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Abstract
Characterisation of marginal distribution and density functions is of interest where
data on a pair of random variables (X ,Y ) are observed. Stochastic orderings between
(X ,Y ) have been studied in statistics and economics. Likelihood-ratio ordering is
useful in understanding the behaviour of the random variables. In this article, tests
based on U-statistics are proposed to test for equality of marginal density functions
against the alternative of likelihood-ratio orderedwhen (X ,Y ) are dependent. The tests
can be used when the data are either completely observed or subjected to independent
univariate right censoring. The asymptotic variances of these tests are complicated
and hence, are estimated using jackknife variance estimators. Validity of the jackknife
variance estimators in statistical inference based on the proposed tests is demonstrated
using simulation studies. The test for uncensored setting has desired size and good
power for small sample. The performance of the tests for censored case depends on
the sample size, proportion of censoring and the measure of dependence between X
and Y . The tests are illustrated on three real data sets chosen in order to bring out
various aspects of the tests.
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1 Introduction

Bivariate data arise in different fields such as biomedicine, epidemiology, insurance,
reliability, survival analysis, and social science. The pairing of the observed times
occur either naturally or artificially in many studies. Common examples include an
event observed in a matched pair or twins, progression of a disease in both eyes,
damage in right and left joints, mortality of insured couples, events such as shedding
of cytomegalovirus (CMV) in the urine and blood, colonization of mycobacterium
avium complex (MAC) in the sputum and stool, or CMV and MAC in AIDS patients.
For illustrations of such data in practice we refer to (Lin and Ying 1993; Betensky
and Finkelstein 1999; Lu and Burke 2008; Savignoni et al. 2014; Shigemizu et al
2017; Peres et al. 2020). A critical review of statistical models is provided by Prentice
and Kalbfleisch (2003).

Families of bivariate distributions used to model paired data are discussed by Lai
et al. (2006). Often the interest lies in the marginal distributions and comparisons
accounting for the dependency between such pairs (Luciano et al. 2008; Nair et al.
2018; Peres et al. 2020). Any bivariate distribution function can be represented in
terms of the marginal ones and a copula function (Sklar’s theorem, Nelsen 1999).
Hence, any understanding of the behaviour of marginals would help in building a
realistic bivariate model.

Stochastic orderings between a pair of random variables have been of interest
in statistics and economics. These orderings are discussed in detail in Shaked and
Shanthikumar (2007). A random variable X with distribution function F is said to be
stochastically greater than a random variable Y with distribution function G, denoted

as Y
st
< X , if F(t) ≤ G(t) for all t . Sometimes a stronger condition of likelihood-

ratio (LR) ordering may hold. Suppose f and g are densities corresponding to F and

G. We say that X is greater than Y according to likelihood-ratio ordering, Y
lr
< X ,

if the ratio of their respective densities f (t)/g(t) is nondecreasing in t . LR ordering

is preserved under increasing transformations, i.e., Y
lr
< X , then φ(Y )

lr
< φ(X) for

all real valued increasing functions φ. Many families of random variables, e.g., one-
parameter exponential family of distributions, are likelihood-ratio ordered according
to some parameter of interest (Table 2.1, page 102, Belzunce et al. 2016). LR ordering
has been referred to as uniform stochastic ordering (Keilson and Sumita 1982) and
also as density-ratio ordering (Beare and Moon 2015).

Ross (1983) and Shanthikumar et al. (1991) have discussed applications of LR
ordering in stochastic scheduling, closed queuing network and reliability. Its applica-
tions in portfolio choice, crop insurance, mechanism design and auction theory are
discussed in Roosen and Hennessy (2004). In empirical finance—pricing kernel is
the ratio of risk neutral and physical densities for the payoff distribution of a market
index at a date in future. In classical finance this ratio is assumed to be monotonic.

The problem of testing LR ordering has been addressed in the literature for discrete
as well as continuous distributions based on independent samples from F and G (see
for example, Dykstra et al. 1995; Xiong et al. 2002; Roosen and Hennessy 2004;
Carolan and Tebbs 2005; Beare and Moon 2015; Yu et al 2017; Westling et al.
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2019). This article focuses on testing for LR ordering based on independent samples
from the bivariate distribution of (X ,Y ) with marginals f and g.

In the case of bivariate event times either or both times may be subjected to cen-
soring. The data may be censored due to study design, loss to follow-up, withdrawal
etc. A number of authors have studied the analysis of bivariate event time data when
only univariate independent right censoring is present. Lin and Ying (1993) proposed
a simple nonparametric estimator of bivariate survival function under univariate cen-
soring. Since then the literature on bivariate event times has geared to modifications
in the estimator of the joint survival function under various censoring schemes (Geer-
dens et al. 2016; Jinnah and Zhao 2017; Huang et al. 2018). Hutson (2016) have
used a constrained maximum likelihood density based approach to study a bivariate
estimator of the joint survival function where marginals are Kaplan-Meier estimators.
Marginal modelling of bivariate data using, e.g., frailty has also been of interest (Ron-
deau et al. 2012; Begun and Yashin 2018). Copula-based modelling has got attention
during the last decades (Luciano et al. 2008; Diao and Cook 2014; Peres et al. 2020).
More research on characterisation of marginal densities for bivariate data, complete
or censored, is needed.

U-statistics are very widely used and elegant tools for estimation and testing
(Hoeffding 1948; Lee 2020). We develop U-statistics based tests for testing equality
of the marginal density functions against LR ordering for uncensored as well as cen-
sored bivariate data. The censoring scheme is assumed to be independent univariate
censoring described in Lin and Ying (1993).

The article is organised as follows. In Sect. 2, we propose a U-statistic for testing
equality of the marginal density functions against the LR ordering for complete data.
We extend this test to independent univariate censoring case in Sect. 3 and propose
weightedU-statistics. Wederive asymptotic distributions for the proposedU-statistics.
For the weighted U-statistics, we sketch proofs of asymptotic normality and refer to
Datta et al. (2010) formore details.We employ jackknifemethod to estimate variances
of weighted U-statistics. Extensive simulation studies are carried out to study and
compare the performance of the tests in Sect. 4. Necessary mathematical details are
included in appendices A-E. Tests are applied to three real data sets in Sect. 5. The
article ends with a detailed discussion.

2 Test for likelihood-ratio ordering: no censoring

Suppose Zi = (Xi ,Yi ), i = 1, . . . , n are independent and identically distributed
bivariate samples from joint probability density and distribution functions w(x, y)
and W (x, y), and with marginal density and survival functions ( f (x), F̄(x)) and
(g(y), Ḡ(y)), respectively. Without loss of generality, we consider positive-valued
random variables. Consider a hypothesis testing problem of the equality of den-
sities against the likelihood-ratio ordering, i.e., H0L : f (t)/g(t) = 1,∀ t vs.
H1L : f (t)/g(t) ↑ t . Under H1L , for s < t

f (s)

g(s)
≤ f (t)

g(t)
, i.e., f (t)g(s) − f (s)g(t) ≥ 0, (1)
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and strict inequality holds for some s < t . Consider the following functional by
integrating (1) over s < t

∫
s<t

[
f (t)g(s) − f (s)g(t)

]
dsdt . (2)

Note that (2) can be written as

�L(F,G) = P(Y2 < X1) − P(Y2 > X1) = 2P(Y2 < X1) − 1, (3)

where (X1,Y1) and (X2,Y2) are two independent copies of bivariate random variables
with joint density w(x, y). The functional �L(F,G) is zero under H0L and positive
under H1L .

