Predictive inference of dual generalized order statistics from the inverse Weibull distribution

Amany E. Aly ${ }^{1}$ (1)

Received: 16 December 2021 / Revised: 21 February 2022 / Accepted: 4 April 2022 /
Published online: 30 April 2022
© The Author(s) 2022

Abstract

In this paper, some predictive results of dual generalized order statistics (DGOSs) from the inverse Weibull distribution are obtained. For this goal, different predictive and reconstructive pivotal quantities are proposed. Moreover, several predictive and reconstructive intervals concerning DGOSs based on the inverse Weibull distribution are constructed. Furthermore, the maximum likelihood predictor as well as the predictive maximum likelihood estimates based on DGOSs are studied. Finally, simulation studies are carried out to assess the efficiency of the obtained results.

Keywords Dual generalized order statistics • Maximum likelihood predictor • Predicative interval • Probability coverage • Monte Carlo simulation

Mathematics Subject Classification 60G70 $62 \mathrm{E} 20 \cdot 62 \mathrm{~F} 10 \cdot 62 \mathrm{G} 30 \cdot 62 \mathrm{G} 32 \cdot 62 \mathrm{~N} 05$

1 Introduction

Kamps (1995) introduced the generalized order statistics (GOSs) as a unified model of ascending ordered random variables. The GOSs have gotten a lot of attention in recent years. This is because such a concept describes random variables (RVs) in ascending order of magnitude, which has important applications and includes wellknown concepts that have been treated separately in the statistical literature. Ordinary order statistics (OOSs), sequential order statistics (SOSs), Progressive type II censored order statistics (POSs), record values, k th record values, and Pfeifer's records are examples of the GOSs model.

Clearly, descending order RVs, such as lower record values, are not included in the GOSs model. DGOSs were first introduced by Burkschat et al. (2003) as a unified

[^0]model of descending ordered RVs, similar to reversed OOSs, lower k-records and lower Pfeirfer' records, through a combined approach. By analogy with Kamps (1995), the DGOSs, $X_{r, n, \underline{\gamma}}^{(D)}, r=1,2, \ldots, n$, based on a continuous cumulative distribution function (CDF) F, were defined in Burkschat et al. (2003), as
\[

$$
\begin{equation*}
X_{r, n, \underline{\gamma}}^{(D)} \stackrel{d}{=} F^{-1}\left(\prod_{j=1}^{r} B_{j}\right) \stackrel{d}{=} F^{-1}\left(\prod_{j=1}^{r} U_{j}^{* \frac{1}{\gamma_{j}}}\right), r=1,2, \ldots, n, \tag{1.1}
\end{equation*}
$$

\]

where, $\underline{\gamma}=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathfrak{R}_{+}^{n}$ is the vector of the model parameters with $\gamma_{j}=$ $k+n-j+\sum_{i=j}^{n-1} m_{i}>0, m_{1}, \ldots, m_{n-1} \in \Re, \gamma_{n}=k>0, U_{j}^{*}, j=1,2, \ldots, n$ are independent standard uniform RVs, and $X \stackrel{d}{=} Y$ means X and Y have the same CDF. Hence, the strict relations $X_{1, n, \gamma}^{(D)}>X_{2, n, \gamma}^{(D)}>\cdots>X_{n, n, \underline{\gamma}}^{(D)}$ hold almost surely. Interested readers can be referred to Āhsanullah (2004); Barakat and El-Adll (2009); Burkschat et al. (2003); Shah Imtiyaz et al. (2020) for more details on DGOSs.

Predicting future events based on past or current events is an important problem in statistics. In life testing problems, some failure times cannot be observed for various reasons and it is necessary to predict or reconstruct such failure times using a point or an interval. Clearly, OOSs play a significant role in predicting future observations and reconstructing previously unseen ones. For both frequentist and Bayesian approaches, many authors have studied point and interval predictions in statistical literature. Among them are Ahsanullah (1980), Al-Hussaini (1999), Al-Hussaini and Ahmad (2003), AlMutairi and Raqab (2020), David and Nagaraja (2003), Geisser (1993), Kaminsky and Rhodin (1985), Kotb and Raqab (2021), Lawless (1977), Nagaraja (1986) and Raqab (2001).

The first prediction result based on pivotal quantity is due to Lawless (1971), who applied the results of Sukhatme (1937) to construct confidence intervals for future OOSs from the exponential distribution. Lingappaiah (1973), defined a different pivotal quantity for the same purpose. Recent works on prediction and reconstruction based on pivotal quantities have been published by Aly (2015, 2016, 2022), Barakat et al. (2011, 2018, 2021), El-Adll (2011, 2021), El-Adll and Aly (2016a, b), among others. A general finite-sample method for predicting future observations from any arbitrary continuous distribution was proposed by Barakat et al. (2014). Later, Aly et al. (2019) extended this result to fractional record-values.

The Weibull distribution is one of the most widely used distributions in engineering, hydrology, ecology, medicine, the environment, and energy research. The inverse Weibull distribution, like the Weibull distribution, enables us to model long-tailed right-skewed data. The Inverse Weibull distribution is a special case of the generalized extreme value distribution, which is considered as an alternative to the Weibull distribution for modeling wind speed data. For some wind speed data measured in various locations and seasons, the inverse Weibull distribution outperforms the Weibull distribution in modeling. Since the Weibull distribution does not perform well in modeling wind speed data from various geographical regions around the world (e.g. Akgül et al. (2016); Wang et al. (2015)), the heavier right tail of the inverse Weibull distribution provides an advantage for modeling the right tail's extreme or outlying observations.

The probability density function (PDF) and CDF of the inverse Weibull distribution are respectively, given by

$$
\begin{equation*}
f(x)=\frac{\beta}{\sigma}\left(\frac{x}{\sigma}\right)^{-(\beta+1)} \exp \left[-\left(\frac{x}{\sigma}\right)^{-\beta}\right], \quad x>0, \quad \beta, \sigma>0, \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
F(x)=\exp \left[-\left(\frac{x}{\sigma}\right)^{-\beta}\right], \quad x>0, \quad \beta, \sigma>0 \tag{1.3}
\end{equation*}
$$

It can be noted that the transformations, $Z_{r, n, \underline{\gamma}}^{(D)}=\log F\left(X_{r, n, \underline{\gamma}}^{(D)}\right), r=1,2, \ldots, n$, represent DGOSs based on the negative exponential distribution (NEXP(1)) with PDF and CDF, $g(x)=G(x)=e^{x}, x \leq 0$. In what follows, U_{1}, U_{2}, and U_{3} will denote predictive pivotal quantities, while V_{1}, V_{2}, and V_{3} denote reconstructive pivotal quantities. Moreover, in the DGOSs model considered here, it is assumed that $\gamma_{i} \neq \gamma_{j}$ for $i \neq j, 1 \leq i, j \leq n$, which includes most of the important descending ordered RVs except for the lower record values. Furthermore, $W_{r, l}=Z_{r, n, \underline{\gamma}}^{(D)}-Z_{l, n, \underline{\gamma}}^{(D)}<0$, for $1 \leq l<r<n$, and $T_{l, r}=\sum_{i=l+1}^{r} \gamma_{i}\left(Z_{i, n, \gamma}^{(D)}-Z_{i-1, n, \gamma}^{(D)}\right)$ follows the negative gamma distribution with parameters $r-l$, 1, i.e, $T_{l, r} \sim N \Gamma(r-l, 1)$ with PDF

$$
f_{T_{l, r}}(t)=\frac{1}{\Gamma(r-l)}(-t)^{r-l-1} e^{t}, t<0, l<r
$$

The rest of this paper is organized as follows. In Sect. 2, three predictive pivotal quantities are suggested and their distributions are established. Section 3 is devoted to the reconstruction problem. In Sect. 4, the MLP as well as the PMLEs are discussed. Simulation studies are carried out in Sect. 5.

