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Abstract
In time-series analysis, particularly in finance, generalized autoregressive conditional
heteroscedasticity (GARCH) models are widely applied statistical tools for modelling
volatility clusters (i.e., periods of increased or decreased risk). In contrast, it has not
been considered to be of critical importance until now to model spatial dependence in
the conditional secondmoments. Only a fewmodels have been proposed formodelling
local clusters of increased risks. In this paper, we introduce a novel spatial GARCH
process in a unified spatial and spatiotemporal GARCH framework, which also covers
all previously proposed spatial ARCHmodels, exponential spatial GARCH, and time-
series GARCHmodels. In contrast to previous spatiotemporal and time series models,
this spatial GARCH allows for instantaneous spill-overs across all spatial units. For
this commonmodelling framework, estimators are derived based on a non-linear least-
squares approach. Eventually, the use of the model is demonstrated by a Monte Carlo
simulation study and by an empirical example that focuses on real estate prices from
1995 to 2014 across the postal code areas of Berlin. A spatial autoregressive model is
applied to the data to illustrate how locally varying model uncertainties (e.g., due to
latent regressors) can be captured by the spatial GARCH-type models.
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1 Introduction

Recent literature have dealt with the extension of generalized autoregressive condi-
tional heteroscedasticity (GARCH) models to spatial and spatiotemporal processes
(e.g., Otto et al. 2018, 2021; Sato and Matsuda 2020). Whereas the classical ARCH
model is defined as a process over time, these random processes have a multidimen-
sional support. Thus, they allow for spatially dependent second-order moments, while
the observations are uncorrelated and the mean is constant in space (see Otto et al.
2021). For all geo-referenced processes, it is important to allow for instantaneous spa-
tial interactions, as “near things are more related than distant things” (Tobler’s first law
of geography, Tobler 1970). That is, observations nearby are more similar than obser-
vations with larger distances. With regard to autoregressive dependencies, the focus
was mostly on the mean process, but not on the spatial conditional heteroscedasticity.
Thus, Otto et al. (2018) suggested first a purely spatial ARCH model. Furthermore,
Sato and Matsuda (2017, 2020) introduced a random process incorporating elements
of GARCH and exponential GARCH (E-GARCH) processes, which is, however, nei-
ther a GARCH nor an E-GARCH process—also in a one-dimensional space, where
the model should collapse to a classical time-series GARCH model. Their model can
be rather considered as symmetric spatial log-GARCH process. Moreover, Otto et al.
(2018) only focussed on spatial ARCH processes without considering the influences
from the realized, conditional variance at neighbouring locations. Direct extensions
of GARCH and E-GARCH processes to spatial settings do not exist among current
research.

Thus, we introduce a completely novel generalized spatial ARCH model (spatial
GARCH or spGARCH) in this paper. Because a general definition of this model is
used, time-series GARCHmodels (Bollerslev 1986), the previously introduced spatial
ARCH (Otto et al. 2018) and the symmetric log-GARCH (Sato andMatsuda 2020) are
nested. This definition also allows us to define a spatial exponential spatial GARCH
model, which will be the subject of a future paper. Moreover, other GARCH-type
models, like threshold or multivariate GARCH models, can easily be constructed.
This unified spatial GARCH process is a completely new class of models in spatial
statistics/econometrics, for which we derive consistent estimators based on a non-
linear least-squares approach. In addition, allmodels are computationally implemented
in one library, the R-package spGARCH (version > 2.0).

From a practical perspective, this unified spatial GARCH model can be used to
model spill-over effects in the conditional variances across the spatial units. Thatmeans
that an increasing variance in a certain region of the considered space would lead to
an increase or decrease in the adjacent regions, depending on the direction (sign) of
the spatial dependence. Compared to previous spatiotemporal GARCH models, these
spill-overs are instantaneous. That is, there is no time lag needed. All previously pro-
posed spatiotemporal GARCH models include the spatial autoregressive dependence
in the first temporal lag (i.e., spatial spillover are temporally delayed), so that these
models can be seen as special cases of multivariate time-series GARCH models (e.g.,
Hølleland and Karlsen 2020; Borovkova and Lopuhaa 2012; Caporin and Paruolo
2015, or Billio et al. 2021 for networks). Contrary to these spatiotemporal models, the
proposed spatial GARCH model could also be applied to purely spatial data, like for
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modelling local climate risks, such as fluctuations in the temperature and precipita-
tion, or financial risks in spatially constrained markets, such as real estate or labour.
Furthermore, spatial GARCH-type models can be used as error models for any linear
or non-linear spatial regression model to account for local model uncertainties (i.e.,
areas in which the considered models perform worse than in others). These model
uncertainties can be considered to be a kind of local risk. Instead of modelling such
autoregressive dependence as a GARCH process, stochastic volatility models could
also be used. Taşpınar et al. (2021) considered a stochastic volatility approach for
spatial settings and showed its applicability for U.S. house prices.

The remainder of this paper is structured as follows. In the next section,we introduce
the generalized framework of spatial and spatiotemporal autoregressive conditional
heteroscedasticitymodels and discuss two examples nestedwithin this approach, more
precisely, the novel spatial GARCH (as an equivalent to the time-series GARCH
models) and the spatial log-GARCH processes by Sato and Matsuda (2017, 2020).
Following from there, a non-linear least-squares procedure is introduced for thismodel
class. These theoretical sections are followedupwith a discussionof the insights gained
from simulation studies. The paper then supplies a real-world example, namely the real
estate prices in the German capital city of Berlin. In Sect. 6, we stress some important
extensions for future research before concluding the paper.

2 Spatial and spatiotemporal GARCH-typemodels

Let {Y (s) ∈ R : s ∈ Ds} be a univariate stochastic process, where Ds represents a set
of possible locations in a q-dimensional space. Thus, spatial and spatiotemporal mod-
els are both covered by this approach. With regards to spatiotemporal processes, the
temporal dimension can be easily considered as one of the q dimensions. In addition,
time-series GARCH models are included for q = 1.

Let s1, . . . , sn denote all locations, and let Y stand for the vector of observations
(Y (si ))i=1,...,n . The commonly applied spatial autoregressive (SAR) model implies
that the conditional variance Var(Y (si )|Y (s j ), j �= i) is constant (cf. Cressie 1993;
Cressie and Wikle 2011) and does not depend on the observations of neighbouring
locations. This approach is extended by assuming the changes in the volatility can spill
over to neighbouring regions and that conditional variances can vary over space, result-
ing in clusters of high and low variance. As in time-series ARCH models developed
by Engle (1982), the vector of observations is given by the non-linear relationship

Y = diag(h)1/2ε (1)

where h = (h(s1), . . . , h(sn))′ and ε = (ε(s1), . . . , ε(sn))′ is a noise component,
which is later specified in more detail.

