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Abstract
For a parametric model of distributions, the closest distribution in the model to the
true distribution located outside the model is considered. Measuring the closeness
between two distributions with the Kullback–Leibler divergence, the closest distri-
bution is called the “information projection.” The estimation risk of the maximum
likelihood estimator is defined as the expectation of Kullback–Leibler divergence
between the information projection and the maximum likelihood estimative density
(the predictive distribution with the plugged-in maximum likelihood estimator). Here,
the asymptotic expansion of the risk is derived up to the second order in the sample
size, and the sufficient condition on the risk for the Bayes error rate between the pre-
dictive distribution and the information projection to be lower than a specified value
is investigated. Combining these results, the “p/n criterion” is proposed, which deter-
mines whether the estimative density is sufficiently close to the information projection
for the given model and sample. This criterion can constitute a solution to the sample
size or model selection problem. The use of the p/n criteria is demonstrated for two
practical datasets.
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118 Y. Sheena

1 Introduction

Given a certain data set, an unknown probability distribution that generates the data
as the independent, identically distributed (i.i.d.) sample can be assumed. Under this
assumption, if a certain parametric distribution model is adopted to “explain” the data,
the first task is to find the “best” approximating distribution in the model. Because the
true distribution is assumed to be outside the model (except for some rare cases), the
“best” means the “closest” to the true distribution.

Consider the following parametric distribution model:

M = {g(x; θ) | θ = (θ1, . . . , θ p) ∈ �},

where g(x; θ) is the probability density function (p.d.f.) with respect to a reference
measure dμ on a measurable space. The p.d.f. of the unknown true distribution with
respect to dμ is denoted by g(x). If we use a certain divergence D[· | ·] to measure
the closeness between g(x) and g(x; θ), then the “best” approximating distribution in
M is given by the predictive distribution g(x; θ∗), where

θ∗ = arg min
θ∈�

D[g(x) | g(x; θ)].

Following Csiszár (1975), we will call g(x; θ∗) the “information projection” in this
paper.

Let θ̂ denote the maximum likelihood estimator (MLE) based on the i.i.d. sample
X = (X1, . . . , Xn) from g(x). Consider the predictive density g(x; θ̂ ). Since MLE
converges to θ∗ in probability (see, e.g., Theorem 5.21 of van der Vaart (1998)) as the
sample size, n, increases,

D[g(x; θ∗) | g(x; θ̂ )] (1)

also converges to zero in probability. The predictive density g(x; θ̂ ) is produced with
plugged-inMLE.This typeof predictive density is called “estimative density”.Another
common method to formulate the predictive density is Bayesian predictive density.
For the asymptotic properties of Bayesian predictive density, see e.g. Komaki (1996),
Hartigan (1998), Komaki (2015) and Zhang et al. (2018).

Take the expectation

R[g(x; θ∗) | g(x; θ̂ )] = E
[
D[g(x; θ∗) | g(x; θ̂ )]

]
(2)

with respect to the i.i.d. sample X = (X1, . . . , Xn) from g(x). Throughout this study,
the expectation under g(x) is denoted by E[·], while the expectation under g(x; θ∗)
is denoted by Eθ∗ [·]. We call (2) “estimation risk” for discriminating it with the “total
risk”

R[g(x) | g(x; θ̂ )] = E
[
D[g(x) | g(x; θ̂ )]

]
.
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Convergence of estimative density: criterion for… 119

The estimation risk converges to zero under some mild conditions. We will use this
estimation risk as the measure of the closeness between g(x; θ∗) and g(x; θ̂ ).

Given the data and the model, we need to knowwhether g(x; θ̂ ) is sufficiently close
to the information projection. Thus, with a certain threshold C , the following criterion
is considered.

R̂[g(x; θ∗) | g(x; θ̂ )] < C, (3)

where the left hand side is the estimator of the estimation risk.
This criterion gives a solution to the following two problems.

• Sample size problem: With the model fixed, it indicates exactly how much sample
size n is needed for g(x; θ̂ ) to be close to the information projection. If the criterion
is not satisfied, we need to collect more sample.

• Model selection problem: With the sample size fixed, it tells us whether a model
is simple enough (especially the dimension of the parameter p is small enough) to
guarantee that g(x; θ̂ ) is close to the information projection. Unless the criterion
is satisfied, simplifying the model could be a remedy.

As seen later in the manuscript, the estimation risk is mainly determined by p/n when
the information projection is close to the true distribution, andwewill call this criterion
“p/n criterion” hereafter.

In this paper, as the divergence, Kullback–Leibler divergence is taken, that is,

D[g(x) | g(x; θ)] =
∫

g(x) log
(
g(x)/g(x; θ)

)
dμ.

Note that for this divergence, the information projection is given by

E

[
∂

∂θ i
log g(X; θ)

]
= 0, i = 1, . . . , p, (4)

and its solution θ∗ is naturally estimated via the MLE, which is the solution of

n∑
t=1

∂

∂θ i
log g(Xt ; θ) = 0, i = 1, . . . , p.

For the other divergences, the information projection is more complicated, and its
natural estimator is not as simple as MLE.