2 Prediction intervals of DGOSs

In this section, based on the knowledge of $X_{l, n, \underline{\gamma}}^{(D)}, \ldots, X_{r, n, \underline{\gamma}}^{(D)}$, three predictive pivotal quantities of the unobserved s th, $\operatorname{DGOS} X_{s, n, \underline{\gamma}}^{(D)}$, for $1 \leq l<r<s \leq n$, are proposed and their distributions are derived. Consequently, three predictive intervals of $X_{s, n, \underline{\gamma}}^{(D)}$ are constructed. The predictive pivotal quantities are

$$
\begin{align*}
& U_{1}=1-\left(\frac{X_{s, n, \underline{\gamma}}^{(D)}}{X_{r, n, \underline{\gamma}}^{(D)}}\right)^{\beta} \tag{2.1}\\
& U_{2}=\frac{\left(X_{s, n, \underline{\gamma}}^{(D)}\right)^{-\beta}-\left(X_{r, n, \underline{\gamma}}^{(D)}\right)^{-\beta}}{\sum_{i=l+1}^{r} \gamma_{i}\left(\left(X_{i, n, \underline{\gamma}}^{(D)}\right)^{-\beta}-\left(X_{i-1, n, \underline{\gamma}}^{(D)}\right)^{-\beta}\right)} \tag{2.2}
\end{align*}
$$

$$
\begin{equation*}
U_{3}=\frac{\left(X_{s, n, \underline{\gamma}}^{(D)}\right)^{-\beta}-\left(X_{r, n, \underline{\gamma}}^{(D)}\right)^{-\beta}}{\left(X_{r, n, \underline{\gamma}}^{(D)}\right)^{-\beta}-\left(X_{l, n, \underline{\gamma}}^{(D)}\right)^{-\beta}} \tag{2.3}
\end{equation*}
$$

The following lemma will be needed in the sequel which gives the marginal distributions of a single DGOS and marginal joint between two DGOSs.

Lemma 2.1 Under the condition, $\gamma_{i} \neq \gamma_{j}$ for $i \neq j, 1 \leq i, j \leq n$, the marginal PDF of the rth DGOS as well as the joint PDF of the rth and sth DGOSs are respectively, given by

$$
\begin{equation*}
f_{x_{r, n, \underline{\gamma}}^{(D)}}\left(x_{r}\right)=C_{r} \sum_{i=1}^{r} a_{i}(r) F^{\gamma_{i}-1}\left(x_{r}\right) f\left(x_{r}\right), \quad x_{r} \in \mathbb{R}, \tag{2.4}
\end{equation*}
$$

and

$$
\begin{align*}
f_{x_{r, n, \underline{v},}^{(D)}, X_{s, n, \underline{v}}^{(D)}}\left(x_{r}, x_{s}\right) & =C_{s}\left[\sum_{i=r+1}^{s} a_{i}^{(r)}(s)\left(\frac{F\left(x_{s}\right)}{F\left(x_{r}\right)}\right)^{\gamma_{i}}\right] \\
& \times\left[\sum_{i=1}^{r} a_{i}(r) F^{\gamma_{i}}\left(x_{r}\right)\right] \frac{f\left(x_{r}\right)}{F\left(x_{r}\right)} \frac{f\left(x_{s}\right)}{F\left(x_{s}\right)}, \quad x_{r}>x_{s}, \quad r<s, \tag{2.5}
\end{align*}
$$

where

$$
\begin{array}{r}
C_{r}=\prod_{j=1}^{r} \gamma_{j}, a_{i}(r)=\prod_{j=1, j \neq i}^{r} \frac{1}{\gamma_{j}-\gamma_{i}}, 1 \leq i \leq r, \\
\\
a_{i}^{(r)}(s)=\prod_{j=r+1, j \neq i}^{s} \frac{1}{\gamma_{j}-\gamma_{i}}, r+1 \leq i \leq s .
\end{array}
$$

The proof of Lemma 2.1 is similar to the proof of Lemma 2.1 of Kamps and Cramer (2001) with appropriate adjustments.

Theorem 2.1 The CDF of U_{1} is given by

$$
\begin{equation*}
F_{U_{1}}\left(u_{1}\right)=C_{s} \sum_{j=1}^{r} \sum_{i=r+1}^{s} \frac{a_{i}^{(r)}(s) a_{j}(r) u_{1}}{\gamma_{j}\left(\gamma_{j}-\left(\gamma_{j}-\gamma_{i}\right) u_{1}\right)}, \quad 0 \leq u_{1} \leq 1 \tag{2.6}
\end{equation*}
$$

A 100(1- $\tau) \%$ predictive interval for $X_{s, n, \underline{\gamma}}^{(D)}$ based on U_{1} is

$$
\left(\left(1-u_{1}\right)^{1 / \beta} X_{r, n, \underline{\gamma}}^{(D)}, X_{r, n, \underline{\gamma}}^{(D)}\right),
$$

where $u_{1}=u_{1}(\tau)$ is such that $F_{U_{1}}\left(u_{1}\right)=1-\tau$.

Proof First, note that the pivotal quantity U_{1} can be expressed as

$$
U_{1}=1-\left(\frac{X_{s, n, \underline{\gamma}}^{(D)}}{X_{r, n, \underline{\gamma}}^{(D)}}\right)^{\beta}=\frac{\left(X_{s, n, \underline{\gamma}}^{(D)} / \sigma\right)^{-\beta}-\left(X_{r, n, \underline{\gamma}}^{(D)} / \sigma\right)^{-\beta}}{\left(X_{s, n, \underline{\gamma}}^{(D)} / \sigma\right)^{-\beta}}=\frac{Z_{s, n, \underline{\gamma}}^{(D)}-Z_{r, n, \underline{\gamma}}^{(D)}}{Z_{s, n, \underline{\gamma}}^{(D)}} .
$$

Clearly, $0<U_{1}<1$. Therefore, for $0<u_{1}<1$, we have

$$
\begin{align*}
F\left(u_{1}\right) & =P\left(U_{1} \leq u_{1}\right)=P\left(0<1-\frac{Z_{r, n, \underline{\gamma}}^{(D)}}{Z_{s, n, \underline{\gamma}}^{(D)}} \leq u_{1}\right) \\
& =P\left(Z_{s, n, \underline{\gamma}}^{(D)}<Z_{r, n, \underline{\gamma}}^{(D)} \leq\left(1-u_{1}\right) Z_{s, n, \underline{\gamma}}^{(D)}\right) \\
& =\int_{-\infty}^{0} \int_{z_{s}}^{\left(1-u_{1}\right) z_{s}} f_{z_{r, n, \underline{\gamma}}^{(D)}, z_{s, n, \underline{\gamma}}^{(D)}}\left(z_{r}, z_{s}\right) d z_{r} d z_{s} . \tag{2.7}
\end{align*}
$$

By the relation (2.5), the joint PDF of the r th and s th DGOSs based on the NEXP(1) can be simplified and written as

$$
\begin{equation*}
f_{Z_{r, n, \underline{\gamma}}^{(D)}, Z_{s, n, \underline{\gamma}}^{(D)}}\left(z_{r}, z_{s}\right)=C_{s} \sum_{j=1}^{r} \sum_{i=r+1}^{s} a_{j}(r) a_{i}^{(r)}(s) e^{\gamma_{i} z_{s}} e^{\left(\gamma_{j}-\gamma_{i}\right) z_{r}},-\infty<z_{s}<z_{r}<0 . \tag{2.8}
\end{equation*}
$$

By (2.7) and (2.8) we obtain

$$
\begin{aligned}
F_{U_{1}}\left(u_{1}\right) & =C_{s} \sum_{j=1}^{r} \sum_{i=r+1}^{s} a_{i}^{(r)}(s) a_{j}(r) \int_{-\infty}^{0} \int_{z_{s}}^{\left(1-u_{1}\right) z_{s}} e^{\gamma_{i} z_{s}} e^{\left(\gamma_{j}-\gamma_{i}\right) z_{r}} d z_{r} d z_{s} \\
& =C_{s} \sum_{j=1}^{r} \sum_{i=r+1}^{s} a_{i}^{(r)}(s) a_{j}(r)\left(\frac{1}{\gamma_{j}-\gamma_{i}}\right)\left(\frac{1}{\gamma_{j}-\left(\gamma_{j}-\gamma_{i}\right) u_{1}}-\frac{1}{\gamma_{j}}\right) .
\end{aligned}
$$

After some algebraic calculations, we get the relation (2.6). The predictive intervals can be accomplished directly from the definition of the pivotal quantity U_{1}. Hence, the theorem is proved.

Lemma 2.2 The normalized spacings, $Y_{i}=\gamma_{i}\left(Z_{i, n, \underline{\gamma}}^{(D)}-Z_{i-1, n, \underline{\gamma}}^{(D)}\right), i=1,2, \ldots, n$, are independent and identically distributed (iid) RVs each of which has the NEXP(1) with $Z_{0, n, \underline{\gamma}}^{(D)} \equiv 0$. Moreover,

$$
Z_{r, n, \underline{\gamma}}^{(D)} \stackrel{d}{=} \sum_{i=1}^{r} \frac{Y_{i}}{\gamma_{i}}, \quad r=1,2, \ldots, n
$$

Lemma 2.2, which is due to Burkschat et al. (2003), represents a fundamental tool for proving the next theorems.

