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Abstract
We propose a copula-based measure of asymmetry between the lower and upper tail
probabilities of bivariate distributions. The proposed measure has a simple form and
possesses some desirable properties as a measure of asymmetry. The limit of the
proposed measure as the index goes to the boundary of its domain can be expressed in
a simple form under certain conditions on copulas. A sample analogue of the proposed
measure for a sample fromacopula is presented and itsweak convergence to aGaussian
process is shown. Another sample analogue of the presented measure, which is based
on a sample from a distribution on R

2, is given. Simple methods for interval and
region estimation are presented. A simulation study is carried out to investigate the
performance of the proposed sample analogues and methods for interval estimation.
As an example, the presented measure is applied to daily returns of S&P500 and
Nikkei225. A trivariate extension of the proposed measure and its sample analogue
are briefly discussed.
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1 Introduction

In statistical analysis of multivariate data, it is often the case that data have complex
dependence structure among variables. As a statistical tool for analyzing such data,
copulas have gained their popularity in various academic fields, especially, finance,
actuarial science and survival analysis (see, e.g., Joe (1997, 2014); Nelsen (2006);
McNeil et al. (2015)).

A copula is a multivariate cumulative distribution function with uniform [0, 1]
margins. The bivariate case of Sklar’s theorem states that, for a bivariate cumulative
distribution function F with margins F1 and F2, there exists a copula C such that
F(x1, x2) = C(F1(x1), F2(x2)). Hence a copula can be used as a model for depen-
dence structure and is applicable for flexible modeling. Another important advantage
of using copulas is that copulas are useful as measures of dependence. For example,
the tail dependence coefficient is well-known as a measure of dependence in a tail
(see, e.g., Joe (2014), Sect. 2.13).

One important problem in copula-based modeling is to decide which should be
fitted to data of interest, a copula with symmetric tails or a copula with asymmetric
tails. An additional problem arising from this is that if a copula with asymmetric tails
is appropriate for the data, how much degree of tail asymmetry the copula should
have. These problems are important because the lack of fit in tails of copulas leads to
erroneous results in statistical analysis. For example, it is said that widespread appli-
cations of Gaussian copula, which has symmetric light tails, to financial products have
contributed to the global financial crisis of 2008–2009 (see Donnelly and Embrechts
(2010)). Therefore, in order to carry out decent statistical analysis, it is essential to
evaluate the degree of tail asymmetry of copula appropriately. Given the stock market
spooked by the outbreak of COVID-19, these problemswould be evenmore important.

Some copula-based measures of tail asymmetry have been proposed in the litera-
ture. Nikoloulopoulos et al. (2012) and Dobrić et al. (2013) discussed a measure of
tail asymmetry based on the difference between the conditional Spearman’s rhos for
truncated data. Krupskii (2017) proposed an extension of their measure, which can
regulate weights of tails. Rosco and Joe (2013) proposed three measures of tail asym-
metry; two of them are based on moments or quantiles of a transformed univariate
random variable and one of them is based on a difference between a copula and its
reflected copula. As related works, measures of radial symmetry for the entire domain,
not for tails, have been proposed, for example, by Dehgani et al. (2013) and Genest
and Nešlehová (2014). See Joe (2014, Sect. 2.14) for the book treatment on this topic.

In this paper we propose a new copula-based measure of asymmetry between the
lower and upper tails of bivariate distributions. The proposed measure and its sample
analogues have various tractable properties; the proposed measure has a simple form
and its calculation is fast; the proposed measure possesses desirable properties as a
measure of tail asymmetry; the limits of the proposed measure as the index goes to
the boundary of its domain can be easily evaluated under mild conditions on copulas;
sample analogues of the proposed measure converge weakly to a Gaussian process or
its mixture; simple methods for interval estimation and hypothesis testing based on
the sample analogues are available; a multivariate extension of the proposed measure
is straightforward.
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Thepaper is organized as follows. InSect. 2wepropose anewcopula-basedmeasure
of tail asymmetry and present its basic properties. Section 3 considers the limits of
our measure as the index goes to the boundary of its domain. Values of the proposed
measure for some well-known copulas are discussed in Sect. 4. In Sect. 5 two sample
analogues of the proposed measure are presented and their asymptotic properties are
investigated. Also pointwise confidence intervals and simultaneous confidence regions
of the proposed measure are discussed. In Sect. 6 a simulation study is carried out to
consider the performance of the proposed sample analogues and confidence intervals.
In Sect. 7 the proposed measure is compared with existing copula-based measures of
tail asymmetry. In Sect. 8 the proposed measure is applied to daily returns of S&P500
andNikkei225. A trivariate extension of the proposedmeasure and its sample analogue
are considered in Sect. 9. Finally, concluding remarks and possible future work are
discussed in Sect. 10.

Throughout this paper, a ‘copula’ refers to the bivariate case of a copula, namely,
a bivariate cumulative distribution function with uniform [0, 1] margins, unless stated
otherwise. Let C be a set of all the bivariate copulas. Let C denote the survival copula
associated with C , which is defined by C(u1, u2) = 1− u1 − u2 +C(u1, u2). Define
ū by ū = 1 − u.

2 Definition and basic properties

In this section we propose a measure for comparing the probabilities of the lower and
upper tails of bivariate distributions. The proposed measure is defined as follows.

Definition 1 Let (X1, X2) be an R
2-valued random vector. Assume X1 and X2 have

continuous margins F1 and F2, respectively. Then a measure of comparison between
the lower-left and upper-right tail probabilities of (X1, X2) is defined by

α(u) = log

(
P(F1(X1) > 1 − u, F2(X2) > 1 − u)

P(F1(X1) ≤ u, F2(X2) ≤ u)

)
, 0 < u ≤ 0.5.

Here the definition of the logarithm function is extended to be log(x/y) = −∞ if
x = 0 and y > 0, log(x/y) = ∞ if x > 0 and y = 0, and log(x/y) = 0 if x = y = 0.

Similarly it is possible to define a measure to compare the lower-right and upper-
left tail probabilities of bivariate distributions. Properties of this measure immediately
follow from those of α(u), which will be given hereafter, by replacing (X1, X2) by
(X1,−X2).

The calculation of α(u) can be simplified if the distribution of (X1, X2) is repre-
sented in terms of copula. The proof is straightforward and therefore omitted.

