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Abstract
Clusterwise regression is an approach to regression analysis based on finite mixtures
which is generally employed when sample observations come from a population com-
posed of several unknown sub-populations. Whenever the response is continuous,
Gaussian clusterwise linear regression models are usually employed. Such models
have been recently robustified with respect to the possible presence of mild outliers in
the sub-populations. However, in some fields of research, especially in the modelling
of multivariate economic data or data from the social sciences, there may be prior
information on the specific covariates to be considered in the linear term employed in
the prediction of a certain response. As a consequence, covariates may not be the same
for all responses. Thus, a novel class ofmultivariateGaussian linear clusterwise regres-
sion models is proposed. This class provides an extension to mixture-based regression
analysis for modelling multivariate and correlated responses in the presence of mild
outliers that let the researcher free to use a different vector of covariates for each
response. Details about the model identification and maximum likelihood estimation
via an expectation-conditional maximisation algorithm are given. The performance of
the new models is studied by simulation in comparison with other clusterwise linear
regression models. A comparative evaluation of their effectiveness and usefulness is
provided through the analysis of a real dataset.
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1 Introduction

In multivariate regression analysis, when modelling the dependence of a random
vector Y = (Y1, . . . ,Ym, . . . ,YM )′ of M responses on a given vector X =
(X1, . . . , X p, . . . , XP )′ of P predictors through a sampleS = {(x1, y1), . . . , (xI , yI )}
drawn from a certain population, the following sources of complexity could affect the
data and make the prediction of the responses a task difficult to perform.

(a) With multivariate longitudinal data, time-series data or repeated measures, the
M responses contained in Y are typically correlated. Furthermore, in analyses
of economic data or data from the social sciences, it is not unusual that prior
information about the phenomenon under study enables the analyst to specify
a system of M regression equations (one equation for each response) in which
certain regressors contained in X are absent from certain regression equations.
This is especially true for multivariate economic data referring to general theories
(i.e., investment equations, production functions) or applications dealing with the
explanation of a certain economic activity (i.e., demand of petrol, employment)
in different geographical locations (see, e.g., Giles and Hampton 1984; White
and Hewings 1982; Zellner 1962). Further examples can be found also in other
fields, such as medicine, food quality, tourism economics, quality of life and health
(see, e.g., Cadavez and Hennningsen 2012; Disegna and Osti 2016; Heidari et al.
2017; Keshavarzi et al. 2012, 2013). A parametric framework able to take into
consideration both multivariate correlated responses and systems of regression
equations with equation-dependent vectors of predictors (i.e., vectors which do
not necessarily contain the same predictors for all the responses) is given by the
so-called seemingly unrelated regression approach (see, e.g., Park 1993; Srivastava
and Giles 1987). In particular, in this approach the random disturbances associated
with the M regression equations are allowed to be correlated with each other;
hence, the variance-covariance matrix � of the resulting M-dimensional vector of
the error terms will have a non-diagonal structure.

(b) In general, real data can often be characterised by the presence of atypical obser-
vations. In parametric regression analysis, such observations negatively impact on
both the estimation of the regression coefficients and the prediction of the responses
based on the classical procedures. Such procedures have been widely recognized
to be extremely sensitive to even seemingly minor or negligible deviations from
some conventional assumptions (see, e.g., Tukey 1960). Thus, when the data are
contaminated by such observations, it is crucial that robust methods are employed
(see, e.g., Maronna et al. 2006). Departures from the Gaussian distribution of the
error terms in the regression model caused by some mildly atypical observations
can be managed by simply resorting to heavy-tailed models for the conditional
distribution of Y|X = x. Those observations are also called small or mild out-
liers (see, e.g., Ritter 2015). Examples of robust methods against the presence of
such outliers have been developed by Lange et al. (1989), Kibria and Haq (1999),
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Lachos et al. (2011); to this end, the multivariate t distribution or scale mixtures
of Gaussian distributions have been exploited. Another model able to manage the
possible presence of mild outliers in a dataset is the contaminated Gaussian distri-
bution (see, e.g., Aitkin and Wilson 1980; Tukey 1960). This probabilistic model
is defined as a mixture of two Gaussian distributions having the same expected
mean values but different variances-covariances. Furthermore, the Gaussian distri-
bution having the smallest mixing weight also has inflated variances-covariances
and is employed to represent the mild outliers. Maximum likelihood (ML) esti-
mation can be performed via an expectation-maximisation (EM) algorithm (see
Aitkin and Wilson 1980; Dempster et al. 1977). Once such a model is fitted to the
observed data, each sample observation can be classified as either typical or outlier
using the maximum a posteriori probability (for further details see, e.g., Aitkin and
Wilson 1980). With an approach based on the use of one of these distributions,
robustness can be achieved without suppressing any observation from the sample
S.

(c) Sometimes the population from which the sample S comes from is composed of
a certain number, say K , of sub-populations. Furthermore, when the information
about the value of K and the specific sub-population each sample observation
belongs to is not known, S is characterised by unobserved heterogeneity. If this
source of heterogeneity affects the distribution of Y|X = x, then a mixture of K
different regression models (one for each sub-population) will describe the distri-
bution ofY|X = x in the population. This phenomenon can be experienced inmany
fields, such as economics, marketing, agriculture, education, human genomics,
quantitative finance, social sciences and transport systems (see, e.g., Ding 2006;
Dyer et al. 2012; Elhenawy et al. 2017; Fair and Jaffe 1972; Kamakura 1988;
McDonald et al. 2016; Qin and Self 2006; Tashman and Frey 2009; Turner 2000;
Van Horn et al. 2015). In this case, the sample S should be analysed in a regression
framework able to detect both the number of sub-populations and their regression
models. Methods for clusterwise regression analysis play a special role. They
exploit clusterwise regression models, which are mixtures of K regression models
(see, e.g., De Sarbo and Cron 1988; Depraetere and Vandebroek 2014; Frühwirth-
Schnatter 2006; Hosmer 1974). In these models, the mixing weights can also be
expressed as a function of some concomitant variables (Wedel 2002).WithM con-
tinuous responses in vector Y, multivariate Gaussian clusterwise linear regression
models are generally employed (see, e.g., Jones and McLachlan 1992). If the P
predictors are random and the source of heterogeneity mentioned above affects the
distribution of (X,Y), thenGaussian cluster-weightedmodels should be employed
(see, e.g., Dang et al. 2017).

Recently, Mazza and Punzo (2020) have introduced methods to perform Gaussian
clusterwise linear regression analysis which are robust with respect to heavy-tailed
departures fromGaussianity due to the presence of mild outliers in the data. By relying
on contaminatedGaussian clusterwise linear regressionmodels, their methods are able
to produce a simultaneous clustering of the sample observations and the detection of
mild outliers in a multivariate regression context. In this way, they allow to manage the
sources of complexity (b) and (c); they are also capable of explaining the correlation
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among responses. A limitation of an approach based on those models is that the same
vector of regressors has to be employed for the prediction of all responses. Galimberti
and Soffritti (2020) have developed models for Gaussian clusterwise linear regression
which make use of seemingly unrelated regression equations. The methods based on
these latter models are suitable for the analysis of data affected by complexities (a)
and (c); however, they are not insensitive to the possible presence of mild outliers
in the K sub-populations. Based on all these considerations, multivariate seemingly
unrelated clusterwise linear regression models for data contaminated by mild outliers
are introduced here. They are obtained from the models described inMazza and Punzo
(2020) bymodifying the definition of the linear terms in the M regression equations so
that a different vector of regressors can be employed for each dependent variable.With
these newmodels, the three sources of complexities mentioned above are jointly taken
into consideration when predicting the responses in a multivariate linear regression
framework. Thus, a more flexible approach for the analysis of linear dependencies in
multivariate data is provided.
The key contributions of this paper are:

• the specification of a novel class of models able to jointly account for the sources
of complexity (a), (b) and (c) mentioned above;

• a comparison with some other linear clusterwise regression models;
• the description of conditions for the identifiability of the novel models;
• details about ML estimation via an expectation-conditional maximisation (ECM)
algorithm (Meng and Rubin 1993);

• a treatment of the initialisation and convergence of the ECM algorithm and the
issue of model selection;

• an investigationof the effectiveness of thenewmodels, basedon simulateddatasets,
in comparison with the models proposed by Galimberti and Soffritti (2020) and
Mazza and Punzo (2020);

• an application to a study of the effects of prices and promotional activities on sales
for two U.S. brands of canned tuna.

The remainder of this paper is organised as follows.Thenovelmodels are introduced
in Sect. 2.1. Section 2.2 shows how they relate to some clusterwise linear regression
models. Identifiability is treated in Sect. 2.3. Section 2.4 and Appendix A provide
details on the ECM algorithm. Issues of algorithm initialisation, convergence criterion
and model selection are discussed in Sects. 2.5 and 2.6 . Section 3 contains a summary
of the experimental results obtained from the analysis of simulated data. The study of
the effects of prices and promotional activities on U.S. canned tuna sales is presented
in Sect. 4. Finally, in Sect. 5, some concluding remarks and ideas for future research
are illustrated.
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2 Seemingly unrelated contaminated Gaussian linear clusterwise
regression analysis

2.1 Seemingly unrelated contaminated Gaussian linear clusterwise regression
models

In order to introduce the new model, the following notation is required. Suppose that
only Pm of the P covariates contained in X are considered to be relevant for the pre-
diction of the response Ym , where Pm ≤ P . Thus, let Xm = (Xm1 , Xm2 , . . . , XmPm

)′
be the vector composed of such Pm covariates, and let X∗

m = (1,X′
m)′. Furthermore,

let βkm = (βk,m1 , βk,m2 , . . . , βk,mPm
)′ be the vector of the Pm regression coefficients

capturing the linear effect of such covariates on the response Ym in the kth sub-
population, and β∗

km = (β0k,m,β ′
km)′. Then, the vector containing all linear effects

on the M responses in the kth sub-population can be obtained by stacking the M
regression coefficient vectors specific for the kth sub-population one underneath the
other; it can be denoted as β∗

k = (β
∗′
k1, . . . ,β

∗′
km, . . . ,β

∗′
kM )′ and its length is P∗ + M ,

where P∗ = ∑M
m=1 Pm . Finally, the following (P∗ + M) × M partitioned matrix is

required:

X̃
∗ =

⎡

⎢
⎢
⎢
⎣

X∗
1 0P1+1 · · · 0P1+1

0P2+1 X∗
2 · · · 0P2+1

...
...

