a, b),

where a = (a1, a2)T and b = (b1, b2)T such that 〈a, a〉 + 〈b, b〉 = 1.
It is possible to further elaborate the expression above, similarly to the univariate

case, however the resulting integrals do not have a convenient form, and from the
computational point of view, the double sums are significantly faster then quadruple
sums which would have been obtained otherwise. The integral over a sphere can be
efficiently calculated using the SphericalCubature package from the R project (Nolan
2021).

In Table 3 and 4 we present powers of the new test. As competitors we chose the
KS2 test, initially proposed in Koziol (1979) with data driven parameter selection
introduced in Kallenberg et al. (1997), as well as the bivariate versions of BHEP and
HJGβ tests.

The reason behind choosing the KS2 test is that it is the only one in the literature
known so far, to test for bivariate normality and independence. In Kallenberg et al.
(1997) it is shown that it outperformsKolmogorov–Smirnov and Hoeffding’s tests in
most cases. The other tests are chosen since they are powerful for bivariate normality
based on characteristic and moment generating functions. When they are applied
to the column-wise standardized sample, they are suitable to test for normality and
independence. The set of alternatives is taken from Kallenberg et al. (1997) for some
choice of distribution parameters, and is given below. Unless stated otherwise, all
distributions are defined for xi ∈ R, i = 1, 2. Distributions derived from the bivariate
normal distribution inherit its parameter space μi ∈ R, σi > 0, i = 1, 2, ρ ∈ [−1, 1].
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Table 1 Power comparison for tests of univariate normality—Part I

Alt. n SW BCMR BHEP AD SF HJG2.5 HJG5 BE(1)
1 BE(2)

1 M1

N(1,4) 20 5 5 5 5 5 5 5 5 5 5

50 5 5 5 5 5 5 5 5 5 5

100 5 5 5 5 5 5 5 5 5 5

MixN(0.3,1,0.25) 20 28 28 27 30 25 11 13 24 20 10

50 60 60 62 68 57 16 26 56 48 20

100 89 89 90 94 88 28 49 87 78 38

MixN(0.5,1,4) 20 40 43 42 46 48 34 33 36 33 19

50 78 80 80 86 83 49 49 63 46 36

100 97 98 98 99 98 69 68 91 66 57

t3 20 34 37 34 33 40 38 37 34 34 36

50 64 65 61 60 69 64 62 54 50 62

100 88 89 86 85 91 86 84 76 67 83

t5 20 19 20 18 17 22 22 22 19 19 22

50 35 37 32 31 41 40 38 29 29 36

100 56 58 50 48 63 59 55 41 37 56

t10 20 10 11 9 9 12 12 12 10 10 12

50 16 17 13 12 20 20 19 13 14 18

100 22 24 16 15 28 28 26 16 15 24

U(−√
3,

√
3) 20 21 17 13 17 8 0 0 3 2 1

50 75 70 55 58 47 0 0 7 2 0

100 * 99 95 95 97 0 0 32 3 3

χ2
5 20 43 44 42 38 42 33 36 44 44 42

51 88 88 84 80 85 65 76 87 86 86

100 * * 99 99 * 91 98 99 99 *

χ2
15 18 17 18 17 17 18 16 17 18 18 20

50 43 42 39 34 40 31 37 45 46 47

100 75 74 68 61 71 54 68 78 78 74

B(1, 4) 22 60 60 53 53 54 30 35 52 49 41

50 98 98 94 95 97 57 76 94 92 90

100 * * * * * 89 99 * * *

B(2, 5) 20 16 16 16 14 14 9 11 15 15 14

50 50 47 45 39 40 16 25 44 42 38

100 90 89 80 76 82 29 54 80 78 80

• a bivariate normal distribution BivN(μ1, μ2, σ1, σ2, ρ) with density

g1(x1, x2;μ1, μ2, σ1, σ2, ρ)

= 1

2πσ1σ2
√
1 − ρ2

e
− 1

2(1−ρ)2

(
(x1−μ1)2

σ21
+ (x2−μ2)2

σ22
− 2ρ(x1−μ1)(x2−μ2)

σ1σ2

)

,
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1870 W. Ejsmont et al.