Proposition 1 Let C denote a copula of (X1, X2) given by C(u1, u2) = P(F1 (X1) ≤
u1, F2(X2) ≤ u2). Then α(u) defined in Definition 1 can be expressed as

α(u) = log

(
2u − 1 + C(1 − u, 1 − u)

C(u, u)

)
. (1)
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Note that, using the survival copula C associated with C with ū = 1−u, the proposed
measure (1) has the simpler expression

α(u) = log

(
C(ū, ū)

C(u, u)

)
.

Throughout this paper, the lower [0, u]2 tail and the upper [1 − u, 1]2 tail of the
copula C are said to be symmetric if C(u, u) = C(ū, ū).

Unlike many existing measures, the proposed measure (1) is not a global measure
but a local one in the sense that this measure focuses on the probability of a subdomain
of the copula regulated by the index u. Setting a particular value of u or looking at
the behavior of α(u) for multiple choices of u, the proposed measure (1) provides a
different insight from the global measure. For more details on the comparison between
the proposed measure and existing ones, see Sect. 7.

It is straightforward to see that the following basic properties hold for α(u).

Proposition 2 LetC be a set of all bivariate copulas. Denote the measure α(u) for the
copula C ∈ C by αC (u). Assume that pL = C(u, u), pU = C(ū, ū), and CP (u, v) =
C(v, u) is the permuted copula of C. Then, for 0 < u ≤ 0.5, we have that:

(i) −∞ ≤ αC (u) ≤ ∞ for every C ∈ C ; the equality holds only when either pU = 0
or pL = 0;

(ii) αC (u) = 0 if and only if pL = pU ;
(iii) for fixed pU , αC (u) is monotonically non-increasing with respect to pL; similarly,

for fixed pL , αC (u) is monotonically non-decreasing with respect to pU ;
(iv) αC (u) = −αC (u) for every C ∈ C ;
(v) αCP (u) = αC (u) for every C ∈ C ;
(vi) if C ∈ C and {Cn}n∈N is a sequence of copulas such that Cn → C uniformly, then

αCn → αC .

Property (i) implies that the proposed measure is potentially unbounded although
it is bounded except for the unusual case pU = 0 or pL = 0. Compared with a similar
measure based on the difference between pU and pL , our measure is advantageous
in the sensitivity of detecting the asymmetry of tail probabilities for small u because
the difference between pU and pL becomes small for u � 0. Property (ii) implies
that αC (u) = 0 for any 0 < u ≤ 0.5 if the copula C is radially symmetric, namely,
C ≡ C . Property (ii) is the same as an axiom of Dehgani et al. (2013) and is an
extended property of Rosco and Joe (2013). Properties (iv)–(vi) are the same as the
axioms of tail asymmetry presented in Sect. 2 of Rosco and Joe (2013). It is possible
to use any function of pU/pL other than the logarithm function as a measure of tail
asymmetry. However one nice property of the proposedmeasure is property (iv) which
other functions of pU/pL do not have in general.
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3 Limits of the proposedmeasure

We consider limits of the proposed measure (1) as the index goes to the boundary of
its domain. It follows from the expression (1) that α(0.5) = 0 for any copula C ∈ C .
Therefore we have

lim
u↑0.5α(u) = 0. (2)

The limiting behavior of α(u) as u → 0 is much more intricate. To consider this
problem, define

α(0) = lim
u↓0 α(u), (3)

given that the limit exists. Here we present three expressions for the limit (3).
The first expression is based on the tail dependence coefficients. Tail dependence

coefficients are often used as local dependence measures of bivariate distributions.
The lower-left and upper-right tail dependence coefficients of the random variables
X1 and X2 are defined by

λL = lim
u↓0

P(F1(X1) ≤ u, F2(X2) ≤ u)

u

and

λU = lim
u↑1

P(F1(X1) > u, F2(X2) > u)

1 − u
,

respectively, given the limits exist. If (X1, X2) has the copula C , the expressions for
λL and λU are simplified as

λL = lim
u↓0

C(u, u)

u
and λU = lim

u↑1
C(u, u)

1 − u
, (4)

respectively (see, e.g., Joe (2014), Sect. 2.13).

Theorem 1 Let (X1, X2) be an R2-valued random vector with the copula C. Assume
that the lower-left and upper-right tail dependence coefficients of X1 and X2 exist and
are given by λL and λU , respectively. Suppose that either λL or λU is not equal to
zero. Then

α(0) = log

(
λU

λL

)
.

See Supplementary Material for the proof. Theorem 1 can be generalized by utilizing
the concepts of tail orders and tail order parameters. If there exists a constant κL > 0
and a slowly varying function �L(u) such that C(u, u) ∼ uκL �L(u) (u → 0), then κL
is called the lower tail order of C and ϒL = limu↓0 �L(u) is called the lower tail order
parameter of C , where f (u) ∼ g(u) (u → 0) is defined by limu↓0 f (u)/g(u) = 1.
Similarly, the upper tail order and the upper tail order parameter ofC are defined by the

123



1912 S. Kato et al.

lower tail order and the lower tail order parameter of the survival copulaC , respectively.
See Joe (2014, Sect. 2.16) for more details on the tail orders and tail order parameters.
Using the tail orders and tail order parameters, we have the following result. The proof
is given in Supplementary Material.

Theorem 2 Let κL and κU be the lower and upper tail orders of the copula C, respec-
tively. Then α(0) = ∞ if κL < κU and α(0) = −∞ if κL > κU . If κL = κU and
either of the lower tail order parameter ϒL or the upper tail order parameter ϒU of
C is not equal to zero, then α(0) = log(ϒU/ϒL).

Note that Theorem 2 with κL = κU = 1 reduces to Theorem 1. Theorems 1 and 2
are useful to evaluate α(0) if we already know the tail dependence coefficients, or
tail orders and tail order parameters, of a copula. If those values are not known, the
following third expression for α(0) could be useful.

Theorem 3 Let (X1, X2) be an R2-valued random vector with the copula C. Suppose
that there exists ε > 0 such that γ (u) = d2C(t, t)/dt2|t=u exists in (0, ε)∪ (1−ε, 1).
Assume that limu↓0 dC(u, u)/du = limu↓0 dC(ū, ū)/du = 0. Then

α(0) = log

(
lim
u↓0

γ (1 − u)

γ (u)

)
,

given the limit exists.

See SupplementaryMaterial for the proof. Aswill be seen in the next section, Theorem
3 can be utilized to calculate α(0) for Clayton copula and Ali–Mikhail–Haq copula.