...

0PM+1 0PM+1 · · · X∗
M

⎤

⎥
⎥
⎥
⎦

,

where 0Pm+1 denotes the (Pm + 1)-dimensional null vector.
The random vector Y follows a seemingly unrelated contaminated Gaussian linear

clusterwise regressionmodel of order K if the conditional probability density function
(p.d.f.) of Y|X = x has the form

f (y|x;ψ) =
K∑

k=1

πkh (y; θk) , y ∈ R
M , (1)

where πk is the mixing weight of the kth sub-population, with πk > 0 for k =
1, . . . , K , and

∑K
k=1 πk = 1; h (y; θk) is the contaminated Gaussian p.d.f. ofY|X = x

in the kth sub-population, defined as follows:

h (y; θk) = αkφM
(
y;μk(x;β∗

k),�k
)+ (1 − αk)φM

(
y;μk(x;β∗

k), ηk�k
)
, (2)

and φM (·;μ,�) denotes the p.d.f. of an M-dimensional Gaussian distribution with
expectedmean vectorμ and positive definite covariancematrix�. The termμk(x;β∗

k)

in Eq. (2) is the conditional expected value of Y|X = x in the kth sub-population; it
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is defined as follows:

μk(x;β∗
k) = x̃∗′ β∗

k =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x
∗′
1 β∗

k1
...

x
∗′
m β∗

km
...

x
∗′
M β∗

kM

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3)

where x̃∗ denotes the realisation of X̃
∗
obtained when X = x. Thus, x̃∗′ β∗

k coincides
with an M-dimensional vector whose mth element is a linear combination of the
realisations of the Pm regressors selected for the prediction of Ym with weights given
by the elements of vector β∗

km . Terms αk ∈ (0, 1) and ηk > 1 are the weight of
the typical observations in the kth sub-population and the factor contaminating the
conditional variances and covariances of Y|X = x for the mild outliers in the kth
sub-population, respectively. In robust statistics, it is generally assumed that at least
half of the observations are typical; thus, it is also possible to consider αk ∈ [0.5, 1).
As a consequence of the constraint ηk > 1, ηk represents an inflation parameter for
the elements of �k . θk = (β∗

k ,�k, αk, ηk) is the parameter vector of model (2).
The parameter vector of model (1) is given by ψ = (ψ1, . . . ,ψk, . . . ,ψK ), where
ψk = (πk, θk); the number of free parameters in this vector is equal to nψ = 3K −
1 + K (P∗ + M) + K M(M+1)

2 .
In summary, the conditional p.d.f. f (y|x;ψ) in Eq. (1) can be interpreted as a

weighted average (namely, a mixture) of K Gaussian regression models with weights
πk , k = 1, . . . , K . The kth component of this mixture represents a multivariate
seemingly unrelated contaminated Gaussian linear regression model with intercepts
and regression coefficients β∗

k , symmetric and positive definite covariance matrix
�k , proportion of typical points αk and inflation parameter ηk . Thanks to the non-
diagonal structure of the variance-covariancematrices�k , k = 1, . . . , K , the proposed
model is able to account for correlated random disturbances within each of the K
sub-populations associated with the mixture (1). Since the contaminated Gaussian
distribution (2) is a mixture of two Gaussian linear regression models which are both
associated with the kth component of the mixture in Eq. (1), the model defined by this
latter equation can also be considered as a mixture of 2K seemingly unrelated Gaus-
sian clusterwise linear regression models, whose components can be grouped into K
pairs, each of which contains two Gaussian components having the same expected
values and proportional covariance matrices.

2.2 Comparisons with other linear clusterwise regressionmodels

When specific conditions are met, some special linear regression models can be
obtained from model (1).

• If M > 1 and Xm = X ∀m (the same vector of predictors is considered for all
responses), the following equality holds: x̃∗ = IM ⊗ x∗, where IM is the identity
matrix of orderM and⊗denotes theKronecker product operator (see, e.g.,Magnus
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and Neudecker 1988). Equation (3) can be rewritten as

μk(x;β∗
k) = (IM ⊗ x∗)′ β∗

k = B′
kx, k = 1, . . . , K , (4)

where Bk = [β∗
k1 · · · β∗

km · · ·β∗
kM

]
. Thus, Eq. (1) reduces to the mixture of multi-

variate contaminated Gaussian regression models introduced byMazza and Punzo
(2020).

• If M > 1, αk → 1 and ηk → 1 ∀k (there is no contamination in the data), the
resulting model coincides with the mixture of multivariate seemingly unrelated
linear regressions described in Galimberti and Soffritti (2020).

• If αk → 1, ηk → 1 ∀k and Xm = X ∀m (there is no contamination in the data
and the same vector of predictors is considered for all responses), Eq. (1) reduces
to a mixture of either univariate Gaussian linear regression models (see, e.g., De
Sarbo and Cron 1988; De Veaux 1989; Quandt and Ramsey 1978) or multivariate
Gaussian linear regression models (see Jones and McLachlan 1992).

• If αk → 1, ηk → 1 ∀k, Xm = X ∀m and β∗
k = β∗ ∀k (there is no contamination

in the data, the same vector of predictors is considered for all responses and their
effects are the same across all the sub-populations), the resulting model coincides
with a linear regression model with error terms distributed according to a mixture
of K either univariate Gaussian distributions (Bartolucci and Scaccia 2005) or
multivariate Gaussian distributions (Soffritti and Galimberti 2011).

• If M > 1, αk → 1, ηk → 1 ∀k, β∗
k = β∗ ∀k (there is no contamination in the

data and the effects of the predictors are the same across all the sub-populations),
a multivariate seemingly unrelated linear regression model whose error terms are
assumed to follow a Gaussian mixture model is obtained (Galimberti et al. 2016).

Seemingly unrelated regression models represent multivariate regression models
in which prior information about the absence of certain covariates for the prediction
of certain responses is explicitly taken into consideration (Srivastava and Giles 1987).
Thus, Eq. (1) can also be seen as a mixture of multivariate contaminated Gaussian
regression models in which some regression coefficients are constrained to be a priori
equal to zero. To the best of the authors’ knowledge, the inclusion of such constraints
in these latter models has not been addressed yet. Models obtained from Eq. (1) by
embedding different constraints on the regression coefficients could also be employed
in any practical application in which the relevant regressors for each response cannot
be established from a priori information and, thus, the choice of the regressors to
be used for the M responses is questionable. As it will be illustrated in Sect. 4, in
such situations strategies based on a joint use of models (1) and variable selection
techniques could be devised and employed.

2.3 Identifiability

A preliminary requirement for the consistency and other asymptotic properties of the
ML estimator is represented by identifiability of the model parameters. Thus, before
detailingMLestimation ofψ , a discussion about identifiability ofmodel (1) is provided
here. Consider the class of models F = {FK , K = 1, . . . , Kmax }, where FK =
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{ f (y|x;ψ),ψ ∈ �}, f (y|x;ψ) is the p.d.f. ofY|X = x under the seemingly unrelated
contaminated Gaussian linear clusterwise regression model of order K defined in (1)
and Kmax denotes the maximum order specified by the researcher for that model. This
class is said to be identifiable if, for any two models M , M̃ ∈ F with parameters
ψ = (ψ1, . . . ,ψk, . . . ,ψK ) and ψ̃ = (ψ̃1, . . . , ψ̃k, . . . , ψ̃ K̃ ), respectively,

K∑

k=1

πkh (y; θk) =
K̃∑

k=1

π̃kh
(
y; θ̃k

)
∀ y ∈ R

M

implies that K = K̃ and ψ = ψ̃ .
Several types of non-identifiability can affect the model class F. A first type is

due to invariance to relabeling the components of the mixture (also known as label-
switching). Non-identifiability can also be caused by potential overfitting associated
with empty components or equal components (see, e.g., Frühwirth-Schnatter 2006).
Imposing suitable constraints on the parameter space � can prevent such sources
of non-identifiability for F. Another type of non-identifiability affecting this class is
specifically associated with the use of finite mixtures in linear regression analysis with
fixed covariates, which requires an additional constraint on the number of components
of the mixture (1) (see Hennig 2000). Non-identifiability due to empty components is
avoided by requiring the positivity of all themixingweightsπk . Conditions specifically
devised for ensuring identifiability of mixtures of contaminated Gaussian regression
models are provided in Mazza and Punzo (2020). These results have been exploited
in Theorem 1 to show that model (1) is identifiable if the parameters (β∗

k ,�k), k =
1, . . . , K , are pairwise distinct and the order K is exceeded by the number of distinct
(Pm − 1)-dimensional hyperplanes required to cover the covariates employed for the
prediction of Ym , for m = 1, . . . , M . In order to state Theorem 1, the following
notation is also required: ‖·‖F is the element-wise matrix 2-norm (also known as the
Frobenious norm); HPm−1 = {xm ∈ R

Pm : λ′xm = c,λ ∈ R
Pm ,λ 
= 0} is a (Pm −1)-

dimensional hyperplane; Jm is the minimum number of such hyperplanes required to
cover the covariates xm ;HPm−1 is the space of (Pm − 1)-dimensional hyperplanes of
R

Pm .

Theorem 1 Let M ∈ F and M̃ ∈ F be two models, ψ = (ψ1, . . . ,ψk, . . . ,ψK )

and ψ̃ = (ψ̃1, . . . , ψ̃k, . . . , ψ̃ K̃ ) the corresponding parameters and, without loss of
generality, K ≥ K̃ . If

(C1) K < Jm for m = 1, . . . , M, where

Jm := min

{

qm : {xim, i ∈ Im} ⊆
qm⋃

b=1

HPm−1
b : HPm−1

b ∈ HPm−1

}

,

with Im being an index set associated with the distinct covariate points available
for the prediction of Ym, and
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(C2) k 
= l, with k, l ∈ {1, . . . , K }, implies
∥
∥β∗

k − β∗
l

∥
∥2
F + ‖�k − a�l‖2F 
= 0 ∀a > 0,

then the class F is identifiable.