Table 2 Power comparison for tests of univariate normality—Part II

Alt. n SW BCMR BHEP AD SF HJG2.5 HJG5 BE(1)
1 BE(2)

1 M1

�(1, 5) 20 83 83 77 77 80 57 63 78 76 72

50 * * * * * 91 97 * * 99

100 * * * * * * * * * *

�(5, 1) 20 24 24 23 20 24 20 22 25 25 25

50 60 59 53 49 58 42 50 63 62 62

100 90 90 85 81 88 69 83 91 91 93

Gum(1,2) 20 31 32 31 28 32 28 30 33 33 34

51 68 69 68 62 68 53 66 73 72 73

100 95 95 93 88 95 84 90 94 96 97

LN(0,1) 20 93 93 91 90 91 78 83 91 90 87

50 * * * * * 99 * * * *

100 * * * * * * * * * *

• a mixture of bivariate normal distributions NMixA(ρ) with density

g2(x1, x2, ρ) = 1

2
g1(x1, x2; 0, 0, 1, 1, ρ) + 1

2
g1(x1, x2; 1, 1, 1, 1, 0.9);

• a mixture of bivariate normal distributions NMixB(ρ) with density

g3(x1, x2, ρ) = 1

2
g1(x1, x2; 0, 0, 1, 1, ρ) + 1

2
g1(x1, x2; 0, 0, 1, 1,−ρ);

• a bivariate lognormal distributions LogN(σ1, σ2, ρ) with density

g4(x1, x2; σ1, σ2, ρ) = b1b2
(b1x1 + a1)(b2x2 + a2)

g1(l1, l2; 0, 0, σ1, σ2, ρ), xi >

− bi
ai

,

where li = log(bi xi + ai ), ai = eσ 2
i /2, bi =

√

e2σ
2
i − eσ 2

i , i = 1, 2.
• a sinh−1-normal distribution sinh−1N(μ1, μ2, σ1, σ2, ρ) with density

g5(x1, x2;μ1, μ2, σ1, σ2, ρ) =
b1b2(w1 +

√
1 + w2

1)(w2 +
√
1 + w2

2)

(1 + w2
1 + w1

√
1 + w2

1)(1 + w2
2 + w2

√
1 + w2

2)

× g1(sinh
−1(w1), sinh

−1(w2);μ1, μ2, σ1, σ2, ρ),

wherewi = bi xi +ai , ai = eσ 2
i /2 sinh(μi ), bi =

√

(eσ 2
i − 1)(eσ 2

i cosh(2μi ) + 1),
i = 1, 2.
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A test for normality and independence based on characteristic... 1871

• a generalized Burr-Pareto-logistic distribution GBPL(α, β) with standard normal
marginals, with density

g6(x1, x2;α, β) = (α + 1)ϕ(x1)ϕ(x2)

α�(x1)�(x2)

(
1 + β

(�(x1))−
1
α + (�(x2))−

1
α − 1)α+2

+ 4β

2(�(x1))−
1
α + 2(�(x2))−

1
α − 3)α+2

− 2β

2(�(x1))−
1
α + (�(x2))−

1
α − 2)α+2

− 2β

(�(x1))−
1
α + 2(�(x2))−

1
α − 2)α+2

)

, α > 0, β ∈ [−1, 1],

where �(x) and ϕ(x) are the standard normal distribution function and density;
• aMorgenstern distributionMorg(α), with standard normal marginals, with density

g7(x1, x2;α) = ϕ(x1)ϕ(x2)
(
1 + α

(
2�(x1) − 1

)(
2�(x1) − 1

))
, α ∈ [−1, 1];

• a Pearson type VII distribution PearVII(α) with density

g8(x1, x2;α) = α

2π

(
1 + 1

2
(x21 + x22 )

)α+1
, α > 0.

Methods of generating random variates from these distributions are available in
Johnson (1987) and Cook and Johnson (1986).

From Tables 3 and 4 we can see that our new test is the most powerful for the
bivariate normal, normal mixtures (except for ρ = ±0.5 for the mixture B), GBPL
andMorgenstern alternatives.Against the sinh−1 alternative it is the best forρ = ±0.5,
while for the lognormal alternative it is second best after the BHEP. It is interesting
to note that in case of the normal mixture B our test performs better in comparison to
others when ρ gets closer to zero, while in the case of the sinh−1 alternative it is the
other way around, i.e. it performs better when ρ is far from zero.

