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Abstract
This paper makes comparisons of automated procedures for robust multivariate out-
lier detection through discussion and simulation. In particular, automated procedures
that use the forward search along with Mahalanobis distances to identify and classify
multivariate outliers subject to predefined criteria are examined. Procedures utilizing
a parametric model criterion based on a χ2-distribution are among these, whereas
the multivariate Adaptive Trimmed Likelihood Algorithm (ATLA) identifies outliers
based on an objective function that is derived from the asymptotics of the location
estimator assuming a multivariate normal distribution. Several criterion including size
(false positive rate), sensitivity, and relative efficiency are canvassed. To illustrate
relative efficiency in a multivariate setting in a new way, measures of variability of
the multivariate location parameter when the underlying distribution is chosen from
a multivariate generalization of the Tukey–Huber ε-contamination model are used.
Mean slippage models are also entertained. The simulation results here are illuminat-
ing and demonstrate there is no broadly accepted procedure that outperforms in all
situations, albeit one may ascertain circumstances for which a particular method may
be best if implemented. Finally the paper explores graphical monitoring for existence
of clusters and the potential of classification through occurrence of multiple minima
in the objective function using ATLA.
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1 Introduction

Outlier detection methods in multivariate data analysis that use the forward search
begin with Hadi (1992, 1994) and have gained much publicity with a book and sub-
sequent articles of Atkinson et al (2003), Riani et al (2009), Cerioli et al (2014, 2018,
2019). These articles show that multivariate outlier detection methods exist in a wide
variety of settings effectively using different adopted techniques and methodology,
with varying intended applications albeit with the same ultimate objective to detect
and classify outliers. Riani et al (2009) andCerioli et al (2019) cite an adaptive trimmed
likelihood algorithm (ATLA) published in Clarke and Schubert (2006) which is the
multivariate culmination of adaptive methods of trimming discussed in earlier settings
including Clarke (1994, 2000), and Bednarski and Clarke (2002). This is a natural
extension of the trimmed likelihood estimator countenanced in the univariate andmul-
tivariate discussion in Bednarski and Clarke (1993), Butler (1982), Butler et al (1993),
Hadi and Luceno (1997), and Clarke et al (2017). See chapters 7 and 8 of Clarke
(2018) for a panoramic discussion linking the estimators to the minimum covariance
determinant (MCD) estimator of Rousseeuw (1983). The performance of the multi-
variate ATLA algorithm of Clarke and Schubert (2006) was not previously considered
in comparisons even though it was cited. The aim of this paper is to highlight the per-
formance of the original methods of Hadi (1992, 1994) and also the methods of Riani
et al (2009) which are all based on the forward search, albeit in different ways, along
with ATLA. Other algorithms are briefly considered such as the Blocked Adaptive
Computationally Efficient Outlier Nominators method (BACON) (Billor et al, 2000)
but only on an intermittent/ad-hoc basis.