Conditions (C1) and (C2) are obtained fromMazza and Punzo (2020) after suitable
modifications of similar conditions required for the identifiability of their mixtures of
contaminated Gaussian regression models. In particular, condition (C2) results from
a simple substitution of the vector β∗

k of model (1) for the matrix Bk introduced in
Eq. (4) containing the intercepts and regression coefficients in the kth component of
the regression mixture model developed by Mazza and Punzo (2020). The modifica-
tions involved in the definition of the condition (C1) derive from the fact that each
Ym ∈ Y may have its own covariates and, thus, M different restrictions on K have
to be required, each one involving a (possibly) different minimum number of low-
dimensional hyperplanes to cover those covariates. As a consequence, the proof of
Theorem 1 can be obtained by exploiting the same arguments illustrated in Mazza
and Punzo (2020) for the proof of their theorem about identifiability of mixtures of
contaminated Gaussian regression models.

2.4 Maximum likelihood estimation

The ML estimation of the parameters ψ is carried out here for a fixed value of K .
Given a sample S of I independent observations drawn from model (1), the model

log-likelihood is equal to �(ψ) = ∑I
i=1 ln

(∑K
k=1 πkh

(
yi ; θk

))
. Following Mazza

and Punzo (2020), ML estimates ψ̂ can be computed by means of an ECM algo-
rithm, which represents a variant of the EM algorithm usually employed for the
computation of ML estimates from incomplete data. In the considered situation, the
missing information is twofold. On the one hand, there is a classical source of incom-
pleteness of any mixture model associated with the component memberships of the
I sample observations. On the other hand, it is not known whether such observa-
tions are outliers with reference to any component or not. These two sources can
be described by two different types of K -dimensional vectors. For the i th sample
observation, they are given by zi and ui , respectively: zi = (zi1, . . . , ziK )′, with
zik = 1 if the i th observation comes from the kth component and zik = 0 otherwise;
ui = (ui1, . . . , uiK )′, with uik = 1 if the i th observation is typical in the kth com-
ponent and uik = 0 if it is an outlier, for k = 1, . . . , K . Then, the set of complete
data would be Sc = {(x1, y1, z1,u1), . . . , (xI , yI , zI ,uI )}, and the complete-data
likelihood function is equal to

Lc(ψ) =
I∏

i=1

K∏

k=1

{
πk

[
αkφM

(
yi ;μk(xi ;β∗

k),�k

)]uik

[
(1 − αk)φM

(
yi ;μk(xi ;β∗

k), ηk�k

)]1−uik}zik
.
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Thus, up to an additive constant, the complete-data log-likelihood function employed
in the ECM algorithm for the computation of the parameter estimates can be expressed
as follows:

�c(ψ) =
I∑

i=1

K∑

k=1

zik
[
ln πk + uik ln αk + (1 − uik) ln(1 − αk) − 1

2
ln |�k |+

−
(M

2
ln ηk

)
(1 − uik) − 1

2

(
uik + 1 − uik

ηk

)
δ2�k

(
yi ,μk(xi ;β∗

k)
)]

,

where

δ2�k

(
yi ,μk(xi ;β∗

k)
) = (yi − μk(xi ;β∗

k))
′�−1

k (yi − μk(xi ;β∗
k)) (5)

is the squared Mahalanobis distance between yi and μk(xi ;β∗
k) with respect to the

matrix �k .
The hth iteration of the E-step in the ECM algorithm consists in calculating the

conditional expectation of lc(ψ) on the basis of the current estimateψ (h) of the model
parameters ψ ; up to an additive constant, this expected value can be expressed as
follows:

Q
(
ψ |ψ (h)

)
= Eψ (h)[lc(ψ)]

=
I∑

i=1

K∑

k=1

ẑ(h)
ik

{
ln π

(h)
k + û(h)

ik ln α
(h)
k + (1 − û(h)

ik ) ln(1 − α
(h)
k )+

+ Qi

(
β∗
k ,�k |ψ (h)

)}
,

where

Qi

(
β∗
k ,�k |ψ (h)

)
= −1

2

[
ln |�(h)

k | + M(1 − û(h)
ik ) ln η

(h)
k +

+
(
û(h)
ik + 1 − û(h)

ik

η
(h)
k

)
δ2
�

(h)
k

(
yi ,μk(xi ;β

∗(h)
k )

) ]
,

ẑ(h)
ik and û(h)

ik are the posterior probabilities (evaluated usingψ (h)) that the i th observa-
tion is generated from the kth component of themixture (1) and that the i th observation
is a typical point of such a component, respectively:

ẑ(h)
ik = Eψ (h)[Zik |(xi , yi )] =

π
(h)
k h

(
yi ; θ

(h)
k

)

f
(
yi |xi ;ψ (h)

) , (6)

û(h)
ik = Eψ (h)[Uik |(xi , yi , zi )] =

α
(h)
k φ

(
yi ;μk(xi ;β

∗(h)
k ),�

(h)
k

)

h
(
yi ; θ

(h)
k

) , (7)
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with Zi = (Zi1, . . . , ZiK )′ denoting a K -dimensional multinomial random vector
with probabilitiesπ = (π1, . . . , πK )′, andUik |Zik = 1 having aBernoulli distribution
with success probability of αk .

As far as the conditionalmaximisation is concerned, the update ofψ (h) is carried out
by considering the following two parameter sub-vectors: γ = (π ,β∗,�,α) and η =
(η1, . . . , ηK )′, where β∗ = (β∗

1, . . . ,β
∗
K ), � = (�1, . . . ,�K ), α = (α1, . . . , αK ).

At the (h + 1)th iteration of the ECM algorithm, γ (h) = (π (h),β∗(h),�(h),α(h)) is
updated through the maximisation of Q(ψ |ψ (h)) with respect to γ with η fixed at η(h)

(first CM step); then, the update of η(h) is carried out by maximising Q(ψ |ψ (h)) with
respect to η with γ fixed at γ (h+1) (second CM step). The resulting updates of π

(h)
k ,

α
(h)
k and η

(h)
k are:

π
(h+1)
k = 1

I

I∑

i=1

ẑ(h)
ik ,

α
(h+1)
k =

∑I
i=1 ẑ

(h)
ik û(h)

ik
∑I

i=1 ẑ
(h)
ik

, (8)

η
(h+1)
k = max

{
1,

∑I
i=1 ẑ

(h)
ik (1 − û(h)

ik )δ2
�

(h+1)
k

(
yi ,μk(xi ;β

∗(h+1)
k )

)

M
∑I

i=1 ẑ
(h)
ik (1 − û(h)

ik )

}
. (9)

Such updates coincide with the ones reported in Mazza and Punzo (2020) for their
model. Based on Eq. (9), it is possible to highlight that the update η

(h+1)
k will be larger

when the kth component is highly contaminated by the presence of outliers (i.e., when
it is characterised by many observations with a small value of û(h)

ik and a large value

of the squared Mahalanobis distance from μk(xi ;β
∗(h+1)
k )). As far as the remaining

parameters are concerned, their updates are (details are reported in the Appendix):

β
∗(h+1)
k =

( I∑

i=1

ẑ(h)
ik ŵ

(h)
ik x̃∗

i �
(h)−1

k x̃∗′
i

)−1( I∑

i=1

ẑ(h)
ik ŵ

(h)
ik x̃∗

i �
(h)−1

k yi
)
, (10)

�
(h+1)
k =

∑I
i=1 ẑ

(h)
ik ŵ

(h)
ik

(
yi − x̃∗′

i β
∗(h+1)
k

)(
yi − x̃∗′

i β
∗(h+1)
k

)′

∑I
i=1 ẑ

(h)
ik

, (11)

where

ŵ
(h)
ik = û(h)

ik + 1 − û(h)
ik

η
(h)
k

. (12)

It is worth noting that thematrix
∑I

i=1 ẑ
(h)
ik ŵ

(h)
ik x̃∗

i �
(h)−1

k x̃∗′
i in (10) has to be nonsingu-

lar; otherwise, the update β
∗(h+1)
k cannot be computed. Equation (10) also highlights

that this update can be considered as a generalised least squares estimate with weights
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depending on ŵ
(h)
ik ; this latter term also affects the update �

(h+1)
k in (11), which rep-

resents a weighted sum of squared residuals. Using such weights leads to a reduction
in the effects of the outliers on the estimation of β

∗(h+1)
k ; thus, this approach provides

robust estimates of β
∗(h+1)
k , for k = 1, . . . K . Furthermore, based on (12), sample

observationswith the highest posterior estimated probabilities of being generated from
the kth component and of representing typical points in the kth component will have
the largest impact on the updates of both the regression coefficients and covariances
within that component.

Once the convergence is reached and theML estimates ψ̂ are computed, by exploit-
ing Eq. (6) the ECM algorithm provides estimates of the posterior probabilities
P

ψ̂
[Zik = 1|(xi , yi )] = ẑik , i = 1, . . . , I , k = 1, . . . , K . Such estimated proba-

bilities can be employed to partition the I sample observations into K clusters, by
assigning each observation to the component showing the highest posterior probabil-
ity; for the i th observation:

MAP(ẑik) =
{
1 if maxh{ẑih} occurs when h = k;
0 otherwise.