4 Values of the proposedmeasure for some existing copulas

In this section we discuss the values of the proposed measure α(u) for some existing
copulas. It is seen to be useful to plot α(u) with respect to u for comparing the
probabilities of the lower [0, u]2 tail and upper [1− u, 1]2 one for the whole range of
u ∈ (0, 0.5]. See, e.g., Joe (2014) for the definitions of the existing copulas discussed
in this section.

4.1 Copulas with symmetric tails

Proposition 2 implies that α(u) = 0 for any u ∈ [0, 0.5] if C(u, u) = C(ū, ū) for
any u ∈ [0, 0.5]. Such copulas include the independence copula, Gaussian copula, t-
copula, Plackett copula and FGM copula. Among well-known Archimedean copulas,
Frank copula has a radially symmetric shape and therefore α(u) = 0 for any u.

4.2 Copulas with asymmetric tails

There exist various copulas for which α(u) is not equal to zero in general. Many
Archimedean copulas have asymmetric tails, including Clayton copula, Gumbel cop-
ula, Ali–Mikhail–Haq copula and two-parameter BB copulas. In addition, some
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Fig. 1 Plots of α(u) for: a Clayton copula (5) with respect to u for θ = 1 (solid), θ = 5 (dashed), θ = 10
(dotted), and θ = 20 (dotdashed), b Ali–Mikhail–Haq copula (6) with respect to u for θ = 0.1 (solid),
θ = 0.4 (dashed), θ = 0.7 (dotted), and θ = 1 (dotdashed), and c Ali–Mikhail–Haq copula (6) with respect
to θ for u = 0.01 (solid), u = 0.05 (dashed), u = 0.1 (dotted), and u = 0.3 (dotdashed)

asymmetric extensions of Gaussian copula and t-copula have been proposed recently.
Such extensions include the skew-normal copulas and skew-t copulas discussed in
Joe (2006) and Yoshiba (2018), for which α(u) is not equal to zero in general. As
examples of copulas with asymmetric tails, here we discuss the values of α(u) for
the three well-known copulas, namely, Clayton copula, Ali–Mikhail–Haq copula and
BB7 copula.

Clayton copula: Clayton copula is defined by

Ccl(u1, u2; θ) = max
{
u−θ
1 + u−θ

2 − 1, 0
}−1/θ

, (5)

where θ ∈ [−1,∞) \ {0}. Fig. 1a plots the values of α(u) as a function of u for four
positive values of θ . (For an intuitive understanding of the distributions of Clayton
copula, see Fig.S1a and b of SupplementaryMaterial which plot random variates from
Clayton copula with the two values of the parameters used in Fig. 1.) As is clear from
equation (2), α(0.5) = 0 for any θ . The smaller the value of u, the smaller the value
of α(u). The figure also suggests that, for a fixed value of u, as θ increases, the value
of α(u) approaches zero. The upper tail dependence coefficient of Clayton copula
is 0 and the lower tail dependence coefficient is 2−1/θ for θ > 0 and 0 for θ ≤ 0.
Therefore, for θ > 0, Theorem 1 implies that α(0) = −∞, meaning that the lower
tail dependence is considerably stronger than the upper one. If θ ∈ [−1, 0), it follows
from Theorem 3 that α(0) = ∞.

Ali–Mikhail–Haq copula: Ali–Mikhail–Haq copula is of the form

C(u1, u2) = u1u2
1 − θ(1 − u1)(1 − u2)

, (6)

where θ ∈ [−1, 1]. The values of α(u) as a function of u and θ are exhibited in
Fig. 1b and c, respectively. (See Fig.S1c and d of Supplementary Material for plots
of random variates generated from Ali–Mikhail–Haq copula with the two values of
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the parameters used in Fig. 1b.) Figure1b suggests that α(u) decreases with u. Also it
appears that, for a fixed value of u, the greater the value of θ , the smaller the value of
α(u). This observation can be seen more clearly in Fig. 1c which plots the values of
α(u) as a function of θ . Since both the lower and upper tail dependence coefficients
of this copula are equal to zero, one can not apply Theorem 1 for the calculation of
α(0). However Theorems 2 and 3 are applicable in this case and we have a simple
form α(0) = log(1 − θ2).

BB7 copula: Finally, consider the BB7 copula of Joe and Hu (1996) defined by

C(u1, u2) = 1 −
[
1 −

{(
1 − uθ

1

)−δ + (
1 − uθ

2

)−δ − 1
}−1/δ

]1/θ
, (7)

where δ > 0 and θ ≥ 1. Unlike the last two copulas, this model has two parameters.
The parameter δ controls the lower tail dependence coefficient, while θ regulates the
upper one. Indeed, the lower and upper tail dependence coefficients are known to be
2−1/δ and 2 − 21/θ , respectively.

It follows from Theorem 1 that α(0) = log(2−21/θ )− δ−1 log 2. Figure2 displays
a plot of α(u) with respect to u for four selected values of (δ, θ) and that of α(u) with
respect to (δ, θ) for u = 0.01. Note that, in Fig. 2a, δ = 1 and δ = 1.94 imply that the
lower tail dependence coefficients are around 0.5 and 0.9, respectively, while θ = 1.71
and θ = 7.27 suggest that the upper tail dependence coefficients are about 0.5 and
0.7, respectively. (See also Fig.S1e–g of Supplementary Material for plots of random
variates fromBB7 copula (7) with the three combinations of the parameters in Fig. 2a.)
Figure2a suggests that, when both the lower and upper tail dependence coefficients
are around 0.5, the values of α(u) are close to zero for any u. When the difference
between the lower and upper tail dependence coefficients is large, α(u) appears to be
monotonic with respect to u. It can be seen from Fig. 2b that the values of α(0.01)
monotonically decreases as δ increases. Also, α(0.01)monotonically increases with θ .
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Fig. 2 a Plot ofα(u) for BB7 copula (7)with respect to u for (δ, θ) = (1, 1.71) (solid), (δ, θ) = (1.94, 1.71)
(dashed), (δ, θ) = (1, 7.27) (dotted), and (δ, θ) = (1.94, 7.27) (dotdashed). b Contour plot of α(0.01)
(solid) and plot of α(0) = 0 (dashed) with respect to (δ, θ)
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The two contours α(0.01) = 0 and α(0) = 0 show somewhat similar shapes, implying
that α(0.01) = 0 is a reasonable approximation to α(0) = 0.