Moreover, we assume that a known function f exists, which relates h to a vector
F = ( f (h(s1)), . . . , f (h(sn)))′. This general approach is beneficial because different
spatial GARCH-type processes can be defined by choosing f and a suitable model of
F. For instance, they could have additive or multiplicative dynamics, or the spill-over
effects in the conditional variances could be global or locally constrained to direct
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neighbouring observations. In this paper, we extend the class of spatial ARCHmodels
to generalized spatial GARCH models (spGARCH), which are analogously defined
to the time-series GARCH models and have additive dynamics (cf. Bollerslev 1986).
Besides, previously introduced spatial ARCH models are nested within this general
approach (e.g., Otto et al. 2018; Sato and Matsuda 2020; see also Examples 1 and 3
in Sect. 2.3).

2.1 Generalized approach

Below, we introduce a general approach covering some important spatial and spa-
tiotemporal GARCH-type models, namely the spatial ARCH model of Otto et al.
(2018) and the logarithmic model of Sato and Matsuda (2020). For these models,
vector F is chosen as

F = α + W1γ (Y (2)) + W2F (2)

with a measurable function γ (x) = (γ1(x), . . . , γn(x))′ and
Y (2) = (Y (s1)2, . . . ,Y (sn)2)′. The weighting matrices W1 = (w1,i j )i, j=1,...,n and
W2 = (w2,i j )i, j=1,...,n are assumed to be non-negative with zeros on the diagonal
(i.e., wv,i j ≥ 0 and wv,i i = 0 for all i, j = 1, . . . , n and v = 1, 2). Moreover, let
α = (αi )i=1,...,n be a positive vector.

First, we discuss under what conditions the process is well-defined. To do this,
we make use of the Banach fixed point theorem for random processes. The field of
random fixed point theorems has been studied by several authors (e.g., Hanš 1957;
Bharucha-Reid et al. 1976; Tan and Yuan 1997).

In the following, we make use of the notation E = diag(ε(s1)2, . . . , ε(sn)2). Con-
sidering the operator

T (ω) ◦ z = α + W1γ (E(ω)z) − (I − W2)( f (zi ))i=1,...,n + z (3)

defined on IRn with a norm ||.||, the following conditions can be derived such that the
process is well-defined. Furthermore, ω is an element in the probability space of the
error process and ◦ denotes the Hadamard product.

Theorem 1 Suppose that the operator T (ω) defined in (3) is a continuous random
operator on (IRn, ||.||) to itself and that there is a a non-negative real-valued random
variable Ln(ω) < 1 a.s. such that ||T (ω)◦ z1−T (ω)◦ z2|| ≤ Ln(ω)||z1− z2|| for all
z1, z2 ∈ IRn. Then the equations (1) and (2) have exactly one real-valued measurable
solution z.

The proof of this theorem is given in the Appendix. Note that the condition
of Theorem 1 is fulfilled if, for example, γ satisfies a Lipschitz condition with
constant L1, ( f (zi ))i=1,...,n satisfies a Lipschitz condition with a constant L2 and
Ln := L1||W1E|| + L2||I − W2|| < 1 where we make use of the matrix norm
induced by the vector norm. However, in order to guarantee that Ln does not depend
on n, we need stronger conditions. If we take the 1-norm and if the matrices W1 and
W2 are row-standardized then ||I −W2|| < 2. To ensure that ||W1E|| is bounded we
have to assume that the ε(si ) are uniformly bounded. We refer to Otto et al. (2018)
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where this problem is discussed for a spatial ARCH process in more detail. Moreover,
it is important to note that the operator T (ω) is continuous if f and γ are continuous.

Further, the solution of (3) which reflects h should be non-negative such that the
process Y is a well-defined real-valued process. In many applications, the functions
f and γ are defined to be zero for negative values, such that h is always positive if
α > 0. We will come back to this point later.
In addition, the fixed-point theorem of Banach implies that the sequence zm =
T (zm−1), m ≥ 1 converges to h for given α, E, W1, and W2. Consequently, this
result represents one way to simulate such a process.

2.2 Properties of spatial GARCHmodels

Below, we discuss some important properties of this process including the following
condition for stationarity.

Corollary 2 Suppose that the assumptions of Theorem 1 are fulfilled and that the
solution of (3) is non-negative. If (ε(s1), . . . , ε(sn))′ is strictly stationary, then
(Y (s1), . . . ,Y (sn))′ is strictly stationary as well.

Moreover, the observations Y (s) are uncorrelated with a mean of zero, as we will
show in the following theorem. Thus, spatial GARCH models are suitable error mod-
els for use with other linear or non-linear spatial regression models, such as spatial
autoregressive or spatial error models (see also Elhorst 2010), without affecting the
mean equation. In this way, locally varying model uncertainties can be captured.

Theorem 3 Let i ∈ {1, . . . , n}. Suppose that the assumptions of Theorem 1 are sat-
isfied and that the solution of (3) is non-negative. Further let ε be sign-symmetric,
i.e.,

ε
d= ((−1)v1ε(s1), . . . , (−1)vnε(sn)) for all v1, . . . , vn ∈ {0, 1}.

(a) Then Y (si ) is a symmetric random variable. All odd moments and all conditional
odd moments of Y (si ) are zero, provided that they exist.

(b) It holds that Cov(Y (si ),Y (s j )) = 0 for i �= j if the second moment exists.

In the spatial setting, however, the conditional variance Var(Y (si )|Y (s j ), j �= i)
is not exactly equal to h(si ) (see Otto et al. 2021). In principle, this is due to the
fact that there is no clear (causal) ordering of observations as in time series, where
only past observations can influence future observations, but not vice versa. In case of
a directional spatial dependence, however, h(si ) is equal to the conditional variance
at location si . A detailed analysis of this point can be found in Otto et al. (2021).
Nevertheless, the interpretation of h is similar to the conditional variance. In locations
s, where h(s) is large, the conditional variance is also large and vice versa (see Otto
et al. 2021, Fig. 1). Thatmeans that the local risk or level of uncertainty of this particular
region is high compared to its neighbours. Such regions could be identified via h; this
could be of interest in terms of the valuation of real estate or other immovable assets
since it provides insights into an individual location’s risk.
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In addition to this, the spatial GARCH coefficients measure potential risk spill-
overs from neighbouring locations. It is worth noting that in the case of directional
spatial processes, h is equal to the conditional variances. Thus, it can be interpreted
in the same way as with time-series GARCH models.

2.3 Examples of spatial GARCHmodels

This general framework allows for a large range of GARCH-type models. Depending
on the definition of f and γ , the resulting spatial GARCH-type models have different
stochastic properties. We discuss some important special cases below, starting with
the spatial ARCH model, which is a direct extension of the ARCH process of Engle
(1982) to spatial and spatiotemporal processes. It was originally introduced by Otto
et al. (2018). For more details on its stochastic properties, we refer to (Otto et al. 2021).

Example 1 (Spatial ARCH process of Otto et al. 2018) Choosing f (x) = x I[0,∞)(x),
γi (x) = xi I[0,∞)(xi ) for i = 1, . . . , n, and W2 = 0 the spatial ARCH (spARCH)
process is obtained. It is given by

Y (si ) = √
h(si )ε(si ), i = 1, . . . , n

with
h = α + W1Y (2) .

Here, IA(x) denotes the indicator function on a set A. The process is well-defined
if ||W1E|| < 1. This is an immediate consequence of Theorem 1. Indeed, the spatial
ARCH process can be easily extended to a spatial GARCH process by considering
the realized values of h(·) in adjacent locations. This novel spatial GARCH process
is defined in the following example.