Theorem 2.2 The CDF of the predictive pivotal quantity U_{2} is

$$
\begin{equation*}
F_{U_{2}}\left(u_{2}\right)=1-\frac{C_{s}}{C_{r}} \sum_{i=r+1}^{s} \frac{a_{i}^{(r)}(s)}{\gamma_{i}}\left(1+\gamma_{i} u_{2}\right)^{-(r-l)}, \quad u_{2} \geq 0, \quad r>l \geq 0 . \tag{2.9}
\end{equation*}
$$

A $100(1-\tau) \%$ predictive interval for $X_{s, n, \underline{\gamma}}^{(D)}$ is

$$
\left(\left(\left(X_{r, n, \underline{\gamma}}^{(D)}\right)^{-\beta}+u_{2} \sum_{i=l+1}^{r} \gamma_{i}\left(\left(X_{i, n, \underline{\gamma}}^{(D)}\right)^{-\beta}-\left(X_{i-1, n, \underline{\gamma}}^{(D)}\right)^{-\beta}\right)\right)^{-1 / \beta}, X_{r, n, \underline{\gamma}}^{(D)}\right),
$$

where $u_{2}=u_{2}(\tau)$ satisfies the nonlinear equation, $F_{U_{2}}\left(u_{2}\right)=1-\tau$.
Proof The pivotal quantity U_{2} can be written as

$$
\begin{aligned}
U_{2} & =\frac{\left(X_{s, n, \underline{\gamma}}^{(D)}\right)^{-\beta}-\left(X_{r, n, \underline{\gamma}}^{(D)}\right)^{-\beta}}{\sum_{i=l+1}^{r} \gamma_{i}\left(\left(X_{i, n, \underline{\gamma}}^{(D)}\right)^{-\beta}-\left(X_{i-1, n, \underline{\gamma}}^{(D)}\right)^{-\beta}\right)}, \\
& =\frac{Z_{s, n, \underline{\gamma}}^{(D)}-Z_{r, n, \underline{\gamma}}^{(D)}}{T_{l, r}}=\frac{W_{r, s}}{T_{l, r}}, \quad 0 \leq l<r<s .
\end{aligned}
$$

By Lemma 2.2, it can be noted that $W_{r, s}=\sum_{i=r+1}^{s} Y_{i} / \gamma_{i}$ and $T_{l, r}=\sum_{i=l+1}^{r} Y_{i}$. Since Y_{1}, \ldots, Y_{n} are independent, $W_{r, s}$ and $T_{l, r}$ are independent. The CDF of $W_{r, s}$ can be obtained as follows

$$
\begin{align*}
F_{W_{r, s}}(w) & =P\left(W_{r, s} \leq w\right)=P\left(Z_{s, n, \underline{\gamma}}^{(D)} \leq Z_{r, n, \underline{\gamma}}^{(D)}+w\right) \\
& =\int_{-\infty}^{0} \int_{-\infty}^{z_{r}+w} f_{Z_{r, n, \underline{y}}^{(D)}, Z_{s, n, \underline{\gamma}}^{(D)}}\left(z_{r}, z_{s}\right) d z_{s} d z_{r} \\
& =C_{s} \sum_{j=1}^{r} \sum_{i=r+1}^{s} \frac{a_{j}(r) a_{i}^{(r)}(s)}{\gamma_{i}} \frac{e^{\gamma_{i} w}}{\gamma_{j}}, \quad w<0 . \tag{2.10}
\end{align*}
$$

Consequently, the PDF of $W_{r, s}$ is given by

$$
\begin{equation*}
f_{W_{r, s}}(w)=C_{s}\left(\sum_{j=1}^{r} \frac{a_{j}(r)}{\gamma_{j}}\right)\left(\sum_{i=r+1}^{s} a_{i}^{(r)}(s) e^{\gamma_{i} w}\right)=\frac{C_{s}}{C_{r}} \sum_{i=r+1}^{s} a_{i}^{(r)}(s) e^{\gamma_{i} w} . \tag{2.11}
\end{equation*}
$$

Therefore, by the independence of $W_{r, s}$ and $T_{l, r}$, coupled with the continuous version of the total law of probability, we get

$$
\begin{aligned}
F_{U_{2}}\left(u_{2}\right) & =P\left(0<U_{2} \leq u_{2}\right)=P\left(u_{2} T_{l, r} \leq W_{r, s}<0\right) \\
& =\int_{-\infty}^{0}\left(1-F_{W_{r, s}}\left(u_{2} t\right)\right) f_{T_{l, r}}(t) d t \\
& =1-\frac{C_{s}}{C_{r}} \sum_{i=r+1}^{s} \frac{a_{i}^{(r)}(s)}{\gamma_{i}}\left(1+\gamma_{i} u_{2}\right)^{-(r-l)}, \quad u_{2} \geq 0,
\end{aligned}
$$

which is (2.9). The predictive interval is a direct consequence of the form of the pivotal quantity. This completes the proof of the theorem.

Theorem 2.3 The CDF of the predictive pivotal quantity U_{3} is given by

$$
F_{U_{3}}\left(u_{3}\right)=\frac{C_{s}}{C_{l}} \sum_{i=r+1}^{s} \sum_{j=l+1}^{r} \frac{a_{i}^{(r)}(s) a_{j}^{(l)}(r) u_{3}}{\gamma_{j}\left(\gamma_{j}+\gamma_{i} u_{3}\right)}, \quad u_{3} \geq 0 .
$$

A $100(1-\tau) \%$ predictive interval for $X_{s, n, \underline{\gamma}}^{(D)}$ is

$$
\left(X_{r, n, \underline{\nu}}^{(D)}\left(1+u_{3}\left(1-\left(\frac{X_{l, n, \underline{\gamma}}^{(D)}}{X_{r, n, \underline{p}}^{(D)}}\right)^{-\beta}\right)\right)^{-1 / \beta}, X_{r, n, \underline{\nu}}^{(D)}\right),
$$

where $u_{3}=u_{3}(\tau)$ is obtained by solving the nonlinear equation, $F_{U_{3}}\left(u_{3}\right)=1-\tau$.
Proof As we proceed in the previous theorems, the pivotal quantity U_{3} can be formulated as

$$
U_{3}=\frac{Z_{s, n, \underline{\gamma}}^{(D)}-Z_{r, n, \underline{\gamma}}^{(D)}}{Z_{r, n, \underline{\gamma}}^{(D)}-Z_{l, n, \underline{\gamma}}^{(D)}}=\frac{W_{r, s}}{W_{l, r}}
$$

By Lemma (2.2), the RVs $W_{l, r}=\sum_{i=l+1}^{r} Y_{i} / \gamma_{i}$ and $W_{r, s}=\sum_{i=r+1}^{s} Y_{i} / \gamma_{i}$ are independent. Accordingly, the relation (2.11) yields

$$
\begin{align*}
f_{W_{l, r}, W_{r, s}}\left(w_{l, r}, w_{r, s}\right) & =f_{W_{l, r}}\left(w_{l, r}\right) f_{W_{r, s}}\left(w_{r, s}\right) \\
& =\frac{C_{s}}{C_{l}} \sum_{i=r+1}^{s} \sum_{j=l+1}^{r} a_{i}^{(r)}(s) a_{j}^{(l)}(r) e^{\gamma_{j} w_{l, r}} e^{\gamma_{i} w_{r, s}}, \quad w_{l, r}, w_{r, s}<0 . \tag{2.12}
\end{align*}
$$

Hence,

$$
\begin{aligned}
F_{U_{3}}\left(u_{3}\right) & =P\left(0<U_{3} \leq u_{3}\right)=P\left(u_{3} W_{l, r} \leq W_{r, s}<0\right) \\
& =\int_{-\infty}^{0} \int_{u_{3} w_{l, r}}^{0} f_{W_{l, r}, W_{r, s}}\left(w_{l, r}, w_{r, s}\right) d w_{r, s} d w_{l, r}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{C_{s}}{C_{l}} \sum_{i=r+1}^{s} \sum_{j=l+1}^{r} a_{i}^{(r)}(s) a_{j}^{(l)}(r) \int_{-\infty}^{0} \int_{u_{3} w_{l, r}}^{0} e^{\gamma_{j} w_{l, r}} e^{\gamma_{i} w_{r, s}} d w_{l, r} d w_{r, s} \\
& =\frac{C_{s}}{C_{l}} \sum_{i=r+1}^{s} \sum_{j=l+1}^{r} \frac{a_{i}^{(r)}(s) a_{j}^{(l)}(r) v_{3}}{\gamma_{j}\left(\gamma_{j}+\gamma_{i} v_{3}\right)}
\end{aligned}
$$

which was to be proved. The rest of the theorem is easy to prove.