Consider now testing for trivariate normality and independence.
In Table 5 we present the powers of our tests, as well as those of BHEP and

HJGβ tests.We performed testing against trivariate variants of some of the alternatives
considered in the bivariate case. The labels are self-explanatory and the densities can be
easily derived from the bivariate counterparts with possible exception of the trivariate
Morgenstern distribution which can be found in Ota and Kimura (2021).

The conclusions are more or less similar to the bivariate case, for the alternatives
considered. Worth mentioning is that in the case of the Morgenstern alternative our
test significantly outperforms all competitors.
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4.3 Testing for multivariate normality

Statistical tests for multivariate normality are usually applied to the following stan-

dardization of the multivariate simple random sampleX. Let X̌ = �̂− 1
2 (X−Ō),where

�̂− 1
2 is the unique square root of the inverse of the sample covariance matrix �̂.
Our test is no exception and if we apply it to X̌ instead of X̃ we can use it to test

multivariate normality.
It is easy to see that, like in the original case, the test statistic is affine invariant

under the null hypothesis of multivariate normality, and hence the null distribution can
be approximated using the Monte Carlo methods.

In Tables 6 and 7we present the powers of our tests for testing bivariate and trivariate
normality, respectively.We also present the powers of corresponding BHEP andHJGβ

tests as competitors. The alternatives are chosen from the lists in Madukaife (2021)
and Ebner and Henze (2020). The labels are self-explanatory and ’×’ signifies that
the components are independent.

From the tables we can see that no test is uniformly the best. Our test is never the
least powerful, for most alternatives it is in the middle, and for couple of alternatives
it is the most powerful. All the other tests have cases when they are the best as well as
the cases when they are the worst. It is interesting to note that in the case of bivariate
beta(0.5,0.5) alternative both our test and HJG tests have powers below the level of
significance for n = 50. However, the power of our test exceeds this level for n = 100,
while the HJG powers remain the same.

5 Applications

In this section we consider the application of our tests. We put emphasis on the nor-
mality and independence null hypothesis, as situations where we test for univariate or
multivariate normality are quite common.

5.1 Model specification tests

In multivariate regression and time series analysis it is often the case that model
errors and innovations are assumed to have a multivariate normal distribution with
independent components. Such models are proposed and/or discussed in Breiman and
Friedman (1997), Zivot and Wang (2006), and Francq and Zakoian (2019). Then our
test for normality and independence can be used as a model specification test. The
errors are unobservable and hence the testingmust be applied tomodel residuals which
are not an i.i.d. sample. To demonstrate the testing procedure would thus require some
modification of the test in order to obtain p-values, which is beyond the scope of this
paper but worth considering for future research.

Other important applications,worth considering in the future, include novelty detec-
tion methods based on orthogonal expansion representation of random elements from
a certain Hilbert space (see Rafajłowicz 2021); cluster analysis with finite Gaussian
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mixtures (see Pan and Shen 2007; Yeung et al. 2001); and image processing (see
Rafajłowicz and Rafajłowicz 2010; Rafajłowicz and Wietrzych 2010).

5.2 Randommatrix

In probability theory and mathematical physics, a random matrix is a matrix-valued
random variable, i.e., a matrix in which some or all elements are random variables.
Many important properties of physical systems can be represented mathematically as
matrix problems. For example, the thermal conductivity of a lattice can be computed
from the dynamical matrix of the particle particle interactions within the lattice. One
of the application is to approximate a covariance matrix, as long as the underlying
distribution is normal. Below we give two different representations for using H(m)

0
hypothesis in the context of the correlation matrix XTX.

Let � be a positive definite, symmetric m × m matrix, and let XT be a random
m × N matrix as in Eq. (2), whose columns are independent, identically distributed
random vectors, each with the multivariate Gaussian distribution N (0, �).

5.2.1 Wishart distribution

Assume that N ≥ m. Then the random matrix S = XTX has the Wishart distribution
W (�,m, N ), with density

ν(dS) = ω(m, N ) det(�−1S)N/2 exp
(

− 1

2
tr(�−1S)

)
,

for an appropriate normalizing constant ω(m, N ). Under the null hypothesisH(m)
0 the

matrix XTX has the Wishart distribution W (I ,m, N ), where I is the m × m identity
matrix.