5 Two sample analogues of˛(u)

In practice, it is often the case that the form of the copula C(u1, u2) underlying data
is not known. In such a case, we need to estimate α(u) based on the data. In Sects. 5.1
and 5.2, we discuss a sample analogue of α(u) based on a sample from the copula.
Section 5.3 presents a sample analogue of α(u) based on a sample from a distribution
on R2.

5.1 A sample analogue of˛(u) based on a sample from a copula

A sample analogue of α(u) based on a sample from a copula is defined as follows.

Definition 2 Let (U11,U21), . . . , (U1n,U2n) be a random sample from a copula. Then
we define a sample analogue of α(u) by

α̂(u) = log

(
TU (u)

TL(u)

)
,

where

TL(u) = 1

n

n∑
i=1

1(U1i ≤ u,U2i ≤ u),

TU (u) = 1

n

n∑
i=1

1(U1i ≥ 1 − u,U2i ≥ 1 − u),

and 1(·) is an indicator function, i.e., 1(A) = 1 if A is true and 1(A) = 0 otherwise.

In Sects. 5.1 and 5.2, we assume that (U11,U21),. . . ,(U1n,U2n) is an iid sample from
the copula C(u1, u2). For iid R2-valued random vectors (X11, X21), . . . , (X1n, X2n),
if the margins of X11 and X21 are known to be F1 and F2, respectively, then α̂(u) can
be obtained by replacing (U1 j ,U2 j ) by (F1(X1 j ), F2(X2 j )) ( j = 1, . . . , n).

The goal of this subsection is to investigate some properties of α̂(u). To achieve
this, we first show the following lemma. See Supplementary Material for the proof.

Lemma 1 For 0 < u, v ≤ 0.5, we have the following:

E [TL(u)] = Cu, E [TU (u)] = Cū, var [TL(u)] = 1

n
Cu(1 − Cu),

var [TU (u)] = 1

n
Cū(1 − Cū), cov [TL(u), TL(v)] = 1

n
Cu∧v(1 − Cu∨v),

cov [TL(u), TU (v)] = −1

n
CuC v̄ ,
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1916 S. Kato et al.

cov [TU (u), TU (v)] = 1

n
Cū∨v̄(1 − Cū∧v̄),

where u ∧ v = min(u, v), u ∨ v = max(u, v), and Cw = C(w,w).

This lemma implies that α̂(u) is a consistent estimator of α(u). Applying this
lemma,we obtain the following asymptotic result. The proof is given in Supplementary
Material.

Theorem 4 Define

An(u) = √
n

{
α̂(u) − α(u)

}
, 0 < u ≤ 0.5.

Then, as n → ∞, {An(u) | 0 < u ≤ 0.5} converges weakly to a centered Gaussian
process with covariance function

σ(u, v) ≡ E[An(u)An(v)] = C(u ∨ v, u ∨ v) + C(ū ∧ v̄, ū ∧ v̄)

C(u ∨ v, u ∨ v) · C(ū ∧ v̄, ū ∧ v̄)
. (8)

We note that the covariance function (8) is monotonically decreasing with respect
to u ∨ v. If u ∨ v = 0.5, then the covariance function (8) reaches the minimum value
2/C(0.5, 0.5).

5.2 Interval and region estimation based on ˆ̨ (u)

An asymptotic interval estimator of α(u) can be obtained by applying the asymptotic
results obtained in the previous subsection. Theorem 4 implies that, for fixed u ∈
(0, 0.5],

√
n

{
α̂(u) − α(u)

} d−→ N (0, σ 2(u)) (n → ∞),

where σ 2(u) = σ(u, u) and σ(u, u) is defined as in equation (8). Since σ(u) includes
the copula C which is usually not known in practice, we use an estimator of σ(u)

defined by

σ̂ (u) =
√
TL(u) + TU (u)

TL(u) · TU (u)
.

It follows from Lemma 1 that σ̂ (u)
a.s.−−→ σ(u) as n → ∞. Then we have

√
n{α̂(u) −

α(u)}/σ̂ (u)
d−→ N (0, 1) as n → ∞. Hence a 100(1− p)% nonparametric asymptotic

confidence interval for α(u) is

α̂(u) − z p/2σ̂ (u)√
n

≤ α(u) ≤ α̂(u) + z p/2σ̂ (u)√
n

, (9)
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where z p/2 satisfies P(Z ≥ z p/2) = p/2, Z ∼ N (0, 1), and 0 < p < 1.
For multiple values of the index, say u1, . . . , um , some methods are available to

construct simultaneous confidence regions of (α(u1), . . . , α(um)). Bonferroni cor-
rection is a well-known method for this purpose. However the use of Bonferroni
correction based on (9) leads to the confidence region that is too wide. In addition,
when Bonferroni correction is adopted, the dependence among {α̂(u1), . . . , α̂(um)}
is not taken into account for the resulting simultaneous regions. Given the weak con-
vergence to the Gaussian process as shown in Theorem 4, a possible solution is to
construct asymptotic simultaneous confidence regions based on the asymptotic Gaus-
sianity of (α̂(u1), . . . , α̂(um)). To achieve this, we first show the the following result.
See Supplementary Material for the proof.

Corollary 1 Let a = √
n{α̂(u1) − α(u1), . . . , α̂(um) − α(um)}T and u1 < · · · < um.

Suppose

�̂ =

⎛
⎜⎜⎜⎝

σ̂ 2(u1) σ̂ (u1, u2) . . . σ̂ (u1, um)

σ̂ (u1, u2) σ̂ 2(u2) . . . σ̂ (u2, um)
...

...
. . .

...

σ̂ (u1, um) σ̂ (u2, um) . . . σ̂ 2(um)

⎞
⎟⎟⎟⎠ ,

where σ̂ 2(ui ) = σ̂ (ui , ui ) and σ̂ (ui , u j ) = {TL(u j ) + TU (u j )}/{TL(u j )TU (u j )}
(i ≤ j). Assume that �̂ is invertible. Then

aT �̂
−1

a
d−→ χ2

m as n → ∞,

where χ2
m denotes the chi-squared distribution with m degrees of freedom.