3 Reconstructive intervals of DGOSs

This section is devoted to the reconstruction problem of DGOSs relying on the pivotal quantities approach. In this section, it is assumed that $X_{s, n, \underline{\gamma}}^{(D)}, \ldots, X_{n, n, \underline{\gamma}}^{(D)}$ are observed and $X_{r, n, \underline{\gamma}}^{(D)}, r=s-1, s-2, \ldots, 1$ are to be reconstructed. For this goal, four reconstructive pivotal quantities are proposed and their distributions are established. In what follows, a corollary to Theorem 2.1 and three theorems are presented without proof. Their proofs can be accomplished in the same manner as in Sect. 2.

Corollary 3.1 A $100(1-\tau) \%$ reconstructive interval of $X_{r, n, \underline{\gamma}}^{(D)}$ based on U_{1} is

$$
\left(X_{s, n, \underline{\gamma}}^{(D)},\left(1-u_{1}\right)^{-1 / \beta} X_{s, n, \underline{\gamma}}^{(D)}\right),
$$

where $u_{1}=u_{1}(\tau)$ satisfies the nonlinear equation $F_{U_{1}}\left(u_{1}\right)=1-\tau, 0<u_{1}<1$.
Theorem 3.1 The CDF of the pivotal quantity $V_{1}=\frac{Z_{s, n, \underline{\gamma}}^{(D)}-Z_{r, n, \underline{\gamma}}^{(D)}}{Z_{r, n, \underline{\gamma}}^{(D)}}$ takes the form

$$
F_{V_{1}}\left(v_{1}\right)=1-C_{s} \sum_{j=1}^{r} \sum_{i=r+1}^{s} \frac{a_{j}(r) a_{i}^{(r)}(s)}{\gamma_{i}\left(\gamma_{j}+\gamma_{i} v_{1}\right)}, \quad v_{1} \geq 0 .
$$

Moreover, a $100(1-\tau) \%$ reconstructive interval for $X_{r, n, \underline{\gamma}}^{(D)}$ is

$$
\left(X_{s, n, \underline{\gamma}}^{(D)},\left(1+v_{1}\right)^{(1 / \beta)} X_{s, n, \underline{\gamma}}^{(D)}\right),
$$

where $v_{1}=v_{1}(\tau)$ is the solution to the nonlinear equation, $F_{V_{1}}\left(v_{1}\right)=1-\tau$.
Theorem 3.2 The CDF of the reconstructive pivotal quantity $V_{2}=\frac{Z_{s, n, \underline{\gamma}}^{(D)}-Z_{r, n, \underline{\gamma}}^{(D)}}{T_{s, n}}$ is given by

$$
F_{V_{2}}\left(v_{2}\right)=1-\frac{C_{s}}{C_{r}} \sum_{i=r+1}^{s} \frac{a_{i}^{(r)}(s)}{\gamma_{i}}\left(1+\gamma_{i} v_{2}\right)^{-(n-s)}, \quad v_{2} \geq 0,
$$

where $T_{s, n}=\sum_{i=s+1}^{n} \gamma_{i}\left(Z_{i, n, \underline{\gamma}}^{(D)}-Z_{i-1, n, \underline{\gamma}}^{(D)}\right)$. Furthermore, a $100(1-\tau) \%$ reconstructive interval of $X_{r, n, \underline{\gamma}}^{(D)}$ is
$\left(\left(X_{s, n, \underline{\gamma}}^{(D)}\right)^{-\beta},\left(\left(X_{s, n, \underline{\gamma}}^{(D)}\right)^{-\beta}-v_{2} \sum_{i=s+1}^{n} \gamma_{i}\left(\left(X_{i, n, \underline{\gamma}}^{(D)}\right)^{-\beta}-\left(X_{i-1, n, \underline{\gamma}}^{(D)}\right)^{-\beta}\right)\right)^{-1 / \beta}\right)$,
where $v_{2}=v_{2}(\tau)$ can be obtained by solving the nonlinear equation, $F_{V_{2}}\left(v_{2}\right)=1-\tau$.
Theorem 3.3 The CDF of the reconstructive pivotal quantity, $V_{3}=\frac{Z_{s, n, \underline{\gamma}}^{(D)}-Z_{r, n, \underline{\gamma}}^{(D)}}{Z_{n, n, \underline{\gamma}}^{(D)}-Z_{s, n, \underline{\gamma}}^{(D)}}$, is

$$
F_{V_{3}}\left(v_{3}\right)=\frac{C_{n}}{C_{r}} \sum_{i=r+1}^{s} \sum_{j=s+1}^{n} \frac{a_{i}^{(r)}(s) a_{j}^{(s)}(n) v_{3}}{\gamma_{j}\left(\gamma_{j}+\gamma_{i} v_{3}\right)}, \quad v_{3} \geq 0
$$

A $100(1-\tau) \%$ confidence interval for $X_{r, n, \underline{\gamma}}^{(D)}$ is

$$
\left(X_{s, n, \underline{\gamma}}^{(D)}, X_{s, n, \underline{\gamma}}^{(D)}\left(1-v_{3}\left(\left(\frac{X_{s, n, \underline{\gamma}}^{(D)}}{X_{n, n, \underline{\gamma}}^{(D)}}\right)^{\beta}-1\right)\right)^{-1 / \beta}\right)
$$

where $v_{3}=v_{3}(\tau)$ is computed by solving, $F_{V_{3}}\left(v_{3}\right)=1-\tau$.

Remark 3.1

1. Clearly, all the predictive and reconstructive results of the inverse exponential distribution are obtained as special cases from the obtained results in Sects. 2 and 3 if $\beta=1$.
2. The predictive and reconstructive intervals are free of the scale parameter σ, while this is not the case for the shape parameter β.
3. If the shape parameter β is known, the transformation, $Y^{\star}=\left(\frac{X}{\sigma}\right)^{\beta}$ reduces the problem to the inverse exponential distribution.

The next section addresses the issue of the unknown parameters.

4 The MLP based on DGOSs

In this section, the MLEs and MLP, as well as the PMLEs based on the first r DGOSs, are studied. The following proposition is formulated in a general framework.

Proposition 4.1 The likelihood function based on the DGOSs, $X_{1, n, \underline{\gamma}}^{(D)}, \ldots, X_{r, n, \underline{\gamma}}^{(D)}$, from any continuous $D F, F$ is

$$
\begin{align*}
L^{\star}\left(\underline{\Theta} \mid \underline{\mathbf{x}}_{r}\right)= & C_{r}\left(\prod_{i=1}^{r-1} F^{m_{i}}\left(x_{i} ; \underline{\Theta}\right) f\left(x_{i} ; \underline{\Theta}\right)\right) F^{\gamma_{r}-1}\left(x_{r} ; \underline{\Theta}\right) f\left(x_{r} ; \underline{\Theta}\right), \\
& -\infty<x_{r}<\cdots<x_{1}<\infty, \tag{4.1}
\end{align*}
$$

where $\underline{\Theta}=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{d}\right)$ is the vector of unknown parameters and $\underline{\mathbf{x}}_{r}=$ $\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ denotes the first r observed DGOSs. Moreover, the predictive likelihood $\left(P L^{\star}\right)$ function of $X_{s, n, \underline{\gamma}}^{(D)}$ relying on $X_{1, n, \gamma}^{(D)}, \ldots, X_{r, n, \underline{\gamma}}^{(D)}$ is given by

$$
\begin{align*}
P L^{\star}\left(\underline{\Theta}, x_{s} \mid \underline{\mathbf{x}}_{r}\right) & =C_{s}\left(\prod_{i=1}^{r-1} F^{m_{i}}\left(x_{i} ; \underline{\Theta}\right) f\left(x_{i} ; \underline{\Theta}\right)\right) F^{\gamma_{r}}\left(x_{r} ; \underline{\Theta}\right)\left(\frac{f\left(x_{r} ; \underline{\Theta}\right) f\left(x_{s} ; \underline{\Theta}\right)}{F\left(x_{r} ; \underline{\Theta}\right) F\left(x_{s} ; \underline{\Theta}\right)}\right) \\
& \times \sum_{j=r+1}^{s} a_{j}^{(r)}(s)\left(\frac{F\left(x_{s} ; \underline{\Theta}\right)}{F\left(x_{r} ; \underline{\Theta}\right)}\right)^{\gamma_{j}}-\infty<x_{s}<x_{r}<\cdots<x_{1}<\infty . \tag{4.2}
\end{align*}
$$

Proof According to Burkschat et al. (2003), after integrating the remaining variables, x_{r+1}, \ldots, x_{n}, on the region $x_{r}>x_{r+1}>\cdots>x_{n}>-\infty$, the joint PDF of the first r DGOSs can be expressed as (4.1).