5.2.2 Marchenko–Pastur distribution

The limit of the empirical spectralmeasure ofWishartmatrices, withH(m)
0 assumption,

was found inMarchenko and Pastur (1967) byVladimirMarchenko andLeonid Pastur.
Assume that� ∼ N (0, I ). Ifm, N → ∞ in such a way thatm/N → λ ∈ (0, 1), then
the empirical spectral distribution XTX converges weakly to the Marchenko–Pastur
distribution with density (with respect to the Lebesgue measure)

ν(dx) = 1

2πx

√
4λ − (x − (1 + λ))2 dx,

supported on the interval ((1 − √
λ)2, (1 + √

λ)2).

5.3 Real data example

As an illustrative example we consider the data from Stevens (2012) that appeared
originally in Ambrose (1985). The data in Table 8 represent average ratings on three
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Table 8 Performance aspects ratings

Group 1 Rhythm 3.2 3.7 4.7 4.1 2.4 2.7 3.4 4.1 4.2 1.9 2.9 3.5

Intonation 4.2 3.9 5.0 3.5 3.4 3.1 4.0 4.2 3.4 3.5 3.2 3.1

Tempo 2.8 3.1 2.9 2.8 2.8 2.7 2.7 3.7 4.2 3.7 3.3 3.6

Group 2 Rhythm 1.7 3.5 4.0 1.7 2.2 3.0 2.2 2.2 2.3 1.3 1.7

Intonation 1.7 1.8 1.8 1.6 3.1 3.3 1.8 3.4 4.3 2.5 2.8

Tempo 2.8 3.1 3.1 3.1 2.8 3.0 2.6 4.2 4.0 3.5 3.3

performance aspects (rhythm, intonation and tempo) of two groups of elementary
school children that received instruction in clarinet. The experimental group (1) had
programmed instruction, while the control group (2) had traditional classroom instruc-
tion.

Suppose a researcher wants to examine the effects of instruction on these per-
formance aspects. If these aspects are normally distributed and independent random
variables, a separate univariate analysis of variance for each variable is recommended.
However, if this is not the case, the researcher should either use some nonparametric
procedure (in case of non-normality) or a multivariate analysis of variance (in pres-
ence of correlation). Hence, our test is handy to make a decision about the appropriate
procedure.

Applying the test on data from Table 8 we get the p-values of 0.12 (group 1) and
0.19 (group 2) and therefore the recommendation for the researcher is to examine the
effects using the univariate analysis of variance.
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Appendix

Proof of Theorem 2.1 Our proof is based on the analysis of the characteristic function.
We denote the characteristic function ofW by ϕW (·). We write (a, b) = r(ã, b̃)where
(ã, b̃) belongs to the unit sphere of Rn+m , i.e. r = √‖a‖2 + ‖b‖2.

Thus for r > 0 and t ∈ R, we have

ϕ 〈a,X〉+〈b,Y〉+A+B
r

(t) = ϕ〈ã,X〉+〈b̃,Y〉+ A+B
r

(t). (11)
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Under the hypothesis, the left hand side of (11) does not depend on (ã, b̃) (equivalently,
it depends on r ), and thus the limit on the right hand side

ϕ〈ã,X〉+〈b̃,Y〉+ A+B
r

(t)
r→+∞−−−−→ ϕ〈ã,X〉+〈b̃,Y〉(t),

does not depend on (ã, b̃). In particular, we have that the distribution of a statistic

〈a,X〉 + 〈b,Y〉 = (〈ã,X〉 + 〈b̃,Y〉)
√

‖a‖2 + ‖b‖2

depends on ‖a‖2 + ‖b‖2 only. Let

h(‖a‖2 + ‖b‖2) = Eei(〈a,X〉+〈b,Y〉).

Because of the independence of X and Y, we may write

h(‖a‖2 + ‖b‖2) = Eei〈a,X〉Eei〈b,Y〉 = ϕX(a)ϕY(b). (12)

Evaluating (12) first when a = 0 ∈ R
m and then when b = 0 ∈ R

n , we get

h(‖b‖2) = ϕY(b) and h(‖a‖2) = ϕX(a),

respectively. Substituting this into (12), we obtain

h(‖a‖2 + ‖b‖2) = h(‖a‖2)h(‖b‖2).

Note that h(·) is continuous, hence by multiplicative Cauchy functional equation we
get

h
(
‖a‖2 + ‖b‖2

)
= ec(‖a‖2+‖b‖2).