Measures of performance indicated by earlier authors vary. This combined with the
wide variety of classification techniques made under various assumptions can make
comparisons difficult. The importance of this paper is to show empirically at least
that there is no universally superior method in outlier detection and subsequent mul-
tivariate estimation. There is no single all-encompassing measure or statistic for the
performance of an outlier method for any given situation or simulation. For example,
a single univariate observation that is known to be outlying may not explicitly imply
that of a multivariate outlier with the addition of new variate(s) and the opposite may
apply for a single multivariate outlier not necessarily implying that of a univariate one
when considering one of its components. Therefore it is important that one defines
what constitutes an outlier in the context of the above methods and, in-turn derive and
outline a motivation for such methods. Briefly summarizing, an outlier in this context,
constitutes an observation that lies at a sufficient distance away from the [centroid of
the] majority of the data. By using the wordmajority it is acknowledged that the meth-
ods rely on an initial robust calculation to derive a subset of size h = �(n+ p+ 1)/2�
that is assumed to be outlier free, in order to maximize what is termed the finite sample
breakdown point (see Rousseeuw (1983) and Clarke (2018)). Here n is the sample size
and p is the dimension of the multivariate data in question. Furthermore, regarding
the magnitude distance, this may be dependent on the underlying algorithm and its
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inherent methodology involving a chosenmetric. Unlike the Euclidean distance which
does not account for correlated variates, the scale-invariant Mahalanobis distance has
been shown to be a useful measure of a multivariate observation’s outlyingness and
thus has led to its continued use in outlier detection, cluster analysis and classification
techniques (Mahalanobis 1936; Wilks 1963). However, it is common knowledge that
even a single outlier is able to distort measures ofmultivariate location and scale which
can cause an obvious disconnect between the value of Mahalanobis distance that a
given observation takes on and whether or not it is outlying. Such perturbations can
often result in instances of masking and swamping. See Barnett and Lewis (1994).
While it may be possible to overcome these issues through consideration of all pos-
sible subsets by way of exhaustive enumeration, this would be precluded due to the
combinatorial explosion for large n and p in sorting out all cases. The forward search
procedure is a commonly adopted technique that aims to rectify such issues through
iterative exploration of subsets by way of a computationally simple algorithm. The
method partitions the observations to form what is called a basic subset. This basic
subset is assumed to be outlier free and is based on an initial robust calculation. It
is then iteratively redefined by inflating this subset based on Mahalanobis distances
calculated with respect to this subset. Subsequently one arrives at a final classification
subject to a predefined criterion.

It could be said the above should only be treated as a simplified explanation of this
procedure as there exists a number of variations which employ different methodology.

In an alternative development Cabana et al (2021) and Leys et al (2018) use robust
Mahalanobis distances.While these have assisted in overcoming issues ofmasking and
swamping, they may not be entirely appropriate when used iteratively in the forward
search due to computational burden. Should the data size and dimension permit it, the
opportunity to utilise such developments are possible yet these will not be exercised
in the context of this paper. See also Filzmoser et al (2014).

A principal motivation for this study is the focus on an adaptive procedure known as
the multivariate adaptive trimmed likelihood algorithm (ATLA); described in Clarke
and Schubert (2006) andClarke (2018). This numerical routine serves as amultivariate
outlier detectionmethod based on the use of the forward search to locate a subsetwhich
minimizes a measure of the asymptotic variance of the multivariate location estimator.
This method utilizes theminimum covariance determinant (MCD) (Rousseeuw, 1983)
based on the Fast-MCD algorithm (Rousseeuw and Driessen, 1999) to obtain a robust
initial starting subset preceding the forward search. Hubert et al (2012) proposed an
improved MCD algorithm which came as a later development to the initial realization
of the ATLA algorithm in Clarke and Schubert (2006). Hubert et al (2012) and Garciga
and Verbrugge (2021) demonstrate the improved performance of this deterministic
algorithm which serves as motivation for its inclusion in the ATLA algorithm used in
this paper.

The use of sample covariance correction factors in the calculation of Mahalanobis
Distances, as in Hadi (1992, 1994), for example, that are designed to achieve consis-
tency under the multivariate normal distribution in order to combat bias, do prevent
application to certain combinations of n and p. This also brings into question the pos-
sible over-reliance on an assumed distribution such as the χ2 shown by Krazanowski
(1988).
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2 Simulation study

2.1 Size

In order to demonstrate the adaptive nature of the multivariate ATLA, estimates of
size are given based on Monte Carlo Simulation of N = 1, 000 samples of size n
and variables p generated from the multivariate distribution Np(0, Ip). Here 0 is the
p × 1 mean vector of zeroes and Ip is the assumed p × p identity covariance matrix.
The size is the proportion of samples where at least one outlier is detected. There
may be more than one outlier detected in any one sample for example. In addition
we will also incorporate size estimates of three similar multivariate outlier detection
methods that utilise the forward search in some capacity. These include the Blocked
Adaptive Computationally Efficient Outlier Nominators (BACON) method by Billor
et al (2000), an automatic multivariate outlier detection procedure by Riani et al (2009)
(we will refer to as FSM) and the original forward search procedure (referred to here
as FS) proposed by Hadi (1992, 1994). The method BACON is available in the R
package robustX (Stahel and Maechler, 2019) and the method FSM is in the package
fsdaR (Todorov and Sordini, 2020). The results from these simulations are presented
in Table 1.