Using this result, an asymptotic 100(1 − p)% simultaneous confidence region for
(α(u1), . . . , α(um)) is given by

{
(α(u1), . . . , α(um)) ; aT �̂

−1
a ≤ χ2

m,1−p

}
, (10)

where χ2
m,1−p denotes the 100(1− p)th percentile of the chi-squared distribution with

m degrees of freedom.Unlike the simultaneous confidence region based onBonferroni
correction which has a rectangular shape, the confidence region (10) is ellipsoidal in
shape.

If n is small or u j � 0 for some j , the asymptotic simultaneous confidence region
(10) could be considerably different from the true simultaneous confidence region
because the asymptotic theory may not be applicable. In that case, the 100(1 − p)th
percentile χ2

m,1−p in (10) could be replaced with the percentile estimated from boot-
strap samples under the assumption of elliptical symmetry of (α̂(u1), . . . , α̂(um))

(see Davison and Hinkley (1997), Sect. 5.8). Alternatively, one can adopt other gen-
eral bootstrap methods such as the one proposed by Mandel and Betensky (2008) if
the dependence among {α̂(u1), . . . , α̂(um)} is not strong.
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We note that some hypothesis tests can be established using the results of this
subsection. For example, for a given function α0(u), it is possible to consider the test
H0 : α(u) = α0(u) against H1 : α(u) �= α0(u) for u = u1, . . . , um . This can be done,

for example, by using aT �̂
−1

a in Corollary 1 as the test statistic and substituting

α0(u) into α(u) in aT �̂
−1

a. In particular, if α0(u) = 0, one can establish a test of tail
symmetry.

5.3 A sample analogue of˛(u) based on a sample from a distribution onR2

The sample analogue of α(u) given inDefinition 2 can be calculated on the assumption
that the margins of the R2-valued random vector are known. Here we discuss the case
in which margins are unknown and empirical distributions are adopted as the margins.

Definition 3 Let (X11, X21), . . . , (X1n, X2n) be R2-valued random vectors. Then we
define a sample analogue of α(u) by

α̂∗(u) = log

(
T ∗
U (u)

T ∗
L (u)

)
,

where

T ∗
L (u) = 1

n

n∑
i=1

1(F̂1(X1i ) ≤ u, F̂2(X2i ) ≤ u),

T ∗
U (u) = 1

n

n∑
i=1

1(F̂1(X1i ) ≥ 1 − u, F̂2(X2i ) ≥ 1 − u),

F̂j (X ji ) = 1

n + 1

n∑
k=1

1(X jk ≤ X ji ), j = 1, 2. (11)

Note that the denominator of the empirical distribution function (11) is defined by
n + 1 rather than n in order to avoid positive bias of α̂(u).

The following result implies that the value of α̂∗(u) is small for u = 0.5. The proof
is given in Supplementary Material.

Theorem 5 If n is even, then P(α̂∗(0.5) = 0) = 1. If n is odd, it holds that

P

(
log

(
1 − 1

nT ∗
L (0.5)

)
≤ α̂∗(0.5) ≤ log

(
1 + 1

nT ∗
L (0.5)

))
= 1. (12)

The authors have not yet obtained the asymptotic distribution for α̂∗(u). However
the following results are available regarding T ∗

U (u) and T ∗
L (u). The proof is straightfor-

ward from Fermanian et al. (2004), Tsukahara (2005) and Segers (2012) and therefore
omitted.
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Proposition 3 Let (X11, X21), . . . , (X1n, X2n) be iid random vectors with the cop-
ula C(u, v) and the continuous margins. Assume that C(u, v) is differentiable with
continuous i-th partial derivatives (i = 1, 2). Then, as n → ∞,

√
n

{
T ∗
L (u) − C(u, u)

} d−→ DC (u),

√
n

{
T ∗
U (u) − C(ū, ū)

} d−→ DC (ū),

where

DC (u) = U (u, u) − ∂C(u1, u)

∂u1

∣∣∣∣
u1=u

U (u, 1) − ∂C(u, u2)

∂u2

∣∣∣∣
u2=u

U (1, u),

U is a centered Gaussian process with covariance function

E[U (u1, u2)U (v1, v2)] = C(u1 ∧ v1, u2 ∧ v2) − C(u1, u2)C(v1, v2),

and u ∧ v is defined as in Lemma 1.

Confidence intervals for α(u) can be numerically constructed using the bootstrap
method. Theorem 5 implies that the confidence intervals are narrow when u is close
to 0.5. Hypothesis tests can also be established based on the bootstrap confidence
intervals. It should be noted that, in order to calculate α(u) based on bootstrap samples,
F̂1 and F̂2 in (11) should be calculated based on each bootstrap sample. If F̂1 and F̂2 are
calculated from the original data, the bootstrap confidence intervals become similar to
the asymptotic confidence intervals (9) for large n. Simultaneous confidence regions
for (α(u1), . . . , α(um)) and related hypothesis tests are also available by using the
bootstrap methods discussed in the last two paragraphs of the former subsection.

6 Simulation study

We carry out a simulation study to compare the performance of the two proposed
sample analogues of α(u). Also, another experiment is given to discuss the range of
the index u in which α̂(u) and its asymptotic confidence interval (9) are reasonably
applicable.

First, in order to compare the performance of the two proposed sample analogues
of α(u), we consider the following cumulative distribution function

F(x1, x2) = Ccl(F1(x1), F2(x2); 20), −∞ < x1, x2 < ∞, (13)

where Fj (x) is the cumulative distribution function of the standard Cauchy distribu-
tion, i.e., Fj (x) = 0.5+ π−1 arctan x , and Ccl(u1, u2; θ) denotes the Clayton copula
(5).

Figure3 plots the values of α̂(u) − α(u), α̂∗(u) − α(u) and their bounds of 90%
confidence intervals for a sample of size n = 1000 from the distribution (13). See also
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Fig. 3 Plot of α̂(u) − α(u) (solid, red), α̂∗(u) − α(u) (dashed, purple), the lower and upper bounds of
asymptotic 90% confidence intervals of α̂(u) − α(u) (dotdashed, black), and the lower and upper bounds
of bootstrap 90% confidence intervals of α̂∗(u) − α(u) (dotted, blue) obtained from a sample of size 1000
from the distribution (13). (Color figure online)

Fig. 1a for the plot of α(u). For the calculations of α̂(u) and its confidence intervals
(9), the sample {(x1i , x2i )} is transformed into the copula sample {(u1i , u2i )} via
u ji = Fj (x ji ), where Fj is the true margin ( j = 1, 2). The confidence intervals based
on α̂∗(u) are calculated using the basic bootstrap method based on 999 resamples of
size 1000; see the last paragraph of Sect. 5.3 for details. The minimum value of u in
the plot is set to be umin = 0.03; see Fig. 4a and related discussion below.