Substituting a = (a1, 0, 0, . . . , 0) and b = 0 in this equation, we see that it can be
read as

EeiX1a1 = eca
2
1 , i.e. X1 has a normal distribution, with zero mean.

Using this line of reasoning to other random variables, we see that Xi and Y j have
the same normal distribution, with zero mean. The independence of random variables
X1, . . . ,Xm follows from the observation that for all a = (a1, . . . , am) ∈ R

m

ϕX(a) = ec
∑m

j=1 a
2
j = ϕX1(a1) . . . ϕXm (am).

�
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Proof of Proposition 2.2 (i) ⇒ (i i). We see that the distribution of

〈a,X〉 + 〈b,Y〉 =
√

‖a‖2 + ‖b‖2 〈a,X〉 + 〈b,Y〉
√‖a‖2 + ‖b‖2

depends only on ‖a‖2 + ‖b‖2, which by Theorem 2.1 implies that Xi and Y j are
independent and have the same normal distribution N (0, 1), because we assume that
E(X2

i ) = 1, E(Y2
j ) = 1.

(i i) ⇒ (i). We compute the characteristic function

Eei〈a,X〉+i〈b,Y〉 = e−(‖a‖2+‖b‖2)/2,

from which we see that condition (i) is satisfied. �


Proof of Proposition 3.1 Let us calculate the integral on the right hand side of (5).

M1 = N
∫

∣
∣
∣
∣
∣
∣

1

N 2

∑

i, j

ei(a X̃i+bX̃ j ) − e− 1
2

∣
∣
∣
∣
∣
∣

2

dS2(a, b)

= N
∫

V 2(a, b)dS2(a, b).

Since

V 2(a, b) = 1

N 4

∑

i, j,k,l

((
cos(a X̃i + bX̃ j ) − e− 1

2

)(
cos(a X̃k + bX̃l) − e− 1

2

)

+ sin(a X̃i + bX̃ j ) sin(a X̃k + bX̃l)

)

= 1

N 4

∑

i, j,k,l

(cos(a(X̃i − X̃k) + b(X̃ j − X̃l)) − 2e− 1
2

N 2

∑

i, j

cos(a X̃i + bX̃ j )

+ e−1,

switching to polar coordinates we obtain

V 2(a, b) = 1

N 4

∑

i, j,k,l

(cos(cosα(X̃i − X̃k) + sin α(X̃ j − X̃l))

− 2e− 1
2

N 2

∑

i, j

cos(cosα X̃i + b sin α X̃ j ) + e−1, α ∈ [0, 2π).
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Since we need integration over S2, we have to focus on computing the following
integral

∫ 2π

0
cos(x cosα + y sin α)dα, for x, y ∈ R.

By trigonometric identities the linear combination, or harmonic addition, of sine
and cosine waves is equivalent to a single cosine wave with a phase shift and scaled
amplitude, namely

x cosα + y sin α =
√

x2 + y2 cos(α − atan2(y, x)),

where atan2(y, x) is the generalization of arctan(y/x) that covers the entire circular
range (we don’t need a formal definition of atan2). Thus for x, y ∈ R and xy �= 0 we
get

∫ 2π

0
cos(x cosα + y sin α)dα =

∫ 2π

0
cos

(√

x2 + y2 cos
(
α − atan2(y, x)

))
dα

=
∫ 2π−atan2(y,x)

−atan2(y,x)
cos

(√

x2 + y2 cos t
)
dt

= 2π J (

√

x2 + y2),

where we used the following identity (see Abramowitz and Stegun 1972, p. 360):

2π J (z) =
∫ 2π

0
eiz cosαdα =

∫ 2π

0
cos(z cosα)dα =

∫ 2π

0
cos(z sin α)dα. (13)

If either x = 0 or y = 0, then the formula above is also true because we can use
directly equation (13).

