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Abstract
We consider the problem of approximating a continuous random variable, charac-
terized by a cumulative distribution function (cdf) F(x), by means of k points,
x1 < x2 < · · · < xk , with probabilities pi , i = 1, . . . , k. For a given k, a crite-
rion for determining the xi and pi of the approximating k-point discrete distribution
can be the minimization of some distance to the original distribution. Here we con-
sider the weighted Cramér-von Mises distance between the original cdf F(x) and the
step-wise cdf F̂(x) of the approximating discrete distribution, characterized by a non-
negative weighting function w(x). This problem has been already solved analytically
when w(x) corresponds to the probability density function of the continuous random
variable, w(x) = F ′(x), and when w(x) is a piece-wise constant function, through
a numerical iterative procedure based on a homotopy continuation approach. In this
paper, we propose and implement a solution to the problem for different choices of the
weighting function w(x), highlighting how the results are affected by w(x) itself and
by the number of approximating points k, in addition to F(x); although an analytic
solution is not usually available, yet the problem can be numerically solved through an
iterativemethod, which alternately updates the two sub-sets of k unknowns, the xi ’s (or
a transformation thereof) and the pi ’s, till convergence. The main apparent advantage
of these discrete approximations is their universality, since they can be applied to most
continuous distributions, whether they possess or not the first moments. In order to
shed some light on the proposed approaches, applications to several well-known con-
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tinuous distributions (among them, the normal and the exponential) and to a practical
problem where discretization is a useful tool are also illustrated.

Keywords Cumulative distribution function · Moment matching · Quantile function ·
Quantization · Statistical distance

Mathematics Subject Classification 62E15 · 62E17

1 Introduction

Using a discrete approximation of a continuous random variable (rv) is a procedure
that is often adopted in many problems where uncertainty is present and needs to be
taken into account. Substituting a continuous probability density function (pdf)with an
approximating probability mass function (pmf), supported on a (possibly) finite num-
ber of points, can heavily reduce the computational burden required for determining a
numerical solution for the problem at hand, and can produce an approximate solution
whose degree of accuracy is still acceptable. This is particularly true when a problem
involves several quantities that should be modelled as continuous rvs and the solution
depends on some complex function thereof. The exact solution in this case could be
obtained by applying some multivariate numerical integration technique whose com-
putational cost may be severe and dramatically increasing with the number of rvs
involved. Approximating each continuous rv through a properly chosen discrete rv
allows the researcher to avoid numerical integration and resort to enumeration, which
is much easier to manage (Luceno 1999).

An interesting application of discrete approximation of continuous distributions can
be found in the field of insurance. If one is required to determine the distribution of the
total claim amount S = ∑N

i=1 Xi corresponding to a random number N of i.i.d. claims
whose size Xi is assumed to follow some continuous probability distribution, rather
than resorting to integral convolution to determine the exact distribution of S, one can
approximate the distribution of the claim size Xi through discretization and then apply
Panjer’s formula (Panjer 1981), which is a recursive formula that exactly calculates
the distribution of the total, holding when the claim size is arithmetic with span size
h > 0 and the distribution of the number of claims N belongs to the (a, b, 0) class.

In the field of quantitative finance, a similar application is the following. Let LLL =
(L1, . . . , Ld) denote a vector of possibly dependent rvs, each one representing a loss
on a particular trading desk, portfolio or operating unit within a firm, over a fixed time
period. Sometimes we need to aggregate these losses into a single rv, typically the
sum L+ = ∑d

i=1 Li , on which one can calculate a measure of the aggregate risk, for
example, the Value-at-Risk, which is nothing else than the quantile at a prespecified
level 0 < α < 1 of the distribution of L+. However, determining this measure of
risk, when the joint distribution of LLL is fully specified, requires the computation of the
distribution of L+, which is not straightforward to derive even if all the rvs aremutually
independent. A possible answer is represented by the discretization of the Li and the
construction of a joint pmf approximating the joint distribution of LLL , on which the
evaluation of the VaR of the aggregating function is much more straightforward (see,
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for example, Jamshidian and Zhu (1996), where the authors consider the multivariate
Gaussian distribution).

In reliability engineering, the stress-strengthmodel describes a systemwith random
strength which is subject to a random stress during its functioning, so that the system
works only when the strength is greater than the stress. The probability that a system
correctly works is termed reliability (Johnson 1988). Evaluating the reliability of a
system thus requires the knowledge of the probability distributions of both stress
and strength; when these latter depend on several stochastic factors, the probability
distributions (and then the reliability) are often not analytically tractable and hence
some formof approximation is needed.Given a known functional relationship between
stress (or strength) and its random subfactors and assuming the subfactors of the stress
(or strength) are independent, one feasible approach of approximating the probability
distribution of stress (or strength) is through discretization of the subfactors (see, e.g.,
English et al. 1996).

For an assigned continuous probability distribution and a fixed number of approx-
imating points k, the matter is how to build an “optimal” discrete approximation.
Several criteria have been used so far; here is a rough classification into four main
categories:
– moment equalization or moment matching: the discrete approximation is the one
preserving as many moments as possible of the original distribution. Moments’
matching is carried out through a procedure known as Gaussian quadrature (Golub
and Welsch 1969); in its more authentic form, the support points of the discrete
approximation and their probabilities are derived simultaneously. This is by far
the oldest and most popular discretization technique; as stated by Miller and Rice
(1983), “Few people would accept an approximation that did not have roughly
the same mean, variance, and skew as the original distribution”. However, its
application is limited by the finiteness and existence of a closed-form expression
for the first integer moments of the continuous rv: many random distributions
commonly used in quantitative finance, for example, do not possess even lower-
order moments. Several variants of Gaussian quadrature have been proposed; for
example, Tanaka andToda (2013) suggested that the k support points of the approx-
imating distribution have to be chosen “a priori” and the probabilities have to be
derived bymaximizing the relative entropy to an assigned “reference distribution”,
under the constraint that it matches as many moments as possible. Convergence
properties of this maximum entropy method and applications to stochastic pro-
cesses were later presented in Tanaka and Toda (2015), Farmer and Toda (2017);

– preservation of the distribution function: the discrete approximation preserves,
at each support point, the value of the cdf or, alternatively, of the survival func-
tion (Roy and Dasgupta 2001). Actually, this technique has been employed for
constructing discrete counterparts of continuous distributions, by defining its pmf
as p(i) = F(i)−F(i−1), with i integer; such construction automatically supplies
a valid pmf, which preserves the cdf of the continuous distribution at any integer
value i (Chakraborty 2015). Straightforward modifications have been proposed in
order to handle finite supports consisting of possibly non-integer points;

– minimizing the mean squared error between the assigned continuous rv X ∼ F
and its approximation X̂ , i.e., minimizing EF (X − X̂)2, where the expected value
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is computed with respect to the distribution of X ; this yields the so-called optimal
quantization, which is a well-known technique in signal theory (Gray and Neuhoff
1998). The minimization problem can be solved iteratively, by alternately solving
two sets of conditions, one expressing each support point (also named “quantum”)
as the center of mass of the intervals of a partition of the support of the continuous
rv, and the other expressing the endpoint of each of these intervals as the midpoint
of the segments between successive quanta (Lloyd 1982);

– minimizing a distance between the two distribution functions: the discrete approxi-
mation is obtained as the distributionminimizing some statistical distance between
the two (continuous and step-wise) cdf. In Kennan (2006), an analytical solution is
found for the optimal k-point discrete approximation when employing a particular
class of distances.
In this work, we will concentrate on the last class of discrete approximations. More

precisely, we propose the use of three distances: the Cramér-vonMises, the Anderson-
Darling, and the Cramér distance between the cdf of the assigned continuous rv and
the step-wise cdf of its k-point discrete approximation. They can be all regarded as
weighted Cramér-von Mises distances with a proper choice of the weighting function.
We will derive for these three cases the optimal solution (i.e., the k-point discrete
approximation leading to the minimum distance) either analytically or computation-
ally, providing in the latter case some details about the numerical procedure to be
implemented. To the best of our knowledge, these distances have not been used reg-
ularly in the existing literature for the discrete approximation of a continuous rv. The
aim of this paper is to shed some light on their use and explain their pros and cons.