Example 2 (Spatial GARCH process) Taking f (x) = x I[0,∞)(x) and γi (x) =
xi I[0,∞)(xi ) for i = 1, . . . , n a spatial GARCH (spGARCH) process is obtained.
That is,

Y (si ) = √
h(si )ε(si ), i = 1, . . . , n

with
h = α + W1Y (2) + W2h .

Since Y (2) = Eh, the quantity h can be specified as

h = (I − W1E − W2)
−1α , (4)

if the inverse exists. For this simple example, there is a unique solution if ||W1E +
W2|| < 1, as it is already expressed in Theorem 1. Alternatively, the condition is
fulfilled if the process is directional. In this case, W1 and W2 are lower or upper
triangular matrices (cf. Basak et al. 2018; Merk and Otto 2021).

The case of triangular matrices also includes causal temporal and spatiotemporal
GARCH processes. Let us first consider time-series GARCHmodels. In this case, the
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dimension of the underlying domain Ds is equal to q = 1 and there is strict causal
relation between the observations. That is, current observations are only influenced
by past observations. This implies a triangular structure of the weight matrices. For
instance, for a GARCH(1, 1) process, the first subdiagonal elements of W1 and W2
are equal to one if s1 = 1, . . . , sn = T representing the consecutive time points from
one to T . Similarly, for spatiotemporal processes, the weight matrices are triangular if
instantaneous spatial interactions are excluded, such as for themodels ofHølleland and
Karlsen (2020), Borovkova and Lopuhaa (2012), and Caporin and Paruolo (2006). In
contrast to these causal processes, the current observations of this new spatiotemporal
GARCH model are not only influenced by past realisations of the process, but also by
their neighbouring observations. In this way, the model can account for instantaneous
spatial interactions as implied by the first law of geography.

Contrary to the previous examples, Sato andMatsuda (2017, 2020) have considered
a slightly different choice of f , and have used the log-transformation to avoid any non-
negativity problems of h. Thus, their model combines the GARCH and the E-GARCH
attempts and can be regarded as the spatial extension of a (symmetric) log-GARCH
process (see also Francq et al. 2013). Let hL = (log(h(si )))i=1,...,n and Y (2)

L =
(log(Y (s j )2))i=1,...,n .

Example 3 (Spatial log-GARCHprocess of Sato andMatsuda 2017)Choosing f (x) =
log(x) and γi (x) = log(xi ) the symmetric spatial log-GARCH (log-spGARCH) pro-
cess is obtained, i.e.,

Y (si ) = √
h(si )ε(si ), i = 1, . . . , n

with
hL = α + W1Y

(2)
L + W2hL .

The process has a unique solution if ||W1 + W2|| < 1. This is also an immediate
consequence of Theorem 1. It is obtained by setting γ (x) = (log(xi ))i=1,...,n , f (x) =
log(x), and considering the right side of (3) to be a function of log(z). We see that
the condition on the existence of a solution is much simpler than for the spGARCH
process, since it only depends on the weight matrices and not on the random matrix
E. This simplification is due to the fact that we have an additive decomposition of
the function γ , i.e., γ (Ez) = φ1(E) + φ2(z) with certain functions φ1 and φ2. This
functional equation is solved by the logarithm function. However, the behaviour of
the log-spGARCH is different to that of the spGARCH. Thus, the one or the other
could be preferable for empirical applications. To summarize this section, we provide
an overview on all nested spatial GARCH-type models and important other GARCH
model, e.g., the classical time-series GARCH models, in Table 1.

3 Statistical inference

In the following section, we firstly discuss the choice of the weight matrices in more
detail. In a general setting, W1 and W2 have n(n − 1) free parameters, while only
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Table 1 Overview of nested spatial GARCH-type models for γi (Y) = Y (si )2

Model f γi (Y) W1 W2

Dimension q > 1 (non-triangular weight matrices)

Spatial ARCH model,
Ex. 1, Otto et al. (2018)

f (x) = x Y (si )2 Standard spatial weight matrixZero matrix

Spatial GARCH model,
Ex. 2

f (x) = x Y (si )2 Standard spatial weight matrices

Symmetric spatial
log-GARCH model, Ex. 3,
Sato and Matsuda (2020)

f (x) = log(x) Y (si )2 Standard spatial weight matrices

Dimension q > 1 (triangular weight matrices)

Directional/causal spatial
GARCH models, Merk and
Otto (2021)

f (x) = x Y (si )2 Strictly triangular matrices

Spatiotemporal GARCH
models with lagged spatial
effects (see also Hølleland
and Karlsen 2020)

f (x) = x Y (si )2 Strictly triangular matrices (vec-representation
nT -dimensional)

Dimension q = 1 (triangular weight matrices)

Time-series GARCH,
Bollerslev (1986)

f (x) = x Y (si )2 Strictly triangular matrices

Time-series ARCH, Engle
(1982)

f (x) = x Y (si )2 Strictly triangular matrices Zero matrix

n values are observed. In spatial econometrics, these matrices are therefore usually
replaced with a parametric model to control the influence of adjacent regions. Note
that the parameter estimates are typically biased if the weights are misspecified. Alter-
natively, they might instead be estimated using statistical learning approaches, e.g.,
lasso-type estimators under the assumption of a certain degree of sparsity (e.g., Bhat-
tacharjee and Jensen-Butler 2013; Otto and Steinert 2021). In this section of the paper,
however, we will focus on a classical parametric model. For this, we develop an esti-
mation method based on non-linear least squares estimators and show the consistency
of these estimators. In practice, the weight matrices must carefully be selected.

3.1 Choice of weight matrices

There is great flexibility in the choice of the weight matrices (see Getis 2009 for an
overview). In practice, these are usually dependent upon additional parameters and
spatial locations. Frequently, it is assumed thatW1 = ρW∗

1 andW2 = λW∗
2 with the

predefined, known matrices W∗
1 and W∗

2. That is, W
∗
1 and W∗

2 describe the structure
of the spatial dependence, with the weights as a multiple of these specific matrices.
In settings such as these, it is easy to test whether a random process exhibits such a
spatial dependence, by testing the parameters ρ and λ. As with time-series GARCH
models, ρ measures the extent to which a volatility shock in one region spills over to
neighbouring regions, while ρ+λ gives an impression how fast this effect will fade out

123



A general framework... 1729

in space (see, e.g., Campbell et al. 1997). It is important to note that spill-over effects
of shocks always happen simultaneously in purely spatial setting, i.e., without any
temporal delay. For spatial autoregressive models, a similar distinction between local
and global spill-over effects can be made (see Fingleton 2009, 2008). A more general
approach can be obtained by choosing Wk = diag(ρ1, . . . , ρ1, . . . , ρk, . . . , ρk)W∗·
as the weights for k ∈ {1, 2}. Here, different areas are weighted in different ways.
For instance, all counties of state i are weighted by ρi , while counties of another
state, j , get a different weighting factor, ρ j . Alternatively, W∗

k could be chosen as
(Kθ (si − s j ))i, j=1,...,n for k ∈ {1, 2} with a known function K . In this case, the
spatial correlation depends on the distance between two locations. For instance, inverse
distance weighting schemes K (x) = ||x||−k with k being estimated, or anisotropic
weighting schemes dependent upon the bearing between two locations.