This paper aims to present a simple and practical criterion (3), and proceeds as
follows;

1. The asymptotic expansion of the estimation risk is derived.
2. The asymptotic expansion combined with the estimated moments gives the esti-

mator of the estimation risk.
3. The reasonable (persuasive) threshold C is proposed.
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120 Y. Sheena

An overview of the contents of each section is now provided. First, the asymptotic
expansion of the estimation risk is given for both the general model (Sect. 2.1) and
an exponential family model (Sect. 2.2). The estimator of the estimation risk is given
in Sect. 2.3. Next, the concrete threshold C is proposed in view of the Bayes error
rate. With these results combined, p/n criterion is proposed in an explicit form (Sect.
3.1). As an application of p/n criterion, the bin number problem in a multinomial
distribution or a histogram is considered (Sect. 3.2). In Sect. 3.3, the algorithm for
calculating the p/n criterion in the case of an exponential family is described. In Sect.
3.4, the use of the p/n criterion is demonstrated for two practical examples.

2 Estimation risk for general case and exponential family

In this section, the asymptotic expansion with respect to n of the estimation risk (2) is
presented up to the first-order term for a general distribution, and up to the second-order
term for an exponential family distribution.

Hartigan (1998) derives the asymptotic expansion of the estimation risk (2) up to
the second order under the assumption g(x) belongs to M. The result here is the
extension of his result in the sense that the true distribution is not necessarily located
inM.

On the risk of an exponential family, the most relevant work is that of Barron and
Sheu (1991). They consider the convergence rate of the K–L divergence (not the risk,
but the divergence itself) for an exponential family on a compact set. Their interest
lies in the closeness between g(x) and g(x; θ̂ ), while this research focuses on the
closeness between g(x; θ∗) and g(x; θ̂ )

2.1 Estimation risk for general case

Taylor expansion of

D[g(x; θ∗) | g(x; θ̂ )] =
∫

g(x; θ∗) log(g(x; θ∗)/g(x; θ̂ ))dμ

as a function of θ̂ around θ∗ is considered:

D[g(x; θ∗) | g(x; θ̂ )]
= −

∑
i

∫
∂

∂θ i
g(x; θ)

∣∣∣∣
θ=θ∗

dμ (θ̂ i − θ i∗)

+ 1

2

∑
i, j

∫
g(x; θ∗)

( ∂

∂θ i
log g(x; θ)

∣∣∣∣
θ=θ∗

)( ∂

∂θ j
log g(x; θ)

∣∣∣∣
θ=θ∗

)
dμ

× (θ̂ i − θ i∗)(θ̂ j − θ
j∗ )

− 1

2

∑
i, j

∫
∂2

∂θ i∂θ j
g(x, θ)

∣∣∣∣
θ=θ∗

dμ (θ̂ i − θ i∗)(θ̂ j − θ
j∗ )
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Convergence of estimative density: criterion for… 121

− 1

3!
∑

i1,i2,i3

∫
g(x; θ∗)

∂3 log g(x, θ)

∂θ i1∂θ i2∂θ i3

∣∣∣∣
θ=θ̃∗

dμ(θ̂ i1 − θ i1∗ )(θ̂ i2 − θ i2∗ )(θ̂ i3 − θ i3∗ ),

where θ̃∗ is a point between θ∗ and θ̂ . Because

∫
∂

∂θ i
g(x; θ)dμ = 0,

∫
∂2

∂θ i∂θ j
g(x, θ)dμ = 0, ∀θ ∈ �,

it turns out that

R[g(x; θ∗) | g(x; θ̂ )] = 1

2

∑
i, j

g∗
i j (θ∗)E[(θ̂ i − θ i∗)(θ̂ j − θ

j∗ )]

− 1

3!
∑

i1,i2,i3

E[τi1,i2,i3(θ̂ i1 − θ i1∗ ) · · · (θ̂ i3 − θ i3∗ )].

Here,

τi1,i2,i3 =
∫

g(x; θ∗)
∂3 log g(x, θ)

∂θ i1∂θ i2∂θ i3

∣∣∣∣
θ=θ̂∗

dμ

and g∗
i j indicates the components of the Fisher metric matrix on M, given by

g∗
i j (θ∗) = (G∗(θ∗))i j = Eθ∗

[( ∂

∂θ i
log g(x; θ)

∣∣∣
θ=θ∗

)( ∂

∂θ j
log g(x; θ)

∣∣∣
θ=θ∗

)]
.

As θ∗ is the solution of equation (4) and θ̂ is its empirical solution (i.e., the M-
estimator), the following result holds (see, e.g., Theorem5.21 of van derVaart (1998)).

√
n
(
θ̂ − θ∗

) d→ Np(0, G̃
−1GG̃−1),

where

gi j (θ∗) = (G(θ∗))i j = E
[( ∂

∂θ i
log g(X; θ)

∣∣∣
θ=θ∗

∂

∂θ j
log g(X; θ)

∣∣∣
θ=θ∗

)]
,

g̃i j (θ∗) = (G̃(θ∗))i j = −E
[ ∂2

∂θ j∂θ i
log g(X; θ)

∣∣∣
θ=θ∗

]
.