Furthermore, Eq. (7) allows to compute the estimated posterior probabilitiesP
ψ̂
[Uik =

1|(xi , yi , ẑi )] = ûik , and an intra-cluster distinction between typical observations and
mild outliers can be defined: the i th observation will be classified as an outlier of
the hth cluster, where h is the label of the component for which MAP(ẑik) = 1, if
ûih < 0.5. From the ML estimates ψ̂ and Eq. (5) it is also possible to compute the

estimated squared Mahalanobis distances d̂2ik = δ2
�̂k

(
yi , μ̂k(xi ; β̂

∗
k)
)
, i = 1, . . . , I ,

k = 1, . . . , K , which can be employed as multivariate measures of the outlyingness of
the I sample observations with respect to the K clusters detected by the model. From
the definition of the squaredMahalanobis distance given in Eq. (5) and the expressions
for û(h)

ik and ŵ
(h)
ik reported in Eqs. (7) and (12), respectively, it is possible to express

both ûik and ŵik as decreasing functions of d̂2ik (see Mazza and Punzo 2020, for the
explicit expressions). Thus, atypical observations could also be detected and studied
by considering the values of d̂2ik ∀(i, k) ∈ {i ∈ {1, . . . , I }, k : MAP(ẑik) = 1} and by
focusing on the largest values obtained in this way (see McLachlan and Peel 2000, p.
232).

2.5 Technical details about the ECM algorithm

A crucial point of any EM-based algorithm is the choice of the starting values for the
model parameters (i.e.,ψ (0)). Multiple executions of the algorithm in association with
multiple random initialisations or approaches based on non-random choices of either
ψ (0) or the missing information can provide a solution (see, e.g., Biernacki et al. 2003;
Karlis andXekalaki 2003). As far as the ECMalgorithm described above is concerned,
the initialisation technique illustrated inMazza and Punzo (2020) could bemodified so
as to be employed also for model (1). This task would require setting the initial values
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ẑ(0)ik , i = 1, . . . , I , k = 1, . . . , K , equal to the posterior probabilities from the EM
algorithm for the estimation of the seemingly unrelated Gaussian clusterwise linear
regression models, which are nested in model (1) when αk → 1− and ηk → 1+,
k = 1, . . . , K ; furthermore, û(0)

ik = 0.999, i = 1, . . . , I , k = 1, . . . , K . Another
strategy for the initialisation of ψ which exploits the relationship between model (1)
and seemingly unrelated Gaussian clusterwise linear regression models (see Sect. 2.2)
could be composed of the following three steps. Firstly, a Gaussian mixture model
with K components is fitted to the sample residuals of a seemingly unrelated linear
regression model (Srivastava and Giles 1987); this allows to obtain the starting values
π

(0)
k and �

(0)
k . Secondly, the starting values β

∗(0)
k are obtained from the fitting of K

different seemingly unrelated linear regression models, one for each cluster of the
partition associated with the Gaussian mixture model considered in the previous step.
Thirdly, α

(0)
k and η

(0)
k , k = 1 . . . , K , are set equal to 0.999 and 1.001, respectively.

Models involved in the first two steps can be estimated through the packages mclust
(Scrucca et al. 2017) and systemfit (Henningsen and Hamann 2007) in the R
environment (RCoreTeam2021). In the analyses of Sects. 3 and 4 , theECMalgorithm
has been initialised using this latter strategy. Furthermore, since (1−αk) in model (1)
can be considered as the proportion of outliers in the kth sub-population, when this
model is employed for outlier detection, a reasonable requirement is that in each cluster
the number of typical observations cannot be smaller than the number of outliers, that
is αk ∈ [0.5, 1) ∀k. To guarantee this result, constraints on the estimation of αk ,
k = 1, . . . , K , have been included in the ECM algorithm; namely, Eq. (8) has been

modified as follows: α(h+1)
k = max

{

0.5,
∑I

i=1 ẑ
(h)
ik û(h)

ik∑I
i=1 ẑ

(h)
ik

}

.

In order to avoid premature stops of the ECM algorithm associated with the use
of lack of progress stopping criteria, such as the one based on the difference between
the log-likelihood values at two consecutive steps, a convergence criterion based on
the Aitken acceleration (Aitken 1926) has been adopted. It consists in stopping the
algorithm when |�(h+1)

A − �(ψ (h))| < ε, where 0 < ε < +∞, �
(h+1)
A is (h + 1)th

Aitken accelerated estimate of the log-likelihood limit, and �(ψ (h)) is the incomplete
log-likelihood evaluated atψ (h) (see, e.g.,McNicholas 2010). Furthermore, a criterion
based on a maximum number of iterations for the ECM algorithm has been employed.
In the analyses of Sects. 3 and 4 , the maximum number of iterations and ε have
been set equal to 500 and 10−6, respectively. Furthermore, in order to circumvent the
possible issue of unbounded likelihood associated with a degenerate model, the ECM
algorithm has been developed by embedding some constraints on the eigenvalues
of �

(h)
k for k = 1, . . . , K . Namely, for all estimated covariance matrices, the ratio

between the smallest and the largest eigenvalues is required to be not lower than
10−10.

2.6 Determining the value of K

As illustrated in Sect. 2.4, the ML estimation of ψ based on the ECM algorithm is
carried out for a given number ofmixture components.When this number is not known
and has to be determined from the data S, it is common practice to employ model
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selection criteria able to take account of different aspectswhich are considered relevant
when evaluating the adequacy of a model (see, e.g., Depraetere and Vandebroek 2014;
Frühwirth-Schnatter 2006). For example, theBayesian InformationCriterion (Schwarz
1978) provides a trade-off between thefit and themodel complexity; it can be computed
as follows:

BIC(K ) = 2�(ψ̂) − nψ ln I .

Model selection criteria that also consider the uncertainty of the estimated partition of
the sample observations could be employed. An example is represented by the inte-
grated completed likelihood (Biernacki et al. 2000), which can be computed according
to different ways of measuring the uncertainty of the estimated partition (see, e.g.,
Andrews and McNicholas 2011; Baek and McLachlan 2011):

ICL1(K ) = 2�(ψ̂) − nψ ln I + 2
I∑

i=1

K∑

k=1

MAP(ẑik) ln ẑik,

ICL2(K ) = 2�(ψ̂) − nψ ln I + 2
I∑

i=1

K∑

k=1

ẑik ln ẑik .

These latter criteria penalize complex models more severely than BIC because of
the presence of an additional penalty, which represents the estimated mean entropy.
Thus, when using these criteria in comparison with the BIC , one cluster should be
less likely split into two different components. ICL1 and ICL2 differ on whether a
soft (i.e., ẑik) or hard (i.e., MAP(ẑik)) clustering is considered in the estimation of
the mean entropy. Higher values of these criteria indicate better-fit models; as it will
be illustrated in Sect. 4, BIC , ICL1 and ICL2 can also be employed to select the
predictors to be considered in the linear terms employed in the prediction of the M
responses in model (1).

3 Results fromMonte Carlo studies

3.1 Settings

This section focuses on the investigation of the effectiveness ofmodels (1) (mixtures of
contaminated seemingly unrelated Gaussian regressions, hereafter denoted asMCSG)
in comparison with other approaches using simulated datasets. This task has been
carried out in a multivariate setting with M = 4 responses, P = 4 covariates and
datasets comprising K = 3 groups of observations. The additional models considered
in the comparison are those described by Mazza and Punzo (2020) and Galimberti
and Soffritti (2020). From now on, these latter models have been denoted as MCG
(mixtures of contaminated Gaussian regressions) and MSG (mixtures of seemingly
unrelated Gaussian regressions), respectively.
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Fig. 1 Scatterplots of X1 and Y1 for samples of size I = 1000 generated from the first (upper panel), second
(intermediate panel) and third (lower panel) data generation processes under higher (ε = 9, left panels) and
lower (ε = 6.5, right panels) degree of separation. Black circle, red triangle and green plus correspond to
k = 1, k = 2 and k = 3, respectively
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The simulated datasets have been generated using three different data generation
processes:

(a) MSG;
(b) MCSG with αk = 0.9 ∀k, η1 = 40, η2 = η3 = 20;
(c) mixtures of regressionmodels with seemingly unrelated t-distributed errors (MSt),

with ν1 = ν2 = ν3 = 4 degrees of freedom.

In all the regression models employed to generate the datasets, the response Ym has
been assumed to depend on Xm , for m = 1, 2, 3, 4; thus, Pm = 1 ∀m. With each
process, the following parameters have been employed:π1 = 0.3,π2 = 0.5,π3 = 0.2,
β∗
1 = (−3, 0.2,−3, 0.2,−3, 0.2,−3, 0.2)′, β∗

2 = −β∗
1, β∗

3 = (3 + ε,−0.2, 3 +
ε,−0.2, 3 + ε,−0.2, 3 + ε,−0.2),

�1 =

⎛

⎜
⎜
⎝

1.0 0.5 0.5 0.5
0.5 1.0 0.5 0.5
0.5 0.5 1.0 0.5
0.5 0.5 0.5 1.0

⎞

⎟
⎟
⎠, �2 = �3 =

⎛

⎜
⎜
⎝

1.00 0.75 0.75 0.75
0.75 1.00 0.75 0.75
0.75 0.75 1.00 0.75
0.75 0.75 0.75 1.00

⎞

⎟
⎟
⎠.

It is worth noting that the second and third components only differ in the intercepts
of the four regression equations. Covariate values have been generated by a uniform
distribution over the interval (−5, 5). As concerns ε, two alternatives have been con-
sidered in order to produce two different degrees of separation between groups of
observations: ε = 9 (higher degree), ε = 6.5 (lower degree). Figure 1 shows the
scatterplots of the variables Y1 and X1 for a sample of size I = 1000 generated using
the MSG (upper panel), MCSG (central panel) and MSt (lower panel) processes with
ε = 9 (on the left) and ε = 6.5 (on the right). Due to the values of the regression
coefficients employed to model the linear dependencies of Ym and Xm across the three
components, the scatterplots of Ym and Xm for m = 2, 3, 4 are similar. Under each
data generating process, 100 random samples of size I have been simulated for each
ε. As far as the sample size is concerned, the following values have been examined:
I = 500, 1000. Thus, the degree of separation and the sample size can be considered
as experimental factors. This yields a total of 600 generated datasets for each I . The
whole analysis has been run on an IBM x3750 M4 server with 4 Intel Xeon E5-4620
processors with 8 cores and 128GB RAM.