3.2 Parameter estimation

Below, we assume that the weight matrices have the structure

W1 = ρW∗
1,W2 = λW∗

2,α = α1. (5)

Thus, the model has three parameters to be estimated, ϑ = (ρ, λ, α)′. Let ϑ0 denote
the true parameters. In the following we use the symbol ||x||2 for the Euclidean norm
of a vector x and ||A||∞ = max1≤i≤n

∑n
j=1 |ai j | for the matrix norm of an n × n

matrix A, which is induced by a maximum norm.
Even though this seems to be a strong restriction compared to the general defini-

tion of the model in (1) and (2), it is probably the most widely applied specification
in practice. Generally, the estimation method could also be applied for more com-
plex specifications of the spatial interactions, such as the above-mentioned choices
or higher-order spatial lags. In this case, particular attention should be paid to the
identifiability of the process parameters (cf. Manski 1993) and to the consistence of
the parameter estimators.

One possible method for estimating the parameters is the non-linear least-squares
approach (NLSE). Squaring the components of (1) and taking the logarithms, we get
that for i = 1, . . . , n

log(Y (si )2) = log(h(si )) + log(ε(si )2)

= E(log(ε(si )2)) + log(h(si )) + η(si )

with η(si ) = log(ε(si )2) − E(log(ε(si )2)). Now η(si ), i = 1, . . . , n is a white noise
process. Moreover, it follows with τ(x) = f (exp(x)) that

F = (τ (log(h(si )))i=1,...,n = (I − λW∗
2)

−1(α1 + ρW∗
1γ (Y (2)))

= (I − λW∗
2)

−1(α1 + ρW∗
1 γ̃ (log(Y (2))))

where γ̃ (x) = (γi (exp(x1), . . . , exp(xn)))i=1,...,n . Note that (I − λW∗
2)

−1 exists if
||λW∗

2|| < 1.
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Now, let (ci (λ))i=1,...,n = (I− λW∗
2)

−11 and (di (λ)′)i=1,...,n = (I− λW∗
2)

−1W∗
1. In

order to denote the dependence on ϑ we write hϑ (si ), i = 1, . . . , n. Then,

log(hϑ (si )) = τ−1(α ci (λ) + ρ di (λ)′ γ̃ (log(Y (2)))).

Here, we assume that c = E(log(ε(si )2)) is a known quantity. Using Hi =
log(Y (si )2) − E(log(ε(si )2)) and H = (Hi )i=1,...,n the estimators of the parame-
ters α, λ, and ρ are obtained by minimizing the non-linear sum of squares

n∑

i=1

(Hi − log(hϑ (si ))2 =
n∑

i=1

(
Hi − τ−1(α ci (λ) + ρ di (λ)′ γ̃ (H + c1))

)2

with respect to ϑ .
Although τ−1 is a known function, this minimization problem is complex. Thus,

we will impose further assumptions which are fulfilled for all relevant special cases.
Wewill suppose that γ (x) = (γ (xi ))with a known function γ . Consequently, γ̃ (x) =
(γ̃ (xi ))i=1,...,n with γ̃ (x) = γ (exp(x)), which leads to the easier minimization of

Qn(ϑ) = 1

n

n∑

i=1

(
Hi − τ−1 (

α ci (λ) + ρ di (λ)′ (γ̃ (Hv + c))
)
v=1,...,n

)2
. (6)

Note that since the (i, i)-th element of W∗
1 is zero it follows that

di (λ)′ (γ̃ (Hv + c))v=1,...,n is no function of Hi . Minimization problems of that type
have been studied in detail in, e.g., Amemiya (1985), Pötscher and Prucha (1997), and
Newey and McFadden (1994). There, sufficient conditions are given for the consis-
tency and asymptotic normality of the resulting estimators under various conditions.
Note that, in the present case, {Hi } is a strictly stationary process. Moreover, in most
papers on this topic, the regression function is assumed to be a deterministic function
depending on certain parameters. In the present case, however, it is a function depend-
ing on the observations {Hi } which makes the analysis of the asymptotic behaviour of
the estimators much harder. Further, it must be noted that a spatial problem is present.
The positions si are points in a space and we need a certain distance measure between
these points to assess the dependence of the observations.

Theorem 4 Suppose that ϑ0 ∈ � = [ρl , ρu] × [λl , λu] × [αl , αu] ⊆ [0, 1) × [0, 1) ×
[0,∞). Let {ε(si ) : i ∈ IN } be independent and identically distributed random vari-
ables with existing momentE((log(|ε(s1)|))2). Let f be a differentiable and invertible
function with f ′ > 0 on (0,∞) and let γ be a measurable function on [0,∞) with
Var(γ (Y (s1)2)) < ∞. Suppose that f ′(hϑ (si )) hϑ (si ) ≥ L > 0 for all i,ϑ ∈ �,ω.
Further assume that for ϑ = (ρ, λ, α) ∈ �

lim
n→∞

1

n

n∑

i=1

(
E(log(hϑ (si )) − E(log(hϑ0(si )))

)2
exists, (7)
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1

n

n∑

i=1

(log(hϑ (si )) − E(log(hϑ (si ))))2
p→ 0 (8)

as n tends to infinity and that the limit function in (7) has a unique minimum at ϑ0.
Moreover, let W∗

1 and W∗
2 be row-standardized, i.e., W∗

11 = W∗
21 = 1. Then the

minimization problem (6) has a solution ϑ̂n and it holds that ϑ̂n
p→ ϑ0 as n → ∞.

Note that the solution of (6) does not have to be unique. For more details, we refer
to Sect. 4 of Amemiya (1985).

Moreover, for a spGARCH process it holds that f ′(x)x = x and hϑ (si ) ≥ αl > 0
and thus the above condition is fulfilled. For a log-spGARCH process we have that
f ′(x)x = 1 and thus it is fulfilled as well. Further, for a log-spGARCH process the
condition (7) can be easily seen to be fulfilled since for a strictly stationary process
{Y (si )} the quantity E(log(hϑ (si ))) does not depend on i at all.

To prove the consistency of the local minimum, the roots of the first derivative of
the sum of non-linear squares with respect to the parameters must be zero, i.e.,

∂Qn(ϑ)

∂ϑ
= 0.

Theorem 5 Suppose that the conditions of Theorem 4 are fulfilled and (7) and (8) hold
in an open neighbourhood N of ϑ0.

Let �T denote the set of roots of the equation

∂Qn(ϑ)

∂ϑ
= 0.

Then it holds for all ε > 0 that

lim
n→∞ P

(
inf

ϑ∈�T
(ϑ − ϑ0)

′(ϑ − ϑ0) > ε

)
= 0.

As in the previous section, we will now consider a special case of the general
framework, namely an spGARCH model. That is, we choose f (x) = x I[0,∞](x)
while γ is an arbitrary function satisfying certain conditions.