Consider a symmetric kernel φ(Zi , Z j ) of degree 2 which is an unbiased estimator
of the functional �(F,G) = �L(F,G) + 1.

φ(Zi , Z j ) = φ(Xi ,Yi , X j ,Y j ) =
⎧⎨
⎩
1, (Y j < Xi ) or (Yi < X j )

0, otherwise.
(4)

Next, we define the corresponding U-statistic:

UL = 1(n
2

) ∑
1≤i< j≤n

φ(Zi , Z j ). (5)

Note that E(UL) is 1 under H0L and greater than 1 under H1L .
The following observations can be made immediately. The statisticUL can be seen

as a sign statistic as it counts the proportion of positive differences in
(n
2

)
symmetric

pairs of differences (Xi −Y j ) and (X j −Yi ). The actual magnitude of the differences is
not under consideration. The statisticUL counts the number of times an X observation
exceeds a Y observation excluding the difference between X and Y from the same
pair. In this sense it can be seen as a version of the Mann-Whitney statistic.

For the ease of computation, we can express the above U-statistic as a function of
ranks in the absence of ties. Let X(1) < . . . < X(n) be ordered X observations and let Ri

be the rank of X(i) in the combined sample of 2n observations, (Xi ,Yi ), i = 1, . . . n.

The U-statistics can be expressed as:

UL = 1(n
2

)
n∑

i=1

[
Ri − i − I (Y(i) < X(i))

]
,

= 1(n
2

)
[ n∑
i=1

Ri − n(n + 1)/2 − nI (Y<X)

]
, (6)

whereY(i) indicates theY observation corresponding to X(i) and nI (Y<X) is the number
of pairs (X(i),Y(i))whereY(i) < X(i). Here and in the sequel, I (.) denotes the indicator
function.
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In order to obtain the asymptotic variance of the U-statistic, we first note that for
fixed zi = (xi , yi ) the expectation of the kernel (4) w.r.t. w(x, y) is

φ1(zi ) = E(φ(Zi , Z j )|zi ) = G(xi ) + F̄(yi ).

Note that E(UL) = E(φ(Zi , Z j )) = E(φ1(Zi )) and the variance of φ1(Zi ),
σ 2
1 = E(φ2

1(Zi )) − (E(φ1(Zi )))
2 where the expectations w.r.t. w(x, y) are

E(φ1(Zi )) =
∫ ∞

0
G(x) f (x)dx +

∫ ∞

0
F̄(y)g(y)dy,

E(φ2
1(Zi )) =

∫ ∞

0
G2(x) f (x)dx +

∫ ∞

0
F̄2(y)g(y)dy

+ 2
∫ ∞

0

∫ ∞

0
G(x)F̄(y)w(x, y)dydx . (7)

The following theorem gives the asymptotic normality of the statistic UL .

Theorem 1 If E(φ2(Zi , Z j )) < ∞ and σ 2
1 > 0 then

√
n(UL − E(UL)) converges

in distribution to N (0, 4σ 2
1 ) as n → ∞. Under the null hypothesis E(UL) = 1 and

σ 2
1 = 2P(X2 < X1,Y3 > Y1) − 1/3.

Proof The asymptotic normality of the U-statistic follows from Hoeffding’s decom-
position (Hoeffding 1948; Lee 2020). Under the null hypothesis f (.) = g(.), (7)
simplifies and we obtain

E(φ(Zi , Z j )) = E(φ1(Zi )) = 1, (8)

and the variance of φ1(Xi ,Yi ) is

E(φ2
1(Zi )) = 2/3 + 2

∫ ∞

0

∫ ∞

0
F(x)F̄(y)w(x, y)dydx, and

σ 2
1 = 2P(X2 < X1,Y3 > Y1) − 1

3
. (9)

	

It is obvious thatσ 2

1 depends on the joint distribution of (X ,Y ). Under the null hypothe-
sis, one can estimate (9) by the U-statistic associated with the kernel I (X j < Xi ,Yk >

Yi ) as:

σ̂ 2
1 = 2

nP3

n∑
i �= j �=k=1

I (X j < Xi ,Yk > Yi ) − 1

3
. (10)

Large values of the U-statistic indicate that the observed sample is an outlier under
the null hypothesis of equality of the marginal densities. The statistic UL can also
be used to test H0L vs H1L when X and Y are independent. When X and Y are
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independent, the expectation E(UL) is 1, and the asymptotic variance under H0L
simplifies to 4/6. It provides a very simple alternative distribution-free test procedure
compared to other existing tests in the literature mentioned in the Introduction.

3 Tests for likelihood-ratio ordering: independent univariate
censoring

Under the censoring setting described in Lin and Ying (1993), the observed data are
(Ti , δxi ,Ui , δ

y
i ), i = 1, . . . , n where Ti = Xi ∧ Ci , δxi = I (Xi ≤ Ci ), Ui = Yi ∧ Ci

and δ
y
i = I (Yi ≤ Ci ). Here a ∧ b = min(a, b) and a ∨ b = max(a, b). The censoring

timeC , with survival function Sc(), is assumed to be independent of (X ,Y ).We extend
the proposed U-statistics to this censoring scheme. Throughout this article, proportion
of censoring refers to #(δxi = 0 or δ

y
i = 0)/n or equivalently, 1− #(δxi = 1 and δ

y
i =

1)/n.

3.1 Direct extension of (5)

Consider the following symmetric kernel which is a direct extension of the kernel
φ(Zi , Z j ), defined in (4), to the censoring scheme described above.

φ0c(Z̃i , Z̃ j ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2 , (δ

y
j = 1,Uj < Ti ) or (δ

y
i = 1,Ui < Tj )

− 1
2 , (δxi = 1,Uj > Ti ) or (δxj = 1,Ui > Tj )

0, otherwise,

(11)

where Z̃i = (Ti , δxi ,Ui , δ
y
i ). Note that (δ

y
j = 1,Uj < Ti ) means that Y j < C j and

Y j < Xi ∧ Ci . This ensures that Y j < Xi and hence, the kernel is given a positive
value. For (δxj = 1,Ui > Tj ), X j < C j and X j < Yi ∧Ci . This implies that X j < Yi
and hence, the kernel is given the same value with negative sign. Other cases can be
interpreted similarly.

Define a U-statistic in the presence of univariate independent censoring as

U0c = 1(n
2

) ∑
1≤i< j≤n

φ0c(Z̃i , Z̃ j ). (12)

The expectation of (12) is:

E(U0c) = E(φ0c(Z̃i , Z̃ j )) =
[∫ ∞

0
S2c (y)F̄(y)g(y)dy −

∫ ∞

0
S2c (x)Ḡ(x) f (x)dx

]
,

= 0, when f () = g()

> 0, under H1L . (13)
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The last inequality can be obtained by multiplying (1) by S2c (s) and then inte-
grating both sides as in (2). In the absence of censoring, Sc(t) = 1,∀ t and hence,
E(φ0c(Z̃i , Z̃ j )) = �L(F,G). The asymptotic distribution of U0c follows from the
standard theory of U-statistics (cf. Appendix A).

3.2 Weighted U-statistics

We modify the kernel φ(Zi , Z j ) defined in (4) by using the inverse probability of
censoring as weights in two different ways.