In view of Theorem 2.1 in Burkschat et al. (2003), the DGOSs form a Markov chain. Consequently, the conditional PDF of $X_{s, n, \underline{\gamma}}^{(D)}$ given that $X_{1, n, \underline{\gamma}}^{(D)}=x_{1}, \ldots, X_{r, n, \underline{\gamma}}^{(D)}=x_{r}$ is equal to the conditional PDF of $X_{s, n, \gamma}^{(D)}$ given that $X_{r, n, \gamma}^{(D)}=x_{r}$. Following Kaminsky and Rhodin (1985); Barakat et al. (201站), Lemma 2.1 implies

$$
\begin{align*}
f_{1,2, \ldots, r, s}^{(D)}\left(x_{1}, \ldots, x_{r}, x_{s}\right) & =f_{1,2, \ldots, r}^{(D)}\left(x_{1}, \ldots, x_{r}\right) f_{x_{s, n, \underline{,} \mid}^{(D)}\left(x_{r, n, \underline{v}}^{(D)}\right.}\left(x_{s} \mid x_{r}\right) \\
& =f_{1,2, \ldots, r}^{(D)}\left(x_{1}, \ldots, x_{r}\right) \frac{f_{x_{r, n, \underline{,}}^{(D)}, x_{s, n, \underline{v}}^{(D)}}\left(x_{r}, x_{s}\right)}{f_{x_{r, n, \underline{\gamma}}^{(D)}}\left(x_{r}\right)} \\
& =\frac{C_{s}}{C_{r}} f_{1,2, \ldots, r}^{(D)}\left(x_{1}, \ldots, x_{r}\right) \sum_{j=r+1}^{s} a_{j}^{(r)}(s)\left(\frac{F\left(x_{s}\right)}{F\left(x_{r}\right)}\right)^{\gamma_{j}} \frac{f\left(x_{s}\right)}{F\left(x_{s}\right)} . \tag{4.3}
\end{align*}
$$

Hence, (4.2) follows directly from (4.1). This completes the proof.
For the inverse Weibull distribution, the log-likelihood function based on (4.1) can be simplified as
$L(\sigma, \beta) \propto r \log \beta+r \beta \log \sigma-\beta \sum_{j=1}^{r} \log x_{j}-\sum_{j=1}^{r-1}\left(\gamma_{j}-\gamma_{j+1}\right)\left(\frac{x_{j}}{\sigma}\right)^{-\beta}-\gamma_{r}\left(\frac{x_{r}}{\sigma}\right)^{-\beta}$.

The MLEs of σ and β can be obtained numerically using an iterative method like the Newton-Rophson method by solving the nonlinear equations

$$
\begin{equation*}
\frac{\partial L(\sigma, \beta)}{\partial \sigma}=0 \quad \text { and } \quad \frac{\partial L(\sigma, \beta)}{\partial \beta}=0 . \tag{4.5}
\end{equation*}
$$

If the scale parameter σ is known we have

$$
\frac{\partial^{2} L(\sigma, \beta)}{\partial \beta^{2}}=-\left[\frac{r}{\beta^{2}}+\sum_{j=1}^{r-1}\left(m_{j}+1\right) x_{j}^{\star}\left(\log \left(\frac{\sigma}{x_{j}}\right)\right)^{2}+\gamma_{r} x_{r}^{\star}\left(\log \left(\frac{\sigma}{x_{r}}\right)\right)^{2}\right]<0
$$

where $x_{i}^{\star}=\left(\frac{x_{i}}{\sigma}\right)^{-\beta}$. This ensures that there exists a unique MLE of β (e.g. Mäkeläinen et al. (1981)). Similarly, the logarithm of the $P L^{\star}$ function can be written as

$$
\begin{align*}
P L\left(x_{s}, \sigma, \beta\right) & \propto \log \left(\sum_{t=r+1}^{s} a_{t}^{(r)}(s) \exp \left(-\gamma_{t}\left(x_{s}^{\star}-x_{r}^{\star}\right)\right)\right)-\sum_{t=1}^{r-1}\left(\gamma_{t}-\gamma_{t+1}\right) x_{t}^{\star}-\gamma_{r} x_{r}^{\star} \\
& -(\beta+1)\left(\sum_{t=1}^{r} \log x_{t}+\log x_{s}\right)+\beta(r+1) \log \sigma+(r+1) \log \beta, \tag{4.6}
\end{align*}
$$

consequently, the MLP of x_{s}, as well as the PMLEs of σ and β, can be obtained numerically by solving the simultaneous equations

$$
\begin{equation*}
\frac{\partial P L\left(x_{s}, \sigma, \beta\right)}{\partial x_{s}}=0, \quad \frac{\partial P L\left(x_{s}, \sigma, \beta\right)}{\partial \sigma}=0, \quad \text { and } \quad \frac{\partial P L\left(x_{s}, \sigma, \beta\right)}{\partial \beta}=0 \tag{4.7}
\end{equation*}
$$

4.1 On the existence and uniqueness of the MLEs, MLP, and PMLEs

The main aim of this subsection is to discuss the existence and uniqueness of the MLEs, MLP, and PMLEs. Except in very limited circumstances, the analytical demonstration is a tough problem. Simulation can be used to provide an alternative solution for such problems. Clearly, the support of the inverse Weibull distribution does not depend on the distribution parameters, and the PDF is absolutely continuous in σ and β. Consequently, the function $L(\sigma, \beta)$ is the logarithm of a twice differentiable likelihood function with respect to σ and β in which (σ, β) varying in a connected open subset $\Theta \subset \mathbb{R}_{+}^{2}$. According to Mäkeläinen et al. (1981), there exists a unique MLEs if Hessian matrix $\mathbf{H}_{L}(\widehat{\sigma}, \widehat{\beta})$ of $L(\widehat{\sigma}, \widehat{\beta})$ is negative definite, where $\widehat{\sigma}$ and $\widehat{\beta}$ are the solutions of (4.5). The analytical derivation of the negative definite of the Hessian matrix is a difficult problem in most cases. Alternatively, in this work, a comprehensive simulation study based on 100,000 replicates is carried out to endorse the negative definite of the Hessian matrix for different values of the parameters of the selected models. Similar conclusions concerning the MLP and the PMLEs can be achieved via simulation. The

Table 1 The percentages of samples from which the Hessian matrices, $\mathbf{H}_{L}(\widehat{\sigma}, \widehat{\beta})$ and $\mathbf{H}_{P L}\left(\widehat{x}_{s}, \widehat{\sigma}, \widehat{\beta}\right)$, are negative definite for OOSs with selected values of σ and β

n	r	s	$\sigma=10, \beta=2$		$\sigma=0.1, \beta=0.5$		$\sigma=50, \beta=5$	
			$\mathbf{H}_{L}(\%)$	$\mathbf{H}_{P L}(\%)$	$\mathbf{H}_{L}(\%)$	$\mathbf{H}_{P L}(\%)$	$\mathbf{H}_{L}(\%)$	$\mathbf{H}_{P L}(\%)$
30	18	19	99.928	93.720	98.670	97.989	99.664	15.359
		22		95.854		97.486		97.544
		25		99.580		96.894		97.800
		28		99.508		95.886		98.003

Table 2 The percentages of samples from which the Hessian matrices, $\mathbf{H}_{L}(\widehat{\sigma}, \widehat{\beta})$ and $\mathbf{H}_{P L}\left(\widehat{x}_{s}, \widehat{\sigma}, \widehat{\beta}\right)$, are negative definite for SOSs with selected values of σ and β

n	r	s	$\sigma=10, \beta=2$		$\sigma=0.1, \beta=0.5$		$\sigma=50, \beta=5$	
			$\mathbf{H}_{L}(\%)$	$\mathbf{H}_{P L}(\%)$	$\mathbf{H}_{L}(\%)$	$\mathbf{H}_{P L}(\%)$	$\mathbf{H}_{L}(\%)$	$\mathbf{H}_{P L}(\%)$
30	18	19	99.998	98.550	99.962	98.484	99.880	29.671
		22		99.978		99.548		97.329
		25		99.991		99.486		98.103
		28		99.974		99.479		98.157

numerical solutions of (4.5) and (4.7) are obtained for each sample, after which the corresponding Hessian matrices of the obtained solutions are computed and they are checked to see if they are negative definite or not. The percentages of the samples from which Hessian matrices, $\mathbf{H}_{L}(\widehat{\sigma}, \widehat{\beta})$ and $\mathbf{H}_{P L}\left(\widehat{x_{S}}, \widehat{\sigma}, \widehat{\beta}\right)$, are negative definite, are shown in Tables 1 and 2 for OOSs and SOSs, respectively.