3.2 Results

Afirst analysis has been carried out where theMSG,MCG andMCSGmodels of order
K = 3 have been fitted to each dataset. It is worth noting that the MCG models have
been specified and estimated by assuming that each of the four responses depends on all
covariates. Thus, using suchmodels leads to non-parsimonious specifications for all the
models that havegenerated the simulateddatasets, as 12 regression coefficients for each
component have been estimated although in fact they are equal to zero. The average
execution times (over the 100 datasets with I = 500) for the MCSG models have
ranged between 2.499 and 55.020 s, depending on the process and the specific value
of ε employed to generate the datasets. Concerning the other twomodels, theminimum
and maximum average execution times have resulted to be equal to 1.722 and 24.580 s
withMSGmodels, 7.765 and 58.520 s withMCGmodels. It is worth noting that, since
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Table 3 Bias and RMSE for the regression coefficients βkm under MSG, MCG andMCSGmodels of order
K = 3 in the first process (I = 500)

Bias RMSE

MSG MCG MCSG MSG MCG MCSG

High separation

β11 0.307 0.563 0.312 0.022 0.029 0.022

β12 −0.012 −0.108 −0.013 0.021 0.028 0.021

β13 −0.085 0.047 −0.084 0.024 0.030 0.024

β14 0.145 0.147 0.148 0.023 0.029 0.023

β21 −0.027 0.014 −0.027 0.014 0.021 0.014

β22 −0.119 −0.028 −0.119 0.010 0.024 0.010

β23 0.111 0.205 0.111 0.013 0.022 0.013

β24 −0.256 −0.165 −0.256 0.013 0.023 0.013

β31 −0.112 −0.141 −0.112 0.021 0.038 0.021

β32 0.239 0.439 0.239 0.021 0.036 0.021

β33 −0.257 −0.576 −0.257 0.021 0.036 0.021

β34 0.094 0.060 0.094 0.021 0.034 0.021

Low separation

β11 0.307 0.571 0.309 0.022 0.029 0.022

β12 −0.012 −0.106 −0.016 0.021 0.028 0.021

β13 −0.085 0.049 −0.089 0.024 0.030 0.024

β14 0.145 0.147 0.153 0.023 0.029 0.023

β21 0.010 0.107 0.005 0.014 0.022 0.014

β22 −0.098 0.153 −0.097 0.010 0.026 0.010

β23 0.107 0.204 0.117 0.013 0.025 0.013

β24 −0.252 −0.047 −0.252 0.014 0.025 0.014

β31 −0.224 −0.034 −0.219 0.021 0.046 0.021

β32 0.195 0.820 0.190 0.023 0.042 0.023

β33 −0.244 −0.512 −0.251 0.022 0.041 0.022

β34 0.094 0.166 0.092 0.021 0.040 0.021

Biases have been multiplied by 100 to facilitate presentation

the implementation of the ECM algorithm has not been carried out with the goal of
being efficient froma computational point of view, theseCPU times should be regarded
as merely illustrative and can be reduced using more efficient implementations. In the
first analysis, the performances of the three competing models have been evaluated
with respect to the following aspects: (i) the estimation of the proportions of typical
observations and the degrees of contamination (proper estimation of αk and ηk); (ii)
the ability to recover the true values of the unknown parameters (parameter recovery);
(iii) the ability to recover the true partition of the sample observations (classification
recovery). When evaluating properties of the parameter estimators using simulation
studies under mixture models, there may be label switching issues. Several labeling
methods have been proposed. For the models examined here, as in Bai et al. (2012),
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Table 4 Bias and RMSE for the regression coefficients βkm under MSG, MCG andMCSGmodels of order
K = 3 in the second process (I = 500)

Bias RMSE

MSG MCG MCSG MSG MCG MCSG

High separation

β11 6.732 0.515 0.288 0.103 0.029 0.023

β12 6.819 −0.054 −0.008 0.105 0.029 0.023

β13 6.728 0.062 −0.083 0.105 0.029 0.023

β14 6.816 0.297 0.246 0.104 0.031 0.025

β21 −0.833 0.104 0.049 0.061 0.022 0.015

β22 −0.983 −0.058 −0.113 0.057 0.025 0.012

β23 −0.852 0.131 0.086 0.064 0.023 0.014

β24 −1.165 −0.195 −0.288 0.060 0.025 0.014

β31 −1.220 −0.260 −0.272 0.044 0.041 0.023

β32 −0.441 0.295 0.270 0.034 0.036 0.021

β33 −0.917 −0.593 −0.241 0.041 0.039 0.021

β34 −0.248 0.261 0.184 0.034 0.036 0.021

Low separation

β11 7.440 0.900 0.306 0.118 0.052 0.022

β12 7.583 0.331 0.025 0.118 0.046 0.023

β13 7.517 0.418 −0.104 0.118 0.045 0.023

β14 7.421 0.527 0.189 0.117 0.050 0.025

β21 −1.508 0.368 0.030 0.074 0.024 0.014

β22 −1.791 0.140 −0.070 0.079 0.025 0.012

β23 −1.611 −0.008 0.123 0.081 0.026 0.014

β24 −1.890 0.010 −0.266 0.079 0.026 0.013

β31 −3.674 −0.764 −0.089 0.129 0.137 0.034

β32 −3.169 −3.185 0.174 0.101 0.200 0.052

β33 −3.644 −1.903 −0.536 0.145 0.177 0.077

β34 −2.049 −1.250 0.325 0.101 0.201 0.044

Biases have been multiplied by 100 to facilitate presentation

Yao et al. (2014) andMazza and Punzo (2020), labels have been chosen byminimising
the Euclidean distance to the true parameter values.

A second analysis has been carried out so as to obtain an evaluation of the three
approacheswithout exploiting the knowledge of the true number of components. Thus,
in addition to the models already examined in the first analysis, also models of order
K = 1, 2, 4, 5 have been fitted to each dataset. All the obtained results have been
employed to collect information on the following aspects: (iv) the capability to reach
the best trade-off between the fit and model complexity; (v) the ability of BIC , ICL1
and ICL2 to detect the true value of K (comparison among information criteria).
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Table 5 Bias and RMSE for the regression coefficients βkm under MSG, MCG andMCSGmodels of order
K = 3 in the third process (I = 500)

Bias RMSE

MSG MCG MCSG MSG MCG MCSG

High separation

β11 0.786 0.090 0.296 0.034 0.034 0.029

β12 0.861 0.224 0.411 0.035 0.043 0.029

β13 0.674 0.300 0.254 0.033 0.041 0.030

β14 0.532 0.108 −0.157 0.035 0.043 0.027

β21 0.145 −0.014 0.055 0.018 0.037 0.016

β22 0.109 −0.810 −0.003 0.017 0.045 0.014

β23 −0.082 −0.211 −0.152 0.020 0.041 0.018

β24 0.162 −0.023 0.027 0.015 0.032 0.014

β31 −0.206 −1.520 −0.273 0.029 0.056 0.027

β32 −0.384 −0.092 −0.319 0.031 0.061 0.027

β33 0.784 0.293 0.425 0.027 0.063 0.026

β34 0.060 0.326 0.384 0.026 0.049 0.025

Low separation

β11 0.312 −0.218 0.101 0.032 0.032 0.026

β12 0.411 0.024 0.264 0.029 0.035 0.028

β13 0.354 0.011 0.182 0.033 0.035 0.029

β14 −0.019 −0.297 −0.246 0.029 0.034 0.026

β21 0.026 0.124 0.048 0.017 0.038 0.017

β22 −0.117 −0.536 0.155 0.018 0.039 0.016

β23 0.105 0.232 −0.108 0.022 0.043 0.018

β24 0.371 −0.038 0.156 0.017 0.038 0.016

β31 −0.336 −3.023 0.052 0.056 0.138 0.034

β32 0.334 −2.051 −1.141 0.057 0.166 0.066

β33 1.120 0.634 −1.330 0.169 0.110 0.128

β34 −0.296 −1.419 −0.377 0.059 0.151 0.047

Biases have been multiplied by 100 to facilitate presentation

3.2.1 Estimation of˛k and �k

The aspect (i) has been studied for the fitted MCG and MCSG models with K = 3.
Under the first two data generation processes, the averages of the estimated proportions
of good points (α̂k) and the estimated inflation parameters (η̂k) are close to their true
values under both MCG and MCSG models, regardless of the level of separation and
the sample size (see the upper part of Tables 1 and 2). However, it is worth noting that
slightly lower standard deviations of such estimates have been registered under the
first process, thus giving an indication of a higher stability of the obtained estimates;
furthermore, the estimation of η1, η2 and η3 under the second process appears to be
characterised by a certain instability, which results to reduce as the sample size I
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Table 6 Bias and RMSE for the regression coefficients βkm under MSG, MCG andMCSGmodels of order
K = 3 in the first process (I = 1000)