Figure3 suggests that, when u is around 0.15 or greater, both α̂(u) and α̂∗(u) are
stably not far from the true value. If u is less than 0.15, the differences between the
sample analogues and the true value become variable. Actually, for u ≤ 0.15, the
smaller the value of u, the wider the ranges of the confidence intervals based on both
α̂(u) and α̂∗(u). The confidence intervals based on α̂∗(u) are generally narrower than
those based on α̂(u). This tendency is particularly obvious for u � 0.5, where the
bounds of the confidence intervals based on α̂∗(u) are close to zero; see Theorem 5.

Our additional experiments suggest that the confidence intervals based on α̂∗(u)

are much narrower than those based on α̂(u) for u � 0.5 for other simulated datasets
as well. When u is not close to 0.5, it is not necessarily the case that the confidence
intervals based on α̂∗(u) are narrower than those based on α̂(u); see Sect. 8.

Next we consider another simulation study to find the range of the index u in which
α̂(u) and its asymptotic confidence interval (9) are reasonably applicable. Figure4
displays the coverage probabilities of the asymptotic 90% confidence intervals of
α(u), calculated from 1000 samples of size n from Clayton copula Ccl(u1, u2; θ) for
some selected values of the parameter θ and sample size n. In the figure, the nominal
coverage probability is set to be 0.9 and the bounds of its 90% confidence intervals are
calculated as 0.9± z0.1/2{0.1× (1− 0.1)× 1000}1/2 using the normal approximation
of the binomial distribution. (See Fig.S1a and b of Supplementary Material for plots
of random variates from the two Clayton copulas used in Fig. 4.)
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Fig. 4 Coverage probabilities of the asymptotic 90% confidence intervals (9) of α(u) for u = 0.01 j
( j = 1, . . . , 20), calculated from 1000 samples of size n = 100 (dotdashed, purple), n = 250 (dotted,
blue), n = 1000 (dashed, red), and n = 5000 (solid, black) from Clayton copula (5) with: a θ = 20 and
b θ = 1. The solid and dashed horizontal lines in gray represent the nominal coverage probability and the
bounds of its 90% confidence intervals, respectively. (Color figure online)

Figure4 implies that, when u � 0.2, the coverage probabilities are generally within
their 90% confidence intervals. When u is not close to 0.2, the coverage probabilities
are significantly different from 0.9 for some combinations of (n, θ). A general trend
is that, as u decreases, the number of cases in which the coverage probabilities are
significantly greater than 0.9 increases. In addition, for fixed u and θ , the coverage
probability is more likely to be within its 90% confidence interval for a greater value of
n. In particular, for n = 5000, the performance of the asymptotic confidence intervals
is generally satisfactory for any u (≥ 0.01). On the other hand, if n is equal to 100, the
asymptotic confidence intervals tend to show poor performance except for the case
θ = 20 and u ≤ 0.07. Comparing Fig. 4a and b, the performance of the asymptotic
confidence intervals for θ = 20 seems better than that for θ = 1. It appears from Fig. 4
and the discussion above that the selection of the minimum value of u, in which the
asymptotic theory is applicable, depends on n and the underlying distribution.

A possible conjecture induced from the figure is that there exists a certain relation-
ship between the numbers of observations in both tails and a practical range of u. This
can be investigated by calculating the values of n ·min{Ccl(u, u; θ), Ccl(ū, ū; θ)}(≡
Tmin(u, n, θ)) for the combinations of (u, n, θ) for which the asymptotic confidence
intervals show satisfactory performance. The values of minu Tmin(u, n, θ) for each
(n, θ) range from 5.3 and 8.7, and it seems that asymptotic theory is available for
fairly small values of minu Tmin(u, n, θ) for the two Clayton copulas.

7 Comparison with existingmeasures

In this section we compare our measure with existing copula-based measures of tail
asymmetry. Rosco and Joe (2013) proposed three measures of tail asymmetry. One
of their measures based on the distance between a copula C and its survival copula is
defined by

ς3 = sup
(u1,u2)∈[0,1]2

{∣∣C(u1, u2) − C(ū1, ū2)
∣∣} . (14)
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This measure has also been proposed by Dehgani et al. (2013) as a limiting case of a
measure of radial asymmetry for bivariate random variables.

Our measure (1) has some similarities to and differences from the measure (14).
Similarities include that both are functions of a copula C and its survival function.
Also, both measures satisfy Properties (ii), (v) and (vi) of Proposition 2.

However there are considerable differences between the twomeasures (1) and (14).
First, the domains of a copula the two measures evaluate are different. The measure
(14) is a global measure in the sense that the whole domain of the copula is taken into
account to evaluate the value of the measure, while our measure (1) is a local measure
which focuses on squared subdomains of the copula. By choosing the value of the index
u, our measure (1) enables us to choose the subdomain of a copula which analysts
are interested in. However the prescription for selecting the value of u is not always
straightforward and the choice of the index u could influence the results of analysis.
The index-free measure (14) does not have such a problem. However the supremum
value of this measure is not necessarily attained in the tails of the distribution and the
value of the measure might not reflect the tail probabilities if u1 ≥ 0.5 or u2 ≥ 0.5.
Also, because of its locality, computations associated with our measure (1) are very
fast.

In addition there are differences between the two measures (1) and (14) in terms
of properties. Our measure (1) satisfies all the properties of (i)–(vi) of Proposition
2 which include four (out of five) axioms of Rosco and Joe (2013). However this
measure does not satisfy one of the axioms, i.e., axiom (i), of Rosco and Joe (2013)
and therefore the value of the measure could be unbounded for special cases. The
measure (14) also satisfies four axioms of Rosco and Joe (2013) including the axiom
(i). On the other hand, the measure (14) does not satisfy their axiom (iii) which is
equivalent to Property (iv) of Proposition 2, implying that the measure (14) does not
distinguish which tail probability is greater than the other one.

The other two measures of Rosco and Joe (2013) are derived through different
approaches. For a bivariate random vector (U1,U2) from a copula, the two measures
are based on the moments or quantile function of the univariate random variable
U1 + U2 − 1. Therefore these measures are essentially different from ours which is
based on the joint distribution of the bivariate random vector (U1,U2).