Lemma 6 Let {Y (si )} be an spGARCH process. Suppose that � = (0, 1) × (0, 1) ×
(0,∞). Let {ε(si ) : i ∈ IN } be independent and identically distributed random vari-
ables with existing moment E(log(|ε(s1)|)2). Let γ be a non-negative measurable
function on [0,∞) with Var(γ (Y (s1)2)) < ∞. Suppose that {Y (si )} is strictly sta-
tionary. Moreover, letW1 and W2 be row-standardized.

(a) If there is an open neighbourhood N of ϑ0 such that for all ϑ = (ρ, λ, α) ∈ N it
holds with � = (

γ (Y (s j )2) − E(γ (Y (s j )2)
)
j=1,...,n that

1

n
�′W∗′

1 (I − λW∗′
2 )−1(I − λW∗

2)
−1W∗

1�
p→ 0 (9)
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as n tends to infinity then the assumption (8) is fulfilled.
(b) If

1

n
1′(I − λW∗

2)
−1W∗

1 Cov(�)W∗′
1 (I − λW∗′

2 )−11 → 0 (10)

as n tends to infinity then the condition (9) is fulfilled.

Note that the assumption (9) is a statement about the topological structure of the
underlying space. Moreover, (10) shows that it can be interpreted as an assumption
on the underlying autocorrelation structure of the process. It is fulfilled ifW∗

1 andW
∗
2

are sparse to limit the spatial dependence to a manageable degree. Here the choice of
the weight matrices is restricted. It is also satisfied if the autocorrelation is weak.

4 Computational implementation and simulation studies

In the following section, we assume the simple parametric setting given by (5). We
simulated a spatial GARCH process as specified in Example 2 and the weighting
matrices W∗

1 and W∗
2 were set as row-standardized Rook contiguity matrices, for

which the upper triangular elements were set to zero to avoid negative values of h(si ).
Thus, the conditions of Theorem 1 are fulfilled. In practice, such processes are relevant
tomodel directional processes, for instance. It is worthmentioning at this point that the
condition for invertibility of the spatial GARCH process is restrictive, i.e., to represent
Y (s) as a function of all ε(s) in a closed-form, such that the solutions Y (s) are real-
valued. This condition is, however, only sufficient. For estimation, a function for the
residual process ε(s) given all (real-valued) observations y(s) is needed, which is
easier for spatial GARCH models; and therefore, we can relax on the assumption of a
directional process.

The simulation study is performed on a d × d spatial unit grid (i.e., Ds =
{s = (s1, s2)′ ∈ Z2 : 1 ≤ s1, s2 ≤ d}), resulting in n = d2 observations, with
m = 10000 replications. The size of this spatial field has been successively increased
with d ∈ {5, 10, 15}. Moreover, we have considered different settings depending on
the data-generating parameters θ0 = (ρ0, λ0, α0)

′. For all settings, the errors were
independently drawn from a standard normal distribution and α0 equals 1 (i.e., the
spatially constant term), whereas ρ0 and λ0 varied across the settings. To be precise,
ρ0 ∈ {0.2, 0.4, 0.7} and λ0 ∈ {0.2, 0.4, 0.7} to have settings with a weak, moderate
and large dependence in the conditional spatial heteroscedasticity.

For all three parameters ρ, λ, and α, where ρ0+λ0 < 1, the average bias and RMSE
are shown Tables 2 and 3. We see that the RMSE is decreasing with an increasing
number of observations in all cases, while the absolute bias is decreasing in almost
all cases. The exceptions are observed for cases where the bias is small. Moreover,
the non-linear least squares approach can efficiently be implemented and runs very
fast on standard computers, even if the number of observations is large. On average,
the computing time for estimating the parameters ranges from 3.4 to 3.8 s for 25
observations, 3.2–4.8 s for 100 observations, and 5.5–8.5 s for 225 observations on a
standard notebook. This method is implemented in the R package spGARCH (version
> 2.0, see also Otto 2019).
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Table 3 RMSE of the estimates ρ̂, λ̂, α̂ for different settings with α0 = 1

ρ0 = 0.2 ρ0 = 0.4 ρ0 = 0.7

ρ̂ λ̂ α̂ ρ̂ λ̂ α̂ ρ̂ λ̂ α̂

λ0 = 0.2 d = 5 0.229 0.332 0.536 0.293 0.318 0.639 0.379 0.300 0.913

d = 10 0.167 0.294 0.468 0.209 0.250 0.505 0.250 0.190 0.654

d = 15 0.131 0.276 0.431 0.158 0.211 0.431 0.181 0.139 0.510

λ0 = 0.4 d = 5 0.233 0.345 0.784 0.304 0.333 1.055

d = 10 0.169 0.306 0.697 0.213 0.257 0.835

d = 15 0.131 0.281 0.633 0.158 0.210 0.692

λ0 = 0.7 d = 5 0.244 0.344 1.500

d = 10 0.170 0.263 1.343

d = 15 0.126 0.210 1.173

5 Real-world application: condominium prices in Berlin

Inmarkets that are constrained in space, one can typically expect to find locally varying
risks. Typical examples of such markets are real estate and labour. For the former, the
property prices are highly dependent upon the location of the real estate and prices in
the surrounding areas. Similarly, for the latter, this market is also often constrained in
space due to the limited mobility of labourers.

On the one hand, we observe conditional mean levels that vary in space, so-called
spatial clusters. That is, both clustered areas of higher prices and lower prices can be
observed. On the other hand, we may also expect to find locally varying price risks,
which can be considered as local volatility clusters. The proposed spatial GARCH-
type models are capable of capturing such spatial dependencies in the conditional
variance. This motivates why we consider condominium prices (average prices per
square metre) at a fine spatial scale. In particular, we will analyze the relative changes
from 1995 to 2014 across all Berlin postcode regions (i.e., n = 190), more precisely,
the logarithmic returns over entire period to obtain a purely spatial data set of the
long-term changes. The data are depicted in Fig. 1. The sample mean for these price
changes is 0.8103 with a median of 0.6965. In total, the price changes range from
− 2.5650 to 7.3131. We can observe a spatial cluster of positive values in the north-
western postcode regions. To model this spatial dependence, we consider first-order
contiguity matrices W∗

1 and W∗
2 giving equal weights to each directly neighbouring

region. This choice appears to be the best with respect to the Akaike and Bayesian
information criterion. For estimation, we do not need further restrictions on the error
process or theweightmatrix, such as the triangular weighting scheme in the simulation
study. There is a well-defined mapping from the observed process {Y (s)} to the errors
{ε(s)}, and the restrictions were only needed for the inverse relation (i.e., the mapping
from {ε(s)} to {Y (s)}).

However, this fine spatial scale of all postcode regions causes another problem,
namely exogenous regressors are often not available or cannot be assigned in the
given small-scale resolution. For instance, the average household income could play
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Fig. 1 Long-term logarithmic returns of the condominium prices for all Berlin postcode regions

an important role in the increase of the condominium prices, but the place of living (in
terms of postal code areas) does not usually coincidewith the place ofwork. There is no
reliable way to associate quantities like personal or household income with postcode
areas. Moreover, local infrastructure like schools, leisure facilities, parks is not limited
to the residents of the respective areas with the same postal code. Thus, modelling an
empirical process on such a small spatial scale is typically prone to heteroscedasticity
induced by latent variables.