For a general distribution, the estimation risk is asymptotically given as follows;

Theorem 1

R[g(x; θ∗) | g(x; θ̂ )] = (2n)−1tr
(
G̃(θ∗)−1G(θ∗)G̃(θ∗)−1G∗(θ∗)

)
+ O(n−2). (5)
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122 Y. Sheena

Because the n−2-order term is prohibitively lengthy, if it is incorporated into the p/n
criterion, the result is not suitable for practical use. Hence, it is omitted here. (For
interested readers, Theorem 1 of Sheena (2021) is being referred to. You can also find
the proof of the whole expansion there.)

Note that, if g(x) exists within the model, thenG = G̃ = G∗. Hence, the first-order
term equals p/(2n) (for more general result for the well-specified model, see Sheena
(2018)). Thus, the first-order term is mainly determined by p if g(x; θ∗) is close to
g(x).

2.2 Estimation risk for exponential family

This subsection investigates the estimation risk when the parametric model is an expo-
nential family (for general references on exponential families, see Brown (1986),
Barndorff-Nielsen (2014) and Sundberg (2019)). In the case of the exponential fam-
ily, the n−2-order term in the asymptotic expansion of the estimation risk has a simpler
form.

Let the model M be given by

M =
{
g(x; θ) = exp

( p∑
i=1

θ iξi (x) − �(θ)
) ∣∣∣θ ∈ �

}
. (6)

where �(θ) is the cumulant-generating function of the ξ terms, such that,

�(θ) = log
∫

exp
( p∑
i=1

θ iξi (x)
)
dμ.

The “dual coordinate” η is defined as

ηi (θ) = ∂�(θ)

∂θ i
= Eθ [ξi ], i = 1, . . . , p.

In particular, from the definition of θ∗ (see (4)),

η∗
i = ηi (θ∗) = Eθ∗ [ξi ] = E[ξi ], i = 1, . . . , p.

The last equation requires the means of ξi to coincide under g(x) and g(x; θ∗). It is
known that g(x; θ∗) maximizes the Shannon entropy among all probability distribu-
tions of (ξ1, . . . , ξp) with a given E[ξi ], i = 1, . . . p (the “entropy maximization
property” of an exponential family; see, e.g., Wainwright and Jordan (2008)). The
K–L divergence is the difference between the cross-entropy and Shannon entropy.

The η coordinate is easily estimated. In fact, η̂, the MLE for η, is the sample mean
of ξ . Hence,

η̂i = ∂�

∂θi
(θ̂) = ξ̄i

(= n−1
n∑

t=1

ξi (Xt )
)
. (7)
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Convergence of estimative density: criterion for… 123

In contrast, θ̂ is difficult to obtain explicitly because � or its derivative cannot be
theoretically obtained for a complex model. This could pose a serious obstacle to
application of an exponential family model to a practical problem, and is discussed in
Sect. 3.3.

Let the matrix �̈(θ) be defined by

(�̈(θ))i j = ∂2�(θ)

∂θ i∂θ j
= Eθ [(ξi − ηi )(ξ j − η j )], 1 ≤ i, j ≤ p.

Thus, �̈ is a covariance matrix of the ξi terms under g(x; θ); hence, it is positive
definite. Therefore, �(θ) is a convex function. The notable property

g∗
i j (θ) = g̃i j (θ), 1 ≤ i, j ≤ p, ∀θ

is proven by the fact that both sides are equal to (�̈(θ))i j .
The following notation is used for the third- or fourth-order cumulant:

κi jk = E[(ξi − η∗
i )(ξ j − η∗

j )(ξi − η∗
k )]

κ∗
i jk = Eθ∗ [(ξi − η∗

i )(ξ j − η∗
j )(ξi − η∗

k )] = ∂3�(θ∗)
∂θ i∂θ j∂θk

κ∗
i jkl = Eθ∗ [(ξi − η∗

i )(ξ j − η∗
j )(ξi − η∗

k )(ξi − η∗
l )]

− Eθ∗ [(ξi − η∗
i )(ξ j − η∗

j )]Eθ∗ [(ξk − η∗
k )(ξl − η∗

l )]
− Eθ∗ [(ξi − η∗

i )(ξk − η∗
k )]Eθ∗ [(ξ j − η∗

j )(ξl − η∗
l )]

− Eθ∗ [(ξi − η∗
i )(ξl − η∗

l )]Eθ∗ [(ξ j − η∗
j )(ξk − η∗

k )] = ∂4�(θ∗)
∂θ i∂θ j∂θk∂θ l

for 1 ≤ i, j, k, l ≤ p.
Next theorem states the asymptotic expansion of the estimation risk for an exponen-

tial family distribution. In the case of an exponential family, the second-order term is
relatively simple and can be practically used if it is incorporated into the p/n criterion
proposed in the next section.

In the theorem, for brevity, Einstein notation is used and the dependency on θ∗ is
omitted; e.g., G for G(θ∗) and g̃i j for g̃i j (θ∗).

Theorem 2 If the parametric model is an exponential family, the estimation risk is
given by

R[g(x; θ∗) | g(x; θ̂ )] = 1

2n
tr
(
G̃−1G

)

+ 1

24n2

[
−8g̃uk g̃ls g̃mtκkstκ

∗
lmu

+ 9g̃kog̃lu g̃sv g̃tw g̃hmκ∗
lmoκ

∗
sth(gkugvw + gkvguw + gkwguv)

− 3g̃kw g̃ls g̃mu g̃tvκ∗
lmtw(gksguv + gkugsv + gkvgsu)

]
+ O(n−3).