The rest of the paper is structured as follows. In the next section, we will dis-
cuss distances between cdf in general and then present and solve the main research
question, that is, finding an optimal k-point discrete approximation to a continuous
random distribution throughminimization of a statistical distance. The three statistical
distances mentioned above will be considered and the corresponding solutions to the
problem will be described and compared, also practically referring to some known
parametric families of continuous distributions. Section 3 illustrates two applications
of discretization to the (approximate) determination of the distribution or of some
parameter of an assigned function of independent rvs, which is carried out by using
each of the discrete approximations previously described and also other existing tech-
niques. A software implementation in the R programming environment is presented
in Sect. 4. Some comments and remarks are provided in the last section.

2 Optimal k-point approximation based onminimization of a
distance between distribution functions

2.1 Statement of the problem

Let us consider two cdfs F(x) and G(x), and assume that F(x) possesses a density,
say f (x), so that we can write F(x) = ∫ x

−∞ f (u)du for any real x . Several statis-
tical distances between such two cdfs have been proposed. The most popular is the
Kolmogorov-Smirnov (KS) distance, defined as supx∈R |F(x)−G(x)|, i.e., the maxi-
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mum (or, better, supremum) absolute difference between the two cdfs. TheKS distance
is commonly employedwhen one has to testwhether an i.i.d. sample (x1, x2, . . . , xn) is
consistent with some known cdf F ; in this case, the distance to be computed is between
the assigned F and the empirical cdf F̃(x), defined as F̃(x) = 1

n

∑n
i=1 1(xi ≤ x).

Another wide family of distances between cdfs is the following

d2(F,G) =
∫ +∞

−∞
[F(x) − G(x)]2w(x)dx, (1)

where w(x) is some non-negative function on R.
If we set w(x) ≡ 1, then we obtain the second-order squared Cramér dis-

tance (Cramér 1928), which is closely related to the so-called energy distance (Rizzo
and Székely 2016). If we set w(x) ≡ f (x), then we obtain the so-called Cramér-von
Mises distance, which can be also conveniently written as

∫ 1
0 [u − G(F−1(u))]2du,

provided that F(x) is invertible. If we set w(x) = f (x)[F(x)(1− F(x))]−1, then we
obtain the Anderson-Darling distance; with respect to Cramér-vonMises, this distance
puts more weight in the tails of the distribution, i.e., where F(x) is close to either zero
or one.

Hanebeck and Klumpp (2008), also referring to the less explored multivariate case,
remark “how statistical distances are used for both analysis and synthesis purposes.
Analysis is concerned with assessing whether a given sample stems from a given
continuous distribution. Synthesis is concerned with both density estimation, i.e.,
calculating a suitable continuous approximation of a given sample, and density dis-
cretization, i.e., approximation of a given continuous randomvector by a discrete one”.
In this work, we focus on the latter aspect of research.

If one is interested in building an optimal k-point discrete approximation of a given
continuous cdf F , i.e., a discrete probability distribution somehow resembling the
original one, then he/she can find it as the discrete distribution minimizing, over all
the k-point discrete distributions, the distance (1), computed between the cdf F and
the cdf F̂ of the discrete approximation, for a given choice of the weighting function
w(x).

The problem can be more formally stated as follows. Suppose we want to approx-
imate the continuous probability distribution F by a discrete probability distribution
F̂ , consisting of k > 1 points x1 < x2 < · · · < xk−1 < xk , with probabili-
ties pi , i = 1, . . . , k (obviously, pi ≥ 0 for i = 1, . . . , k and

∑k
i=1 pi = 1).

Let us gather the support points and the probabilities of the discrete distribution
in a vector ηηη = (x1, . . . , xk, p1, . . . , pk). Then, the optimal discrete distribution
can be defined as the one (univocally identified by η̂ηη) minimizing d(F(x), F̂(x;ηηη)):
η̂ηη = argmin d(F, F̂;ηηη). For the casew(x) ≡ f (x), corresponding to the Cramér-von
Mises distance, an analytical solution is available (Kennan 2006). When w(x) is a
piece-wise constant function, the problem was solved numerically by Schremp et al.
(2006), through an iterative procedure based on a homotopy continuation approach.
For any other possible choice of the weighting function w(x), we can solve the mini-
mization problem (at least) numerically.

We start our analysis from the Cramér-von Mises distance.
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2.2 Cramér-vonMises

The Cramér-von Mises distance between continuous cdf is one of the distinguished
measures of deviation between distributions (Cramér 1928; von Mises 1931). For a
probabilistic interpretation, see Baringhaus and Henze (2017). It is obtained by setting
w(x) ≡ f (x) in (1), so that the distance between F and F̂ becomes

dCvM (F, F̂) =
∫

R

|F(x) − F̂(x)|2dF(x) =
∫ 1

0
|t − F̂(F−1(t))|2dt, (2)

where F−1 denotes the mathematical inverse of the cdf F of X , which we assume to
be strictly increasing over the support of X ; the distance in (2) is a particular case of

dr (F, F̂) =
∫

R

|F(x) − F̂(x)|rdF(x) =
∫ 1

0
|t − F̂(F−1(t))|rdt, r > 0. (3)

The best k-point discrete approximation (that is, the one yielding the minimum value
of the distance dr ) has been proved (Kennan 2006) to have, for any r > 0, equally-
weighted support points xi (i.e., with probability 1/k each) such that F(xi ) = 2i−1

2k
or, equivalently,

xi = F−1
(
2i − 1

2k

)

, i = 1, . . . , k. (4)

Here we report the proof, fixing and adding some points left out in Kennan (2006).
Let us introduce the quantities qi and Qi , defined in the following way: qi = F(xi ),

i = 1, . . . , k, setting q0 = 0 and qk+1 = 1; Qi = F̂(xi ), i = 1, . . . , k, setting
Q0 = 0; it follows that Qk = 1. Therefore, the qi represent the values of the cdf
of the continuous rv at the support points xi of its discrete approximation; the Qi

represent the values of the cdf of the discrete approximating rv at its support points
xi = F−1(qi ), so that pi = Qi − Qi−1, i = 1, . . . , k (see Fig. 1).

The distance (3) can be thus rewritten as

dr (F, F̂) =
k∑

i=0

∫ qi+1

qi
|t − Qi |rdt,

and the first-order condition on the Qi gives

|qi − Qi |r − |qi+1 − Qi |r = 0,

from which Qi = (qi + qi+1)/2; the first-order condition on the qi provides

−|qi − Qi |r + |qi − Qi−1|r = 0,
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0 q1 q2 q3 q4 1

0

Q1

Q2

Q3

1

Fig. 1 Meaning of qi and Qi when constructing a k-point discrete approximation based on theminimization
of the Cramér-von Mises distance (here k = 4). Since qi = F(xi ) and Qi = F̂(xi ), it is possible to
alternatively represent any k-point discrete approximation as a set of k points (qi , Qi ) belonging to the the
unit square

fromwhich qi = (Qi−1+Qi )/2. Combining these two last results together, we obtain

Qi = 1

2

(
Qi−1 + Qi

2
+ Qi + Qi+1

2

)

that is, Qi −Qi−1 = Qi+1 −Qi , and being Q0 = 0 and Qk = 1, we derive Qi = i/k
and pi = 1/k, for i = 1, . . . , k − 1. By substituting this expression in that for the qi ,
we obtain

qi = 1

2

(
i − 1

k
+ i

k

)

= 2i − 1

2k
,

and then xi = F−1((2i−1)/k) for i = 1, . . . , k.Note the particular formof the optimal
solution: the specific continuous distribution enters the equation of the support points
through the inverse of its cdf F , which is applied to the qi , which are “distribution-free”
quantities; the probabilities pi are independent from F as well, being all constant.

Another interesting property of this solution can be pointed out. Letting Fk be the
set of discrete distributions with k support points, we have just proved that for each
r > 1 the k-point discrete approximation F̂ ∈ Fk that satisfies

inf
G∈Fk

d1/rr (F,G) = inf
G∈Fk

(∫

R

|F(x) − G(x)|rdF(x)

)1/r
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= inf
G∈Fk

(∫ 1

0
|t − G(F−1(t))|rdt

)1/r

=
(∫ 1

0
|t − F̂(F−1(t))|rdt

)1/r

=
(∫

|F(x) − F̂(x)|rdF(x)

)1/r

= d1/rr (F, F̂)

is the discrete uniform distribution on the set of point xi = F−1((2i − 1)/(2k)),
i = 1, . . . , k. So, being for each G ∈ Fk

lim
r→∞

(∫ 1

0
|t − G(F−1(t))|rdt

)1/r

= sup
0<t<1

|t − G(F−1(t))| = sup
x∈R

|F(x) − G(x)|
= dK S(F,G),

recalling the relationship between the Lr norm and the supremum norm (see e.g. Stein
and Shakarchi 2011), one obtains

dK S(F,G) = lim
r→∞ d1/rr (F,G) ≥ lim

r→∞ d1/rr (F, F̂) = dK S(F, F̂)

and deduces from this that

inf
G∈Fk

dK S(F,G) = dK S(F, F̂),

that is, for a fixed integer k, the best approximating distribution obtained byminimizing
dr is the same we would obtain by minimizing dK S .