To illustrate these effects, we applied the developed spatial GARCH model to the
residuals of a spatial autoregressive model, briefly SAR (see, e.g. Halleck Vega and
Elhorst 2015; Lee 2004), with and without exogenous regressors. More precisely,
we select the regressors from a set of potential covariates available for different spa-
tial scales, including the number of crimes (in so-called life-world oriented spaces,
LOR, 161 units), number of schools, kinder gardens (postcode-area level), percent-
age of migrants (LOR level), number of inhabitants (LOR level), size of areas used
for infrastructure, living, water, vegetation (district level, 12 units), and average net
income per household (district level). The included regressors were chosen such that
theAkaike information criterion isminimal. The results of these twomodels are shown
in Table 4 along with the spGARCH coefficients of the error process. All covariates
were standardized. Regarding the residuals of these two mean models with and with-
out regressors (before fitting a spGARCH model to the residuals), we observe that
both of them are not autocorrelated in space (Moran’s I = −0.0375 with a p-value of
0.7811 for the intercept-only model, and I = −0.0124 with p = 0.5676 for the model
including covariate effects). That is, the spatial correlation of original data could fully
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be modelled (I = 0.5104). However, looking at the absolute values of the residu-
als, we observe that there is significant autocorrelation for both models (I = 0.1027
(p = 0.0042) and I = 0.0808 (p = 0.0181) for the intercept-only model and regres-
sive model, respectively).

In the final regressive model, only four regressors were selected, namely a proxy
for the available free space (i.e., the proportion of settlement area to total area), the
net household income in each district, and linear trends in the east-west direction,
and north-south direction have been included (i.e., the coordinates of the centroids of
each postal code unit). While a significant negative trend can be observed from west
to east, the increase in the north-south direction seems to be of minor importance.
Furthermore, the average household income clearly influences the price development
of condominiums in Berlin. Condominiums in high-class districts in terms of average
income have increased relatively less than condominiums in lower-income areas.

It is worth noting that the dependence in the conditional heteroscedasticity could
partly be covered by these covariates and the spatial autocorrelation in the absolute
residualswas reduced.Nevertheless, latent effects are presentwhichwere notmodelled
by including these regressors. This can also be seen in Fig. 2, where the residuals
of the SAR model are displayed in a diverging colour scheme (blue areas indicate
negative residuals, red areas are positive residuals). Even though there is no spatial
dependence in the residuals (red and blue areas are irregularly located across space
without clustering), we observe a certain dependence in the absolute residuals, because
darker colours are clustered together while in other areas the residuals are close to zero
indicated by yellow-coloured regions. Thus, an spGARCH model has been fitted in a
second step to the residuals of both models. The obtained spGARCH parameters can
be interpreted as local model uncertainties and simultaneously cover latent variables,
which could not be included due to the fine spatial scale of postcode-area levels.

In both cases, we observe significant positive dependence in the conditional second
moments. More precisely, the GARCH effects amount to ρ̂ = 0.2136 and ρ̂ = 0.2022
with λ̂ roughly equal to 0.70 for the intercept-only and regression model, respectively.
These parameters can similarly be interpreted as in the time-series case, although h
does not necessarily coincide with the conditional second moments (see Otto et al.
2021). Furthermore, α̂ does not significantly differ from zero. It is worth noting that,
according to (4), h is obtained by multiplying (I−W1E−W2)

−1 with α, such that a
small value ofα does not necessarily implies small values of h. Analyzing the residuals
of this combinedmodel shows that the remaining dependence in the heteroscedasticity
could be explained. The squared residuals are no longer significantly autocorrelated
in space.

The resulting conditional variance is visualized for the model with regressors in
Fig. 3. The highest values of h(si ) can be observed for the outer regions in north-west
and another cluster is located in the southern city centre. This indicates that the highest
uncertainty in the price changes is observed for these regions, while there is a band
around the city centre where the price changes could more accurately be predicted
by the regression model (i.e., the estimated values of h(si ) are lower). These results
seem to be very reasonable because the real-estate market was changing the most in
these areas. First, due to increasing prices in the centre, new land for building has been
created outside the city—mostly along the regional transport tracks which are mainly
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Fig. 2 Residuals of the SAR model

going in an east-west direction. Second, the major airport of West Berlin, namely the
airport Berlin-Tempelhof, was closed in 2008 changing the atmosphere in this region,
some areas changed from regions in the flight paths to calm regions very close to the
city centre, while others were not affected. This explains the second cluster in the
centre.

6 Discussion and conclusions

Recently, a few papers have introduced spatial ARCH and GARCH-type models that
allow the modelling of an instantaneous spatial autoregressive dependence of het-
eroscedasticity. In this paper, we propose a generalized spatial ARCH model that
additionally covers all previous approaches. Due to the flexible definition of the model
as a set of functions, we can derive a common estimation strategy for all these spatial
GARCH-type models. It is based on non-linear least squares.

In the second part of the paper, we confirmed our theoretical findings on the consis-
tency of the estimators by means of Monte Carlo simulation studies. The estimation
method is computationally implemented in the R package spGARCH. Eventually, the
use of the model was demonstrated through an empirical example. More precisely,
this paper has shown how the model uncertainties of local price changes in the real
estate market in Berlin can be described using an spGARCH model as residuals’ pro-
cess. Though all proposed models are uncorrelated and have a zero mean, potential
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Fig. 3 Spatial equivalent of the conditional variance, ĥ(s)

interactions between the error process and the mean equation should be analyzed in
greater detail in future research.

In addition, we want to stress that the dependence structure does not necessarily
have to be interpreted in a spatial sense. Thus, we briefly discuss a further example
below, onwhich the “spatial” proximity could also be defined as the edges of networks.
In such cases, W1 and W2 would be interpreted as adjacency matrices. For instance,
one might consider the financial returns of several stocks as a network, where the
only assets that are connected are those that are correlated above a certain threshold.
Choosing the threshold equal to 0.5, a financial network as displayed in Fig. 4 can be
created. Thus, spGARCHmodels can be used to analyze various forms of information,
whether that might be volatility, risk, or spill-overs from one stock to another, if these
assets are close to one another within a certain network. In future research, attempts for
modelling volatility clusters within networks, using spatial GARCH models, should
be analyzed in greater detail. Moreover, a temporal dimension can be added. The main
difference between the spatiotemporal GARCH in our framework and a multivariate
vec-GARCH model is that we allow for instantaneous spatial/network interactions,
whilemultivariateGARCHinclude only temporally lagged cross-variable (i.e., spatial)
interactions. Alternatively, in financial applications, the spatial locations could be
considered to be unknown. Santi et al. (2021a, b) considered the case of unknown
or incompletely known spatial locations for autoregressive models. They propose to
approximate the geographical space by another space spanned by certain covariates,
which seems to be a promising approach also for spatial GARCHmodels and financial
applications.
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Fig. 4 Financial network of selected stocks of the S&P 500, where the colour of the nodes denotes the
annual returns in 2017 with darker colours indicating higher returns