(8)
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124 Y. Sheena

Proof The calculation is carried out straightforwardly from the expansion for the
general distribution. See Sheena (2021) for the proof. �	
The estimation risk up to the second-order term is determined by the moments of the
ξi terms, gi j , and κi jk under g(x), as well as their moments under g(x; θ∗), g̃i j , κ∗

i jk ,
and κ∗

i jkl .

2.3 Estimator of estimation risk

We will use Theorem 1 and 2 for the approximation of the estimation risk. In order
to establish the criterion (3), we need the estimator of the (approximated) estimation
risk. The moments contained in (5) or (8) needs to be estimated; The second moments
(Fisher information metric)

G∗ = (g∗
i j ), G̃ = (g̃i j ), G = (gi j )

and cumulant

κi jk, κ∗
i jk, κ∗

i jkl , 1 ≤ i, j, k, l ≤ p.

Naive estimators of these properties (denoted by the “hat” mark: Ĝ, κ̂i jk , etc.) are
gained by replacing θ∗ withMLE θ̂ , and the expectation E[·]with the empirical mean.

First the estimator of the second moments are given as follows;

(Ĝ)i j = n−1
n∑

t=1

∂

∂θ i
log g(Xt ; θ)

∣∣∣
θ=θ̂

∂

∂θ j
log g(Xt ; θ)

∣∣∣
θ=θ̂

(
ˆ̃G)i j = −n−1

n∑
t=1

∂2

∂θ i∂θ j
log g(Xt ; θ)

∣∣∣
θ=θ̂

(Ĝ∗)i j =
∫

g(x; θ̂ )
( ∂

∂θ i
log g(x; θ)

∣∣∣
θ=θ̂

)( ∂

∂θ j
log g(x; θ)

∣∣∣
θ=θ̂

)
dμ.

Now we have the p/n criterion for a general distribution with a given C .

Criterion for a general distribution

C ≥ 1

2n
tr
( ˆ̃G−1Ĝ ˆ̃G−1Ĝ∗) (9)

Next the criterion for the exponential family is considered. Ĝ equals the sample
covariance matrix of the ξi terms, 
̂:

Ĝ = 
̂, ĝi j = (

̂

)
i j ,

(

̂

)
i j = n−1

n∑
t=1

(ξi (Xt ) − ξ̄i )(ξ j (Xt ) − ξ̄ j ), (10)
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Convergence of estimative density: criterion for… 125

where ξ̄i = n−1 ∑
t ξi (Xt ). Similarly, the estimator of the true third-order cumulant

is given by the sample third-order cumulant:

κ̂i jk = n−1
n∑

t=1

(ξi (Xt ) − ξ̄i )(ξ j (Xt ) − ξ̄ j )(ξk(Xt ) − ξ̄k). (11)

Further,

ˆ̃G = �̈(θ̂), ˆ̃gi j = (
�̈(θ̂)

)
i j (12)

κ̂∗
i jk = ∂3

∂θ i∂θ j∂θk
�(θ)

∣∣∣
θ=θ̂

(13)

κ̂∗
i jkl = ∂4

∂θ i∂θ j∂θk∂θl
�(θ)

∣∣∣
θ=θ̂

. (14)

Consequently, for an exponential family, the p/n criterion is given as follows.

Criterion for an exponential family

C ≥ 1

2n
tr
(

̂(�̈(θ̂))−1

)

+ 1

24n2

[
−8 ˆ̃guk ˆ̃gls ˆ̃gmt κ̂kst κ̂

∗
lmu + 9 ˆ̃gko ˆ̃glu ˆ̃gsv ˆ̃gtw ˆ̃ghm κ̂∗

lmoκ̂
∗
sth(ĝku ĝvw + ĝkv ĝuw

+ ĝkw ĝuv) − 3 ˆ̃gkw ˆ̃gls ˆ̃gmu ˆ̃gtvκ̂∗
lmtw(ĝks ĝuv + ĝku ĝsv + ĝkv ĝsu)

]
.

(15)

How to determine C in (9) or (15) is studied in the next section. Once C is deter-
mined, we can use these criterion for the two problems, that is, the sample size problem
and the model selection problem, as introduced in Sect. 1.

3 Criterion for model complexity and sample size

In this section, we complete p/n criterion by providing reasonable thresholdC for (9)
or (15) (Sect. 3.1). As an immediate application of the criterion, we deal with the bin
number problem in a multinomial distribution or a histogram (Sect. 3.2). We also state
the algorithm for the calculation of the n−2-order term in (15) (Sect. 3.3). In the end,
the use of the p/n criterion is demonstrated for two practical examples (Sect. 3.4).

3.1 Choice of threshold

Because the value of the divergence (1) or the risk (2) does not have an absolute
standard by itself, we relate it to another reasonable standard. One of the often used
measures of the closeness between the two distributions is the error rate, which is more
intuitive than the divergence and is suitable for setting a threshold. Let gi (x), i = 1, 2

123



126 Y. Sheena

be the p.d.f. If both gi (x), i = 1, 2, are known, the Bayes discriminant rule (with the
noninformative prior) is as follows.