Another peculiarity of the optimal solution or, better, of the statistical distance used
as a criterion for finding an optimal solution, is its all-encompassing applicability, since
it does not require the existence and finiteness of any integer moment of the original
continuous distribution: the distance (3), since it can be rewritten as an integral over
the unit interval of a quantity which is finite, can be always computed and always
possesses a global minimum, corresponding to the solution derived above. Therefore,
it is possible to derive such a discrete approximation for Student’s t , say, with any value
of the degree-of-freedom parameter, and other heavy-tailed distributions, whichwould
not be possible in general if using the moment-matching or quantization techniques
(comprising the method by Drezner and Zerom (2016), which can be considered as a
compromise between the two techniques): the finiteness of the first 2k − 1 moments
is required by the former, the finiteness of the first two moments by the latter. It can
be also shown (Barbiero and Hitaj 2022) that limk→∞ F̂k(x) = F(x) ∀x ∈ R, i.e.,
the approximating k-point discrete rv converges in distribution to the original rv.

The distance (3) can be further rewritten as the sum of k + 1 integrals,

dr (F, F̂) =
∫ q1

0
trdt +

k−1∑

i=1

∫ qi+1

qi
|t − Qi |rdt +

∫ 1

qk
|1 − t |rdt
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= qr+1
1

r + 1
+

k−1∑

i=1

( |qi+1 − Qi |r+1

r + 1
+ |Qi − qi |r+1

r + 1

)

+ |1 − qk |r+1

r + 1
,

and its minimum value is thus equal to

min dr =
(

1

2k

)r+1 1

r + 1
+ 2(k − 1)

(
1

2k

)r+1 1

r + 1
+

(
1

2k

)r+1 1

r + 1

= (2k)−r

r + 1
, (5)

since for the optimal solution q1 = qi+1 − Qi = Qi − qi = 1 − qk = 1/(2k), for
each i = 1, . . . , k − 1. Furthermore, as one can expect, the minimum distance is a
decreasing function of k for any fixed r > 0: by increasing the number of points, the
optimal approximating discrete distribution gets closer (in terms of Cramér-vonMises
distance) to the continuous one.

Table 1 displays, just for illustrative purposes, k-point approximations (k = 5; 6; 7)
of a standard normal and an exponential distribution (with unit rate parameter). For
each k and for both distributions, values of expectation and variance (simply indicated
as μ and σ 2) are reported, in order to be easily compared with the analogous values
of the continuous distribution.

For the standard normal distribution, variance and kurtosis of the k-point discrete
approximation monotonically converge to the corresponding value of the original
continuous distribution rather slowly: kurtosis, in particular, when k = 100, is 2.834.
This result could have been expected: although the cdf of this discrete approximation
converges to the cdf of the original continuous rv, this does not mean that for a finite
k the two functions are so similar: for the normal case, recall that the pdf of the
continuous rv is displayed through the classical bell-shaped curve, whereas the pmf
of the discrete approximation has uniform probabilities, and this overall translates
into a mismatch of (even) moments. Recall that moment equalization would produce
discrete distributions with a very large range and very small probabilities assigned to
the extreme support points (Barbiero and Hitaj 2022).

For the discrete approximation of the exponential distribution, expected value, vari-
ance, skewness, and kurtosis tend monotonically and asymptotically to the value of
the parent distribution (1, 1, 2, and 9, respectively), but for finite k, it underestimates
kurtosis to a large extent; when k = 7, the value of kurtosis for the discretized expo-
nential distribution is 2.779 (its expected value is 0.951, its variance 0.686 and its
skewness 0.963); when k = 100, it is 6.662 (its expected value is 0.997, its variance
0.960 and its skewness 1.759).

2.3 Anderson-Darling

What happens if we consider a weighted Cramér-von Mises distance, for example
the Anderson-Darling distance, characterized by the weighting function w(x) ≡
f (x)/[F(x)(1 − F(x))]? We may expect that the best approximating distribution
has now unequal probabilities or that the support points are no longer quantiles of
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Table 1 k-point discrete approximations of two continuous random distributions based on the minimization
of the Cramér-von Mises distance; μ and σ 2 indicate expectation and variance of the approximation

(a) Standard normal X ∼ N (0, 1)

k = 5 k = 6 k = 7

xi pi xi pi xi pi

−1.282 0.2 −1.383 0.167 −1.465 0.143

−0.524 0.2 −0.674 0.167 −0.792 0.143

0.000 0.2 −0.210 0.167 −0.366 0.143

0.524 0.2 0.210 0.167 0.000 0.143

1.282 0.2 0.674 0.167 0.366 0.143

1.383 0.167 0.792 0.143

1.465 0.143

μ = 0, σ 2 = 0.767 μ = 0, σ 2 = 0.804 μ = 0, σ 2 = 0.831

(b) Exponential with unit rate X ∼ Exp(λ = 1)(E(X) = 1, Var(X) = 1)

0.105 0.2 0.087 0.167 0.074 0.143

0.357 0.2 0.288 0.167 0.241 0.143

0.693 0.2 0.539 0.167 0.442 0.143

1.204 0.2 0.875 0.167 0.693 0.143

2.303 0.2 1.386 0.167 1.030 0.143

2.485 0.167 1.540 0.143

2.639 0.143

μ = 0.932, σ 2 = 0.605 μ = 0.943, σ 2 = 0.651 μ = 0.951, σ 2 = 0.686

equally-spaced orders of the original distribution, as it occurs with Cramér-von Mises
distance.

Minimizing the Anderson-Darling distance is equivalent to minimizing the follow-
ing quantity, which consists of the sum of k + 1 contributions:

dAD(F, F̂) =
∫

R

|F(x) − F̂(x)|2[F(x)(1 − F(x))]−1dF(x)

=
∫ 1

0

|t − F̂(F−1(t))|2
t(1 − t)

dt =
k∑

i=0

∫ qi+1

qi

(t − Qi )
2

t(1 − t)
dt,

with respect to the qi and Qi . The first-order condition for Qi is

∫ qi+1

qi

d

dQi

(t − Qi )
2

t(1 − t)
dt =

∫ qi+1

qi
−2(t − Qi )

t(1 − t)
dt

=
∫ qi+1

qi
− 2

1 − t
+ 2Qi

t(1 − t)
dt
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= 2 log(1 − t) + 2Qi log

(
t

1 − t

)∣
∣
∣
∣

qi+1

qi

= 2 log

(
1 − qi+1

1 − qi

)

+ 2Qi log

(
qi+1(1 − qi )

qi (1 − qi+1)

)

= 0,

for i = 1, . . . , k, from which

Qi = log

(
1 − qi
1 − qi+1

)

/ log

(
qi+1(1 − qi )

qi (1 − qi+1)

)

. (6)

The first-order condition for qi implies

|qi − Qi−1|2
qi (1 − qi )

− |qi − Qi |2
qi (1 − qi )

= 0, i = 1, . . . , k,

from which we obtain again

qi = (Qi−1 + Qi )/2, i = 1, . . . , k. (7)

The solution derived by Eqs.(6) and (7) cannot be expressed in an analytic closed
form for each qi and Qi . However, a simple iterative algorithm can be implemented
with the aim of recovering their values numerically; as initial guess values for qi
and Qi , we adopt their optimal values found by minimizing the Cramér-von Mises
distance. In a similar fashion as done in Pavlikov and Uryasev (2018), one can think of
alternatively updating the values of the probabilities pi and the values of the discrete
points xi (or, better, their probability transforms qi ) till convergence. Note that in
Pavlikov andUryasev (2018) all the pi are initially set equal to 1/k, as for the analytical
solution based on the Cramér-von Mises distance. The algorithm works as follows:

1. Set t = 0; for i = 1, . . . , k, set p(0)
i = 1/k, Q(0)

i = i/k
2. Set ε(0) = 1 (or any large positive value) and εmax = 10−6 (or any arbitrarily

small positive value, to be used for checking convergence of the solution)
3. While ε(t) > εmax:

(a) Update the iteration index t ← t + 1

(b) Update the qi according to (7): q(t)
i = Q(t−1)

i−1 +Q(t−1)
i

2

(c) Update the Qi according to (6): Q(t)
i = log

(
1−q(t)

i

1−q(t)
i+1

)

/ log

(
q(t)
i+1(1−q(t)

i )

q(t)
i (1−q(t)

i+1)

)

(d) Derive the updated probabilities for the discrete rv: p(t)
i = Q(t)

i − Q(t)
i−1

(e) Calculate the maximum absolute deviation between two consecutive iterations
in terms of pi : ε(t) = maxki=1 |p(t)

i − p(t−1)
i |. Alternatively, other distances

can be used to compare the probability vectors obtained in two consecutive

iterations, as the Euclidean distance
√∑k

i=1(p
(t)
i − p(t−1)

i )2
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Table 2 5-, 6- and 7-point
discrete approximations based
on the minimization of the
Anderson-Darling distance

k = 5 k = 6 k = 7

qi pi qi pi qi pi

0.0799 0.1598 0.0624 0.1249 0.0505 0.1011

0.2702 0.2208 0.2131 0.1764 0.1734 0.1448

0.5000 0.2388 0.4007 0.1987 0.3294 0.1671

0.7298 0.2208 0.5993 0.1987 0.5 0.1741

0.9201 0.1598 0.7869 0.1764 0.6706 0.1671

0.9376 0.1249 0.8266 0.1448

0.9495 0.1011

The solution is expressed in terms of qi (probability transformation of
xi , qi = F(xi )) and pi

4. Return q(t)
i , Q(t)

i and p(t)
i

The number of iterations required clearly depends on the threshold εmax and on the
number of points k: diminishing εmax or increasing k leads to a larger number of
iterations; for plausible values of ε (say 10−8) and k (say smaller than one hundred),
the computation times are in the order of fractions of a second.

By numerical inspection, the Anderson-Darling weighting function leads to an
inverted U-shaped trend for the pi , which turn out to be symmetrical around the central
value or values, according towhether k is odd or even, i.e., p j = pk− j+1, j = 1, . . . , k;
see Table 2. As for the optimal qi values, they present a form of symmetry around the
central value(s), such that a continuous symmetrical distribution remains symmetrical
after discretization (see Tables 2 and 3a, referring to the discretization of a standard
normal rv).

If we consider the exponential distribution with unit rate parameter and we derive
the k-point discrete approximation byminimizing the Anderson-Darling distance with
k = 7 (see Table 3b), its expected value turns to be equal to 0.961, its variance 0.743,
its skewness 1.147, and its kurtosis 3.424. Although not so close to the values of the
underlying continuous distribution, the discrepancies are smaller if compared to those
resulting from Cramér-von Mises approximation (see the previous subsection).

We note that using a distance d(F, F̂) = ∫
R
(F(x) − F̂(x))2w(F(x))dF(x), with

any other possible positive weighting function w(x), even asymmetrical, supplies
(although in general only numerically) values of qi and Qi that do not depend on the
specific cdf F(x); the original distance can in fact be rewritten as

∑k
i=0

∫ qi+1
qi

(t −
Qi )

2w(t)dt and the first-order condition on the Qi becomes
∫ qi+1
qi

(t−Qi )w(t)dt = 0
and thus the Qi that solve this condition can be expressed as a function, dependent
on w(x), of the qi and qi+1 only. The simplest and most apparent case is provided
by the “unweighted” Cramér-von Mises distance discussed in Sect. 2.2, where such
values are available through simple analytical formulas involving just the index i and
the number of support points k.

123



Discrete approximations of continuous probability distributions... 1681

Table 3 k-point discrete
approximation of two
continuous random distributions
based on the minimization of the
Anderson-Darling distance

(a) Standard normal

k = 5 k = 6 k = 7
xi pi xi pi xi pi

-1.406 0.160 -1.535 0.125 -1.640 0.101

-0.612 0.221 -0.796 0.176 -0.941 0.145

0.000 0.239 -0.252 0.199 -0.442 0.167

0.612 0.221 0.252 0.199 0.000 0.174

1.406 0.160 0.796 0.176 0.442 0.167

1.535 0.125 0.941 0.145

1.640 0.101

(b) Exponential with unit rate

0.083 0.160 0.064 0.125 0.052 0.101

0.315 0.221 0.240 0.176 0.190 0.145

0.693 0.239 0.512 0.199 0.400 0.167

1.309 0.221 0.915 0.199 0.693 0.174

2.527 0.160 1.546 0.176 1.110 0.167

2.774 0.125 1.752 0.145

2.985 0.101

2.4 Cramér distance

We now consider the Cramér distance between the cdf of a continuous rv and that of
its discrete approximation:

dC (F, F̂) =
∫ +∞

−∞
(F(x) − F̂(x))2dx =

k∑

i=0

∫ F−1(qi+1)

F−1(qi )
(F(x) − Qi )

2dx,

which can be also rewritten as

dC (F, F̂) =
∫ 1

0

(t − F̂(F−1(t)))2

F ′(F−1(t))
dt =

k∑

i=0

∫ qi+1

qi

(t − Qi )
2

F ′(F−1(t))
dt . (8)

This last expression highlights how, differently from the two distances previously
examined, the Cramér distance may not be always computed: for some cdf F , the
first and/or the last term of the sum, in fact, may be not finite: although the two
corresponding integrals are computed over a limited interval, the integrand function
may be not finite (when t tends to 0 or t tends to 1, the denominator F ′(F−1(t)) may
tend to zero; and in the former case, for example, it may tend to zero as fast as t3 or
faster and then the improper integral would not converge). We will see an example
later.
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Assuming that the Cramér distance can be computed, the first-order condition on
the qi leads again to

qi = Qi + Qi−1

2
, i = 1, . . . , k;

while the first-order condition on the Qi leads to

∫ qi+1

qi

d

dQi

(t − Qi )
2

f (F−1(t))
dt =

∫ qi+1

qi

−2(t − Qi )

f (F−1(t))
dt

= −2
∫ F−1(qi+1)

F−1(qi )
(F(x) − Qi )dx = 0

which becomes

∫ F−1(qi+1)

F−1(qi )
F(x)dx = Qi [F−1(qi+1) − F−1(qi )], (9)

for i = 1, . . . , k. This condition therefore depends on the specific distribution F of
the continuous rv X .

Wewill now analytically develop condition (9) for several choices of F , by examin-
ing somewell known parametric families.Wewill see that in general Eq. (9), combined
with the condition on the qi , does not lead to a closed-form solution of the discrete
approximation,whichmust be solved numerically, for instance resorting to the iterative
procedure sketched out in Sect. 2.3.

2.4.1 Normal

In case of a standard normal rv, with cdf F(x) = Φ(x) = ∫ x
−∞

1√
2π

e−t2/2dt , for
which the following equality holds (see, for example, Owen (1980), formula 1000):

∫

Φ(x)dx = xΦ(x) + φ(x) + constant,

where φ(x) = Φ ′(x), the first-order condition on the Qi becomes

Qi = Φ−1(qi+1) · qi+1 + φ(Φ−1(qi+1)) − Φ−1(qi ) · qi − φ(Φ−1(qi ))

Φ−1(qi+1) − Φ−1(qi )
, i

= 1, . . . , k, (10)

which, alongwith the first-order condition on the qi , allows us to determine the optimal
solution numerically, following analogous steps to those sketched out in Sect. 2.3.

If instead of considering a standard normal rv, we focus on a generic normal rv with
parameters μ and σ 2, with cdf F(x) = Φ(

x−μ
σ

), the first-order condition on the Qi
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Table 4 5-, 6- and 7-point
discrete approximation of a
standard normal based on the
minimization of the Cramér
distance

k = 5 k = 6 k = 7

xi pi xi pi xi pi

−1.377 0.1685 −1.500 0.1337 −1.600 0.1095

−0.592 0.2167 −0.768 0.1751 −0.907 0.1454

0.000 0.2296 −0.242 0.1912 −0.424 0.1617

0.592 0.2167 0.242 0.1912 0.000 0.1666

1.377 0.1685 0.768 0.1751 0.424 0.1617

1.500 0.1337 0.907 0.1454

1.600 0.1095

would not change; both the left and right members of (9), in fact, are simply multiplied
by σ .