I. Inverse probability of censoring weighted symmetric kernel We extend (5)
by using the inverse probability of censoring weighted U-statistic as in Datta et al.
(2010). We first define the observed data to resemble their setting. Let L∗

i = Xi ∨ Yi ,
Li = L∗

i ∧ Ci and δi = I (L∗
i ≤ Ci ). The observed data are (Li , δi , Vi = Ziδi ), i =

1, . . . , n. Note that δi = 1 if and only if both Xi ≤ Ci and Yi ≤ Ci , i.e., δxi =
δ
y
i = 1. Hence, Zi = (Xi ,Yi ) is observed. The probability that Zi is observed is
P(Xi ≤ Ci ,Yi ≤ Ci ) = Sc(Xi ∨ Yi−). An estimator analogous to (5) can be
obtained as a weighted average of φ(Zi , Z j ) when both Zi and Z j are observed. The
weight for each pair (i, j) is the inverse of the probability that they are observed. This
probability is Sc(Xi ∨Yi−)Sc(X j ∨Y j−). The inverse probability weightedU-statistic
corresponding to (5) is defined as follows.

U2c = 1(n
2

) ∑
1≤i< j≤n

φ(Vi , Vj )

[
δxi δ

y
i δxj δ

y
j

Sc(Li−)Sc(L j−)

]

= 1(n
2

) ∑
1≤i< j≤n

φ(Zi , Z j )

[
δxi δ

y
i δxj δ

y
j

Sc(Xi ∨ Yi−)Sc(X j ∨ Y j )−)

]

= 1(n
2

) ∑
1≤i< j≤n

(I (Y j < Xi ) + I (Yi < X j ))

[
δxi δ

y
i δxj δ

y
j

Sc(Xi ∨ Yi−)Sc(X j ∨ Y j−)

]

= 1(n
2

) ∑
1≤i< j≤n

(I (Uj < Ti ) + I (Ui < Tj ))

[
δxi δ

y
i δxj δ

y
j

Sc(Ti ∨Ui−)Sc(Tj ∨Uj−)

]
.

(14)

The second equality follows because Vi = Zi when δi = 1. The U-statistic (14) is
mean preserving. i.e., E(U2c) = E(UL) = �(F,G) = 2P(Y < X). As pointed out
in Datta et al. (2010), (14) is a standard U-statistic if Sc() is known and its asymptotic
distribution can be obtained using the standard theory of U-statistics (Appendix B).

In practice, the censoring survival function is unknown and can be estimated by the
Kaplan-Meier estimator (Andersen et al. 1993). The censoring time Ci is observed
when either δxi and/or δ

y
i are zero and it is censored by Xi ∨ Yi when both δxi and δ

y
i

are 1. Let Ŝc() be the Kaplan-Meier estimator of the survival function of censoring
time C . An estimator Û2c of U2c is obtained by replacing the survival function Sc(t)
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of the censoring time by its Kaplan-Meier estimator Ŝc(t).

Û2c = 1(n
2

) ∑
1≤i< j≤n

(I (Uj < Ti ) + I (Ui < Tj ))

[
δxi δ

y
i δxj δ

y
j

Ŝc(Ti ∨Ui−)Ŝc(Tj ∨Uj−)

]
.

(15)

Note that (15) is not a standard U-statistic since the kernel depends on all data through
the Kaplan-Meier estimator. Its asymptotic distribution can be shown to be normal
with asymptotic variance being complicated, as shown by Datta et al. (2010) for the
univariate case. A sketch of the proof is given in (Appendix B).

II. Inverse probability of censoring weighted asymmetric kernel Only pairs of
uncensored bivariate data weighted by their joint probability of being observed, i.e.,
only pairs (Xi ,Yi ) and (X j ,Y j ) with δxi = δ

y
i = δxj = δ

y
j = 1 contribute to the

U-statistic (14). Note that the kernel (4) is defined using I (Y j < Xi ), i �= j and
Xi is observed with probability P(Xi ≤ Ci ) = Sc(Xi−), and Y j is observed with
probability P(Y j ≤ C j ) = Sc(Y j−). The probability that both (Xi ,Y j ) are observed
is P(Xi ≤ Ci ,Y j ≤ C j ) = Sc(Xi−)Sc(Y j−). An estimator analogous to (5) can be
obtained as a weighted average of I (Y j < Xi ) when both Xi and Y j are observed,
(δxi = 1) and (δ

y
j = 1), and I (Yi < X j ) when both X j and Yi are observed, (δ

y
i = 1)

and (δxj = 1). The weights are the inverse of the probabilities that they are observed.
These probabilities are Sc(Xi−)Sc(Y j−) and Sc(Yi−)Sc(X j−), respectively. This is
equivalent to first multiplying each term of the kernel (4) by the inverse probability of
censoring, and then define a symmetric kernel as:

φ1c(Z̃i , Z̃ j ) = I (Y j < Xi )
δxi δ

y
j

Sc(Xi−)Sc(Y j−)
+ I (Yi < X j )

δ
y
i δxj

Sc(Yi−)Sc(X j−)

= I (Uj < Ti )
δxi δ

y
j

Sc(Ti−)Sc(Uj−)
+ I (Ui < Tj )

δ
y
i δxj

Sc(Ui−)Sc(Tj−)
.

(16)

The modified U-statistic can then be given as

U1c = 1(n
2

) ∑
1≤i< j≤n

φ1c(Z̃i , Z̃ j ). (17)

The above U-statistic has contribution from observations i and j provided δxi =
δ
y
j = 1 and hence, δyi and δxj may be either 0 or 1. The expectation E(U1c) = �(F,G)

as can be seen from the following derivation.
Consider the expectation of first term in the sumwith respect to the joint distribution

of (Ti , δi ,Uj , δ j ). Note that (Ti , δi ) and (Uj , δ j ) are independent and the densities of

123



Weighted U-statistics for likelihood-ratio ordering of bivariate data 713

(Ti , δxi = 1) and (Uj , δ
y
j = 1) are Sc(t) f (t) and Sc(t)g(t), respectively.

E

(
I (Uj < Ti )

δxi δ
y
j

Sc(Ti−)Sc(Uj−)

)

=
∫ ∞

0

∫ x

0

1

Sc(x−)Sc(y−)
Sc(y−)g(y)Sc(x−) f (x)dydx

=
∫ ∞

0

∫ x

0
g(y) f (x)dydx = P(Y j < Xi ).

It is easy to see that U1c is a U-statistic and we can apply the theory of U-statistic to
obtain the asymptotic distribution (cf. Appendix C). An estimator Û1c ofU1c, as in the
previous section, is obtained by replacing the survival function Sc(t) of the censoring
time by the Kaplan-Meier estimator Ŝc(t).

Û1c = 1(n
2

) ∑
1≤i< j≤n

φ̂1c(Z̃i , Z̃ j ). (18)

The statistic (18) is not a standard U-statistic. We outline the proof of its asymptotic
normality in Appendix C.

Large values of the standardised U-statistics proposed in this section indicate that
the observed sample is an outlier under the null hypothesis of equality of the marginal
densities. Both (15) and (18) are plug-in estimators and hence, in general, biased.
But, asymptotically both are unbiased. The asymptotic distributions depend on the
unknown joint distribution of (X ,Y ) as well as the censoring distribution. For the
purpose of hypothesis testing, a good estimator for the asymptotic variance would
be required. We investigate the empirical densities and variance estimators in the
weighted U-statistics (15) and (18) in the next section.

Expectations of tests proposed in Sects. 2 and 3 under the LR ordering H1L are
larger than the respective expectations under the null H0L . In each case, large values
of the statistic suggest that the observed data may be an outlier under H0L against
H1L . Hence, the tests are consistent against the alternative of LR ordering according
to the theory behind consistency of U-statistics (Lehmann 1951).