For this simulation two variations of ATLA have been presented. Each pertain
to different initial robust estimates based on the aforementioned MCD algorithms;
FASTMCDandDeterministicMCD respectively. The FASTMCDalgorithmwas orig-
inally utilized in the ATLA in order to achieve a robust initial starting subset of size
h = �(n + p + 1)/2� out of nh = log(0.05)/log(1 − (

(n+p)/2
p+1

)
/
( n
p+1

)
) possible sub-

sets. Unlike the FASTMCD algorithm which initially considers random subsets, the
proposal of Hubert et al (2012) arrives at a subset with the smallest MCD based on six
estimators computed in a deterministic way. For the simulations presented in this paper
use is made of the ‘Deterministic MCD’, that is ATLAb, algorithm due to reasons that
will become known.

It is worth mentioning here that unlike the ATLA, these procedures utilize a fixed
simultaneous significance level for an assumed parametric distribution which we have
chosen to set at α = 0.01. The BACON algorithm also requires the user to define the
initial subset size, m. As per recommendation in the literature we have chosen to use
the default of m = 4 · p for these simulations. It is noted that while BACON and FS
cannot be used when n = 25 and p = 10, see footnotes c and d, this does not preclude
use of ATLA and FSM. Here ATLAb has a smaller average size of 1% while FSM has
a size of 10.6%. Also note the decrease in average size between ATLAa and ATLAb

for these particular parameters.
The adaptive nature of the ATLA method in this analysis demonstrates that if the

data are multivariate normal the method soon with sample size of n ≥ 100 shows
almost no unnecessary rejection of outliers under the assumed model.

While other methods than ATLA use a nominal fixed size α with α = 0.01 rec-
ommended, the maximum average size for ATLAb is 1.9% in Table 1 and often is
much lower. Yet the ATLAb technique works powerfully to identify outliers in the
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tabulations below. This is so much so that it is thought not to be a disadvantage to not
be able to set the size specifically.

2.2 Average power and performancemeasures

In order to assess and compare the performance of ATLA in situations involving
contaminated data we will be generating N = 1, 000 samples of size n for which
n − k observations are generated from Np(0, Ip) and k observations from the mean
shifted distribution Np(4 · J, Ip) representing the contaminated distribution. Here J
is a p × 1 vector of ones. The parameter k will be chosen in accordance with varying
levels of contamination ε = k/n up to a maximum of say, ε = 0.4. The following
measures of performance are considered:

– Average power = For each sample one calculates the proportion of the k planted
outliers that are identified as such and then takes the average over all samples of
all such proportions.

– p1 = Proportion with which exactly the k outlying observations are identified as
outliers.

– p2 = Proportion with which at least one planted outlier is identified.
– p3 = Proportion with which there is false identification.
– p4 = Proportion with which at least all the k outliers are trimmed.
– p5 = Proportion with which observations are identified.

The results from these simulations are presented in Tables 2 and 3 respectively.
Note for simplicity we have chosen to omit the performance measures p2, p4 and p5,
however, these are available in the Supplementary Materials.

In response to referees’ request we have included in Tables 2 and 3 smaller pro-
portions of contamination ε = 0.02 and 0.04 where possible, to illustrate what can
happen with just one or a few outliers for n = 25, 50 or 100 as this may be typical in
practice.

In those instances that have resulted in a violation in the breakdown point for
the respective algorithm, data have been omitted. Due to such restrictions, values
for n = 25, p = 10 and ε = 0.4 have been omitted. It is as a result of achieving
inconsistent results and in order to ensure brevity that we have chosen not to include
BACON in this comparison . One can argue that for the parameters used in this
investigation this would not be a fair comparison due to BACON’s comparatively low
breakdown point. It can also be noted that BACON may be preferred in the case of
very large data sets including those of higher dimension because of its computational
efficiency.