Table 4 displays the values (xi , pi ) of the best k-point approximation of a standard
normal rv, for k = 5; 6; 7. We note that, as for the discrete approximation based on the
minimization of the Anderson-Darling distance, the support points are symmetrical
around zero and the probabilities satisfy p j = pk− j+1, j = 1, . . . , k.

2.4.2 Exponential

In case of an exponential rv, with cdf F(x) = 1− e−λx , x > 0, and quantile function
F−1(u) = − log(1−u)

λ
, 0 < u < 1, we have that the first order condition on the Qi can

be written as

∫ F−1(qi+1)

F−1(qi )
(1 − e−λx )dx = Qi

[

− log(1 − qi+1)

λ
+ log(1 − qi )

λ

]


⇒
[

x + e−λx

λ

]− log(1−qi+1)

λ

− log(1−qi )
λ

= Qi

λ
log

1 − qi
1 − qi+1


⇒

1

λ
[log(1 − qi ) − log(1 − qi+1) + 1 − qi+1 − (1 − qi )] = Qi

λ
log

1 − qi
1 − qi+1

,

from which

Qi = 1 − qi+1 − qi

log 1−qi
1−qi+1

. (11)

Table 5 displays the values (xi , pi ) of the best k-point approximation of an expo-
nential rv with unit parameter for some values of k. It is very important to notice
that empirical inspection shows that this type of approximation is characterized by a
decreasing pmf, which thus resembles the decreasing trend of the pdf; on the contrary,
the discrete approximation derived from the minimization of the Anderson-Darling
distance possesses an increasing-decreasing pmf; the discrete approximation based
on the minimization of Cramér-von Mises distance possesses a constant pmf. If we
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Table 5 5-, 6- and 7-point
optimal discrete approximations
of an exponential with unit rate
parameter based on the
minimization of Cramér distance

k = 5 k = 6 k = 7

xi pi xi pi xi pi

0.147 0.273 0.123 0.231 0.106 0.200

0.502 0.243 0.410 0.210 0.346 0.185

0.968 0.208 0.765 0.187 0.634 0.168

1.646 0.166 1.231 0.160 0.989 0.149

2.903 0.110 1.909 0.128 1.455 0.128

3.166 0.084 2.133 0.102

3.389 0.067

consider the exponential distribution with unit rate parameter and its optimal 7-point
discrete approximation, the latter has an expected value equal to 0.972, a variance
equal to 0.804, a skewness 1.313, and a kurtosis 4.089. Such values are closer to the
analogous ones for the exponential distribution if compared to the discrete approxi-
mations obtained from the minimization of Cramér-von Mises and Anderson-Darling
distances.

2.4.3 Cauchy

In case of a standard Cauchy rv, with cdf F(x) = 1
π
arctan x + 1

2 , x ∈ R, we have that
the first-order condition on the Qi provides

∫ tan[π(qi+1−1/2)]

tan[π(qi−1/2)]

(
1

π
arctan x + 1

2

)

dx

= Qi {tan[π(qi+1 − 1/2)] − tan[π(qi − 1/2)]}

and then

[
1

π

(

x arctan x − 1

2
log(1 + x2)

)

+ x

2

]tan[π(qi+1−1/2)]

tan[π(qi−1/2)]
= Qi {tan[π(qi+1 − 1/2)] − tan[π(qi − 1/2)]} ,

from which

Qi =
qi+1 tan[π(qi+1 − 1/2)] − qi tan[π(qi − 1/2)] − 1

2π log 1+tan2[π(qi+1−1/2)]
1+tan2[π(qi−1/2)]

tan[π(qi+1 − 1/2)] − tan[π(qi − 1/2)] .

We highlight that it is possible to find a k-point discrete approximation for the Cauchy
distribution by minimizing the Cramér distance (as well as Cramér-von Mises or
Anderson-Darling), although such a distribution does not possess any positive integer
moment and then any discretization technique based on some form of moment-
equalization – among others, moment matching, which requires equalization of the
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first 2k − 1 moments, but even the technique presented by Drezner and Zerom (2016)
– would be not applicable at all.

2.4.4 Logistic

If we consider the standard logistic distribution with cdf F(x) = (1+ e−x )−1, x ∈ R,
then its inverse cdf is F−1(u) = log u

1−u , 0 < u < 1, and the first-order condition on
the Qi can be written as:

∫ log
qi+1

1−qi+1

log
qi

1−qi

1

1 + e−x
dx = Qi

[

log
qi+1

1 − qi+1
− log

qi
1 − qi

]

from which

[
log(1 + ex )

]log qi+1
1−qi+1

log
qi

1−qi

= log
1

1 − qi+1
− log

1

1 − qi

= Qi

[

log
qi+1

1 − qi+1
− log

qi
1 − qi

]

and then

Qi =
log 1−qi

1−qi+1

log qi+1(1−qi )
(1−qi+1)qi

=
log 1−qi

1−qi+1

log qi+1
qi

+ log 1−qi
1−qi+1

.

We note that the latter condition is the same as condition (6), obtained for the optimal
k-point approximation based on the minimization of Anderson-Darling distance. This
occurs since for the logistic distribution the equality f (x)[F(x)(1 − F(x))]−1 = 1
holds for any x ∈ R, and hence the Cramér distance coincides with the Anderson-
Darling distance.

Similarly to what happens with the normal distribution, if we consider a non-
standard logistic distribution with location parameter μ and scale parameter σ , with
cdf F(x;μ, σ) = 1

1+e
−

(
x−μ
σ

) and quantile function F−1(u;μ, σ) = μ+σ log u
1−u , it

is straightforward to see that the first-order condition on Qi would remain the same.

2.4.5 Lomax or Pareto

For the Lomax distribution with scale parameter λ > 0 and shape parameter α > 0,
the expression of the cdf is F(x) = 1 − (

1 + x
λ

)−α , x > 0; the quantile function is
F−1(u) = λ[(1 − u)−1/α − 1]. The first-order condition on Qi , if α �= 1, is

[

x − λ

1 − α

(
1 + x

λ

)1−α
]λ[(1−qi+1)

−1/α−1]

λ[(1−qi )−1/α−1]
= Qi

{
λ[(1 − qi+1)

−1/α − 1] − λ[(1 − qi )
−1/α − 1]

}
,
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from which

Qi = 1 − 1

1 − α

(1 − qi+1)
(α−1)/α − (1 − qi )(α−1)/α

(1 − qi+1)−1/α − (1 − qi )−1/α . (12)

In particular, if α = 2, formula (12) reduces to the following expression

Qi = 1 − √
(1 − qi )(1 − qi+1).

If α = 1, the first-order condition on the Qi can be written as

λQi [(1 − qi+1)
−1 − (1 − qi )

−1] =
[
x − λ log

(
1 + x

λ

)]λ[(1−qi+1)
−1−1]

λ[(1−qi )−1−1]
,

from which

Qi = 1 −
log 1−qi

1−qi+1

(1 − qi+1)−1 − (1 − qi )−1

If α ≤ 1/2, it can be proved that the Cramér distance cannot be computed; in fact, for
any feasible value of λ and k, since the integrand function of the last integral in (8),
∫ 1
qk

(1 − t)2/ f (F−1(t))dt , turns out to be proportional to (1 − t)1−1/α , then, being
α ≤ 1/2, the (improper) integral is not finite for any feasible value of qk . We highlight
that the Lomax distribution does not possess any integer moment for α ≤ 1, so the
proposed procedure is still able to produce a k-point discrete approximation even if
the distribution does not possess a finite expectation, for 1/2 < α ≤ 1.

We would obtain the same results if we considered the Pareto rv with cdf F(x) =
1 − (

λ
x

)α
, x > λ, by simply substituting x with λ + x .

In general, it is not possible to obtain a closed-formoptimal solution, unless for small
values of k. For example, if λ = 1 and α = 2, for k = 2, the conditions on the qi are
q1 = Q1/2 andq2 = (1+Q1)/2; the condition on Q1 is Q1 = 1−√

(1 − q1)(1 − q2).
Substituting the first two expressions for q1 and q2 into the last condition, we obtain,

after a few simple passages, that 1− Q1 =
√

1
2 + Q2

1
4 − 3Q1

4 and then a second-order

equation in Q1 whose unique feasible solution is Q1 = 2
3 . Consequently, q1 = 1

3

and q2 = 5
6 ; the best discrete approximation consists of the points x1 =

√
3
2 − 1 and

x2 = √
6 − 1 with probabilities p1 = 2/3 and p2 = 1/3.