4 Simulation

Monte Carlo studies are carried out to evaluate and compare the performance of the
proposed test statisticsUL ,U0c, Û1c and Û2c. All simulations and analyses are carried
out in a statistical computing environment R (R core team 2018). For computation of
Kaplan-Meier estimates package survival (Therneau 2012) and for density estimation
package mudens (Herrick et al. 2018) from R are used.

We simulate data from Gumbel’s family of bivariate exponential distributions
(Gumbel 1960) with the survival and density functions as

W̄ (x, y) = e−(λ1x+λ2 y+δλ1λ2xy), x, y > 0, λ1, λ2 > 0, 0 ≤ δ ≤ 1,
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w(x, y) = W (x, y) {(1 − δ)λ1λ2 + δλ21λ2x + δλ1λ
2
2y + δ2λ21λ

2
2xy}. (19)

The ratio of the marginal densities f (t)/g(t) is proportional to e−(λ1−λ2)t . This ratio
is increasing when λ1 < λ2. Thus we have the likelihood-ratio ordering between X
and Y when λ1 < λ2. We allow the marginal exponential hazards to be λ1 = 1 and
λ2 = (1, 1.2, 1.5, 2). This family models negative association for 0 ≤ δ ≤ 1, wherein
δ = 0 corresponds to independence. Simulation algorithm is described inAppendixD.

4.1 No censoring: performance of UL

We generate 2000 random samples from the bivariate exponential distribution with
varying degree of dependence and samples sizes to study empirical size and power of
the test in the absence of censoring. The samples of sizes n = (25, 50, 100, 200, 500)
are generated with λ2 = 1 to evaluate the empirical size and with λ2 = (1.2, 1.5, 2)
to evaluate the power of the tests.

The variance σ 2
1 under the null hypothesis, λ1 = λ2 = 1, is evaluated analytically

using (9) for the bivariate exponential distribution. The empirical size of the test
(5) is obtained by simulating k = 1, . . . , K (= 2000), sets of bivariate samples
(X (k)

i ,Y (k)
i ), i = 1, . . . , n under the null hypothesis for λ1 = λ2 = 1 and δ =

(0, 0.2, 0.5, 1) for different choices of n, and computing the standardised U-statistic,
zk = √

n(U∗(k)
1L − 1)/

√
(4 ∗ σ 2

1 ). The empirical size is then computed as

α1L = 1

K

K∑
k=1

I (zk > zα),

where zα is the (1 − α) quantile of the standard normal distribution. Recall that for
α = 5%, zα = 1.64. The power is obtained by simulating data (X (k)

i ,Y (k)
i ), i =

1, . . . , n from the bivariate exponential distribution with λ1 = 1 and λ1 < λ2 and the
combinations of δ and n, and repeating the above steps. The variance ofUL is computed
in three ways; (i) exact null variance using (7), (ii) sample variance, and (iii) jackknife
variance estimate (Appendix E). Further, the empirical size and power are computed
and compared using the standardised test obtained using the three variances. Such
comparison is possible for the test UL and we use the findings to validate the use of
the jackknife estimate of the variance.

Table 1 presents the results for the empirical size of the test. The sample mean of
the size is close to 1 and the three variances, exact null, sample variance and jackknife
variance estimate, are close in all cases and hence, the jackknife variance estimate
can be used for further analysis. Table 2 shows the empirical power of the test. The
empirical power obtained by using the exact null variance and the jackknife method
are close. For a fixed δ the empirical power increases with increase in the sample
size and as λ2 goes away from λ1. It decreases as δ increases from 0 to 1 for a fixed
sample size. The power varies from 80% to 64% for λ2 = 1.2 and sample size 500
as δ increases from 0 to 1. Similar power is achieved for the lower sample sizes of 50
and 100 but λ2 being 1.5 and 2, that is further away from λ1.
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Table 3 Empirical size and
power for the likelihood-ratio
ordering test in the presence of
20% censoring under Gumbel’s
bivariate exponential model
(19): Jackknife variance based
tests using U-statistics
U0c, Û2c, Û1c , Eqs. (12), (15),
(18) are applied (Appendix E)

λ2 n U-test δ = 0 δ = 0.5 δ = 1

1.0 100 U0c 0.050 0.054 0.059

1.0 100 Û2c 0.035 0.039 0.043

1.0 100 Û1c 0.043 0.048 0.039

1.0 200 U0c 0.046 0.049 0.053

1.0 200 Û2c 0.035 0.038 0.039

1.0 200 Û1c 0.049 0.045 0.037

1.5 100 U0c 0.742 0.637 0.592

1.5 100 Û2c 0.566 0.473 0.417

1.5 100 Û1c 0.638 0.574 0.544

1.5 200 U0c 0.940 0.885 0.851

1.5 200 Û2c 0.848 0.760 0.703

1.5 200 Û1c 0.908 0.832 0.804

2.0 100 U0c 0.989 0.962 0.945

2.0 100 Û2c 0.920 0.860 0.815

2.0 100 Û1c 0.967 0.946 0.912

2.0 200 U0c 1.000 1.000 0.999

2.0 200 Û2c 0.999 0.993 0.984

2.0 200 Û1c 1.000 0.998 0.998

δ = 0 corresponds to independence of X and Y . Rows corresponding
to λ2 = 1 gives the empirical size while other values of λ2 give the
power. The number of repeated samples was 2000 and the size of the
tests were 0.05

4.2 Censoring: performance of U0c,̂U1c and̂U2c

In order to evaluate and compare the performance ofU0c, Û1c and Û2c, 20% censoring
is considered. The censoring variable is assumed to be exponentially distributed with
hazard λc, determined in order to achieve the desired proportion of censoring. The
variances of the tests depend on the bivariate distribution as well as the censoring
distribution, and are complicated to compute. Hence, we use the jackknife method to
obtain empirical size and power (Appendix E).We also implemented bootstrapmethod
to estimate the variance and carry out the hypothesis test based on confidence inter-
vals. The number of bootstrap samples required for this are in the order of thousands
(Efron and Stein 1981). Results from the two methods were comparable, however,
the bootstrap method was too time consuming for large sample sizes compared to the
jackknife method. Hence, in the sequel we present results using only the jackknife
method.

Table 3 presents the simulation results of the empirical size and power of U0c,
Û2c and Û1c. The empirical sizes of tests U0c and Û1c are close to the nominal level,
whereas Û2c is slightly conservative. The power increases with increase in the sample
size and decreases with increase in δ. The test U0c performs the best both in terms of
achieving the desired size and power, followed by Û1c and then Û2c.
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Fig. 1 Empirical densities of the U-statistics U0c, Û2c, Û1c for sample size 100 and 20% censoring. The
number of repeated samples was 5000. The columns represent λ2 = 1, 1.5, and 2, and the rows are the
three U-statistics, U0c, Û2c, Û1c . The vertical line in each plot corresponds to the expectation of the test
statistic under the null hypothesis

We further investigate influence of the proportion of censoring on the three tests by
computing their empirical densities for n = 100, δ = (0, 0.5, 1) and three censoring
proportions (20%, 50%, 80%). The samples are generated 5000 times for each com-
bination of parameters. Figures 1, 2 and 3 exhibit the empirical densities for the nine
combinations of varying λ2 and δ. The empirical densities are bell shaped and center
around the expected null value for λ2 = 1 (left column in Fig. 1), and centered around
larger values for λ2 = 1.5 and 2 for sample size 100 and 20% censoring. The density
of the test U0c remains bell shaped and centered around the expected null value for
50% and 80% censoring. The density of the test Û1c and Û2c appear bell shaped and
centered around the value slightly lower than the expected null value for 80% censor-
ing. The test Û2c performs the worst among the three tests. The overall effect of δ is
not as dramatic as that of censoring. In most plots, the three empirical density curves
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Fig. 2 Empirical densities of the U-statistics U0c, Û2c, Û1c for sample size 100 and 50% censoring. The
number of repeated samples was 5000. The columns correspond to λ2 = 1, 1.5, and 2 and the rows corre-
spond to the three U-statistics, U0c, Û2c, Û1c . The vertical line in each plot corresponds to the expectation
of the test statistic under the null hypothesis

overlap but the curve corresponding to δ = 0 has the highest peak followed by 0.5
and then by 1. Similar observations can be made based on the three curves with regard
to the shift away from the expected null for λ2 = 1.5 and 2. We further explored the
effect of sample size and 50% censoring. Figures 4 and 5 show the density plots for
n = 500 and 1000, respectively. It is apparent that the empirical densities of Û2c and
Û1c appear bell shaped and center to the right of the expected null for sample size 500
(Fig. 4) but larger shift for n = 1000 (Fig. 5).