For the sample X from either g1(x) or g2(x),

gi1(X)

gi2(X)
> 1 ⇐⇒ Judge that X is generated from g(x; θi1)

The Bayes error rate, Er , i.e., the probability that this rule gives an error, is formally
defined by

Er [g1(x) | g2(x)] = 1

2

∫
min

(
g1(x), g2(x)

)
dμ.

The next theorem states the relation between Er and the K–L divergence.

Theorem 3 If D[g1(x) | g2(x)] ≤ δ, then

Er [g(x; θ1) | g(x; θ2)] ≥ min{t | (x, t) ∈ A(δ)},

where

A(δ) =
{
(x, t)

∣∣∣ x log
(1 − 2t

x
+ 1

)
+ (1 − x) log

(2t − 1

1 − x
+ 1

)

= −δ, 0 < x < 2t < 1
}
.

Proof See Appendix. �	
Corollary 1 Let δ = D[g(x; θ1) | g(x; θ2)] and α be a certain small positive number
(e.g. α = 0.05, 0.01). If

min{t | (x, t) ∈ A(δ)} ≥ 1/2 − α, (16)

then

Er [g(x; θ1) | g(x; θ2)] ≥ 1/2 − α.

Analytical calculation of min{t | (x, t) ∈ A(δ)} is difficult. The approximation when
t is close to 1/2 is given here. As log (1 + x) � x − x2/2 around x = 0,

x log
(1 − 2t

x
+ 1

)
+ (1 − x) log

(2t − 1

1 − x
+ 1

)

= x
(1 − 2t

x

)
− x

2

(1 − 2t

x

)2 + (1 − x)
2t − 1

1 − x
− (1 − x)

2

(2t − 1

1 − x

)2 = −1

2

(1 − 2t)2

x(1 − x)
.

Therefore, A(δ) is approximated by

A∗(δ) =
{
(x, t)

∣∣∣ t = 1

2

(
1 − √

2δx(1 − x)
)
, 0 < x < 2t < 1

}
.
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Convergence of estimative density: criterion for… 127

Note that

min{t | (x, t) ∈ A∗(δ)} ≥ min
0<x<1

1

2

(
1 − √

2δx(1 − x)
)

= 1

2
− √

δ/8,

Hence, the condition
√

δ/8 ≤ α or, equivalently, δ ≤ 8α2 is approximately sufficient
for (16). Let the solution of δ denoted by Cα for the equation

min{t | (x, t) ∈ A(δ)} = 1/2 − α,

or more simply, let Cα be given by

Cα = 8α2. (17)

In the latter case, if α = 0.05(0.01), then Cα = 1/50(1/1250). The final form of p/n
criterion is given by substituting C in (9) or (15) with Cα .

3.2 p/n Criterion for multinomial distribution

In this section, we present a formula for the bin number of a multinomial distribution
using the p/n criterion. The bin number problem in a histogram can be treated sim-
ilarly. Although several formulas have been proposed on the bin number (or the bin
width) in the histogram such as Sturges’ formula, Freedman-Diaconis’ formula (see
the Chapter 3 of Scott (2015)), the formula here is derived from a new perspective.

In view of the true distribution g(x) and the information projection g(x; θ∗), a
multinomial distribution can be seen as the approximation by the step function model.
Let

M = {g(x;m) |m = (m0, . . . ,mp)}

with

g(x;m) =
p∑

i=0

I (x ∈ Si )
mi

Vol(Si )
,

where Si , i = 0, 1, . . . , p is the partition of the range of x with volume

Vol(Si ) =
∫

Si
1dμ(x),

and I (x ∈ Si ) is an indicator function of Si . In this case, from (4), the information
projection g(x;m∗) is given bym∗

i = P(X ∈ Si |g(x)). The step-functionmodel is not
an exponential family. However, we easily notice that Kullback–Leibler divergence
between the two step functions (where dμ is the continuous measure) is equal to the
divergence between the two corresponding multinomial distributions (where dμ is
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the counting measure) . Hence, the argument of the estimation risk can be deduced
from that of the multinomial distribution model. It is notable that, if X is originally a
discrete random variable, the model always contains g(x).

Consider a multinomial distribution with p + 1 possible values xi , i = 0, . . . , p,
with the corresponding probabilitiesm = (m0, . . . ,mp). This is an exponential family
(6), where

θ i = log(mi/m0), i = 1, . . . , p,

ξi (x) =
{
1, if x = xi ,

0, otherwise,
i = 1, . . . , p

and dμ is the counting measure on {x1, . . . , xp}. Here,

�(θ) = log
( p∑
i=0

exp(θi )
) = − logm0 = − log

(
1 −

p∑
i=1

mi
)
.

The asymptotic expansion of the estimation risk up to the second order can be derived
as follows (this corresponds to equation (41) of Sheena (2018) with α = −1).

R[g(x; θ) | g(x; θ̂ )] = p

2n
+ 1

12n2
(M − 1) + O(n−3), M =

p∑
i=0

mi
−1, (18)

where θ = (m1, . . . ,mp) is the true-distribution free parameter. Note that if some
mi ’s are close to zero, the convergence speed reduces considerably.