Remark 4.1 The simulation study, which is carried out for various values of r, s, and n (for brevity, we report selected values in Tables 1 and 2), reveals that:

1. In about 99% of the cases, the matrix \mathbf{H}_{L} is negative definite, which supports the existence of a unique MLEs of σ and β.
2. In at least 95% of the cases, the matrix \mathbf{H}_{L} is negative definite provided that $s>$ $r+1$, which backs up the existence of the MLP of $X_{s, n, \underline{\gamma}}^{(D)}$ and PMLEs of σ and β uniquely.
3. The OOSs and SOSs have no discernible differences.

4.2 The maximum likelihood reconstructor for the reversed OOSs

The maximum likelihood reconstructor (MLR) as well as the reconstructive maximum likelihood estimates (RMLEs) for the OOS are discussed in Asgharzadeh et al. (2012). After routine calculations, it can be shown that the reconstructive likelihood ($R L^{\star}$) function of $X_{r: n}, r<s$ based on the reversed OOSs, $x_{s: n}, \ldots, x_{n: n}$, takes the form

$$
\begin{aligned}
R L^{\star}\left(x_{r}, \sigma, \beta \mid x_{s}, \ldots, x_{n}\right) \propto & \left(\prod_{j=s}^{n} f\left(x_{j} ; \sigma, \beta\right)\right)\left(F\left(x_{r} ; \sigma, \beta\right)\right. \\
& \left.-F\left(x_{s} ; \sigma, \beta\right)\right)^{s-r-1}\left(1-F\left(x_{r} ; \sigma, \beta\right)\right)^{r-1} f\left(x_{r} ; \sigma, \beta\right)
\end{aligned}
$$

$x_{r}>x_{s}>\cdots>x_{n}$. The log-likelihood function based on the inverse Weibull distribution can be written as

$$
\begin{aligned}
R L\left(x_{r}, \sigma, \beta\right) \propto & (n-s+2)(\beta \log \sigma+\log \beta)-\sum_{j=s}^{n} x_{j}^{*} \\
& -(\beta+1) \sum_{j=s}^{n} \log x_{j}-x_{r}^{*}-(\beta+1) \log x_{r} \\
& +(s-r-1) \log \left(e^{-x_{r}^{\star}}-e^{-x_{s}^{\star}}\right)+(r-1) \log \left(1-e^{-x_{r}^{\star}}\right) .
\end{aligned}
$$

The MLR of $X_{r: n}$, RMLEs of σ and β can be obtained numerically by solving the nonlinear system

$$
\begin{equation*}
\frac{\partial R L\left(x_{r}, \sigma, \beta\right)}{\partial x_{r}}=0, \quad \frac{\partial R L\left(x_{r}, \sigma, \beta\right)}{\partial \sigma}=0, \quad \text { and } \quad \frac{\partial R L\left(x_{r}, \sigma, \beta\right)}{\partial \beta}=0 \tag{4.8}
\end{equation*}
$$

Remark 4.2 In many practical situations, the parameters are unknown, and we have to replace them with their estimates. Consequently, some of the accuracy will be lost. In the next section, it is shown that when the unknown parameters are replaced with their estimates, the accuracy of the results is satisfactory compared with the ideal case of known parameters, provided that $s-r$ is not large. The comparison is based on the interval width and the coverage probability.

5 Numerical results

5.1 Simulation studies

In this section, simulation experiments are conducted to assess the efficiency of the obtained results in the preceding sections. For this aim, two special models from the DGOSs model are considered. The first one is the reversed OOSs with model parameters $\gamma_{i}=n-i+1$, while the second one corresponding to the choice $\gamma_{i}=$ $2(n-i)+1$ which may be interpreted as reversed SOSs. Here, two different cases are considered. In the first case, it is assumed that the inverse Weibull distribution parameters are known, with $\sigma=10.0$ and $\beta=2.0$ (Tables 3, 4, and 5). In the second case, the MLP is obtained and the parameters σ and β are replaced with their PMLEs (Tables 6, 7). In Table 8, the parameters σ and β are replaced with their RMLEs, which are obtained by (4.8). For comparison purposes, in the second case,

Table 3 Three 95\% predictive intervals and their corresponding coverage probability of the reversed OOSs with parameters $\sigma=10$ and $\beta=2$

n	r	s	$X_{s+1: n}$	L_{1}	L_{2}	L_{3}	$X_{s: n}$	$X_{r: n}$	$C P_{1}$	$C P_{2}$	$C P_{3}$
30	18	19	9.880	9.469	9.466	9.465	10.339	10.822	94.955	94.909	94.916
		20	9.442	8.783	8.780	8.777	9.880	10.822	94.940	94.971	94.995
		21	9.016	8.221	8.217	8.214	9.442	10.822	94.949	94.931	94.921
		22	8.602	7.722	7.718	7.712	9.016	10.822	94.897	94.856	94.907
		23	8.194	7.263	7.260	7.251	8.602	10.822	95.059	95.054	95.085
		24	7.786	6.829	6.826	6.816	8.194	10.822	95.040	95.060	95.049
		25	7.371	6.409	6.406	6.395	7.786	10.822	94.980	95.015	94.975
		26	6.936	5.991	5.988	5.977	7.371	10.822	95.028	95.034	95.014
30	21	27	6.463	5.562	5.560	5.549	6.936	10.822	95.046	95.025	95.029
		22	8.602	8.252	8.251	8.250	9.016	9.442	94.952	94.936	94.953
		23	8.194	7.631	7.631	7.627	8.602	9.442	94.962	94.994	94.978
		24	7.786	7.106	7.108	7.092	8.194	9.442	95.004	95.031	95.131
		25	7.371	6.624	6.627	6.618	7.786	9.442	95.056	95.026	95.029
		26	6.936	6.161	6.164	6.153	7.371	9.442	95.012	94.986	94.993
30		27	6.463	5.695	5.700	5.687	6.936	9.442	94.926	95.017	94.944
	24	25	7.371	7.057	7.057	7.055	7.786	8.194	94.900	94.900	94.920
		26	6.936	6.440	6.443	6.437	7.371	8.194	95.036	95.068	95.026
		27	6.463	5.887	5.893	5.883	6.936	8.194	95.052	95.078	95.032

we generate DGOSs from the inverse Weibull distribution with $\sigma=10.0$ and $\beta=2.0$ as in the first case.

5.2 Algorithms

In view of the results of Burkschat et al. (2003), the r th DGOS can be generated by the following algorithm:

Algorithm 1 (Generating dual generalized order statistics)

Step 1. Choose the values of n, k, and the DGOSs model parameters, $\gamma_{i}, i=$ $1,2, \ldots, n$,
Step 2. generate a random sample of $\operatorname{size} n$ say $B_{1}, B_{2}, \ldots, B_{n}$, from beta distribution with CDF, $G(t)=t^{\gamma_{j}}, 0 \leq t \leq 1$,
Step 3. compute the r th DGOS from any continuous distribution by the relation

$$
X_{r, n, \underline{\gamma}}^{(D)}=F^{-1}\left(\prod_{j=1}^{r} B_{j}\right), \quad r=1,2, \ldots, n,
$$

Table 4 Three 95% predictive intervals and their corresponding coverage probability of $X_{s, n, \gamma}^{(D)}$, the reversed SOSs ($\gamma_{i}=2(n-i)+1$), with parameters $\sigma=10$, and $\beta=2$

Table 5 Two 95\% reconstructive intervals and their corresponding coverage probability of the reversed OOSs based on the reconstructive pivotal quantities U_{1} and V_{1} with parameters $\sigma=10$, and $\beta=2$

n	s	r	$X_{s+1: n}$	$U_{U_{1}}$	$U_{V_{1}}$	$C P_{U_{U_{1}}}$	$C P_{U_{V_{1}}}$	$X_{r: n}$	$X_{r-1: n}$
30	12	11	14.612	17.32590	17.32590	94.953	94.953	15.495	16.500
		10	14.612	19.28550	19.28561	94.908	94.908	16.500	17.661
		9	14.612	21.40594	21.40584	95.005	95.005	17.661	19.040
		8	14.612	23.87873	23.87863	94.951	94.951	19.040	20.718
		7	14.612	26.91532	26.91237	95.027	95.024	20.718	22.837
		6	14.612	30.82946	30.82785	94.931	94.928	22.837	25.645
		5	14.612	36.21276	36.21321	94.868	94.869	25.645	29.616
		4	14.612	44.30626	44.30697	94.914	94.914	29.616	35.859
		3	14.612	58.32321	58.31664	95.010	95.010	35.859	48.310
		2	14.612	90.05960	90.05936	94.972	94.972	48.310	98.456
	9	8	17.661	21.94263	21.94263	94.982	94.982	19.040	20.718
30		7	17.661	25.36668	25.36668	95.069	95.069	20.718	22.837
		6	17.661	29.49199	29.49198	95.011	95.011	22.837	25.645
		5	17.661	35.01182	35.01182	94.843	94.843	25.645	29.616
		4	17.661	43.19703	43.19700	94.955	94.955	29.616	35.859
		3	17.661	57.26681	57.26681	94.932	94.932	35.859	48.310
30	6	2	17.661	89.03582	89.03582	94.930	94.930	48.310	98.456
		5	22.837	31.62140	31.62140	94.882	94.882	25.645	29.616
		4	22.837	40.48920	40.48920	94.798	94.798	29.616	35.859
		3	22.837	54.90926	54.90926	94.955	94.955	35.859	48.310
		2	22.837	86.88093	86.88093	94.957	94.957	48.310	98.456