We also compute the statistics U1c and U2c for known Sc() to examine the effect
of weights on the spread of the distribution. Figures 6 and 7 present densities of
U1c and U2c for the censoring proportion 50%, and sample sizes 500 and 1000. The
exponential censoring distribution with hazard λc was used to compute the U-statistics
with known censoring distribution (solid lines) and the Kaplan-Meier estimate is used
as before (dashed lines). It is apparent from all plots that the tails of the solid curves
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Fig. 3 Empirical densities of the U-statistics U0c, Û2c, Û1c for sample size 100 and 80% censoring. The
number of repeated samples was 5000. The columns correspond to λ2 = 1, 1.5, and 2 and the rows corre-
spond to the three U-statistics, U0c, Û2c, Û1c . The vertical line in each plot corresponds to the expectation
of the test statistic under the null hypothesis

are long compared to the dashed ones. Also, the spread of the densities with dashed
line is narrower than the ones with solid line. This particularly explains relatively poor
performance of Û1c and Û2c.

5 Applications

The proposed tests are applied to three real data sets. The first data has small sample
size and helps to visualise the amount of weights given to the observations in the case
of censoring. The second data has heavy censoring and is used for illustrating the
differences in the findings of the proposed tests. The third data are complete and has
large sample size, allowing experimenting with different proportions of censoring.
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Fig. 4 Empirical densities of the U-statistics U0c, Û2c, Û1c for sample size 500 and 50% censoring. The
number of repeated samples was 5000. The columns correspond to λ2 = 1, 1.5, and 2 and the rows corre-
spond to the three U-statistics, U0c, Û2c, Û1c . The vertical line in each plot corresponds to the expectation
of the test statistic under the null hypothesis

5.1 Skin graft data

The skin graft data, though smaller in size, has been widely analysed (Lin and Ying
1993) and has only 18% of censoring. The data consist of survival times (X ,Y ), in
days, of closely and poorly matched skin grafts on the same burn patient. Both (X ,Y )

are subjected to the independent univariate censoring. The data include only 11 patients
and the survival times of two closely matched grafts are censored (18%). There is no
censoring in the Y observations. HereU0c and its jackknife variance estimate are 0.409
and 0.033. The 90% confidence interval for the expectation of U0c is (0.109, 0.709),
and the lower confidence limit is above the null expectation of 0. The Kaplan-Meier
estimate of the censoring survival function has jumps only at 57 and 63 days, and the
values of jumps are 0.75 and 0.50, respectively. The Û2c test value is 1.23 and the
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Fig. 5 Empirical densities of the U-statistics U0c, Û2c, Û1c for sample size 1000 and 50% censoring. The
number of repeated samples was 5000. The columns correspond to λ2 = 1, 1.5, and 2 and the rows corre-
spond to the three U-statistics, U0c,U2c,U1c . The vertical line in each plot corresponds to the expectation
of the test statistic under the null hypothesis

confidence interval is (0.92, 1.55). The Û1c test provides similar result, the value of
the test statistic is 1.40 and the confidence interval is (1.10, 1.69). The expected null
value 1 falls below the lower confidence limit in case of Û1c but not of Û2c. Note
that tests U0c and Û1c utilises more information compared to Û2c. This is a good data
to illustrate how the three tests for censored case compare since the proportion of
censoring is low, even though the sample size is small. The Kaplan-Meier survival
curve for X dominates that of Y (Fig. 8) implying that X is stochastically greater than
Y . This is a necessary condition for X being greater than Y in the sense of likelihood
ratio (Shanthikumar et al. 1991).
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Fig. 6 Empirical densities of the U-statistics (U2c, Û2c) and (U1c, Û1c) for sample size 500 and 50%
censoring. Solid and dashed lines represent densities of an U-statistic evaluated with known and estimated
censoring distribution, respectively. The columns correspond to λ2 = 1, 1.5, and 2 and the rows correspond
to the two U-statistics,U2c andU1c . The vertical line in each plot corresponds to the expectation of the test
statistic under the null hypothesis

5.2 Diabetic retinopathy data

The diabetic retinopathy data consist of follow-up of 197 diabetic patients for a fixed
period of time. Each patient has one eye randomized to the laser treatment and the
other eye receives no treatment. For each eye, the event of interest is the time from
initiation of treatment to the time when visual acuity drops below 5/200 for two visits
in a row. For both eyes, times to the visual acuity drop, in months, are recorded. In
the present analysis, X and Y are the times to visual acuity drop for the treated and
for the untreated eye, respectively. There is 73% and 49% censoring in the treated and
untreated eyes, respectively. Only 19% data are observed in both eyes, i.e., proportion
of censoring is 81% and 41% is censored in both. The data are available from https://
www.mayo.edu/research/documents/diabeteshtml/DOC-10027460.
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Fig. 7 Empirical densities of the U-statistics (U2c, Û2c) and (U1c, Û1c) for sample size 1000 and 50%
censoring. Solid and dashed lines represent densities of an U-statistic evaluated with known and estimated
censoring distribution, respectively. The columns correspond to λ2 = 1, 1.5, and 2 and the rows correspond
to the two U-statistics, U2c,U1c . The vertical line in each plot corresponds to the expectation of the test
statistic under the null hypothesis

In this example, the Kaplan-Meier estimate of the censoring survival function is
based on 159 censoring observations, and the last observation is uncensored. The
value and the 90% confidence interval of the U0c test are 0.20 and (0.14, 0.27). For
Û2c and Û1c, these are 0.06, (0.03, 0.10) and 0.19, (0.12, 0.27), respectively. TheU0c
test suggests that the diabetes data are extreme for the null hypothesis of equality
of the two marginal densities against the LR ordering f (t)/g(t) is nondecreasing,
while the other two tests suggests that f (t)/g(t) is nonincreasing. The Kaplan-Meier
curves for the marginal survival functions of X and Y crossed and hence, there may
not be stochastic ordering between X and Y . This in turn means that there may not be
likelihood-ratio ordering since the necessary condition may not be true.
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Fig. 8 Kaplan-Meier estimates of survival times of closely (X ) and poorly (Y ) matched skin grafts
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Fig. 9 Empirical estimates of ages of couples at the time of entry to the study, X = age of a male and
Y = age of his female partner. The left panel shows the empirical survival functions and the right panel
shows the estimates of the log-density ratio. The estimates are based on the original data of size 14884 and
a sample of size 1000 selected from it without and with 20% independent univariate censoring imposed