In terms of the average power it appears that ATLAconsistently achieves the highest
probability out of the four testedmethods with FSM equalling or falling closely behind
in most circumstances. It is only in some simulations where the average power of
FSM exceeds that of ATLA albeit only by a slight margin. In particular, simulations
involving lower contamination (ε = 0.04) FSM achieves a higher average power.
Unlike the average power, the results for p1 are not as clearly defined, with all four
methods demonstrating differing optimal situations. In some instances of particularly
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Table 2 Performancemeasures of respective outliermethods through simulations of N = 1, 000 spherically
symmetric data [n ≤ 100] generated from the mean slippage model

n p ε k Average Power p1 p3

ATLA FSM FS ATLA FSM FS ATLA FSM FS

25 5 0.04 1 0.833 0.967 0.968 0.826 0.930 0.946 0.007 0.037 0.022

0.08 2 0.914 0.950 0.939 0.904 0.879 0.912 0.009 0.047 0.027

0.16 4 0.923 0.914 0.869 0.901 0.747 0.838 0.022 0.067 0.031

0.24 6 0.921 0.904 0.802 0.866 0.681 0.752 0.055 0.036 0.051

0.32 8 0.906 0.850 0.527 0.851 0.509 0.482 0.055 0.008 0.048

0.40 10 0.617 0.002 0.184 0.616 0.000 0.180 0.001 0.004 0.009

10 0.04 1 0.796 0.970 NAb 0.786 0.849 NAb 0.010 0.124 NAb

0.08 2 0.921 0.960 NAb 0.903 0.791 NAb 0.019 0.152 NAb

0.16 4 0.927 0.921 NAb 0.885 0.664 NAb 0.042 0.162 NAb

0.24 6 0.930 0.908 NAb 0.861 0.688 NAb 0.068 0.078 NAb

0.32 8 NAa 0.824 NAb NAa 0.655 NAb NAa 0.027 NAb

50 5 0.02 1 0.998 1.000 1.000 0.979 0.981 0.986 0.009 0.019 0.014

0.04 2 0.996 0.996 0.996 0.977 0.966 0.983 0.017 0.026 0.011

0.08 4 0.998 0.997 0.996 0.960 0.943 0.984 0.037 0.049 0.010

0.16 8 0.998 0.997 0.991 0.884 0.939 0.971 0.113 0.041 0.017

0.24 12 0.999 0.992 0.978 0.843 0.933 0.960 0.156 0.030 0.016

0.32 16 0.998 0.972 0.877 0.746 0.877 0.855 0.252 0.024 0.022

0.40 20 0.846 0.232 0.465 0.635 0.000 0.449 0.209 0.001 0.018

10 0.02 1 0.999 1.000 1.000 0.998 0.906 0.996 0.001 0.094 0.004

0.04 2 1.000 0.999 1.000 0.987 0.877 0.993 0.013 0.122 0.007

0.08 4 0.999 0.999 0.998 0.974 0.858 0.991 0.025 0.140 0.007

0.16 8 1.000 0.998 0.978 0.916 0.862 0.969 0.084 0.136 0.009

0.24 12 1.000 0.992 0.644 0.877 0.923 0.632 0.123 0.068 0.013

0.32 16 0.997 0.983 0.146 0.800 0.953 0.135 0.199 0.030 0.013

0.40 20 0.674 0.028 0.017 0.671 0.000 0.017 0.000 0.003 0.001

100 5 0.02 2 1.000 1.000 1.000 0.995 0.984 0.991 0.005 0.016 0.009

0.04 4 0.999 1.000 1.000 0.982 0.973 0.992 0.017 0.026 0.008

0.08 8 1.000 0.999 0.998 0.933 0.952 0.983 0.065 0.041 0.010

0.16 16 1.000 1.000 1.000 0.855 0.953 0.984 0.145 0.043 0.013

0.24 24 1.000 0.996 0.996 0.776 0.963 0.985 0.224 0.026 0.008

0.32 32 1.000 0.990 0.982 0.719 0.943 0.950 0.281 0.029 0.028

0.40 40 0.974 0.946 0.770 0.641 0.000 0.749 0.333 0.000 0.014

10 0.02 2 1.000 1.000 1.000 0.998 0.963 0.994 0.002 0.037 0.006

0.04 4 1.000 1.000 1.000 0.991 0.942 0.986 0.009 0.058 0.014

0.08 8 1.000 1.000 1.000 0.974 0.920 0.988 0.026 0.080 0.012

0.16 16 1.000 1.000 1.000 0.959 0.946 0.988 0.041 0.054 0.012
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Table 2 continued

n p ε k Average Power p1 p3

ATLA FSM FS ATLA FSM FS ATLA FSM FS

0.24 24 1.000 0.998 0.936 0.899 0.950 0.918 0.101 0.048 0.018

0.32 32 1.000 0.994 0.416 0.845 0.963 0.402 0.155 0.031 0.017

0.40 40 0.901 0.950 0.062 0.750 0.000 0.058 0.151 0.000 0.006

aNot applicable due to breakdown point
bNot applicable due to n > 3p + 1 required for correction factor