If we combine the first-order approximation in (18) with the threshold (17), p/n
criterion becomes

p

n
≤ 16α2.

If we adopt α = 0.05(0.01), then the sample size n or the bin number p + 1 is
determined by the formula;

Simple criterion for the sample size or the bin number

p

n
≤ 1/25(1/625). (19)

The second-order approximation gives the following p/n criterion:

96n2α2 − 6np − (M̂ − 1) > 0,

where

M̂ =
p∑

i=0

m̂−1
i
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and m̂i is the MLE, the sample relative frequency, for each i . Applying the criterion
for n determination gives the formula

n ≥ 3p +
√
9p2 + 96α2(M̂ − 1)

96α2 . (20)

In contrast, if the criterion is used for the bin number problem, the formula is given
by

6np + M̂ < 96n2α2 + 1.

Use of these criteria for practical examples is discussed in Sect. 3.4.

3.3 Algorithm for p/n criterion of exponential family

This section describes calculation of the right-hand side of (15). If we can calculate
the function �(θ) analytically, the algorithm is simply the following.

Step 1 Calculate η̂i = ξ̄i , i = 1, . . . , p from the sample.
Step 2 Solve the simultaneous equations w.r.t. θ in (7) to give θ̂ = (θ̂1, . . . , θ̂p):

η̂i = ηi (θ̂) = ∂�

∂θi
(θ̂), i = 1, . . . , p.

Step 3 Calculate (12), (13), and (14) from �(θ̂).
Step 4 Calculate (10) and (11) from the sample.
Step 5 Calculate the right-hand side of (15) and compare it with Cα .

Often, �(θ) is not explicitly given, especially for a complex model. Then, θ̂ can be
iteratively calculated using the Newton--Raphson method with the Jacobian matrix
(12). Because �̈(θ) is the variance-covariance matrix of the ξi terms under the g(x; θ)

distribution, its value can be approximated from the generated sample. The alternative
methods are as follows.

Step 2’ Iteratively search for θ̂ with

θ(n+1) = θ(n) − (
η(θ(n)) − η̂

)(
�̈(θ(n))

)−1
,

where η(θ(n)) and �̈(θ(n)) are approximated by the sample mean and the
sample covariance matrix of the ξi terms from the g(x; θ(n)) distribution.

Further, (12), (13), and (14) can also be approximated using the generated sample.

Step 3’ Approximate (12), (13), and (14) using the sample moments and cumulants,
where the sample is generated from g(x; θ̂ ).

The point here is that �(θ) is not required for sample generation in Steps 2’ and
3’ if methods such as MCMC (requiring no normalizing constant) are used. Although
Steps 2’ and 3’ are computationally heavy tasks, they enable construction of a complex
model without calculation of �.
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3.4 Real data examples for p/n criterion

This section demonstrates use of the p/n criterion for a particular problem through
two practical examples under the exponential family model.

Example 1 (Red Wine) The first example is a well-known dataset on wine quality,
taken from the U.C.I. Machine Learning Repository (https://archive.ics.uci.edu/ml/
datasets/wine+quality).

Only red wine data are used. The sample size is 1599, and the variables consist of
11 chemical substances (continuous variables) and “quality” indexes (integers from 3
to 8). The vector of the chemical substances and the “quality” variable are denoted by
x (1) = (x (1)

1 , . . . , x (1)
11 ) and x (2), respectively. We divided the sample into two halves

randomly, one of which (“data_base”) was used for the model formulation and the
other (“data_est”) was used for the estimation of the parameter.

For model formulation, we determined the following: normalization method of
the original data, the reference (probability) measure dμ(x) and ξ elements. Using
“data_base”, we proceed as;

1. Each variable x (1)
i (i = 1, . . . , 11) is divided by twice of its maximum such that its

range is [0, 1). Further, 2 is subtracted from each “quality” index to give a range
of {1, 2, . . . , 6}.

2. As dμ(x), 11 independent Beta distributions are applied to x (1) so that their means
and variances are equal to those of the “data_base”. The multinomial distribution
of x (2) is adopted, using each category’s sample relative frequency as the category
probability parameter (say, mi , i = 1, . . . , 6). In addition, x (1) and x (2) are taken
to be independent.

Consequently, dμ is selected as

x = (x (1), x (2)), dμ(x) =
11∏
i=1

x (1)
i

(β1i−1)
(1 − x (1)

i )
(β2i−1)

d(x (1))

×
6∏

i=1

mI (x (2)=i)
i d∗(x (2)),

where d(x (1)) is the Lebesgue measure on [0, 1]11, d∗(x (2)) is the counting measure
on {1, 2, . . . , 6}, and I (·) is the indicator function. Further, β1i , β2i , andmi satisfy the
relations

β1i

β1i + β2i
= Sample mean of x (1)

i , i = 1, . . . , 11

β1iβ2i

(β1i + β2i )2(β1i + β2i + 1)
= Sample variance of x (1)

i , i = 1, . . . , 11

mi = Relative frequency of i in x (2)
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3. The candidate for the ξi terms are as follows;

ξ1(x) = x (1)
1 x (1)

2 , ξ2(x) = x (1)
1 x (1)

3 , . . . ξ10(x) = x (1)
1 x (1)

11

ξ11(x) = x (1)
2 x (1)

3 , . . . ξ19(x) = x (1)
2 x (1)

11

· · ·
ξ55(x) = x (1)

10 x
(1)
11

and

ξ56(x) = x (1)
1 x (2), . . . ξ66(x) = x (1)

11 x
(2).