Another copula-based measure for tail asymmetry has been proposed by Krupskii
(2017). It is defined by

�K (a, u) = �L(a, u) − �U (a, u), (15)

where 0 < u ≤ 0.5, a is a weighting function,

�L(a, u) = cor

[
a

(
1 − U1

u

)
, a

(
1 − U2

u

)∣∣∣∣U1 < u,U2 < u

]
,

�U (a, u) = cor

[
a

(
1 − 1 −U1

u

)
, a

(
1 − 1 −U2

u

)∣∣∣∣U1 > 1 − u,U2 > 1 − u

]
.
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If a(x) = x , the measure (15) reduces to the measure discussed by Nikoloulopoulos
et al. (2012) and Dobrić et al. (2013). Properties of each term of the measure (15) have
been investigated by Krupskii and Joe (2015).

The measure (15) is related to ours in the sense that the values of their measures
are calculated from the subdomain of a copula indexed by the truncation parameter.
However the measure (15) is based on Spearman’s rhos or correlation coefficients of a
truncated copula, and therefore the interpretation of the values of the measure (15) is
essentially different from ours. A nice property of the measure (15) is that the weights
of tails can be controlled through the weight function a. Therefore this measure can
be a useful measure of tail asymmetry if the weight function is appropriately defined.

8 Example

As an application of the proposedmeasure,we consider a dataset of daily returns of two
stock indices. The dataset is taken from historical data in Yahoo Finance, available at
https://finance.yahoo.com/quote/%5EGSPC/history/ and https://finance.yahoo.com/
quote/%5EN225/history/. We consider stock daily returns of S&P500 and Nikkei225
observed from the 1st of April, 2008 until the 31st of March, 2013, inclusive. We
fit the autoregressive-generalized autoregressive conditional heteroscedastic model
AR(1)-GARCH(1,1) to each of the stock daily returns usingugarchfit in ‘rugarch’
package in R (R Core Team 2020; Ghalanos 2020). The Student t-distribution is used
as the conditional density for the innovations.We consider the residuals {(x1i , x2i )}ni=1
(n = 1180) of the fitted AR(1)-GARCH(1,1), where x1i and x2i are the residuals of
S&P500 and Nikkei225, respectively. The residuals show unexpected changes in daily
return which are not explained by the model; if the joint plunging probability is higher
than the joint soaring probability, then the proposed measures α(u) is supposed to be
negative.

We discuss α̂(u) defined in Definition 2 and α̂∗(u) defined in Definition 3. In
order to obtain the copula sample {(u1i , u2i )} for α̂(u), we transform the residuals
{(x1i , x2i )} via (u1i , u2i ) = (F1(x1i ), F2(x2i )), where F1 and F2 are the cumulative
distribution functions of Student t-distribution estimated using the maximum like-
lihood method. We assume, though not mathematically precise, that F1 and F2 are
known. Figure5a plots {(�−1(u1i ),�−1(u2i ))} in which the residuals are transformed
into {(u1i , u2i )} via the cumulative distribution functions of Student t-distribution.
Here �−1 denotes the inverse of the cumulative distribution function of the standard
normal. The values of α̂(u) calculated from the sample and their 90% asymptotic
confidence intervals (9) are displayed in Fig. 5d. In this frame, the minimum value
of u is set to be min{u ∈ (0, 0.5]; TL(u), TU (u) ≥ 30/n} � 0.090 in order that the
asymptotic theory is applicable.

For the calculation of α̂∗(u), we use the empirical distribution functions (11) to
transform the residuals {(x1i , x2i )} into the copula sample {(u1i , u2i )}. The trans-
formed sample is displayed in Fig. 5b. The values of α̂∗(u) calculated from the sample
are plotted in Fig. 5e. The same frame also plots the 90% confidence intervals based
on 999 resamples of size 1180 using the basic bootstrap method. The minimum value
of u in the plot is u∗

min = min{u ∈ (0, 0.5]; T ∗
L (u), T ∗

U (u) ≥ 30/n} � 0.082.
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Fig. 5 Plots of {(8−1(u1i ), 8
−1(u2i ))}1180i=1 , where {(u1i , u2i )} is the copula sample transformed from the

residuals via the cumulative distribution functions of: a Student t-distribution and b empirical distribution.
c Plot of −�K (a, u), a modified version of the measure (15) of Krupskii (2017), with: a(x) = x (solid,
black), a(x) = x2 (dashed, blue), and a(x) = x4 (dotted, red). Plots of the proposed measure (black) and
its asymptotic or bootstrap 90% confidence intervals (gray) for: d α̂(u) and e α̂∗(u). (Color figure online)

Figure5a and b suggest that there are more observations in the lower-left tail than
the upper-right one. In order to investigate whether this tail asymmetry is significant
or not, we consider Fig. 5d and e showing the values of α̂(u) and α̂∗(u), respectively.
These frames imply that α̂(u) and α̂∗(u) are negative in most areas of the domain
of u, suggesting that the lower tail probability is greater than the upper one for most
values of u ∈ (umin, 0.5]. In particular the two frames imply the general tendency
that, for u ≤ 0.33, α̂(u) and α̂∗(u) increase with u. Both asymptotic and bootstrap
90% confidence intervals do not contain nonnegative values for any u ≤ 0.22. This
implies that the tails are asymmetric in the sense that the lower [0, u]2 tail probability
is greater than the upper [1 − u, 1]2 one. On the other hand, when u is greater than
0.27, both 90% confidence intervals include 0. It is not clear to judge the existence of
asymmetry in the tail probabilities for u ∈ (0.22, 0.27]. For a pre-specified value, say
u0, of u, the discussion above can be applied to hypothesis testing by adopting the 90%
confidence intervals as the acceptance regions of the level 0.9 test of H0 : α(u0) = 0
against H1 : α(u0) �= 0.

As seen in the discussion above, both α̂(u) and α̂∗(u) show similar tendencies in
general. Actually, the two data plots given in Fig. 5a and b look similar at the first
glance. However Fig. 5d and e reveal that there are some differences between α̂(u)

and α̂∗(u). For example, the values of α̂(u) are generally smaller than those of α̂∗(u)
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at least for u ∈ (0, 0.15]. Also the bootstrap confidence intervals based on α̂∗(u) are
narrower than the asymptotic confidence intervals based on α̂(u) for large u as implied
in Theorem 5.