high contamination FSM and also FS perform extremely poorly. This can be explained
since the default breakdown point of FSM, for example, is chosen to be 0.4, whereas
the nominal percent of contamination is set at ε = 0.4. This may be “corrected” by
resetting the default breakdown point for large amounts of contamination to 0.5 in
FSM, whereupon a better result for FSM ensues, for example the “Average power”
n = 50, p = 10, ε = 0.4, k = 20 is 0.964, which compares with the reported value
of Table 2 of 0.028. However, it is the default value of 0.4 that is given in the use of
the algorithm, and one is not to know in the case of p = 10 dimensions whether or not
there will be large amounts of contamination in order to adjust the FSM algorithm.
ATLA does not have this problem.

On the other hand ATLA remains stable in this event, given that ATLA is the mul-
tivariate extension of its univariate estimation algorithm developed in Clarke (1994)
which was shown to have breakdown point of near one half.

One will also note that ATLA has a propensity to over-trim for larger n and small
p through false identification demonstrated in p3; a trait which is consistent with the
influence of swamping.

2.2.1 Correlated data

The previous section dealt with spherically symmetric (� = Ip) multivariate distri-
butions generated out of the mean slippage model. While algorithms presented here
are based on affine equivariant statistics which are accounted for by linear transfor-
mations, it is interesting to examine empirical performance under a correlated error
structure. Briefly here we consider examples where both distributions are correlated
and this is done for p = 2.

For each distribution we have chosen to use a simple first order autoregressive
covariance structure to generate bivariate (p = 2) samples with correlation coefficient
ρ = 0.5 and 0.9 respectively. That is,

� =
[
1 ρ

ρ 1

]
, ρ = 0.5, 0.9. (1)

Due to the proximity of the distributions for ρ = 0.9, as seen in Fig. 1b), we
have chosen to let the contaminating distribution have shifted mean 5 · J. Simulations
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have been limited to bivariate samples for illustration purposes. Results from these
simulations are presented in Tables 4 and 5 respectively.

Ostensibly, comparing performances with previous simulations one is able to gauge
an apparent decrease in performance across all methods. Although this may not be
an indication of their inadequacy but rather a by-product of the selected simulation
framework. As the proximity of the two distributions grow closer for increasing ρ, the
distinction between which distribution a particular observation comes from, becomes
difficult (See Fig. 1). Again, the supplementary performance measures can be found
in the Supplementary Materials. In terms of the average power, in the majority of
cases ATLA performs better in comparison to other methods. A similar but inherently
different approach based on regression can be found in Riani et al (2014).

2.3 Further discussion of supplementary performancemeasures

In the Supplementary Materials from the mean slippage model there are some notable
advantages of ATLA in that it performs well in identifying at least one outlier, p2,
and at least the k planted outliers, p4 in comparison to FSM and FS for such cases
involving ε ≥ 0.08. The latter twomethods appear to falter with large 40%proportions
of contamination for sample sizes n greater than or equal 50. This is as explained in
previous discussion of the breakdown point of FSM.