5.3 Canadian insurance data set

The insurance data on couples have been analysed by several researchers and we refer
to Frees et al. (1996), Luciano et al. (2008) for the detailed description of the data.
Here the ages of couples, at least 40 years of age, at the start of the follow-up are
taken as X (male) and Y (female). The data consist of 14884 couples. Figure 9 shows
the marginal empirical estimates of the survival functions of X and Y (solid line, left
panel) and it is clear that the survival function of the age of the male dominates that of
the age of the female partner. An estimate of the kernel type estimate of the log-ratio
of the marginal densities (black solid line, right panel, Fig. 9) exhibits a nondecreasing
trend. The value and confidence intervals of UL test for uncensored data are 1.248
and (1.242, 1.254) suggesting that the couples data may be an outlier for testing the
hypothesis of equal densities against LR ordering.
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The censoring times are simulated from an uniform distribution over the interval
(40, b). The parameter b is determined so that the desired proportion of censoring,
(1 − p) can be achieved. It is easy to see that b = (μ − 40 ∗ p)/(1 − p) where μ

is the expectation of X or Y . First, the censoring times are simulated to achieve 20%
censoring. The kernel type density estimates for the marginal densities are plotted
in Fig. 9 (black dashed line, right panel). A nondecreasing trend can be observed in
this case. With 20% and 50% censoring, the value of the test U0c and the confidence
interval for its expectation are 0.180, (0.175, 0.186), and 0.115, and (0.112, 0.120),
respectively.Notice that the lower confidence limit is above 0 andhence, the conclusion
is the same as in the uncensored case. The values of Û1c, (1.2470, 1.2479), and Û2c,
(1.248, 1.246), are similar for 20% and 50% censoring and are larger than 1. Due
to the large sample size, the jackknife method is time consuming and hence, is not
implemented to obtain the confidence interval.

A sample of size 1000 is drawn from the original data to compare different tests.
Figure 9 also shows the marginal empirical estimates of the survival functions (dashed
line, left panel) and the estimate of the log-density ratio of X and Y for the sample (red
solid line, right panel). The two dashed curves are close to the solid curves indicating
that the sample is a representative of the original data. The estimate of log-density
ratio based on the sample also shows nondecreasing trend. The value and confidence
intervals of E(UL) for the sample are 1.238, and (1.216, 1.260), which are close to the
results obtained for the original data. This sample is also subject to 20% independent
univariate censoring and analysed using tests for censored data as above. The estimate
of the log-density ratio is computed as before and displayed in Fig. 9 (red dashed line,
right panel). In this case also a general nondecreasing trend can be seen. With 20%
censoring imposed on the sample, the values of theU0c, Û1c and Û2c and the confidence
intervals are: 0.176, (0.158, 0.195), 1.238, (1.209, 1.267) and 1.232, (1.206, 1.258).
For 50% censoring, these are 0.104, (0.091, 0.118), 1.223, (1.182, 1.263) and 1.219,
(1.187, 1.252). In this case, all tests provide consistent results indicative ofLRordering
between the ages of insured couples.

6 Discussion

Tests based on U-statistics for testing equality of the marginal densities against
likelihood-ratio ordering for bivariate data have been proposed in this paper. The
test for complete data maintains its size and has good power for a sample of size n at
least 50, and a large choice of parameters of Gumbel’s bivariate exponential family
of distributions. The value of the dependence parameter δ has no major role to play.
The tests for censored data merit more discussion. The simulation results show that
the performance of the tests depend on n, δ and the percentage of censoring. For sam-
ple size in the range of 1000 all tests perform well irrespective of the percentage of
censoring and the dependency. One may need larger sample size to achieve the same
power for highly dependent pairs compared to independent pairs.

Of the tests proposed for the censoring scenario, the test based on U0c performs
the best both in terms of achieving the desired size and power, followed by Û1c and
then Û2c. Both Û2c and Û1c are weighted U-statistics, and they use the Kaplan-Meier
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estimate of the censoring distribution asweights, where higherweights are given to late
failures compared to the true weights. Moreover, the Kaplan-Meier estimate remains
constant after the last observed censoring time. On the other hand U0c is a U-statistic
which is simple, easy to compute, and makes a better use of the available data. The
U-statistic has limiting normal distribution for relatively small values of n.

It is interesting to note that the expectation ofU0c depends on the censoring survival
function Sc(), whereas the choice of weight functions ensures that the expectations of
U1c andU2c are independent of Sc(). However, the expectations of Û1c and Û2c depend
on unknown Sc(). It is known that the Kaplan-Meier estimator is biased upward (page
257, Andersen et al. 1993) but asymptotically unbiased. Similarly, the expectations
of Û1c and Û2c are biased. Moreover, the bias and the variance would depend on
the sample size, the percentage of censoring and the value of dependency parameter.
These need detailed investigation.

We have carried out simulation studies for Gumbel’s bivariate exponential family
whichmodels a negative association between the two variables. In addition, simulation
studies have been performed for insurance data, where the variables of interest have
positive association (Kendall’s τ being 0.56). A graphical check for monotonicity
of log-density ratio based on kernel type estimates of marginal densities has been
illustrated for insurance data using complete as well as censored data. This gives a
crude method to visually check monotonicity of ratio of densities.

The three tests gave inconsistent results for the diabetes data. Due to heavy censor-
ing, the findings of the tests may not be valid and modifications to the tests for heavy
censoring are needed. Possible extensions of the proposed tests to allow for variation
in sampling and censoring schemes are needed for their wider applicability. The sam-
pling scheme which results into left truncation and late entry would generate truncated
data, where the observed data may not be even identically distributed. Other types of
censoring that arise in practice and hence, are of interest: univariate dependent cen-
soring, bivariate censoring with independent censoring times which could be drawn
from the same distribution/ different distributions/bivariate distribution. There may be
natural ordering between X and Y so that X < Y . For example, in the Stanford study of
post-heart transplant deaths, the transplant time precedes the death time (Kalbfleisch
and Prentice 2002). Moreover, both times are censored if there is death before the
transplant. In this case the censoring may not be independent. Similar examples arise
in social sciences, e.g., ages of a female at the time of stopping formal education and
marriage are usually ordered.
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A: Asymptotic distribution of U0c (12)

In order to obtain the asymptotic variance of the U-statistic (12), we first note that for
fixed zi = (xi , yi ),

φ0c1(zi ) = E(φ0c(Zi , Z j )|zi )
= 1

2

[
P(δ

y
j = 1,Uj < ti ) + I (δyi = 1)P(ui < Tj )

− I (δxi = 1)P(Uj > ti ) − P(δxj = 1, ui > Tj )

]
.

The variance of φ0c1(Zi ) is σ 2
0c1 = E(φ2

0c1(Zi )) − (E(φ0c1(Zi )))
2, where the expec-

tations are

E(φ0c1(Zi )) =
[∫ ∞

0
S2c (y)F̄(y)g(y)dy −

∫ ∞

0
S2c (x)Ḡ(x) f (x)dx

]
,

as in (13), and E(φ2
0c1(Zi )) can be obtained similarly.

The following theorem follows fromHoeffding’s decomposition (Hoeffding 1948;
Lee 2020).

Theorem 2 If E(φ2
0c(Z̃i , Z̃ j ) < ∞ and σ 2

0c1 > 0 then
√
n(U0c − E(U0c)) converges

in distribution to N (0, 4σ 2
0c1) as n → ∞. Under the null hypothesis E(U0c) = 0.