Bias RMSE

MSG MCG MCSG MSG MCG MCSG

High separation

β11 0.162 0.128 0.162 0.016 0.020 0.016

β12 −0.066 0.009 −0.066 0.017 0.022 0.017

β13 0.127 0.478 0.127 0.015 0.020 0.015

β14 0.070 0.084 0.070 0.017 0.020 0.017

β21 −0.126 −0.314 −0.126 0.008 0.014 0.008

β22 −0.042 −0.080 −0.042 0.008 0.015 0.008

β23 0.081 0.077 0.081 0.010 0.016 0.010

β24 −0.057 0.080 −0.057 0.008 0.014 0.008

β31 0.075 0.161 0.075 0.014 0.025 0.014

β32 −0.153 −0.073 −0.153 0.015 0.026 0.015

β33 0.091 0.158 0.091 0.015 0.024 0.015

β34 −0.124 −0.452 −0.124 0.014 0.025 0.014

Low separation

β11 0.159 0.122 0.161 0.016 0.020 0.016

β12 −0.065 0.012 −0.060 0.017 0.022 0.017

β13 0.129 0.474 0.127 0.015 0.020 0.015

β14 0.070 0.077 0.073 0.017 0.020 0.017

β21 −0.008 0.276 −0.008 0.009 0.015 0.009

β22 −0.008 −0.045 −0.007 0.009 0.016 0.009

β23 0.059 −0.071 0.056 0.010 0.016 0.010

β24 0.028 −0.149 0.031 0.008 0.016 0.008

β31 −0.034 −0.027 −0.032 0.014 0.028 0.014

β32 −0.067 −0.248 −0.067 0.014 0.031 0.014

β33 0.069 −0.238 0.070 0.016 0.031 0.016

β34 −0.031 0.013 −0.030 0.015 0.031 0.015

Biases have been multiplied by 100 to facilitate presentation

increases using both MCG and MCSG models. As far as the results from the analyses
of the datasets generated using the third process are concerned (lower part of Tables 1
and 2), the estimated values of αk and ηk , k = 1, 2, 3, are far from 1, regardless of the
values of ε and I . Thus, the departure from a four-dimensional Gaussian distribution
for the errors of the regression model has been detected within each of the three
mixture components of both MCG and MCSG models for both sample sizes. The
standard deviations of η̂k , k = 1, 2, 3 are high, and this result holds true particularly
with MCG models and I = 1000.
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Table 7 Bias and RMSE for the regression coefficients βkm under MSG, MCG andMCSGmodels of order
K = 3 in the second process (I = 1000)

Bias RMSE

MSG MCG MCSG MSG MCG MCSG

High separation

β11 6.928 0.092 0.217 0.086 0.020 0.015

β12 7.415 0.161 0.116 0.094 0.385 0.019

β13 6.835 −0.304 −0.269 0.088 0.390 0.015

β14 6.101 −0.221 −0.219 0.081 0.021 0.018

β21 −0.277 −0.140 −0.102 0.033 0.016 0.010

β22 −0.100 0.045 0.077 0.031 0.015 0.011

β23 −0.246 −0.003 −0.055 0.033 0.386 0.010

β24 −0.276 −0.178 −0.103 0.034 0.016 0.009

β31 −0.906 −0.264 −0.185 0.030 0.027 0.015

β32 −0.218 0.214 −0.036 0.026 0.389 0.015

β33 −0.916 −0.396 −0.233 0.031 0.029 0.016

β34 −0.502 −0.099 −0.157 0.027 0.026 0.014

Low separation

β11 6.911 −0.051 0.147 0.092 0.020 0.015

β12 7.924 0.014 0.299 0.105 0.023 0.019

β13 7.733 0.175 −0.075 0.101 0.018 0.014

β14 6.543 −0.234 −0.239 0.090 0.023 0.017

β21 −0.713 0.223 −0.126 0.049 0.018 0.010

β22 −0.354 0.219 0.198 0.048 0.019 0.010

β23 −0.668 −0.148 −0.084 0.050 0.018 0.009

β24 −0.286 0.143 0.252 0.044 0.016 0.009

β31 −2.667 0.019 −0.876 0.081 0.085 0.116

β32 −1.447 −0.236 −0.033 0.072 0.080 0.068

β33 −2.959 0.591 0.184 0.092 0.087 0.035

β34 −2.173 0.732 −1.039 0.081 0.111 0.091

Biases have been multiplied by 100 to facilitate presentation

3.2.2 Parameter recovery

The evaluation of the aspect (ii) has been focused on the regression coefficients βkm

and has been carried out by computing the following quantities:

Bias
(
β̂km

)
=
∑100

r=1 β̂
(r)
km

100
− βkm, k = 1, 2, 3, m = 1, 2, 3, 4,

RMSE
(
β̂km

)
=

√
√
√
√
∑100

r=1

(
βkm − β̂

(r)
km

)2

100
, k = 1, 2, 3, m = 1, 2, 3, 4,
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Table 8 Bias and RMSE for the regression coefficients βkm under MSG, MCG andMCSGmodels of order
K = 3 in the third process (I = 1000)

Bias RMSE

MSG MCG MCSG MSG MCG MCSG

High separation

β11 0.325 −0.128 −0.022 0.022 0.027 0.019

β12 0.412 0.057 −0.011 0.024 0.026 0.022

β13 0.686 0.268 0.160 0.022 0.025 0.019

β14 0.326 −0.049 0.091 0.027 0.028 0.024

β21 0.006 −0.199 −0.027 0.011 0.020 0.011

β22 0.217 0.330 0.035 0.012 0.020 0.011

β23 −0.011 −0.280 −0.131 0.012 0.019 0.011

β24 −0.324 −0.406 −0.233 0.013 0.018 0.012

β31 −0.049 0.125 −0.083 0.021 0.033 0.019

β32 0.118 0.154 0.003 0.018 0.032 0.017

β33 −0.170 0.052 −0.190 0.020 0.036 0.018

β34 −0.271 −0.516 −0.251 0.020 0.033 0.018

Low separation

β11 0.197 0.035 0.052 0.022 0.028 0.018

β12 −0.075 −0.289 −0.160 0.021 0.038 0.019

β13 0.540 0.430 0.407 0.023 0.028 0.020

β14 0.257 0.081 0.130 0.019 0.027 0.018

β21 0.084 0.140 0.063 0.013 0.023 0.012

β22 0.137 −0.142 −0.049 0.013 0.026 0.011

β23 0.140 0.279 0.213 0.014 0.021 0.012

β24 −0.143 −0.130 −0.117 0.012 0.024 0.012

β31 −0.911 −1.273 0.050 0.057 0.104 0.019

β32 −1.822 −2.135 0.061 0.085 0.162 0.021

β33 −1.087 −1.037 0.041 0.077 0.107 0.021

β34 −0.408 −0.881 0.156 0.069 0.083 0.022

Biases have been multiplied by 100 to facilitate presentation

where β̂
(r)
km is the ML estimate of βkm obtained from the r th dataset (r = 1, . . . , 100)

usingmodels of order K = 3.With I = 500 and under the first data generating process
(Table 3), MSG andMCSGmodels show the same performance in terms of recovering
the true values of the regression coefficients with both degrees of separation. The good
performance of MCSG models is consistent with the proper estimation of αk and ηk
associated with these models under the first process (see the previous aspect). On
the contrary, the inclusion of irrelevant predictors in the four regression equations
(MCG models) leads to a slight increase in the RMSEs. With contaminated datasets
of size I = 500, as expected, the lowest (absolute) biases and RMSEs are obtained
using the MCSG model (see Table 4); there also seems to be a tendency for MCG
models to perform slightly better than MSG models for the majority of the regression
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Table 9 Classification recovery of the fitted MSG, MCG and MCSG models of order K = 3: average
values (standard deviations) of the ARI index over 100 samples (I = 500)

Process ε MSG MCG MCSG

I 9 0.999 (0.003) 0.999 (0.003) 0.999 (0.003)

I 6.5 0.946 (0.018) 0.937 (0.028) 0.946 (0.018)

II 9 0.818 (0.024) 0.911 (0.027) 0.910 (0.031)

II 6.5 0.723 (0.094) 0.806 (0.100) 0.821 (0.087)

III 9 0.931 (0.033) 0.936 (0.037) 0.937 (0.040)

III 6.5 0.721 (0.147) 0.745 (0.145) 0.776 (0.129)

coefficients. When the datasets are generated with I = 500 and according to the third
process, the highest accuracy in the estimation of the regression coefficients is obtained
using MCSG models (see Table 5). It is also worth noting that, in spite of their ability
to detect a departure from the Gaussian distribution within each component, MCG
models show the lowest accuracy. Similar results have been obtained with I = 1000
(see Tables 6, 7 and 8).

3.2.3 Classification recovery

To obtain information on the aspect (iii), the partitions of the sample units associated
with themodels of order K = 3under each competingmodel class havebeen compared
with the true partition; the agreement with this latter partition has been measured by
resorting to the adjusted Rand index (ARI ) (Hubert and Arabie 1985). When the
datasets are generated using the first process and the highest level of separation (see the
upper part ofTables 9 and10), an almost perfect classification recovery (ARI = 0.999)
is obtained by each of the three models regardless of the sample size. When the level
of separation is low (ε = 6.5), a slight decrease in the ability to recover the true
partition of the sample observations is registered for all models and, in particular, for
the MCG ones when I = 500 (ARI = 0.937). When there are outliers in the data and
ε = 9, the best performance is obtained using either MCG models or MCSG models
with both sample sizes (ARI = 0.91); these latter models slightly outperform MCG
models when ε = 6.5. As far as MSG models are concerned, due to their inability to
manage the presence of mild outliers in the data, the classification recovery appears
to be markedly lower, especially with the lowest level of separation (ARI = 0.723
with I = 500, ARI = 0.716 with I = 1000). Under the third process and the highest
level of separation, good performances are obtained by all models with both sample
sizes (ARI > 0.93). When the level of separation is reduced, a general decrease in
the capability to reconstruct the true partition is registered; MCSG models appear to
be less affected by this tendency, regardless of the sample size.

3.2.4 Trade-off between fit and complexity

In order to study the aspect (iv), for each dataset and each model class, the models
of order K̂ IC have been selected, where IC denotes an information criterion (IC ∈
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Table 10 Classification recovery of the fitted MSG, MCG and MCSG models of order K = 3: average
values (standard deviations) of the ARI index over 100 samples (I = 1000)

Process ε MSG MCG MCSG

I 9 0.999 (0.002) 0.999 (0.002) 0.999 (0.002)

I 6.5 0.951 (0.011) 0.949 (0.012) 0.951 (0.011)

II 9 0.803 (0.015) 0.914 (0.023) 0.916 (0.021)

II 6.5 0.716 (0.088) 0.823 (0.092) 0.831 (0.082)

III 9 0.941 (0.016) 0.943 (0.013) 0.944 (0.014)

III 6.5 0.706 (0.147) 0.814 (0.095) 0.814 (0.102)

{BIC, ICL1, ICL2}) and K̂ IC = argmax IC(K ) for K ∈ {1, 2, 3, 4, 5}. Then,
the average values of the 100 resulting values of BIC(K̂B IC ), ICL1(K̂ ICL1) and
ICL2(K̂ ICL2) have been computed within the threemodel classes. As expected, when
datasets of I = 500 observations are generated without outliers (first process), the best
trade-off between the fit and model complexity is reached byMSGmodels, regardless
of the level of separation and the criterion employed to select the best model (see the
upper part of Table 11). With these datasets, MCSGmodels slightly outperformMCG
models. When there are outliers in the data (second process) or the error terms of the
K regression models have tails heavier than the Gaussian ones (third process), MCSG
shows the best performance in terms of capability to reach the best trade-off between
fit and complexity, regardless of the level of separation and the criterion employed
to select the best model (see the lower part of Table 11). Interestingly, when the
outliers are generated using a MCSG model (second process), MSG models slightly
outperform MCG models, regardless of the value of ε. Similar conclusions can be
drawn also from the results obtained when I = 1000 (see Table 12).