For the mean slippage model with correlation ρ = 0.5 or ρ = 0.9, again in the
Supplementary Materials show that ATLA consistently trims all k outliers, at a greater
rate than FSM or FS, considering the reported values for p4.

Values for p2 and p5 are included for completeness.

2.4 Relative efficiency of outlier trimmed location estimates

Another way we might assess the performance of an outlier detection algorithm is
through the relative efficiency of the outlier-trimmed location estimates.

By results of the Cramér Rao Lower Bound a measure of efficiency of a unbiased
multivariate estimator say T is as follows,

Eff(T) = |I (θ)−1 |
|Var(T)| (2)

Noting here that |Var(T)| corresponds to the generalized variance which in this
case is the determinant of the covariance matrix of the estimator T, call it |�T |. The
matrix I (θ)−1 is the inverse of Fisher Information of the unknown parameter vector
θ . See Rao (1973) for further information on these arguments.

Hence if onewere to compare the efficiencies of twomultivariate location estimates,
T2 relative to T1 for example, then this would involve the following calculation,

RelEff(T1,T2) = Eff (T2)

Eff (T1)
= |�T1 |

|�T2 |
, (3)
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Fig. 1 Scatterplot matrix of a simulation of bivariate data with correlation of ρ = 0.5 [a)] and ρ = 0.9 [b)]
respectively. The ellipses here represent the 95% bivariate normal density contours

where | · | denotes the determinant of the associated covariance matrix of location
estimates. For example, the efficiency of ATLA relative to FSM would show ATLA
as the better estimate for relative efficiencies greater than one.

Now for simulations of data generated through the Tukey–Huber
ε-contamination model,

f (μ,�, ε) = (1 − ε) · Np(μ,�) + ε · Np(μ,� · σ 2) (4)

we choose to fix μ = 0, � = Ip and σ 2 = 9 for simplicity.
Here we will produce estimates of the relative efficiencies of the respective algo-

rithms with respect to ATLA. That is we identify T2 in equation (3) as the ATLA
estimate for location and a scaled estimate of the denominator in the second part of
the equation is the determinant of the variance covariancematrix of theATLA trimmed
location estimates. For example, if we calculate the relative efficiency of FSM, then
the numerator in equation (3) would be the the determinant of the variance covariance
matrix of the estimates of location achieved using FSM. Note with the underlying
model (4) the estimates of location are unbiased and consistent estimates of μ. Since
according to Cator et al (2012) the estimators are asymptotically normal even at the
distribution (4), it follows the ratio of the generalized variances can be estimated as
we have done here.

The results from simulations of N = 1, 000 for various levels of contamination ε,
sample sizes n and variables p are presented in Table 6 where covMCD and DetMCD
are explained below.

In discussing efficiency we allude to two well known methods of estimating multi-
variate location. For these simulations we have included for comparison the R function
covMcd available from the robustbase package (Maechler et al, 2019)which is a robust
location estimation method that utilizes the MCD. This function contains arguments
that allow use of two possible MCD proposals; the Fast MCD algorithm spawned out
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of Rousseeuw and Driessen (1999) as well as the “Deterministic MCD” algorithm
proposed by Hubert et al (2012). In the case of FASTMCD this algorithm searches
through nh possible subsets of size h = α · n for some predefined 0.5 ≤ α < 1,
whose covariance matrix yields the lowest determinant. Both of these procedures are
known to have a particularly high breakdown point and have been included in this
simulation to highlight what to expect in performance given data that consists of a
high percentage of contamination. Here the name “DetMCD” is used to denote the
deterministic MCD algorithm and “covMCD” is used to denote the initial Fast MCD
algorithm. The relative efficiencies of these algorithms are compared to ATLA where
just the Det MCD is employed in both cases for the initial start of the forward search
algorithm.