Therefore M1 has the representation (7). �

Proof of Theorem 3.2 The proof follows from the strong consistency of the empirical
characteristic function on bounded subsets of Rd (see Ushakov 2011, Chapter 3), as
well as the strong consistency of the estimators (4) Then from (5) we get that

Mm

N
a.s.→ � =

∫

|ϕZ (a)ϕZ (b) − e− 1
2 |2dS2m(a, b),

where Z is a randomvectorwhose components have zeromeans andunit variances, and

� = 0 if and only if |ϕZ (a)ϕZ (b)− e− 1
2 | = 0 for all a, b such that ||a||2 +||b||2 = 1,

which occurs from Proposition 2.2 if and only if the components of Z are independent
and normally distributed as N (0, 1), i.e. when the null hypothesis is true. Hence, under
any fixed alternative we have � > 0 and the tests are consistent. �
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Proof of Theorem 3.3 After switching to polar coordinates, as in the proof of Proposi-
tion 3.1, we get

M1 = N
∫ 2π

0
U 2
1,N (α; μ̂, σ̂ ) +U 2

2,N (α; μ̂, σ̂ )dα,

where

U1,N (α;μ, σ) = U (1)
1,N (cosα, sin α)

= 1

N 2

∑

i, j

(
cos

(
cosα

Xi − μ

σ
+ sin α

X j − μ

σ

)
− e− 1

2

)

U2,N (α;μ, σ) = U (1)
2,N (cosα, sin α) = 1

N 2

∑

i, j

sin
(
cosα

Xi − μ

σ
+ sin α

X j − μ

σ

)
,

and μ̂ and σ̂ are the sample mean and standard deviation, respectively.
Since the statistic is location-scale invariant, wemay assume that the true parameter

values are μ = 0 and σ = 1. From the Taylor expansion of U1,N (α; μ̂, σ̂ ) in the
neighbourhood of (α; 0, 1) we get

√
NU1,N (α; μ̂, σ̂ )

= √
NU1,N (α) + √

N μ̂E(sin(cosαX1 + sin αX2)(cosα + sin α))

+ √
N (σ̂ − 1)E(sin((cosαX1 + sin αX2)(cosαX1 + sin αX2)) + r1,N (α),

(14)

whereU1,N (α) = U1,N (α; 0, 1), and r1,N (α) is the Taylor’s residual. When N → ∞,
r1,N (α) = oP (1) uniformly over α, which follows from the Bahadur representation of
(μ̂, σ̂ ), the finiteness of trigonometric functions and finite variance of normal random
variables.

For a fixed α,U1,N (α) is a V-statistic of order 2. The first projection of its kernel is

ψ1(x;α) = 1

2
(E(cos(x cosα + X2 sin α)) + 1

2
E(cos(X2 cosα + x sin α)) − e− 1

2

= 1

2

(
e− 1

2 cos2 α cos(x sin α) + e− 1
2 sin2 α cos(x cosα)

) − e− 1
2 .

Under H(1)
0 we have Eψ1(X;α) = 0 and

Var(ψ1(X;α)) < ∞, therefore U1,N (α) admits the Bahadur representation (see
Korolyuk and Borovskich 2013)

√
NU1,N (α) = 2√

N

N∑

i=1

ψ1(Xi ;α) + r2,N (α), (15)
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where r2,N (α) = oP (1) as N → ∞. Since the parameter estimators can be expressed
as

√
N μ̂ = 1√

N

N∑

i=1

Xi

√
N (σ̂ − 1) = 1√

N

N∑

i=1

1

2
(X2

i − 1) + oP (1),

combining (14) and (15), we get

√
NU1,N (α; μ̂, σ̂ ) = 1√

N

N∑

i=1

(
2ψ1(Xi ;α) + 1

2
(X2

i − 1)e− 1
2

)
+ oP (1).

Similarly,

√
NU2,N (α; μ̂, σ̂ ) = 1√

N

N∑

i=1

(
2ψ2(Xi ;α) − e− 1

2 Xi

)
+ oP (1),

where

ψ2(x;α) = 1

2

(
e− 1

2 sin
2 α sin(x cosα) + e− 1

2 cos2 α sin(x sin α)
)

.

Therefore

ZN (α) = 1√
N

N∑

i=1

�(Xi ;α) + RN (α),

where

�(x;α) = 2ψ1(x;α) + 1

2
e− 1

2 (x2 − 1) + i · (2ψ2(x;α) − e− 1
2 x),

which is equal to (10), and ||RN ||2
L2 = oP (1), when N → ∞.

It is easy to show that E ||�(X; ·)||2
L2 < ∞. Therefore from the central limit theorem

in Hilbert spaces (van der Vaart and Wellner 1996, p. 50), we get that there exists a
zero mean Gaussian random element Z from L2[0, 2π ] with covariance function (9)
such that ZN

w→ Z .
Finally, from the continuous mapping theorem we get M1

w→ ||Z ||2
L2 , which ends

the proof. �
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