Up to now, we have assumed that suitable functions of the spGARCHmodel frame-
work are known. Hence, it is possible to maximize certain goodness-of-fit criteria in
order to obtain the best-fitting model. However, these functions can also be estimated
using a non-parametric approach; for instance by penalized or classical B-splines.
Besides, further choices of f have not been discussed in this paper yet, including
choices of f to obtain E-spGARCH or logarithmic spGARCH models. Also, mul-
tivariate models remain open for future research. This will be the subject of some
forthcoming papers.
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Appendix A Proofs

Theorem 1 Inserting (1) into (2), we get that

F(h) = α + W1γ (Eh) − (I − W2)F(h) = 0.
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Now, we want to know whether there is a solution h of this equation. This is
equivalent to the problem of whether or not T (ω) ◦ h has a fixed-point. The existence
and the uniqueness of a solution h is an immediate consequence of the Banach fixed-
point theorem. Here we make use of the randomized version given as Theorem 7
of Bharucha-Reid et al. (1976). Inserting this solution in (1) provides a measurable
solution Y . �

Corollary 2 Because (Y (s1), . . . ,Y (sn))′ is a measurable function of
(ε(s1), . . . , ε(sn))′, it is strictly stationary as well. �

Theorem 3 (a) Since

F = ( f (h(si )))i=1,...,n = α + W1γ (Eh) + W2F

its solution h is a functionof ε(s1)2, . . . , ε(sn)2, sayh(si ) = ξi (ε(s1)2, . . . , ε(sn)2).
Since Y (si )=ε(si )

√
h(si ) it follows that

−Y (si ) = −ε(si )
√

ξi (ε(s1)2, . . . , ε(sn)2)

= −ε(si )
√

ξi (ε(s1)2, . . . , (−ε(si ))2, . . . , ε(sn)2)
d= Y (si )

since ε is sign-symmetric. Thus, Y (si ) is a symmetric random variable.
Moreover,

(Y (s1), . . . ,Y (sn))′
d= (−Y (s1), . . . ,Y (sn))′.

Thus, E(Y (s1)2k−1|Y (s2), . . . ,Y (sn)) = E(−Y (s1)2k−1|Y (s2), . . . ,Y (sn)).
Consequently, this quantity is zero.

(b) Now,

Y (si )Y (s j ) = ε(si )ε(s j )
√

ξi (ε(s1)2, . . . , ε(sn)2)
√

ξ j (ε(s1)2, . . . , ε(sn)2)

d= −ε(si )ε(s j )
√

ξi (ε(s1)2, . . . , ε(sn)2)
√

ξ j (ε(s1)2, . . . , ε(sn)2)

= −Y (si )Y (s j )

and thus Cov(Y (si ),Y (s j )) = 0 for i �= j .
�


Proof of Theorem 4 To prove the above theoremwemake use of Newey andMcFadden
(1994). First we observe that � is a compact set. Moreover, Qn(ϑ) (see (6)) is a
continuous function for ϑ ∈ �. Now we have to show that

(i) Qn(ϑ)
p→ Q0(ϑ) for all ϑ ∈ �

(ii) there is τ > 0 and B̂n = Op(1) such that

|Qn(ϑ̃) − Qn(ϑ)| ≤ B̂n||ϑ̃ − ϑ ||τ ∀ϑ̃,ϑ ∈ �.
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If (i) and (ii) hold then it follows with Lemma 2.9 of Newey and McFadden (1994)

that supϑ∈�|Qn(ϑ) − Q0(ϑ)| p→ 0 as n → ∞.
If additionally

(iii) Q0(ϑ) is continuous for ϑ ∈ �

holds, then we get with Lemma 3 of Amemiya (1985) that ϑ̂n
p→ ϑ0 as n → ∞ and

the result is proved.
We start with proving (i). Recall that Hi = log(hϑ0(si )) + log(ε(si )2) −

E(log(ε(si )2)) = η(si ) + log(hϑ0(si )). Thus, in the present case, the function Q0(ϑ)

can be found by splitting Qn(ϑ) into eight parts, as follows

Qn(ϑ) = In + I In + I I In + I Vn + Vn + V In + V I In + V I I In

with

In = 1

n

n∑

i=1

η(si )2, I In = 1

n

n∑

i=1

(
E(log(hϑ (si )) − E(log(hϑ0(si )))

)2
,

I I In = 1

n

n∑

i=1

(
log(hϑ0(si )) − E(log(hϑ0(si )))

)2

I Vn = 1

n

n∑

i=1

(log(hϑ (si )) − E(log(hϑ (si ))))2

Vn = 2

n

n∑

i=1

η(si )
(
log(hϑ0(si )) − log(hϑ (si ))

)

V In = 2

n

n∑

i=1

(E(log(hϑ0(si ))) − E(log(hϑ (si ))))(log(hϑ0(si )) − E(log hϑ0(si ))),

V I In = −2

n

n∑

i=1

(E(log(hϑ0(si ))) − E(log(hϑ (si ))))(log(hϑ (si )) − E(log hϑ (si ))),

V I I In = −2

n

n∑

i=1

(log(hϑ0(si )) − E(log hϑ0(si )))(log(hϑ (si )) − E(log hϑ (si ))).

The weak law of large numbers (WLLN) implies that In converges in probability
to Var(log(ε(s1)2)). I I In is a special case of I Vn . Further

Vn/2 = 1

n

n∑

i=1

η(si )
(
log(hϑ0(si )) − log(hϑ (si ))

)

= 1

n

n∑

i=1

η(si )
(
E

(
log(hϑ0(si ))

) − E((log(hϑ (si )))
)
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+1

n

n∑

i=1

η(si ) (E (log(hϑ (si ))) − log(hϑ (si )))

+1

n

n∑

i=1

η(si )
(
log(hϑ0(si )) − E

(
log(hϑ0(si ))

))

= Vn,1 + Vn,2 + Vn,3.

Since {η(si )} are independent and identically distributed, it follows that

P(|Vn,1| > ε) ≤ E(η(s1)2)
n2ε2

n∑

i=1

(
E(log(hϑ (si )) − E(log(hϑ0(si )))

)2 → 0

as n tends to ∞ and thus Vn,1 converges in probability to zero. Using the Cauchy–
Schwarz inequality and (8), we get that Vn,2 and Vn,3 converge in probability to zero.

Thus, Vn
p→ 0 as n → ∞.

Moreover, themixed quantities V In , V I In , and V I I In convergence to zero in prob-
ability. This is obtained by applying the Cauchy-Schwarz inequality and by making
use of the previous results and assumptions.

Consequently, if Q̃0(ϑ) denotes the limit in (7), then Q0(ϑ) = Var(log(ε(s1)2))+
Q̃0(ϑ) and part i) is proved.