In consideration of the two MCD methods there is an apparent lack of efficiency
of the high breakdown point estimators of location, ATLA performing remarkably
well in simulations with lower proportions of contamination. One will also notice the
DeterministicMCDalgorithm consistently produces a higher efficiency in comparison
with the FASTMCD; one of the motivating factors for its substitution in ATLA. It is
only in a few such cases where covMCD is the more efficient estimator but mostly by
a small margin. ATLA beats FS generally for n ≥ 50 and is not as efficient for n = 25.
There are mixed results for relative efficiencies of FSM and ATLA. There is no clear
winner. ATLA appears to be better in cases when the dimension, p, is higher.

3 Cluster monitoring and detection

Due to the ability to detect outliers, the use-case of the forward search has shown
that it can be further extended into the area of cluster analysis. It has been explored
in a number of circumstances including Atkinson and Riani (2004), and Cerioli et al
(2019).

However most notably graphical techniques can be employed to aid in monitoring
successive iterations of the forward search in an attempt to divulge the structure of the
data and assist in possible outlier or cluster identification. This includes forward-plots
to enable monitoring of the subset inflations by displaying the minimumMahalanobis
distance among units in the non-basic subset. Examples of this for parametric cases
are in Atkinson et al (2003), Atkinson and Riani (2004), Atkinson et al (2018) and
Riani et al (2009).

Utilizing multiple minima for a chosen objective function is not necessarily a new
finding. Examples are given in say Rocke and Woodruff (1999). It is intuitively rea-
sonable to justify that the majority of works in a solution to classification/clustering
problems are simply those of optimization; with techniques such as k-means, Gaus-
sian mixture models, Mean-shift or perhaps support-vector machines that utilize this
in some capacity. In the case of ATLA, the employed objective function, which is
optimally chosen based on the sample size, is evaluated based on the occurrence (or
lack there-of) of minima. That is, observations are deemed as outlying based on the
minimum of any minima occuring for an α > 0 corresponding to the proportion of
trimming. Otherwise if no such minima exist then the data set may be considered
outlier free. Here we argue the benefit of incorporating plots of the objective func-
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414 B. R. Clarke, A. Grose

tion to assist in divulging the structure of the data, which may be clustered (based on
occurrence of multiple minima), and by monitoring the search.

3.1 Objective functions of ATLA

Now one of the by-products of not utilizing a particular stopping criteria, as in ATLA,
is that the entire search must be conducted. While this results in a slight increase in
computational cost, it on the other hand opens the possibility for graphical monitoring
and also mitigates the possibility for erroneous miss-classifications that may be a
result of type II error; an inevitable characteristic for large samples. For instance,
algorithms BACON, and FS when including a good observation, leave no path for that
observation to leave once included. The FSM procedure which is contained within the
FSDA Toolbox for MATLAB also contains similar routines which allow for the entire
search to be conducted and thus monitored.

Moreover the procedure utilized in ATLA allows observations to leave the basic
subset which enables spurious subset inflations to be “corrected” in subsequent iter-
ations. This also minimizes over-reliance on the initial robust location/scale estimate
facilitating the path of dividing the basic subset and the non basic subset. It can be
remarked here that an observation may leave the basic subset at any point in the FSM
algorithm.

Through existence of multiple minima (for an α > 0) in the objective function,
one is able to discern the possible existence of multiple contaminating distribu-
tions/clusters. It is possible to demonstrate this with a simulation of clustered data
composed of a total of five clustered samples with n = 500 generated as follows:

– Cluster 1: N3(0, I3) of size n1 = 275 representing the majority population.

– Cluster 2: N3(1 ·
√

χ2
0.975,3, 0.1 · I3) of size n2 = 50.

– Cluster 3: N3([0, 0,−2.5 ·
√

χ2
0.975,3], I3) of size n3 = 75.

– Cluster 4: N3([0, 0, 5 ·
√

χ2
0.975,3], I3) of size n4 = 75.

– Cluster 5: N3([0, 4 ·
√

χ2
0.975,3, 1.5 ·

√
χ2
0.975,3],�) of size n5 = 25 where � =

diag(1, 0.1, 0.1).