B: Asymptotic distribution of U2c (14) and̂U2c (15)

We assume that the censoring distribution is known and obtain the asymptotic distri-
bution of U2c. Let φ2c(Z̃i , Z̃ j ) be the kernel used to define U2c in (14). Let φ2c1(̃zi )
be its expectation obtained by conditioning on Z̃i .

φ2c1(̃zi ) =E

(
(I (Uj < ti ) + I (ui < Tj ))

δxi δ
y
i δxj δ

y
j

Sc(ti ∨ ui−)Sc(Tj ∨Uj−)

)

= δxi δ
y
i

Sc(ti ∨ ui−)
E

(
(I (Uj < ti ) + I (ui < Tj ))

δxj δ
y
j

Sc(Tj ∨Uj−)

)

= δxi δ
y
i

Sc(ti ∨ ui−)

[
G(ti ) + F̄(ui )

]
. (20)
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The above expectation is with respect to the joint distribution of (Tj , δ
x
j = 1,Uj , δ

y
j =

1). This joint distribution is given by

P(T ≤ x, δx = 1,U ≤ y, δy = 1) = P(X ≤ x,C > X ,Y ≤ y,C > Y )

=
∫ x

0

∫ y

0
Sc(t ∨ u)w(t, u)dudt, (21)

and the joint density function is Sc(x ∨ y)w(x, y). Note that E(φ2c1(Z̃i )) w.r.t. the
joint distribution of (Ti , δxi = 1,Ui , δ

y
i = 1) is the same as E(U2c)which is�(F,G).

The variance of φ2c1 is σ 2
2c1 = E(φ2

2c1(Z̃i )) − (E(φ2c1(Z̃i )))
2. Here the expectation

is w.r.t. the joint density of (T , δx = 1,U , δy = 1).

Theorem 3 If E(φ2
2c(Z̃i , Z̃ j )) < ∞ and σ 2

2c1 > 0 then
√
n(U2c − E(U2c)) converges

in distribution to N (0, 4σ 2
2c1) as n → ∞. Under the null hypothesis E(U2c) = 1 and

σ 2
2c1 depends on (F,G) and the censoring distribution.

Proof The asymptotic normality of the U-statistic follows from Hoeffding’s decom-
position (Hoeffding 1948; Lee 2020). Note that the expectation of the square of
φ2
2c1(Z̃i ) is

E(φ2
2c1(Z̃i )) =

∫ ∞

0

∫ ∞

0

G2(x) + F̄2(y)

Sc(x ∨ y−)
w(x, y)dydx

+ 2
∫ ∞

0

∫ ∞

0

G(x)F̄(y)

Sc(x ∨ y−)
w(x, y)dydx

Under the null hypothesis f (.) = g(.), (20) simplifies.

φ2c1(̃zi ) = δxi δ
y
i

Sc(ti ∨ ui−)

[
F(ti ) + F̄(ui )

]
,

E(φ2c1(Z̃i )) = 1, and

E(φ2
2c1(Z̃i )) =

∫ ∞

0

∫ ∞

0

F2(x) + F̄2(y)

Sc(x ∨ y−)
w(x, y)dydx

+ 2
∫ ∞

0

∫ ∞

0

F(x)F̄(y)

Sc(x ∨ y−)
w(x, y)dydx .

The variance σ 2
2c1 clearly depends on (F,G) and the censoring distribution. 	


We sketch the proof of asymptotic normality of
√
n(Û2c − E(U2c)) below. Recall

that an estimator Û2c ofU2c is obtained by replacing the survival function Sc(t) of the
censoring time by the Kaplan-Meier estimator Ŝc(t). We first note that

123



730 S. Kulathinal , I. Dewan

√
n(Û2c − E(U2c)) = √

n(U2c − E(U2c))

+ √
n

1(n
2

) ∑
1≤i< j≤n

φ(Zi , Z j )δ
x
i δ

y
i δxj δ

y
j

[
1

Ŝc(Ti ∨Ui−)Ŝc(Tj ∨Uj−)
− 1

Sc(Ti ∨Ui−)Sc(Tj ∨Uj−)

]
. (22)

The term in the square brackets can be simplified as:

[
1

Ŝc(Ti ∨Ui−)Ŝc(Tj ∨Uj−)
− 1

Sc(Ti ∨Ui−)Sc(Tj ∨Uj−)

]

= −
[

(Ŝc(Ti ∨Ui−) − Sc(Ti ∨Ui−))

Ŝc(Ti ∨Ui−)Sc(Ti ∨Ui−)Sc(Tj ∨Uj−)
+ (Ŝc(Tj ∨Uj−) − Sc(Tj ∨Uj−))

Ŝc(Ti ∨Ui−)Ŝc(Tj ∨Uj−)Sc(Tj ∨Uj−)

]
.

(23)

Combining (22) and (23) we get an equation which resembles Eq. (24) in Datta
et al. (2010). Further, each of the terms in the square brackets can be written as
an integration with respect to the empirical subdistribution function Huc

n (t, u) of
(Ti , δxi = 1,Ui , δ

y
i = 1);

Huc
n (t, u) = 1

n

n∑
i=1

I (Ti ≤ t, δxi = 1,Ui ≤ u, δ
y
i = 1).

In general, for some kernel K () the double integral w.r.t. the empirical distribution is

∫ ∫
K (t1, u1, t2, u2)φ(t1, u1, t2, u2)dH

uc
n (t1, u1)dH

uc
n (t2, u2)

= 1

n2

n∑
i=1

n∑
j=1

K (Ti ,Ui , Tj ,Uj )φ(Ti ,Ui , Tj ,Uj )δ
x
i δ

y
i δxj δ

y
j

Let λc(u) be the hazard rate of the censoring variable C . Let NC
i (t) = I (Li ≤

t, δi = 0) be the counting process corresponding to censoring for i th individual and
Ri (t) = I (Li ≥ t) be the at-risk process. The martingale associated with the counting
process NC

i (t) with respect to the self-exciting history is given by

MC
i (t) = NC

i (t) −
∫ t

0
Ri (u)λc(u)du.

Let NC (t) = ∑n
i=1 N

C
i (t), R(t) = ∑n

i=1 Ri (t) be the aggregated counting and
at-risk process over n units. We can now use weak convergence of the Kaplan-Meier
estimator, and the arguments given in Theorem 1 of Datta et al. (2010) to prove
the asymptotic normality of Û2c. Note that the subdistribution function Wn() in their
theorem is replaced by the subdistribution function Huc

n ().
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C: Asymptotic distribution of U1c (17) and̂U1c (18)

We assume that the censoring distribution is known and obtain the asymptotic dis-
tribution of U1c. Define φ1c1(̃zi ), the expectation of φ1c(Z̃i , Z̃ j ) by conditioning on
Z̃i .

φ1c1(̃zi ) =E[φ1c(Z̃i , Z̃ j ) | z̃i ]

=E

(
I (Y j < xi )

δxi δ
y
j

Sc(xi−)Sc(Y j−)
+ I (yi < X j )

δ
y
i δxj

Sc(yi−)Sc(X j−)

)

= I (xi ≤ ci )

Sc(xi−)
E

(
I (Y j < xi )I (Y j ≤ C j )

Sc(Y j−)

)

+ I (yi ≤ ci
Sc(yi−)

E

(
(I (X j > yi )I (X j ≤ C j )

Sc(X j−)

)

= I (xi ≤ ci )

Sc(xi−)

∫ xi

0
g(y)dy + I (yi ≤ ci )

Sc(yi−)

∫ ∞

yi
f (x)dx

= I (xi ≤ ci )

Sc(xi−)
G(xi ) + I (yi ≤ ci )

Sc(yi−)
F̄(yi ). (24)

Note that the expectation of φ1c1(Z̃i ) w.r.t. the joint distribution of (Ti , δxi =
1,Ui , δ

y
i = 1) is the same as the expectation E(U1c) which is �(F,G). The variance

of φ1c1(Z̃i ) is σ 2
1c1 = E(φ2

1c1(Z̃i )) − (E(φ1c1(Z̃i )))
2.