2.4.6 Power function

The cdf of a power function rv is F(x) = (x/b)c, 0 < x < b, b > 0, c > 0. The
corresponding quantile function is F−1(u) = bu1/c, 0 < u < 1.

The first-order condition on Qi turns into

[
xc+1

bc(c + 1)

]bq1/ci+1

bq1/ci

= Qi

[
bq1/ci+1 − bq1/ci

]
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from which

Qi = 1

c + 1
· q

(c+1)/c
i+1 − q(c+1)/c

i

q1/ci+1 − q1/ci

.

If c = 1 (corresponding to the case of a uniform distribution) then Qi = (qi +qi+1)/2
and we obviously obtain the same solution as in Sect. 2.2. If c = 2, then we have

Qi = 1

3

q3/2i+1 − q3/2i

q1/2i+1 − q1/2i

= 1

3

(q3/2i+1 − q3/2i )(q1/2i+1 + q1/2i )

qi+1 − qi

= 1

3

(qi+1 − qi )(qi + qi+1 + √
qiqi+1)

qi+1 − qi
= 1

3
(qi + qi+1 + √

qiqi+1);

thus the cumulative probability Qi of the optimal solution corresponds to the arithmetic
mean of the two consecutive probabilities qi and qi+1 and their geometric mean.

It can be numerically shown that for values of c larger than 1 (when the pdf is
increasing), the k-point discrete approximation has an increasing pmf; on the contrary,
for 0 < c < 1 (when the pdf is decreasing), the k-point discrete approximation has a
decreasing pmf.

In general, it is not possible to derive the optimal solution in a closed-form, unless for
small values of k. For example, if b = 1 and c = 2, for k = 2, the conditions on the qi
areq1 = Q1/2 andq2 = (1+Q1)/2; the condition on Q1 is Q1 = 1

3 (q1+q2+√
q1q2).

Substituting the first two expressions for q1 and q2 into the last equation, we obtain,
after a few simple passages, that 4Q1 − 1 = √

Q1(1 + Q1) and then obtain a second-

order equation in Q1 whose unique feasible solution is Q1 = 9+√
21

30 . Consequently,

q1 = 9+√
21

60 and q2 = 39+√
21

60 ; the best discrete approximation consists of the points

x1 =
√

9+√
21

60 and x2 =
√

39+√
21

60 with probabilities p1 = 9+√
21

30 and p2 = 21−√
21

30 .

2.5 Remarks

2.5.1 The case k = 1

We have always implicitly assumed so far that the number of points k by which
one approximates the assigned continuous random distribution is greater than 1. It
is immediate to realize that if one wants to approximate the distribution of the rv
X through one value only, then, except for the cases where the selected statistical
distance cannot be computed (see Sect. 2.4.5) the “optimal” approximating value x1
is the median of F , F−1(0.5), since the only effective condition to be satisfied (for all
the three distances examined) would be q1 = (Q0 + Q1)/2 = 1/2, being Q0 = 0 and
Q1 = 1. We note that optimal quantization (Lloyd 1982) would return the expected
value EF (X), as far as it exists and it is finite, as the optimal approximating value of
F .
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2.5.2 Location-scale transformation

Let us consider a continuous rv X ∼ FX and its optimal k-point approximation
derived from theminimization of theCramér-vonMises orAnderson-Darling distance,
xi = F−1

X (q∗
i ), p∗

i = Q∗
i − Q∗

i−1. We know that the optimal q∗
i and Q∗

i are only
functions of k and of the selected distance, but do not depend on the specific FX . Then
consider the location-scale transformation Y = a+bX , a ∈ R, b > 0. Since for such a
transformationwe have FY (y) = FX (

y−a
b ) for any real y and F−1

Y (u) = a+bF−1(u),
0 < u < 1, the optimal k-point approximation ofY (derived by using the samedistance
as for X ) is represented by yi = F−1

Y (q∗
i ) = a + bF−1

X (q∗
i ) = a + bxi and the same

p∗
i as before, which means that the location-scale transformation applies also to the

discretized rv.
This property does not hold in general for the discrete approximation based on the

minimization of the Cramér distance: the optimal values q∗
i and Q∗

i now depend on the
specific formof the cdf, and FY may not belong to the same family as FX , unless the cdf
FX is a location-scale family of distributions itself: in this case, the property still holds,
as the condition (9) does not change if we consider a location-scale transformation of
the cdf (recall the examples with the normal and logistic distributions in Sect. 2.4).

3 Example of application

Often a researcher in the statistical field is required to determine the distribution
(or parameters) of some complex function of several (independent and continuous)
rvs T = t(X1, X2, . . . , Xd). Multidimensional integration techniques should be
employed, but often, due to the complexity of t and to the high dimensionality d,
they are either cumbersome to apply or not applicable at all. One can then resort to
Monte Carlo simulation, i.e., simulating (independently) a huge number N of pseudo-
random values from X1, X2, . . . , Xd and then calculating the corresponding N values
of the transformation t , which can be regarded as a random sample drawn from T . An
alternative is to find an approximate solution via approximation-by-discretization and
enumeration. This consists of substituting each Xi with a discrete approximation X̂i

and then determine the corresponding pmf of T̂ = t(X̂1, X̂2, . . . , X̂d) by “enumera-
tion”, based on the joint pmf of (X̂1, X̂2, . . . , X̂d) over the Cartesian product of the
single supports: S(X̂1) × · · · × S(X̂d).

In order to illustrate and compare the discretization techniques proposed in Sect. 2,
in the following subsection we will consider a case where it is possible to derive
the exact distribution of T analytically, which allows us to evaluate the statistical
performance (in terms of degree of approximation, to be measured through some
index) of each technique; in Sect. 3.2, we will analyzize a more complicated case
where the exact distribution of T is not analytically computable, but a parameter of
interest can be recovered numerically.
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Table 6 KS distance between the true and the approximated distribution function of the sum of three
independent exponential rvs

Method, k 5 6 7 8 9 10 11

Cramér-von Mises 0.0828 0.0682 0.0544 0.0487 0.0433 0.0392 0.0349

Anderson-Darling 0.0785 0.0588 0.0432 0.0350 0.0297 0.0255 0.0207

Cramér 0.0551 0.0401 0.0302 0.0241 0.0201 0.0162 0.0145

Approximation is obtained by applying one of the univariate discrete approximations of Sect. 2 to each rv
independently and then reconstructing the distribution of the sum by “enumeration”

3.1 Sum of exponential random variables

Let X1 ∼ Gamma(α1, λ), X2 ∼ Gamma(α2, λ), …, Xd ∼ Gamma(αd , λ), indepen-
dent to each other; it is well-known that the sum S = ∑d

i=1 Xi is Gamma(
∑d

i=1 αi , λ).
However, let us approximate each Xi through one of the discrete approximations we
illustrated, and then reconstruct the approximated distribution of the sum, F̂S . We
can then evaluate the degree of approximation by using a measure of discrepancy
between FS and F̂S ; we can use the KS distance, rather than one of the statistical
distances employed for the univariate approximation. Here we consider the sum of
d = 3 exponential rvs; λi = 1/2, αi = 1, i = 1, 2, 3, for which we know that
S ∼ Gamma(3, 1/2). Table (6), for different values of k (from 5 to 11), reports the
KS distance between the exact and the approximated cdf of S, obtained according to
the three univariate discrete approximations for the Xi . It is easy to see how the KS
distance decreases with k for all the methods: by increasing the number of approxi-
mating points for the Xi , it is legitimate to expect that the discrepancy between the true
and the approximate cdf decreases, independently from the measure used. Moreover,
we notice that the discrete approximation based on Cramér distance overperforms the
other two approximations, and its relative level of accuracy quickly improves with k:
for k = 11, the KS distance provided by the approximation based on the minimization
of Cramér distance is much less than one half of the KS distance provided by the
approximation based on the minimization of the Cramér-von Mises distance. As we
already remarked, the discrete approximation of the exponential distribution based
on the minimization of the Cramér distance seems to resemble the shape of the con-
tinuous pdf better than the discrete approximations based on the Cramér-von Mises
and Anderson-Darling distances, and this also positively reflects when calculating the
approximate distribution of the sum of three i.i.d. exponential rvs.