Figure 2 shows the pairwise scatterplot matrix for simulated data generated from
these distributions. As one can gauge from such plots, Cluster 2 with points shown
as yellow �-symbols are representative of what is referred to as a point mass cluster
while points in Cluster 5 shown as purple �-symbols follow a line mass cluster.

Now performing the multivariate ATLA procedure on this simulated data it is pos-
sible to plot the objective function over successive basic subsets. Looking at Fig. 3
one is able to discern the existence of five minima at relative basic subset sizes of
275, 325, 400, 475 and 500 respectively. The latter four minima correspond to subsets
classifications that contain the exact cumulative cluster distributions whence theywere
originally generated from.

By allowing the original ATLA procedure to iteratively classify and trim each of
the subsets based on the objective function criterion (Fig. 4) than this results in a sim-
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Fig. 2 Scatterplot matrix of simulated data containing 5 sample clusters generated out of different distri-
butions with point coloring and symbols to highlight the cluster whence it belongs to

ilar final cluster classification. Doing so also ensures the optimal objective function
proposal is used for a given application upholding the adaptive nature of the algo-
rithm. Although this methodology would not be recommended for large data sets due
to computational expense, it does present the procedure and motivation behind the
optimization criteria for the objective function proposals.

In addition to the classification of these clusters, either throughmultiple application
trimmings or minima subset comparisons, one is able to identify intra-cluster outliers.
This can be observed in the simulated data shown in Fig. 5 which presents four identi-
fied intra-cluster outliers and the exact classification of clusters whence they originally
belong to.

Here it is important to emphasize that the T1 and T2 proposals of Clarke and Schu-
bert (2006) assume samples are taken from populations which follow a multivariate
normal distribution, hence departures from such distributionwill not guarantee results.
It can be noted that this is an ad-hoc feature of the algorithm and not the sole intended
purpose. Due to its construction of finding an initial subset of size h = �(n+ p+1)/2�,
successful cluster discrimination may only be possible for clusters which are smaller
than this value. Nevertheless, relaxation of these restrictions are elementary yet come
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Fig. 3 Objective Functions of ATLA based on N = 100 simulated datasets generated from the clustered
distributions highlighted above. The darker shaded line corresponds to the dataset shown in Fig. 2 with
labels to demonstrate the occurrence of minima at basic subsets containing the exact associated cluster(s)

at the cost of increased probability of breakdown. Further research will benefit in
the context of clustering and use of the forward search. Perhaps utilization of soft-
trimming through weights in the ATLA procedure may prove useful for better cluster
discrimination and monitoring.

4 Conclusion

The comparison and discussion of outliers here is limited to the case of themultivariate
normal distribution. We do not entertain here the multivariate t-distribution, for exam-
ple, which was also adequately explained in Clarke and Schubert (2006). Outliers are
usually modelled at the multivariate normal distribution because of the central limit
theorem. Further improvements in the ATLA algorithm were implemented based on
developments in multivariate estimation in particular MCD and subsequently demon-
strated in simulation results. We have explained the power of the three methods that
use the forward search and there are varying terms of performance, with no outright
winner. ATLAhas a good all-round performance, vindicating its introduction inClarke
and Schubert (2006). To illustrate further the ATLA approach we apply it to clustering,
albeit in an elementary dataset simulated out of predefined cluster distributions.
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Fig. 4 Objective functions for successive applications of ATLA based on a continuation of the trimming of
N = 100 simulated datasets as shown in Fig. 3. The solid lines denote the approximateminimawhich yields
the final outlier classification/trimming (if any). Note the positioning of the vertical lines are consistent with
cluster locations shown previously with each application imposing trimmings of size approximately 50, 75,
75 and 25 respectively
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Fig. 5 Scatterplotmatrix of a simulated datasetwith point coloring to denote the cluster designation obtained
through multiple applications of ATLA. Four points shown as �, ×, � and ⊕-respectively, correspond to
outliers found when performing ATLA on trimming subsets discovered after each application
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