3.2.5 Comparison among information criteria

As far as the aspect (v) is concerned, the attention has been focused on the number
of times each value of K has been selected by each examined criterion. With datasets
generated using the first process and the highest level of separation, all the examined
information criteria always recognize the presence of three clusters, regardless of the
fitted model and the sample size (see the upper part of Tables 13 and 14 ). If the level of
separation is reduced (ε = 6.5), the BIC still tends to correctly identify the presence
of three clusters regardless of the fitted model only with the largest sample size. If
I = 500, the same tendency is slightlyweakerwithMSGandMCSGmodels; the order
of the models employed to generate the datasets is always underestimated by the BIC
whenMCGmodels are employed. ICL1 and ICL2 show a clear preference for K = 3
components only when models embedding the information on the relevant regressors
(e.g., MSG and MCSG) are employed and the sample size is I = 1000. Otherwise,
they generally underestimate the true number of clusters. Under the second process,
when MSG models are fitted to the data, all the examined information criteria show a
clear tendency to select K = 4 components an additional component accommodating
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Table 13 Comparison among information criteria: number of selections over 100 samples for MSG, MCG
and MCSG models of order K ∈ {1, 2, 3, 4, 5} (I = 500)

K BIC(K ) ICL1(K ) ICL2(K )

MSG MCG MCSG MSG MCG MCSG MSG MCG MCSG

First process—high separation

1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 100 100 100 100 100 100 100 100 100

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

First process—low separation

1 0 0 0 0 0 0 0 0 0

2 25 100 51 52 100 72 76 100 85

3 75 0 49 48 0 28 24 0 15

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

Second process—high separation

1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 100 98 0 100 98 0 100 99

4 99 0 2 99 0 2 99 0 1

5 1 0 0 1 0 0 1 0 0

Second process—low separation

1 0 0 0 0 0 0 0 0 0

2 0 99 50 0 99 75 0 100 94

3 11 1 50 15 1 25 19 0 6

4 89 0 0 85 0 0 81 0 0

5 0 0 0 0 0 0 0 0 0

Third process—high separation

1 0 0 0 0 0 0 0 0 0

2 0 2 0 0 2 1 0 2 1

3 52 98 99 70 98 98 77 98 96

4 39 0 1 25 0 1 22 0 3

5 9 0 0 5 0 0 1 0 0

Third process—low separation

1 0 0 0 0 0 0 0 0 0

2 40 100 89 82 100 100 93 100 100

3 24 0 11 7 0 0 4 0 0

4 27 0 0 10 0 0 3 0 0

5 9 0 0 1 0 0 0 0 0
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Table 14 Comparison among information criteria: number of selections over 100 samples for MSG, MCG
and MCSG models of order K ∈ {1, 2, 3, 4, 5} (I = 1000)

K BIC(K ) ICL1(K ) ICL2(K )

MSG MCG MCSG MSG MCG MCSG MSG MCG MCSG

First process—high separation

1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 100 100 100 100 100 100 100 100 100

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

First process—low separation

1 0 0 0 0 0 0 0 0 0

2 0 13 0 0 49 0 17 84 24

3 100 87 100 100 51 100 83 16 76

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

Second process—high separation

1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 99 100 0 99 100 0 100 100

4 100 1 0 100 1 0 100 0 0

5 0 0 0 0 0 0 0 0 0

Second process—low separation

1 0 0 0 0 0 0 0 0 0

2 0 19 4 0 80 17 0 93 68

3 0 81 91 1 20 81 8 7 31

4 100 0 5 99 0 2 92 0 1

5 0 0 0 0 0 0 0 0 0

Third process—high separation

1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 14 100 98 48 100 99 69 100 99

4 69 0 2 49 0 1 31 0 1

5 17 0 0 3 0 0 0 0 0

Third process—low separation

1 0 0 0 0 0 0 0 0 0

2 1 88 12 44 100 88 81 100 100

3 19 12 87 13 0 12 10 0 0

4 67 0 1 40 0 0 9 0 0

5 13 0 0 3 0 0 0 0 0
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Seemingly unrelated clusterwise regression for contaminated data 913

outliers is typically selected), regardless of the level of separation and the sample size
(see alsoMazza and Punzo 2020). On the contrary, with bothMCGandMCSGmodels,
the three criteria almost always correctly identify three components, regardless of the
sample size, provided that the degree of separation is high. When ε = 6.5, the same
result is obtained by the BIC in association with MCG and MCSG models and by
ICL1 in association with MCSGmodels only with the largest sample size; otherwise,
due to both a low separation between two clusters and a low sample size, the examined
criteria generally underestimate the true value of K . This behaviour is particularly
evident when the selection of K is based on ICL2. A possible explanation for this
is that the penalty employed by ICL2 (a function of the uncertainty of the estimated
posterior probabilities ẑik) is the most severe and is also expected to be particularly
largewhenever the analysed dataset contains true clusterswhich are notwell separated.
When the datasets are generated using the third process and the smallest sample size,
the obtained results show that, if ε = 9, the three criteria generally detect the true value
of K (see the lower part of Table 13). This tendency appears to be stronger whenMCG
and MCSG models are employed. These results hold true also with I = 1000 except
when MSG models are fitted to the data and K is selected using either the BIC or the
ICL1; in these latter situations the true K is overestimated. On the contrary, when the
degree of separation is low, models of order K = 2 are generally selected from each
examined model class according to ICL1 and ICL2, regardless of the sample size.
Also this result could be due to the role played by the penalties employed by these two
latter criteria in the presence of true clusters which are not well separated. As far as
the BIC is concerned, it allows to detect the true number of components only when
MCSG models are fitted to samples of size I = 1000. It also shows a tendency to
underestimate the true K both with MCSG models fitted to smaller samples and with
MCG models regardless of the sample size. Finally, a slight preference with MSG
models of order K = 2 and K = 4 emerges in association with samples of size
I = 500 and I = 1000, respectively.

4 Results from the analysis of canned tuna sales

The practical usefulness and effectiveness of the proposedmodels have been evaluated
through the analysis of a dataset containing the volume of weekly sales (Move) for
seven of the top 10 U.S. brands in the canned tuna product category for I = 338
weeks between September 1989 and May 1997 (Chevalier et al. 2003). Measures of
the display activity (Nsale) and the log price (Lprice) of each brand in each week
are also available. This dataset is included in the R package bayesm (Rossi 2012).
The analysis here considers two products: Star Kist 6 oz. (SK) and Bumble Bee Solid
6.12 oz. (BBS). In order to study the dependence of canned tuna sales on prices and
promotional activites for these two brands, the analysis has been carried out starting
from the following vectors of variables:Y = (Y1 = Lmove SK, Y2 = Lmove BBS),
X = (X1 = Nsale SK, X2 = Lprice SK, X3 = Nsale BBS, X4 = Lprice
BBS), where Lmove denotes the logarithm of Move; thus, M = 2 and P = 4.
Previous studies focused on other brands are illustrated in Galimberti et al. (2016) and
Galimberti and Soffritti (2020).
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Fig. 2 Values of BIC , ICL1 and ICL2 for the best MCG, MCSG, MSG and MRMmodels by number of
components in the analysis of tuna sales

Table 15 Maximised log-likelihood and values of BIC , ICL1 and ICL2 for six models selected from the
classes MCSG, MCG, MSG and MRM in the analysis of tuna sales

Class K X1 X2 �(ψ̂) nψ BIC ICL1 ICL2

MCSG 2 X1, X2 X2, X3, X4 − 242.5 25 − 630.5 − 636.0 − 646.1

MCG 2 X2, X3, X4 X2, X3, X4 − 247.0 27 − 651.1 − 662.3 − 673.5

MSG 2 X1, X2 X3, X4 − 277.5 19 − 665.6 − 673.8 − 689.2

MRM 2 X2, X4 X2, X4 − 289.2 19 − 688.9 − 700.5 − 719.9

MSG 3 X2 X3, X4 − 240.4 26 − 632.2 − 737.4 − 865.7

MRM 3 X2, X3, X4 X2, X3, X4 − 224.6 35 − 653.0 − 750.0 − 877.9

The analysis has been carried out through MSG, MCG and MCSG models. The
additional class comprising mixtures of linear Gaussian regression models (Jones and
McLachlan 1992) has been included in the comparison; the notation employed for this
model class is MRM. Models from each of these four classes have been estimated for
K ∈ {1, 2, 3, 4}. Furthermore, since prices and promotional activities for one product
could have an impact on the sales of the other product, models fromMSG and MCSG
classes have been specified and fitted by considering all possible sub-vectors of X as
vectors Xm , m = 1, 2, for each K . Thus, the analysis has also included an exhaustive
search of the relevant regressors for both Lmove SK and Lmove BBS. For each K ,
2P·M = 256 different mixtures of regression models have been estimated either with
contamination or without contamination; the overall number of estimated models is
2048. It is worth noting that none of the models employed in this analysis explicitly
accounts for serial dependencies that may characterise this dataset.