Next, we prove part (ii). We use that τ ′(τ−1(x)) = f ′( f −1(x)) f −1(x) and, thus,
τ ′(τ−1(αci (λ) + ρdi (λ)(γ̃ (Hv + c)))v=1,...,n) = f ′(hϑ (si ))hϑ (si ). Consequently,

Qn(ϑ̃) − Qn(ϑ) = (ϑ̃ − ϑ)′Q′
n(ϑ

∗)

with

Q′
n(ϑ

∗) =

⎛

⎜⎜⎜
⎝

− 2
n

∑n
i=1

Hi−log(hϑ∗ (si ))
f ′(hϑ∗ (si )) hϑ∗ (si )

di (λ∗)′ (γ̃ (Hv + c))

− 2
n

∑n
i=1

Hi−log(hϑ∗ (si ))
f ′(hϑ∗ (si )) hϑ∗ (si )

(
α∗c′

i (λ
∗) + ρ∗d ′

i (λ
∗)′ (γ̃ (Hv + c))

)

− 2
n

∑n
i=1

Hi−log(hϑ∗ (si ))
f ′(hϑ∗ (si )) hϑ∗ (si )

ci (λ∗)

⎞

⎟⎟⎟
⎠

.

Since Hi = η(si ) + log(hϑ0(si ), we get that

Q′
n(ϑ

∗) =

⎛

⎜⎜⎜
⎝

− 2
n

∑n
i=1

η(si )+log(hϑ0 (si )−log(hϑ∗ (si ))
f ′(hϑ∗ (si )) hϑ∗ (si )

di (λ∗)′
(
γ (Y (sv)2)

)

− 2
n

∑n
i=1

η(si )+log(hϑ0 (si )−log(hϑ∗ (si ))
f ′(hϑ∗ (si )) hϑ∗ (si )

(
α∗c′

i (λ
∗) + ρ∗d ′

i (λ
∗)′

(
γ (Y (sv)2)

))

− 2
n

∑n
i=1

η(si )+log(hϑ0 (si )−log(hϑ∗ (si ))
f ′(hϑ∗ (si )) hϑ∗ (si )

ci (λ∗)

⎞

⎟⎟⎟
⎠

.

Note that

(ci (λ)) =
(
I + λW∗

2 + λ2W∗
2
2 + · · ·

)
1 = 1

1 − λ
1.
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This quantity is well defined since ||λW∗
2||∞ = λ < 1. Thus, ci (λl) ≤ c(λ) ≤ c(λu).

Further,

di (λ)′ =
(
I + λW∗

2 + λ2W∗
2
2 + · · ·

)
W∗

1

is a non-decreasing function in λ for each component of the matrix and di (λ)′1 =
1/(1 − λ).

We obtain with the inequality of Cauchy–Schwarz that

|Qn(ϑ̃) − Qn(ϑ)| ≤ ||ϑ̃ − ϑ)||2||Q′
n(ϑ

∗)||2
where ||·||2 stands for the Euclidean distance. Each component of Q′

n(ϑ
∗) is stochasti-

cally bounded. For the first component, this can be seen by applying Cauchy-Schwarz
and making use of the fact that

max
λ∈[λl ,λu ]

1

n

n∑

i=1

(
di (λ)′

(
γ (Y (sv)2)

))2

≤ 1

n

n∑

i=1

n∑

j,v=1

di j (λu)div(λu)|γ (Y (s j )2)||γ (Y (sv)2)|

and, thus,

P

(

| max
λ∈[λl ,λu ]

1

n

n∑

i=1

(
di (λ)′

(
γ (Y (sv)2)

))2
> K

)

≤ E((γ (Y (s1)2))2)
(1 − λu)2K

.

For the other components, the argumentation is similar. Thus, we have proved (ii).
Finally, we come to part (iii). Let ϑ1, ϑ2 ∈ �. Since by (ii)

|Qn(ϑ2) − Qn(ϑ1)| ≤ B̂n||ϑ2 − ϑ1||2
with B̂n = Op(1) and since because of the uniform convergence there is a subsequence

such that supϑ∈�|Qrn (ϑ) − Q0(ϑ)| a.s.→ 0 as n → ∞ it follows with a constant K
that

|Q0(ϑ2) − Q0(ϑ1)| ≤ lim
n→∞ |Qrn (ϑ2) − Qrn (ϑ1)| ≤ K ||ϑ2 − ϑ1||2

and thus Q0 is continuous. Part (iii) is proved and the proof of the Theorem is finished.
�


Proof of Theorem 5 Following Theorem 4.1.2 in Amemiya (1985), we have to prove
that there is an open neighbourhood N ⊆ � of ϑ with

Qn(ϑ)
p→ Q0(ϑ) as n → ∞ uniformly in ϑ ∈ N .
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In order to prove this we follow the proof of Theorem 4. It follows under the

modified assumptions as above that Qn(ϑ)
p→ Q0(ϑ) for ϑ ∈ N as n → ∞. Using

(ii) of the proof of Theorem 4, we get that the convergence is uniform on a closed set
N0 ⊂ N . Thus it is also uniform on an open subset of N0 since � is a subspace of the
Euclidean space.

The rest follows as in the proof of Theorem 4. �

Proof of Lemma 6 First, we prove part a). Since f (x) = x we get that τ−1 = log(x)
and

log(hϑ (si ) = log(αci (λ) + ρdi (λ)′
(
γ (Y (si )2)

)
.

It holds for z > −1 that

log(1 + z) = z + z2

2

(
− 1

1 + ζ 2

)
, |ζ | ≤ z (A1)

and therefore | log(1 + z) − z| ≤ z2.
Let Zin = di (λ)′

ci (λ)

(
γ (Y (si )2)

)
, κ = ρ/α, and κi = κ/(1 + κ E(Zin)). Since

{γ (Y (si )2)} is strictly stationary aswell it follows thatE(Zin) = E(γ (Y (s1)2)) di (λ)′
1/ci (λ) = E(γ (Y (s1)2))/ci (λ) and thus

κi = κci (λ)

ci (λ) + κ E(γ (Y (s1)2)
= κ

1 + κ(1 − λ)E(γ (Y (s1)2))

does not depend on i at all. We briefly write κ1.
Then the left side of (8) is equal to

1

n

n∑

i=1

(log(1 + κZin) − E(log(1 + κZin))

= 1

n

n∑

i=1

(log (1 + κ1(Zin − E(Zin))) − E (log (1 + κ1(Zin − E(Zin)))))

= In − E(In).

Using (A1) we get that In = I In + I I In with I In = κ1
n

∑n
i=1(Zin − E(Zin)) and

|I I In| ≤ I Vn = κ2
1

n

n∑

i=1

(Zin − E(Zin))
2).

Since

n∑

i=1

(Zin − E(Zin))
2) = (1 − λ)2

n∑

i=1

(di (λ)′�i )
2
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it follows with (9) that I Vn
p→ 0. Because

∣∣∣∣∣
1

n

n∑

i=1

(Zin − E(Zin))

∣∣∣∣∣
≤

(
1

n

n∑

i=1

(Zin − E(Zin))
2)

)1/2

it holds that I In
p→ 0 as well and part a) is proved.

To prove part b) the Markov inequality is applied. It holds that

P

(
1

n

n∑

i=1

(Zin − E(Zin)

)2

> ε) ≤ 1

n

n∑

i=1

Var(Zin)

and

n∑

i=1

Var(Zin) = (1 − λ)21′(I − λW∗
2)

−1W∗
1 Cov(�)W∗′

1 (I − λW∗′
2 )−11

and thus the result follows. �
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