Step 4. for the inverse Weibull distribution, compute the r th DGOS from the formula

$$
X_{r, n, \underline{\gamma}}^{(D)}=\sigma\left(-\sum_{i=1}^{r} \log B_{j}\right)^{-\frac{1}{\beta}}, \quad r=1,2, \ldots, n
$$

Algorithm 2 (Constructing predictive (reconstructive) intervals and computing their coverage probability)

Step 1. Determine the distribution parameters, σ and β,
Step 2. determine k, γ_{i}, and n, the number of DGOSs to be generated,
Step 3. use Algorithm 1 to generate and store $M \times n$ arrays, each of which contains n DGOSs based on the inverse Weibull distribution, where M is the number of repetitions,
Step 4. specify the number of observed DGOSs and the number of unknown DGOSs that required to be predicted or reconstructed,
Step 5. apply Theorems $2.1,2.2$, and 2.3 to find the required quantiles q_{i} by solving the nonlinear equations $F_{U_{i}}\left(q_{i}\right)=1-\tau, i=1,2,3$, for the prediction problem,
Table 6 The MLP, PMLEs, and three 95% predictive intervals with their corresponding coverage probability of the reversed OOSs, $X_{s: n}$, when the unknown parameters are replaced with their PMLEs

n	r	s	$X_{s+1: n}$	$\widehat{X}_{s: n}$	$X s: n$	L_{1}	L_{2}	L_{3}	U	$C P_{1}$	$C P_{2}$	$C P_{3}$	$\widehat{\sigma}$	$\widehat{\beta}$
		19	9.87	10.65	10.32	9.41	9.41	9.42	10.80	94.49	94.52	94.53	10.19	1.99
		20	9.43	9.97	9.87	8.84	8.84	8.82	10.80	95.10	95.07	95.11	10.24	2.15
		21	9.00	9.54	9.43	8.32	8.31	8.30	10.80	95.20	95.11	95.12	10.25	2.18
		22	8.59	9.50	9.00	7.98	7.98	7.94	10.80	86.74	86.75	87.43	10.57	2.31
30	18	23	8.19	8.97	8.59	7.51	7.51	7.47	10.80	87.52	87.64	88.32	10.46	2.27
		24	7.78	8.58	8.19	7.11	7.11	7.06	10.80	85.22	85.25	86.02	10.46	2.28
		25	7.36	8.18	7.78	6.71	6.71	6.66	10.80	83.80	83.86	84.61	10.44	2.27
		26	6.93	7.78	7.36	6.32	6.32	6.27	10.80	82.40	82.40	83.31	10.43	2.28
		27	6.47	7.35	6.93	5.91	5.90	5.86	10.80	81.34	81.40	82.23	10.41	2.27
		22	8.59	9.40	9.00	8.27	8.27	8.27	9.43	93.15	93.02	93.30	10.26	2.08
		23	8.19	8.69	8.59	7.68	7.69	7.67	9.43	94.76	94.80	94.88	10.19	2.13
30	21	24	7.78	8.29	8.19	7.18	7.19	7.16	9.43	95.38	95.60	95.54	10.20	2.15
		25	7.36	8.17	7.78	6.82	6.84	6.79	9.43	88.08	87.69	88.54	10.40	2.25
		26	6.93	7.67	7.36	6.36	6.37	6.33	9.43	87.77	87.28	88.24	10.32	2.23
		27	6.47	7.26	6.93	5.92	5.94	5.89	9.43	85.91	85.72	86.65	10.32	2.23
		25	7.36	8.18	7.78	7.09	7.10	7.09	8.19	92.88	92.46	93.04	10.20	2.09
30	24	26	6.93	7.51	7.36	6.50	6.51	6.49	8.19	94.42	94.39	94.38	10.18	2.13
		27	6.47	7.08	6.93	5.97	5.99	5.96	8.19	95.16	95.42	95.20	10.18	2.14

Table 7 The MLP, PMLEs, and three 95% predictive intervals with their corresponding coverage probability of the reversed $\operatorname{SOSs}\left(\gamma_{i}=2(n-i)+1\right), X_{s, n, \gamma}^{(D)}$, when the unknown parameters are replaced with their PMLEs

n	r	s	$X_{s+1, n, \underline{\gamma}}^{(D)}$	$\widehat{X}_{s, n, \underline{\gamma}}^{(D)}$	$X_{s, n, \underline{\gamma}}^{(D)}$	L_{1}	L_{2}	L_{3}	U	$C P_{1}$	$C P_{2}$	$C P_{3}$	$\widehat{\sigma}$	$\widehat{\beta}$
	18	19	13.80	15.09	14.45	13.13	13.12	13.14	15.13	94.22	94.16	94.29	10.20	1.98
		20	13.17	14.01	13.80	12.37	12.37	12.34	15.13	94.73	94.72	94.79	10.52	2.18
		21	12.56	13.54	13.17	11.67	11.67	11.62	15.13	93.36	93.36	93.68	10.68	2.23
		22	11.97	13.11	12.56	11.07	11.07	11.01	15.13	89.48	89.59	90.06	10.84	2.27
30		23	11.39	12.61	11.97	10.49	10.49	10.43	15.13	85.95	85.94	86.75	10.89	2.30
		24	10.80	12.00	11.39	9.89	9.89	9.83	15.13	84.68	84.65	85.33	10.84	2.29
		25	10.19	11.39	10.80	9.31	9.31	9.24	15.13	83.58	83.46	84.40	10.80	2.28
		26	9.54	10.77	10.19	8.72	8.72	8.65	15.13	82.55	82.46	83.35	10.76	2.28
		27	8.82	10.12	9.54	8.10	8.10	8.04	15.13	80.89	81.15	81.91	10.72	2.27
	21	22	11.97	13.17	12.56	11.49	11.50	11.49	13.17	93.84	93.44	93.94	10.36	2.06
		23	11.39	12.11	11.97	10.68	10.69	10.66	13.17	95.12	95.12	95.10	10.33	2.13
30		24	10.80	11.69	11.39	10.01	10.03	9.98	13.17	93.73	93.73	93.95	10.50	2.19
30		25	10.19	11.25	10.80	9.40	9.43	9.37	13.17	90.29	90.11	90.67	10.63	2.23
		26	9.54	10.69	10.19	8.79	8.82	8.75	13.17	86.98	86.45	87.52	10.66	2.24
		27	8.82	10.03	9.54	8.12	8.16	8.08	13.17	85.93	85.29	86.46	10.61	2.24
	24	25	10.19	11.39	10.80	9.81	9.82	9.80	11.39	93.06	92.73	93.24	10.35	2.09
		26	9.54	10.46	10.19	8.97	9.00	8.95	11.39	93.56	93.55	93.71	10.38	2.15
		27	8.82	9.84	9.54	8.19	8.23	8.17	11.39	93.44	93.42	93.59	10.39	2.16

Table 8 Two 95% reconstructive intervals with their coverage probability, the MLR, and RMLEs of the reversed OOSs, $X_{r: n}$, based on the reconstructive pivotal quantities U_{1} and V_{1} when the parameters are unknown

Step 6. for the reconstruction problem, apply Theorems 2.1, 3.1 (for small values of n) and Theorems 3.2, and 3.3 (for large values of n) to compute the required quantiles,
Step 7. find the MLP and the PMLEs of the parameters based on the first r DGOSs, from (4.7),
Step 8. from the obtained results of Sects. 2 and 3, compute the upper and lower limits of the predictive (reconstructive) intervals, when:
(i) the true values of parameters are known and
(ii) the parameters are replaced with their PMLEs or RMLEs,

Step 9. check whether the observed value of $X_{s, n, \underline{\gamma}}^{(D)}\left(X_{r, n, \underline{\gamma}}^{(D)}\right)$ did belong to the predictive (reconstructive) interval or not?
Step 10. repeat Steps 7, 8, and $9 M$ times,
Step 11. finally, compute the percentage of coverage probability, that is, the percent that the true value of the unobserved DGOS lies inside the predictive (reconstructive) interval, the average of the lower and upper limits.