Figure 2 shows the values of BIC , ICL1 and ICL2 for the fitted MCSG, MSG,
MCG and MRMmodels which maximise each of these model selection criteria by K .
An analysis based on a single linear regression model without contamination (MSG
andMRMmodels with K = 1) is clearly inadequate according to all criteria. The best
trade-off among the fit, the model complexity and the uncertainty of the estimated
partition of the weeks is reached by models of order K = 2 for each of the four
examined model classes. If model selection is only based on the fit and the model
complexity, the best MCSG and MCG models still have K = 2 components, while
MSG and MRM models of order K = 3 should be preferred.
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Seemingly unrelated clusterwise regression for contaminated data 915

Table 16 Parameter estimates of the overall best model for the analysis of tuna sales

ψ̂ k = 1 k = 2

π̂k 0.062 0.938

α̂k 0.827 0.829

η̂k 13.44 6.80

β̂
′∗
k1 (8.86, 0.59,− 4.68) (8.65, 0.27,− 3.11)

β̂
′∗
k2 (15.09, 3.91, 2.77,− 17.84) (9.98, 0.25, 0.12,− 3.82)

�̂k

(
0.043 − 0.022

− 0.022 0.126

) (
0.118 0.011
0.011 0.028

)

Table 15 reports more detailed information about the six models which best fit the
analysed dataset according to the three model selection criteria over the five examined
values of K within each model class. All the examined criteria select a seemingly
unrelated contaminated Gaussian linear clusterwise regression model of order K = 2
as the overall best model for studying the effect of prices and promotional activities
on sales for the two brands. In this model, the log unit sales of SK canned tuna are
regressed on the log prices and the promotional activities of the same brand; as far
as the regressors for the BBS log unit sales are concerned, the selected regressors
are the log prices of both brands and the promotional activities of BBS. From the
parameter estimates (see Table 16) it emerges that the analysed dataset is characterised
both by heterogeneity over time and by the presence of atypical observations. This
latter feature seems to characterise the two clusters of weeks detected by the model
almost in the same way (the estimated weights of the typical observations are α̂1 =
0.827 and α̂2 = 0.829); however, the strength of the contaminating effect on the
conditional variances and covariances of Y|X = x results to be stronger in the first
cluster, where the estimated inflation parameter for the elements of �1 is larger (η̂1 =
13.44). Heterogeneity over time appears to emerge both in some effects of the selected
regressors and in the conditional expected variances and covariances of log sales for
the typical observations. From the estimates of the regression equation for Lmove
SK it emerges that sales of SK canned tuna are negatively affected by prices and
positively affected by promotional activities of the same brand within both clusters
detected by the model. However, the estimated effects of these two variables in the
first cluster result to be stronger than those in the second cluster. Similar results have
been obtained with reference to the regression equation for Lmove BBS, from which
it also emerges that the log prices of SK canned tuna positively affect the log unit
sales of the other brand, especially in the first cluster of weeks. As far as the estimated
conditional variances and covariances are concerned, typical weeks in the first cluster
appear to be characterised by values of Lmove SK which are more homogeneous
than those of Lmove BBC; the opposite holds true for the typical weeks belonging to
the second cluster. Heterogeneity over time appears to emerge also in the correlation
between log sales of SK andBBSproducts, which is slightly positive (0.191)within the
largest cluster of weeks, while a mild negative correlation (−0.299) between Lmove
SK and Lmove BBC is estimated in the weeks belonging to the first cluster.
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Fig. 3 Scatterplots of the estimated residuals for the weeks assigned to the first (left) and second (right)
clusters detected by the overall best model for the analysis of tuna sales. Points of the first scatterplot are
labelled with the number of the corresponding weeks. Black circle and red triangle in the second scatterplot
correspond to typical and outlying weeks, respectively

The first cluster determined according to the highest estimated posterior probabili-
ties of the selected model is composed of 20 weeks; 17 of these weeks are consecutive
(fromweek no. 58 to week no. 74) and correspond to a period (frommid-October 1990
to mid-February 1991) characterised by a worldwide boycott campaign encouraging
consumers not to buy Bumble Bee tuna because Bumble Bee was found to be buying
yellow-fin tuna caught by dolphin-unsafe techniques (Baird and Quastel 2011). The
selected model seems to suggest that such events may be one of the sources of the
unobserved heterogeneity detected by the analysis. The fact that the estimated effects
of all the selected regressors on the log prices of both products are stronger in the first
cluster ofweeks andweaker in the second cluster could be associatedwith those events.
According to the rule for the intra-class distinction between typical observations and
mild outliers illustrated in Sect. 2.4, some weeks have been classified as mild outliers
within both clusters. As far as the first cluster is concerned, this has happened for week
no. 60 (immediately after Halloween 1990) and week no. 73 (2 weeks immediately
before Presidents day 1999). For these weeks, the estimated squared Mahalanobis
distances d̂2i1, equal to 36.68 and 37.82, respectively, appear to be extremely higher
than those of the other 18 weeks of the same cluster, which are comprised between
0.05 and 7.05. From the estimated sample residuals yi − μ̂1(xi ; β̂

∗
1) for the 20 weeks

belonging to the first cluster (see the scatterplot on the left side of Fig. 3) it emerges
that week no. 60 noticeably deviates from the other weeks because log unit sales of SK
tuna are slightly lower than the predicted value, while an opposite result characterises
the log unit sales of BBS tuna. On the contrary, the selected model identifies week
no. 73 as a mild outlier mainly because of a large overestimation of the sales of BBS
tuna. Among the 318 weeks of the second cluster, 35 have resulted to be mild outliers,
most of which are associated with holidays and special events that took place between
September 1989 and mid-October 1990 or between mid-February and May 1997. The
scatterplot with the estimated sample residuals yi − μ̂2(xi ; β̂

∗
2) for all the weeks of the

second cluster (see the right side of Fig. 3) shows that, for the majority of the 35 mild
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outlying weeks, the reason for the outlyingness detected by the model has been an
overestimation or an underestimation of the sales for either brands. The values of the
estimated distances d̂2i2 for the weeks that have been classified as typical are between
0.003 and 7.993; the minimum and maximum of the same distances for the outlying
weeks are 8.20 and 114.95, respectively.

5 Conclusions

Anew family of seemingly unrelated clusterwise linear regressionmodels for possibly
contaminated data has been introduced. Such models can account for heterogeneous
regression data with mild outliers and multivariate correlated responses, each one
depending on its own vector of covariates. This latter feature represents the main
novelty of themodels proposed here in reference with the ones described inMazza and
Punzo (2020). The new family encompasses several other types of Gaussian mixture-
based linear regression models previously proposed in the literature. It also provides a
more flexible framework formodelling data in applicationswhere sample observations
could be atypical and different covariates are expected to be relevant in the prediction
of different responses, based on some prior information to be conveyed in the analysis.
The new family could be made more flexible by exploiting the approach illustrated
in Celeux and Govaert (1995), which allows to introduce constraints on the elements
of the covariance matrices �k , k = 1, . . . , K , so that models with a lower number
of variances and covariances of Y|X = x in the K sub-populations are obtained.
Monte Carlo studies have shown that the choice of the number of components and the
reconstruction of the true classification of the sample observations can be negatively
affected by the inclusion of irrelevant regressors in a clusterwise linear regression
model, especially with overlapping clusters of observations. Whenever the choice of
the regressors to be considered in the specification of the linear predictor of each
response is questionable, models introduced here can be employed in conjunction
with techniques for variable selection (e.g., genetic algorithms, stepwise strategies)
in a multivariate regression setting in order to detect the relevant predictors for each
regression equation. Since the ECM algorithm for the ML estimation of the model
parameters does not automatically produce any estimate of the covariance matrix of
the ML estimator, additional computations are necessary to obtain an assessment of
the sample variability of model parameter estimates. This task could be carried out
by means of some approaches commonly employed under finite mixture models (see,
e.g., McLachlan and Peel 2000). We are currently developing an extension of the
methods proposed herein to some mixtures of Gaussian linear regression models with
random covariates (Punzo and McNicholas 2017). Another avenue of future research
is represented by the study of seemingly unrelated clusterwise regression models
explicitly accounting for contaminated data and space/time-dependent observations.
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Appendix A: Update of ˇ∗
k and 6k

The updates of the model parameters β∗
k and �k at the (h + 1)th first CM-step of the

ECM algorithm, as illustrated in Eqs. (10) and (11), can be obtained as follows.

∂

∂β
∗′
k

Q
(
ψ |ψ (h)

)
= ∂

∂β
∗′
k

I∑

i=1

K∑

k=1

ẑ(h)
ik Qi

(
β∗
k ,�k |ψ (h)

)
=

= ∂

∂β
∗′
k

I∑

i=1

K∑

k=1

ẑ(h)
ik

2
[

− ln |�k | − M(1 − û(h)
ik ) ln η̂

(h)
k − ŵ

(h)
ik δ2�k

(yi ,μk(xi ;β∗
k))
]
.

(13)

Focusing on the squared Mahalanobis distance δ2�k
(yi ,μk(xi ;β∗

k)) and using proper-
ties of trace and transpose, it follows that

δ2�k
(yi ,μk(xi ;β∗

k)) = y′
i�

−1
k yi − y′

i�
−1
k x̃

∗′
i β∗

k − β
∗′
k x̃

∗
i �

−1
k yi + β

∗′
k x̃

∗
i �

−1
k x̃

∗′
i β∗
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= y′
i�

−1
k yi − 2tr(β

∗′
k x̃

∗
i �

−1
k yi ) + β

∗′
k x̃

∗
i �

−1
k x̃

∗′
i β∗

k . (14)

Deriving (14) respect to β
∗′
k and then replacing the so obtained result in (13) leads to
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)
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=
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ik ŵ
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ik y′
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ẑ(h)
ik ŵ
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∗
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Setting (15) equal to the null vector, solving the so obtained systemwith respect to β
∗′
k

and using properties of transpose results in the solution reported in Eq. (10). Finally,
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(16)

where the second and third equalities are obtained using properties of trace and trans-
pose and differentiation rules of functions of matrices. Setting (16) equal to the null
matrix and solving the resulting system with respect to �k gives the update in Eq.
(11).
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