Because some of these terms are highly correlated, we eliminate one of the pair with
the correlation higher than 0.95. The following 20 ξi terms were removed from the
full model:

ξi , i = 8, 17, 19, 24, 25, 27, 32, 34, 38, 40, 43, 45, 46, 47, 49, 53, 58, 62, 64.

Consequently, an exponential family model with p = 47 is formulated. As the
probability distribution g(x; θ)dμ equals dμ when the θ terms all equal zero, it is
denoted by g(x; 0). Note that the g(x; θ∗) of this model is the closest to g(x; 0) in the
sense that

D[g(x; θ∗)|g(x; 0)] = min
h∈H

D[h(x)|g(x; 0)],

where H is the p.d.f. set of h(x) (w.r.t. dμ) that satisfies

Eh[ξi (X)] =
∫

h(x)ξi (x)dμ(x) = E[ξi (X)],

for each ξi in the model. This is the consequence of so-called “minimum relative
entropy characterization” of an exponential family” (see Csiszár (1975)).

Under the formulated exponential family model, the algorithm in the previous
section was implemented and the right-hand side of (15) was calculated using the
“data_est”, the size of which (n) equals 799. Because of the model complexity,
the explicit form of �(θ) could not be obtained; hence, Alternative Steps 2’ and
3’ were used. The R and RStan program codes for the whole risk calculation are
presented in GitHub (https://github.com/YSheena/P-N_Criteria_Program.git). The
first-and second-order terms and the estimation risk in the total of (15) were as follows;

First-order term: 2.95e-02, Second-order term: -1.30e-04, Estimation Risk: 2.93e-
02

Note that the second-order term contributes little to the estimation risk; thus, the
first-order approximation seems sufficient for this model and data. With the threshold
(17), the equation 2.93e-02=8α2 gives the solution α � 0.06. Hence the Bayes error
rate between g(x; θ̂ ) and g(x; θ∗) is higher than 0.44. If we set the threshold as
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Table 1 Abalones by sex and rings

1 2 3 4 5 6 7 8 9 10 11 12 13

F * * * * 4 16 44 122 238 248 200 128 88

I 1 1 12 51 100 216 267 274 173 92 62 21 24

M * * 3 6 11 27 80 172 278 294 225 118 91

14 15 16 17 18 19 20 21 22 23 24 25 ≤
F 56 41 30 26 19 15 12 7 3 6 4 *

I 14 10 7 7 5 2 2 1 * * * *

M 56 52 30 25 18 15 12 6 3 3 3 *

α = 0.05, we must trim the model further. For example, if we eliminate one of the ξ

elements from the pair with correlation higher than 0.9, then p becomes as small as
37. For this model, the estimation risk is lower than the target value 8∗ (0.05)2 = 0.02
as follows;

First-order term: 1.60e-02, Second-order term: 2.04e-04, EstimationRisk: 1.62e-02

Example 2 (Abalone Data) The next example also features a well-known dataset,
in this case, for the physical measurement of abalones (U.C.I. Machine Learning
Repository, https://archive.ics.uci.edu/ml/datasets/Abalone). This data comprise eight
properties (sex, length, diameter, etc.) of 4177 abalones. Here, only two discrete vari-
ables were considered: “sex” and “ring,” where “sex” had three values “Female,”
“Infant,” and “Male”; and “rings” had integer values from 1 to 29. The frequency of
each classified group by “sex” and “rings” is given in Table 1. The original frequen-
cies were aggregated at both ends. In the table, if a cell with a star mark is located
to the immediate left or right, the number in the cell is aggregated. For example, of
the female abalones, cells with 24 or more rings were aggregated to frequency 4. The
total number of cells was 63.

A multinomial distribution over 63 cells was considered; hence, p = 62. First the
simple criterion (19) is adopted, then

p/n = 62/4177 � 0.015 < 1/25,

but p/n > 1/625. Consequently, the model distribution is close to the information
projection (this case, the true distribution) to the extent that the Bayes error rate is
more than 0.45 but less than 0.49.

In order to use the second order term, M needs to be estimated. From the sample
relative frequency of each cell m̂i , where i = 0, . . . , 62,

M̂ =
62∑
i=0

m̂−1
i = 36128.33,
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Use of the n formula (20) yielded

n ≥ 1642,

which indicates the actual sample size 4177 is large enough for Bayes error rate 0.45.
However, to attain Bayes error rate of 0.49, the required sample size equals 38847,
which is far beyond 1642.
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Appendix

Proof of Theorem 3 A suitably fine partition Si , i = 1, . . . ,m of the domain of dμ

and the associated step functions of g j (x) = ∑m
i=1 c ji I (x ∈ Si ), j = 1, 2 are taken

such that the two integrations

Er [g1(x) | g2(x)] = 1

2

∫
min

(
g1(x), g2(x)

)
dμ

= 1

2

∫
g1(x)min

(
1, g2(x)/g1(x)

)
dμ,

D[g1(x) | g2(x)] =
∫

g1(x) log
(
g1(x)/g2(x)

)
dμ,

are sufficiently well approximated by

1

2

m∑
i=1

min(1, c2i/c1i )
∫

Si
c1i dμ (21)

m∑
i=1

log(c1i/c2i )
∫

Si
c1i dμ, (22)

respectively. Furthermore, we can choose the partition such that

∫

Si
c1i dμ = 1/m, i = 1, . . . ,m.