Theorem 4 If E(φ2
1c(Z̃i , Z̃ j )) < ∞ and σ 2

1c1 > 0 then
√
n(U1c − E(U1c)) converges

in distribution to N (0, 4σ 2
1c1) as n → ∞. Under the null hypothesis E(U1c) = 1 and

σ 2
1c1 depends on (F,G) and the censoring distribution.

Proof The asymptotic normality of the U-statistic follows from Hoeffding’s decom-
position (Hoeffding 1948; Lee 2020). The variance σ 2

1c1 can be obtained by noting
that

E(φ2
1c1(Z̃i )) =

∫ ∞

0

G2(x)

Sc(x−)
f (x)dx +

∫ ∞

0

F̄2(y)

Sc(y−)
g(y)dy

+ 2
∫ ∞

0

∫ ∞

0

G(x)F̄(y)

Sc(x−)Sc(y−)
Sc(x ∨ y)w(x, y)dydx .

Under the null hypothesis f (.) = g(.), (24) simplifies and so does its expectation,
and the expectation of its square.

φ1c1(̃zi ) = I (xi ≤ ci )

Sc(xi−)
F(xi ) + I (yi ≤ ci )

Sc(yi−)
F̄(yi ),

E(φ1c1(Z̃i , Z̃ j )) = E(φ1c1(Z̃i )) = 1, and

E(φ2
1c1(Z̃i )) =

∫ ∞

0
[ F2(x)

Sc(x−)
+ F̄2(x)

Sc(x−)
] f (x)dx,
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+ 2
∫ ∞

0

∫ ∞

0

F(x)F̄(y)

Sc(x−)Sc(y−)
Sc(x ∨ y)w(x, y)dydx .

It is obvious from the above expectations that σ 2
1c1 depends on (W , F,G) and the

censoring distribution. 	

Recall that an estimator Û1c of U1c is obtained by replacing the survival function

Sc(t) of the censoring time by the Kaplan-Meier estimator Ŝc(t). As in Appendix C,
we first note that

√
n(Û1c − E(U1c)) = √

n(U1c − E(U1c))

+ √
n

1(n
2

) ∑
1≤i< j≤n

I (Uj < Ti )δ
x
i δ

y
j

[
1

Ŝc(Ti−)Ŝc(Uj−)
− 1

Sc(Ti−)Sc(Uj−)

]

+ √
n

1(n
2

) ∑
1≤i< j≤n

I (Ui < Tj )δ
y
i δxj

[
1

Ŝc(Ui−)Ŝc(Tj−)
− 1

Sc(Ui−)Sc(Tj−)

]
.

(25)

The second and third terms can be simplified by noting that:

[
1

Ŝc(Ti−)Ŝc(Uj−)
− 1

Sc(Ti−)Sc(Uj−)

]

= −
[

(Ŝc(Ti−) − Sc(Ti−))

Ŝc(Ti−)Sc(Ti−)Sc(Uj−)
+ (Ŝc(Uj−) − Sc(Uj−))

Ŝc(Ti−)Ŝc(Uj−)Sc(Uj−)

]
. (26)

Combining Eqs. (25) and (26) results into an expression similar to Eq. (24) in Datta
et al. (2010). Further, each of the terms in the square brackets can be written as an
integration with respect to the empirical subdistributions Huc

Tn(t) of (Ti , δxi = 1) and
Huc
Un(u) of (Ui , δ

y
i = 1);

Huc
Tn(t) = 1

n

n∑
i=1

I (Ti ≤ t, δxi = 1),

Huc
Un(u) = 1

n

n∑
i=1

I (Ui ≤ u, δ
y
i = 1).

In general, for some kernel K () the double integral w.r.t. the empirical subdistribu-
tions is

∫ ∫
K (t, u)φ(t, u)dHuc

Tn(t)dH
uc
Un(u) = 1

n2

n∑
i=1

n∑
j=1

K (Ti ,Uj )φ(Ti ,Uj )δ
x
i δ

y
j .

The counting process and martingale related to the observations on C were defined
in Appendix B. We can now use weak convergence of the Kaplan-Meier estimator,
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Huc
Tn(t) and Huc

Un(u), and use the arguments given in Theorem 1 of Datta et al. (2010)
to establish the asymptotic normality of Û1c.

D: Simulation fromGumbel’s bivariate exponential distributions

As given in Sect. 4, Gumbel’s bivariate exponential distribution has the survival and
density functions as

W̄ (x, y) = e−(λ1x+λ2 y+δλ1λ2xy), x, y > 0, λ1, λ2 > 0, 0 ≤ δ ≤ 1,

w(x, y) = W (x, y) {(1 − δ)λ1λ2 + δλ21λ2x + δλ1λ
2
2y + δ2λ21λ

2
2xy}.

The marginal distribution functions are F(x) = 1 − e−λ1x and G(y) = 1 − e−λ2 y ,
respectively.

For simulation from the above bivariate distribution, we note that the conditional
density and distribution functions of X given y are:

f (x |y) = w(x, y)

g(y)
= {(1 − δ)λ1 + δλ21x + δλ1λ2y + δ2λ21λ2xy}e−λ1(1+δλ2y)x

F̄(x |y) = (1 + δλ1x)e
−λ1(1+δλ2y)x . (27)

We simulate (X ,Y ) from W (x, y) as follows.

a. Simulate u from U (0, 1) and define y = − log(u)/λ2. Note that Ḡ(Y ) ∼ U (0, 1)
and hence, Y has the survival function Ḡ(y).

b. For given y simulate x from the conditional distribution F(x |y). This is done by
solving the equation F̄(x |y) = v, where v is generated from U (0, 1).

E: Jackknife variance and confidence intervals

Our interest is in estimating the unknown variance of a statistic U (Z). Callaert and
Veraverbeke (1981) have studied the properties of the jackknife estimator of the vari-
ance of a one-sample U-statistic of degree two. The estimator given below coincides
with the one obtained by the sample values of the pseudo-values for a U-statistic, see
text below Eq. (9) in Callaert and Veraverbeke (1981). Let z = (zi , i = 1, . . . , n)

be the data from the desired distribution. The jackknife estimator of the variance of
U (Z) is obtained by removing one observation at a time and computing the statistic.
Let U(−i)(z), i = 1, . . . , n, be the value of the statistic obtained by removing zi and
using only (n − 1) observations. The jackknife variance estimator of U (Z) is

̂var(U (Z)) = n − 1

n

n∑
i=1

(U(−i)(z) − Ū (z))2,
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where Ū (z) = ∑n
i=1U(−i)(z)/n. Note that Ū (z) is the same asU (z). The confidence

interval for E(U (Z)) is given by U (z) ± zα

√
̂var(U (Z)). We refer to Davison and

Hinkley (1997) and Efron and Stein (1981) for more details.
For a one-sided test where the null hypothesis is rejected for large values of the

observed test statistic, the lower confidence limit of the jackknife confidence interval
can be used for testing purpose. The observed data can be taken as an outlier when

the null hypothesis is true at α level of significance if U (z) − zα

√
̂var(U (Z)) >

Enull(U (Z)). We employed this technique to obtain the empirical size and power of
the tests.
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