Remark 5.1 1. The simulation studies are based on $M=100,000$ replicates.
2. All the computations in this paper are performed by Mathematica 12.3.

6 Conclusion

In this paper, some predictive results concerning DGOSs based on the inverse Weibull distribution were considered. More specifically, different predictive and reconstructive pivotal quantities were proposed and their exact distributions were derived. Accordingly, some predictive and reconstructive intervals were constructed. Moreover, the MLP and the PMLEs of DGOSs based on the inverse Weibull distribution were discussed. A comprehensive simulation study backs up the existence and uniqueness of the MLP and PMLEs (Tables 1 and 2). The simulation studies revealed that:

1. The probability coverage is closer to the theoretical level (95\%) whenever the distribution parameters are known.
2. If the distribution parameters are unknown, the probability coverage is lower than the theoretical level. However, the predictive intervals become shorter.
3. In most cases, the lower limits of the three predictive intervals are close to each other up to at least one decimal place.
4. As $s-r$ increases, the interval width increases for all the predictive and reconstructive intervals.
5. The MLP, RML, PMLEs, and RMLEs perform well when they are compared with the true values, whenever $s-r$ is small.
6. For small samples, the reconstructive pivotal quantities U_{1} and V_{1} are recommended (see Tables 5 and 8).
7. If the sample size is greater than 30 , the predictive pivotal quantity U_{2} and the reconstructive pivotal quantities V_{2} and V_{3} are recommended.

Acknowledgements The author is grateful to Professor Werner G. Müller and the referees for their many valuable comments which improve the presentation of the paper substantially.

Funding Open access funding provided by The Science, Technology \& Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ahsanullah M (1980) Linear prediction of record values for the two parameter exponential distribution. Ann Inst Stat Math 32(3):363-368. https://doi.org/10.1007/BF02480340
Ahsanullah M (2004) Characterization of the uniform distribution by dual generalized order statistics. Commun Stat 33(12):2921-2928
Akgül FG, Senoǧlu B, Arslan T (2016) An alternative distribution to Weibull for modeling the wind speed data: inverse Weibull distribution. Energy Convers Manage 114:234-240
Al-Hussaini EK (1999) Predicting observables from a general class of distributions. J Stat Plan Inference 79:79-91
Al-Hussaini EK, Ahmad AB (2003) On Bayesian predictive distributions of generalized order statistics. Metrika 57(2):165-176
Al-Mutairi JS, Raqab MZ (2020) Confidence intervals for quantiles based on samples of random sizes. Stat Pap 61(1):261-277. https://doi.org/10.1007/s00362-017-0935-3
Aly AE (2015) Prediction intervals of future generalized order statistics based on generalized extreme value distribution. Prob Stat Forum 8:148-156
Aly AE (2016) Prediction and reconstruction of future and missing unobservable modified Weibull lifetime based on generalized order statistics. J Egyptian Math Soc 24(2):309-318. https://doi.org/10.1016/j. joems.2015.04.002
Aly AE (2022) Prediction of the exponential fractional upper record values. Math Slovaca 72(2):491-506. https://doi.org/10.1515/ms-2022-0032
Aly AE, Barakat HM, El-Adll ME (2019) Prediction intervals of the record-values process. Revstat Stat J 17(3):401-427
Asgharzadeh A, Ahmadi J, Mirzazadeh ZG, Valiollahi R (2012) Reconstruction of the past failure times for the proportional reversed hazard rate mode. J Stat Comput Simul 82(3):475-489. https://doi.org/ 10.1080/00949655.2010.542550

Barakat HM, El-Adll ME (2009) Asymptotic theory of extreme dual generalized order statistics. Statist Probab Lett 79:1252-1259. https://doi.org/10.1016/j.spl.2009.01.015
Barakat HM, El-Adll ME, Aly AE (2011) Exact prediction intervals for future exponential lifetime based on random generalized order statistics. Comput Math Appl 61(5):1366-1378. https://doi.org/10.1016/j. camwa.2011.01.002
Barakat HM, El-Adll ME, Aly AE (2014) Prediction intervals of future observations for a sample of random size from any continuous distribution. Math Comput Simul 97:1-13. https://doi.org/10.1016/ j.matcom.2013.06.007

Barakat HM, Khaled OM, Ghonem HA (2020) Predicting future lifetime for mixture exponential distribution. Commun Stat. https://doi.org/10.1080/03610918.2020.1715434
Barakat HM, Khaled OM, Ghonem HA (2021) New method for prediction of future order statistics. Qual Technol Quant Manag 18(10):101-116. https://doi.org/10.1080/16843703.2020.1782087

Barakat HM, Nigm EM, El-Adll ME, Yusuf M (2018) Prediction of future exponential lifetime based on random number of generalized order statistics under a general set-up. Stat Pap 59(2):605-631. https:// doi.org/10.1007/s00362-016-0779-2
Burkschat M, Cramer E, Kamps U (2003) Dual generalized order statistics. Metron 61:13-26
David HA, Nagaraja HN (2003) Order statistics, 3rd edn. Wiley, Hoboken, NJ
El-Adll ME (2011) Predicting future lifetime based on random number of three parameters Weibull distribution. Math Comput Simul 81(9):1842-1854. https://doi.org/10.1016/j.matcom.2011.02.003
El-Adll ME (2021) Inference for the two-parameter exponential distribution with generalized order statistics. Math Popul Stud 28(10):1-23. https://doi.org/10.1080/08898480.2019.1681187
El-Adll ME, Aly AE (2016) Prediction intervals of future generalized order statistics from pareto distribution. J Appl Stat Sci 22(1-2):111-125
El-Adll ME, Aly AE (2016) Reconstructing past fractional record values. J Egyptian Math Soc 24(4):622628. https://doi.org/10.1016/j.joems.2016.04.002

Geisser S (1993) Predictive inference: an introduction. Chapman and Hall, London
Kaminsky KS, Rhodin LS (1985) Maximum likelihood prediction. Ann Inst Stat Math 37(1):507-517. https://doi.org/10.1007/BF02481119
Kamps U (1995) A concept of generalized order statistics. Teubner, Stuttgart
Kamps U, Cramer E (2001) On distributions of generalized order statistics. Statistics 35:269-280. https:// doi.org/10.1080/02331880108802736
Kotb MS, Raqab MZ (2021) Estimation of reliability for multi-component stress-strength model based on modified Weibull distribution. Stat Pap 62:2763-2797. https://doi.org/10.1007/s00362-020-01213-0
Lawless JF (1971) A prediction problem concerning samples from the exponential distribution with applications in life testing. Technometrics 13:725-730. https://doi.org/10.2307/1266949
Lawless JF (1977) Prediction intervals for the two parameter exponential distribution. Technometrics 19(4):469-472. https://doi.org/10.2307/1267887
Lingappaiah GS (1973) Prediction in exponential life testing. Can J Stat 1:113-117. https://doi.org/10. 2307/3314650
Mäkeläinen T, Schmidt K, Styan GPH (1981) On the existence and uniqueness of the maximum likelihood estimate of a vector-valued parameter in fixed-size samples. Ann Stat 9(4):758-767. https://doi.org/ 10.1214/aos/1176345516

Nagaraja HN (1986) Comparison of estimators and predictors from two-parameter exponential distribution. Sankhy Ser B 48:10-18
Shah Imtiyaz A, Barakat HM, Khan AH (2020) Characterizations through generalized and dual generalized order statistics, with an application to statistical prediction problem. Stat Probab Lett 163:108782. https://doi.org/10.1016/j.spl.2020.108782
Raqab ZM (2001) Optimal prediction-intervals for the exponential distribution based on generalized order statistics. IEEE Trans Reliab 50(1):112-115. https://doi.org/10.1109/24.935025
Sukhatme BV (1937) Tests of significance for samples of the χ^{2} population with two degrees of freedom. Ann Eugen 8:52-60
Sultan KS, Abd Ellah AH (2006) Exact prediction interval for exponential lifetime based on random sample size. Int J Comput Math 83(12):867-878
Wang J, Qin S, Jin S, Wu J (2015) Estimation methods review and analysis of offshore extreme wind speeds and wind energy resources. Renew Sustain Energy Rev 42:26-42

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: \boxtimes Amany E. Aly
 aabusabh@hotmail.com; aabusabh@science.helwan.edu.eg
 1 Department of Mathematics, Faculty of Science, Helwan University, Ain Helwan, Cairo, Egypt