Then, (21) and (22) equal

1

2m

m∑
i=1

min(1,�i ) (= t(�))
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1

m

m∑
i=1

− log�i ,

where �i = c2i/c1i , i = 1, . . . ,m. Suppose that D[g(X; θ1) | g(x; θ2)] ≤ δ. Then,
with sufficiently finer Si , i = 1, . . . ,m, we have

f (�) = 1

m

m∑
i=1

log�i ≥ −δ. (23)

The lower bound of t(�) is searched for, under the condition of (23). Let

m̃ =
m∑
i=1

�i , 1̃ = m̃

m
. (24)

Note that, as the partition Si , i = 1, . . . ,m becomes finer,

m∑
i=1

∫

Si
c2i dμ =

m∑
i=1

�i/m = 1̃ →
∫

g2(x)dμ = 1.

Without loss of generality, the following can be assumed:

�1 ≥ · · · ≥ �s > 1 > �s+1 ≥ · · · ≥ �m > 0, ∃s(≥ 1).

Let t = m − s and

�+ = 1

s

s∑
i=1

�i , �− = 1

t

m∑
i=s+1

�i .

Note that

t(�+, · · · ,�+
︸ ︷︷ ︸

s

,�−, · · · ,�−
︸ ︷︷ ︸

t

) = t(�)

and, because of the concavity of f (�),

f (�+, · · · ,�+
︸ ︷︷ ︸

s

,�−, · · · ,�−
︸ ︷︷ ︸

t

) ≥ f (�) ≥ −δ.

Therefore, in search of the lower bound of t(�), wemust only consider the case where

�1 = �2 = · · · = �s = �+ > 1,

0 < �s+1 = �s+t = · · · = �m = �− < 1,
(25)
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Under condition (25), the relations (23) and (24) are

1

m
(s log�+ + t log�−) ≥ −δ,

s�+ + t�− = m̃,

respectively, or equivalently,

x log�+ + (1 − x) log�− ≥ −δ, (26)

x�+ + (1 − x)�− = 1̃, (27)

where

0 < x = s/m < 1. (28)

Substituting the relation from (27), i.e.,

�− = 1̃ − x�+

1 − x

into �− > 0 and (26) gives

1 < �+ <
1̃

x
(29)

h(x;�+) = x log�+ + (1 − x) log
( 1̃ − x�+

1 − x

)
≥ −δ. (30)

Furthermore, under condition (25),

t(�) = 1

2m

m∑
i=1

min(1,�i )

= 1

2m
(s + t�−)

= 1

2
(x + (1 − x)�−)

= 1

2

(
1̃ + x(1 − �+)

) (= t(x;�+)
)

Consider theminimization of t(x;�+) under conditions (28), (29), and (30). Notice
that

d

dx
h(x;�+) = h′(x;�+) = log�+ − log

( 1̃ − x�+

1 − x

)
+ (1 − x)

{ −�+

1̃ − x�+ + 1

1 − x

}

123



136 Y. Sheena

= log
(�+(1 − x)

1̃ − x�+
)

+ 1̃ − �+

1̃ − x�+

≤ �+ − 1̃

1̃ − x�+ + 1̃ − �+

1̃ − x�+ = 0 (∵ log(1 + x) ≤ x).

Since

x <
1̃

�+ = x + (1 − x)
�−

�+ < 1,

and

lim
x→1̃/�+

h(x;�+) = −∞,

the minimum value of t(x;�+)(say, t∗) is attained when (30) holds with the equation.
Let (x∗,�+∗ ) denote the point that attains t∗; then,

�+∗ = (1̃ − 2t∗)/x∗ + 1. (31)

Inserting (31) into the left-hand side of (30) and equating it with −δ gives

x∗ log
( 1̃ − 2t∗

x∗ + 1
)

+ (1 − x∗) log
(2t∗ − 1

1 − x∗ + 1
)

= −δ,

while, from (28), (29), and (31),

0 < x∗ < 2t∗ < 1̃.

Let us define the region Ã(δ) by

Ã(δ) =
{
(x∗, t∗)

∣∣∣ x∗ log
( 1̃ − 2t∗

x∗ + 1
)

+ (1 − x∗) log
(2t∗ − 1

1 − x∗ + 1
)

= −δ, 0 < x∗ < 2t∗ < 1̃.
}

Then,

1

2m

m∑
i=1

min(1,�i ) = t(x;�+) ≥ min {t∗ | (x∗, t∗) ∈ Ã(δ)}.

Taking the limit operation for both sides as the partition becomes finer gives the result.
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