The graph in Fig. 2 displays the curve of the true cdf of the sum, and the three step-
wise cdf of the three discrete approximations. It is quite apparent that the latter struggle
in resembling the continuous curve in its right tail: it is visible to an unaided eye, in
fact, for relatively high values of x (say, between 10 and 15) the three approximations
show their maximum absolute error (which corresponds to the value of KS distance).
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Fig. 2 Comparison between the true distribution function of the sum of exponential rvs and its three
approximations (based on 7-point univariate discrete approximations); in the right panel, we zoom in on
the right tail of the distribution

3.2 Reliability parameter for a hollow rectangular tube

In Sect. 1, we mentioned the problem of recovering the so-called reliability parameter
R = P(X > Y ) for a stress-strength model, where X and Y are the strength and
stress rvs, respectively, possibly depending on several stochastic sub-factors. Let us
consider this example. The functional form of shear stress of a hollow rectangular tube
is Y = M

2t(W−t)(H−t) , where M is the applied torque, t is the wall thickess, W is the
width, and H the height of the tube. Let X , M , t , W , and H be mutually independent
rvs. Consider the following parametric set-up: M ∼ N (μM = 1500, σM = 150),
t ∼ N (μt = 0.2, σt = 0.005), W ∼ N (μW = 2, σW = 0.02), H ∼ N (μH =
3, σH = 0.03) (with N denoting the normal distribution) which accord with that in
Roy and Dasgupta (2001). Let the standard deviation of the normal strength X be 60,
and assume that the mean of X can vary from 520 to 970 units by steps of 10, thus
generating an array of n = 46 scenarios.

Although the exact evaluation of R is unfeasible here, as suggested by a referee,
its value can be obtained numerically as follows. Denoting by φμ,σ and Φμ,σ the pdf
and cdf, respectively, of a normal rv with mean μ and standard deviation σ , putting

f (t,m, w, h) =
[

1 − ΦμX ,σX

(
m

2t(w − t)(h − t)

)]

· φμt ,σt (t)φμM ,σM (m)φμW ,σW (w)φμH ,σH (h)

for (t,m, w, h) ∈ R
4, the reliability parameter R can be expressed as

R =
∫ ∫ ∫ ∫

R4
f (t,m, w, h)dtdmdwdh,

and can be approximated by

RQ =
∫ ∫ ∫ ∫

Q
f (t,m, w, h)dtdmdwdh,
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where Q is the hyper-rectangle defined as Q = It × IM × IW × IH , with It =
[μt −γtσt , μt +γtσt ], IM = [μM −γMσM , μM +γMσM ], IW = [μW −γWσW , μW +
γWσW ], IH = [μH − γHσH , μH + γHσH ], and γt , γM , γW , γH are positive scale
factors to be chosen suitably large. The computation of RQ is easily done by using the
function cuhre that is included in the package cubature (Narasimhan et al. 2022)
of the statistical software environment R (R Core Team 2022).

Alternatively, one can resort either to Monte Carlo simulation or to the
approximation-by-discretization approach, by using one of the methods described
in the previous sections.

We will regard the value of reliability recovered by numerical evaluation through
the cuhre function (with all the γ scaling factors set equal to 9) as the actual (true)
value and thus indicate it simplywith R; the value obtained throughMonte Carlo simu-
lation is denoted by R̂MC ; the values obtained by the approximation-by-discretization
approaches are denoted by R̂, with a superscript identifying the specific discretization:
GQ (GaussianQuadrature), DZ (Drezner andZerom2016), CvM (Cramér-vonMises),
C (Cramér), AD (Anderson-Darling). In order to measure the degree of accuracy of
each technique, one can consider the following synthetic measures, which are: Mean
Deviation (MD), Mean Absolute Deviation (MAD), Root Mean Squared Deviation
(RMSD), defined as follows,

MD = 1

n

n∑

i=1

(R̂i − Ri )

MAD = 1

n

n∑

i=1

|R̂i − Ri |

RMSD =
√
√
√
√1

n

n∑

i=1

(R̂i − Ri )2

where the subscript i refers to the i-th scenario.
We considered a number N = 10 millions of pseudo-random simulations for the

Monte Carlo approach, and a number k = 5 of approximating points for the discretiza-
tion approaches.

The results, reported in Table 7, show that Monte Carlo simulation provides overall
the best results in terms of MAD and RMSD; the proposed discretization methods,
based on the minimization of the Anderson-Darling and Cramér distances, perform
better if compared to the Gaussian quadrature method in terms of MD, MAD, and
RMDE; they perform worse than the method proposed in Drezner and Zerom (2016),
which however requires amuch considerable computational effort required by its inner
numerical minimization routine and has a narrower applicability, as already remarked
inSect. 2.2.We remark that in this examplewe focused just ondiscretization techniques
which are somehow comparable: according to their specific criterion, they all compute
both the k support points and the corresponding k probabilities simultaneously. Other
techniques, mentioned in the Introduction, such as the maximum entropy method, first
assign the support points a priori and then calculate the probabilities only.
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Table 7 Comparative closeness study for a hollow rectangular tube

Scenario# μX R RMC R̂GQ R̂DZ R̂CvM R̂AD R̂C

1 520 0.0102 0.0103 0.0065 0.0098 0.0000 0.0001 0.0000

2 530 0.0134 0.0135 0.0086 0.0111 0.0000 0.0010 0.0005

3 540 0.0173 0.0175 0.0141 0.0132 0.0003 0.0039 0.0025

4 550 0.0223 0.0225 0.0210 0.0180 0.0026 0.0094 0.0077

5 560 0.0284 0.0287 0.0311 0.0276 0.0090 0.0160 0.0152

6 570 0.0358 0.0361 0.0438 0.0378 0.0179 0.0218 0.0214

7 580 0.0448 0.0451 0.0543 0.0489 0.0278 0.0265 0.0274

8 590 0.0554 0.0558 0.0613 0.0594 0.0365 0.0343 0.0349

9 600 0.0680 0.0687 0.0659 0.0693 0.0445 0.0477 0.0462

10 610 0.0827 0.0831 0.0698 0.0835 0.0570 0.0636 0.0626

11 620 0.0996 0.1003 0.0782 0.1028 0.0752 0.0815 0.0812

12 630 0.1190 0.1197 0.0955 0.1236 0.0976 0.1009 0.1006

13 640 0.1410 0.1416 0.1247 0.1484 0.1210 0.1237 0.1219

14 650 0.1654 0.1660 0.1659 0.1754 0.1466 0.1480 0.1476

15 660 0.1921 0.1929 0.2097 0.1967 0.1744 0.1784 0.1759

16 670 0.2218 0.2222 0.2516 0.2275 0.2070 0.2079 0.2081

17 680 0.2538 0.2544 0.2811 0.2591 0.2406 0.2416 0.2424

18 690 0.2880 0.2886 0.2989 0.2945 0.2758 0.2783 0.2782

19 700 0.3242 0.3244 0.3108 0.3289 0.3136 0.3149 0.3155

20 710 0.3619 0.3623 0.3241 0.3667 0.3514 0.3535 0.3533

21 720 0.4012 0.4014 0.3512 0.4027 0.3939 0.3953 0.3939

22 730 0.4417 0.4418 0.3997 0.4390 0.4387 0.4401 0.4393

23 740 0.4826 0.4827 0.4628 0.4835 0.4842 0.4840 0.4836

24 750 0.5235 0.5232 0.5389 0.5273 0.5254 0.5260 0.5253

25 760 0.5642 0.5636 0.6031 0.5644 0.5680 0.5656 0.5674

26 770 0.6043 0.6037 0.6492 0.5990 0.6099 0.6083 0.6082

27 780 0.6433 0.6427 0.6759 0.6369 0.6525 0.6494 0.6513

28 790 0.6808 0.6799 0.6877 0.6734 0.6909 0.6911 0.6913

29 800 0.7166 0.7159 0.6992 0.7118 0.7299 0.7285 0.7268

30 810 0.7503 0.7495 0.7181 0.7469 0.7648 0.7634 0.7620

4 Software implementation

Code in the R programming environment has been developed, which implements the
different routines used for finding the optimal discrete approximations. For the Cramér
distance, in particular, several parametric distributions are considered. Some functions
are also available for plotting discretized distributions, which makes graphical com-
parison to the original continuous distribution more effective.

For the Cramér-vonMises andAnderson-Darling distances (and potentially, for any
other distribution-free distance), the function Discr has to be used, whose arguments
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Table 7 continued

Scenario# μX R RMC R̂GQ R̂DZ R̂CvM R̂AD R̂C

31 820 0.7818 0.7807 0.7489 0.7772 0.7971 0.7970 0.7962

32 830 0.8107 0.8096 0.7903 0.8013 0.8278 0.8253 0.8277

33 840 0.8372 0.8359 0.8343 0.8287 0.8560 0.8547 0.8540

34 850 0.8610 0.8600 0.8763 0.8519 0.8819 0.8796 0.8804

35 860 0.8824 0.8814 0.9042 0.8774 0.9046 0.9004 0.9021

36 870 0.9014 0.9005 0.9172 0.8962 0.9245 0.9212 0.9198

37 880 0.9180 0.9171 0.9234 0.9150 0.9414 0.9379 0.9378

38 890 0.9324 0.9316 0.9320 0.9286 0.9539 0.9514 0.9527

39 900 0.9447 0.9440 0.9377 0.9405 0.9648 0.9639 0.9639

40 910 0.9552 0.9544 0.9451 0.9513 0.9744 0.9726 0.9722

41 920 0.9641 0.9634 0.9565 0.9634 0.9827 0.9793 0.9804

42 930 0.9715 0.9708 0.9693 0.9714 0.9894 0.9851 0.9866

43 940 0.9776 0.9768 0.9796 0.9792 0.9955 0.9906 0.9914

44 950 0.9825 0.9819 0.9811 0.9843 0.9984 0.9946 0.9955

45 960 0.9865 0.9859 0.9885 0.9878 0.9997 0.9978 0.9984

46 970 0.9897 0.9892 0.9916 0.9905 1.0000 0.9990 0.9995

MD -0.0002 -0.0016 -0.0004 0.0000 0.0001 0.0000

MAD 0.0006 0.0153 0.0039 0.0155 0.0131 0.0136

RMSD 0.0007 0.0203 0.0047 0.0166 0.0142 0.0146

R value of the reliability parameter obtained numerically through the cubature package, R̂ estimate of
the reliability parameter obtained from Monte Carlo simulation (MC); or approximation-by-discretization
approach: Gaussian Quadrature (GQ); Drezner and Zerom, 2016 (DZ); minimization of the Cramér-von
Mises distance (CvM); minimization of the Anderson-Darling distance (AD); minimization of the Cramér
distance (C). Note that the values of the mean of X , μX , have been actually chosen in order to induce a
range of values for R roughly spanning the entire interval between 0.01 to 0.99

are the number of points k and the type of distance (CvM and AD). It returns a list
containing the vectors of pi and qi (along with the vector of Qi ), from which one can
extrapolate the support values xi through the quantile transformation of the assigned
distribution function F .

For the Cramér distance, the main function is called DiscrF; its arguments are the
number of points k by which we want to approximate the continuous random distribu-
tion; the type of continuous distribution (a string identifying it), along with the value
of its parameters (a vector, par). At the moment, a few families of continuous distri-
butions can be selected, namely, those discussed in Sect. 2.4, for which the first-order
condition on the Qi is available in a closed-form: normal (norm), exponential (exp),
Cauchy (cauchy), logistic (logis), Lomax (lomax), power function (power).
The output of the function is a list, containing the vector of probabilities pi and the
vector of support values xi of the discrete approximation, along with the vectors of qi
and Qi .

The companion function moments receives as input a vector of support points and
a vector of corresponding probabilities possibly obtained as a result from DiscrF or
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Discr, and computes the expectation, variance, skewness and kurtosis of the related
discrete rv. This is useful if onewants to keep under control the effects of discretization
over the first (normalized) moments, since we know that the techniques we introduced
do not offer any guarantee, in general, that the moments of the continuous rv are
preserved.

The graphical function plotdist receives as its first argument the result of
Discr or DiscrF and plots the corresponding discrete approximation (its pmf or its
cdf, to be selected through the argument plot, to be set equal to “pmf” or “cdf”).
This can be plotted over the unit square (by setting the argument xaxis equal to
“q”: on the x axis the qi , on the y axis the pi or the Qi , see Fig. 1); or on the usual
R × [0, 1] space (by setting the argument xaxis equal to “x”: on the x axis the xi ,
which should be supplied if the first argument comes from Discr; on the y axis the
pi or the Qi ).

In the supplementary material, available at https://tinyurl.com/STPA-D-21-00382,
the relevant R code along with some examples is supplied.

5 Conclusion

In this work, we discussed a class of discretization techniques that calculate a k-point
discrete approximation of a continuous rv by minimizing a distance between the two
cdf. For one distance in this class, the optimal discrete approximation (i.e., both the
points xi and their probabilities pi , i = 1, . . . , k) turns out to have an analytical
expression for any k. For other distances, a closed-form solution is not available,
but the xi and the pi can be iteratively computed by alternately solving two sets of
equations till convergence, in a similar fashion to optimal quantization. It may happen
that the solution is “distribution-free”, meaning that the probability transforms F(xi )
and pi do not depend on the particular distribution function F selected; or, on the
contrary, that the solution directly depends on F : in the latter case, we derived the
sets of equations to be satisfied by the solution for a wide array of continuous random
distributions.

We underline that this class of discretization techniques represents a valid alterna-
tive to the other extant procedures, among them, the consolidated moment-matching
technique, whose applicability is however hindered by the often unattainable hypothe-
sis of finiteness of the first integer moments. This class is also competitive if compared
to optimal quantization and modifications thereof, since for the latter the algorithm
leading to the best discrete approximation is very similar, being based on the mini-
mization of the mean squared error between the two rvs. What we cannot expect from
the suggested class of discrete approximations is the preservation of the first (and sec-
ond) moment; this can be seen as a shortcoming, but only if one is used to deal with
or synthesize random distributions in terms of moments or if the transformation of rvs
one needs to approximate is a smooth function. In the financial or insurance fields, one
is more familiar with quantiles (the most popular risk measure for market risk is the
Value at Risk (VaR), which is nothing else than a quantile of a loss distribution over a
fixed time horizon; see, e.g., McNeil, Frey and Embrechts 2005) and then adopting a
discrete approximation which minimizes a distance between cdfs may be intuitively
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more appropriate and convenient. Moreover, many continuous distributions do not
even possess the second or the first moment (just think of the Cauchy distribution) and
then moment-matching and quantization techniques would fail in providing a discrete
approximation, which is instead guaranteed by the proposed class (with rare excep-
tions arising if the Cramér distance is considered). The practical problem presented
in the third section, concerning a complex function of several random variables, illus-
trates how the proposed procedures can overperform the standard moment matching
approach.

Future research will examine other statistical distances between cdf, in particular
asymmetrical ones, and derive the corresponding optimal k-point discrete approxi-
mation from their minimization. We will also examine possible extensions of this
class of discretization techniques to the bivariate and more generally d-variate case.
Although it can be naïvely judged to be straightforward, high dimensionality leads
to non-negligible theoretical and computational issues: apart from the choice of the
statistical distance to be minimized (an analogous quadratic distance between joint
cdfs or the energy distance, see Rizzo and Székely 2016, can be considered) the most
challenging matter is represented by the selection of all feasible d-variate supports
for the discrete approximation (they are not necessarily a d-variate Cartesian product
of univariate supports, and this complicates the evaluation of the statistical distance)
and by the possible statistical dependence between the univariate components, which
unavoidably calls for the use of copulas. Similar kinds of problems arise in the com-
putation of principal points for multivariate random distributions (Flury 1990).

Another aspect that can be investigated is related to the construction of discrete
approximations with “a priori” assigned support points xi . This can be useful when
one wants to construct a discrete counterpart or analog to a continuous probability
distribution, and not just a discrete approximation. Typically, the discrete counterpart
to a continuous distribution supported on R (or R+) is constructed as the discrete
distribution supported on Z (or N) preserving the expression of the continuous cdf at
the integer support points (Chakraborty 2015). Alternatively, a discrete counterpart
can be constructed by considering the same integer support as above and minimizing
one of the statistical distances examined in this work with respect to the probabilities
pi , which now constitute a countable set. By considering any parametric random
distribution with infinite support, we can thus generate several new count distributions
that can be actually regarded as its discrete counterparts and can be employed for
modeling count data.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00362-022-01356-2.
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