Apart from the tests based on pointwise confidence intervals given in Fig. 5d and
e, we carry out a different test for a nominal size of 0.1 based on the test statistic
in Corollary 1. We test H0 : α(u) = 0 against H1 : α(u) �= 0 for {u; u = umin +
(0.15 − umin) j/4, j = 0, . . . , 4}. The test statistic is T = aT �̂

−1
a � 13.52 with

P(T > 13.52) � 0.019 < 0.1. Therefore we reject the null hypothesis that the lower
[0, u]2 tail and upper [1− u, 1]2 tail are symmetric for the 5 equally spaced points of
u in [umin, 0.15].

We apply other measures of tail asymmetry to the copula sample displayed in
Fig. 5a. The measure (14) of Rosco and Joe (2013) is calculated as ς̂3 � 0.043.
Another measure we consider here is a modified version of Krupskii’s (2017) measure
(15), namely,−�K (a, u). Thismodification ismade to interpret the sign of themeasure
in the same manner as in that of ours. Figure5c displays the estimates of −�K (a, u)

with respect to u for the three specific functions of a. The three curves of the modified
measure−�K (a, u) showsomewhat similar trends. For example, the three curves agree
that there is stronger correlation in the lower [0, u]2 tail than the upper [1−u, 1]2 one
for u ≥ 0.15. This is somewhat similar to the result based on our measure as well.

We summarize the results of the analysis of stock daily return data. The results based
on the proposed measures suggest that the lower [0, u]2 tail probability is greater than
the upper [1 − u, 1]2 one for most values of u ∈ (umin, 0.5], where umin � 0.053. In
particular, there is significant difference between the lower and upper tail probabilities
for u ≤ 0.22. From the economic perspective, this result implies that the joint plunging
probability is higher than the joint soaring probability with the threshold u ≤ 0.22.
Therefore it is recommended to use a copula with asymmetric tails for an appropriate
modeling of the residuals of the daily return data appropriately. The three cases of the
measure of Krupskii (2017) agree that, for u ≥ 0.15, there is stronger correlation in
the lower [0, u]2 tail than in the upper [1 − u, 1]2 one.

In order to see whether this tendency for the stock daily returns in 2008–2013 holds
in another period, a similar analysis can be conducted to the daily returns of S&P500
and Nikkei225 observed from the 1st of April, 2014 until the 31st of March, 2019,
inclusive. Our analysis suggests that α̂(u) is negative for u ≤ 0.17 and all the three
cases of the measure (15) of Krupskii (2017) are negative for u ≤ 0.10. However the
plot of α̂∗(u) as well as the 90% asymptotic confidence intervals based on α̂(u) do
not suggest clear tendency of tail asymmetry.

9 A trivariate extension of˛(u) and its sample analogue

The proposedmeasure α(u) for bivariate random vectors can be extended to ameasure
for trivariate random vectors as follows.

Definition 4 Let (X1, X2, X3) be an R
3-valued random vector. Suppose X j has the

continuousmargin Fj ( j = 1, 2, 3). Thenwe define ameasure of comparison between
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the lower and upper tail probability of (X1, X2, X3) by

α3(u) = log

(
P(F1(X1) > 1 − u, F2(X2) > 1 − u, F3(X3) > 1 − u)

P(F1(X1) ≤ u, F2(X2) ≤ u, F3(X3) ≤ u)

)
,

0 < u ≤ 0.5,

where the logarithm function is defined as in Definition 1.

As the following proposition shows, the trivariate extension α3(u) can be repre-
sented in terms of copulas. The proof is straightforward and omitted.

Proposition 4 Define a copula of (X1, X2, X3) by C3, namely, C3(u1, u2, u3) =
P(F1(X1) ≤ u1, F2(X2) ≤ u2, F3(X3) ≤ u3). Then α3(u) defined in Definition 4
has the expression

α3(u) = log

(
1 − 3ū + C3(ū, ū, 1) + C3(ū, 1, ū) + C3(1, ū, ū) − C3(ū, ū, ū)

C3(u, u, u)

)
.

It can also be seen that the measure α3(u) has properties similar to those in Proposi-
tion 2; see Proposition S1 of SupplementaryMaterial for details. A difference between
the bivariate measure α(u) in Definition 1 and the trivariate extension α3(u) in Defi-
nition 4 is the value of the measure at u = 0.5. Unlike the bivariate measure, the value
α3(0.5) is not equal to 0 in general.

Extending the results in Sect. 5.1, here we briefly discuss a sample analogue of
α3(u) based on a sample from a copula.

Definition 5 Let (U11,U21,U31), . . . , (U1n,U2n,U3n) be a random sample from a
trivariate copula. Then a sample analogue of α3(u) is defined by

α̂3(u) = log

(
T3U (u)

T3L(u)

)
,

where

T3L(u) = 1

n

n∑
i=1

1(U1i ≤ u,U2i ≤ u,U3i ≤ u),

T3U (u) = 1

n

n∑
i=1

1(U1i ≥ 1 − u,U2i ≥ 1 − u,U3i ≥ 1 − u),

and 1(·) is as in Definition 2.

In a similar manner as in Lemma 1, it can be proved that α̂3(u) is a consistent
estimator of α3(u). Also the weak convergence to a Gaussian process also holds for
α̂3(u); see Theorem S1 of Supplementary Material. This result can be utilized to
establish inferential methods based on α̂3(u) by following the discussion in Sect. 5.2.
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10 Discussion

In this paper we have proposed a copula-based measure of asymmetry between the
lower and upper tail probabilities. It has been seen that the proposedmeasure has some
properties which are desirable as a measure of tail asymmetry. Sample analogues of
the proposed measure have been presented, and statistical inference based on them,
including point, interval and region estimation and related hypothesis testing, has been
shown to be very simple. The practical importance of the proposed measure has been
demonstrated through statistical analysis of stock return data.

This paper discusses measures for bivariate and trivariate data. It is straightfor-
ward to extend the proposed measures to a d-variate one by generalizing the idea in
Definition 4 as follows. Let (X1, . . . , Xd) be an R

d -valued random vector with con-
tinuous univariate margins. Then a d-dimensional extension of the proposed measure
for (X1, . . . , Xd) is

αd(u) = log

(
P(F1(X1) > 1 − u, . . . , Fd(Xd) > 1 − u)

P(F1(X1) ≤ u, . . . , Fd(Xd) ≤ u)

)
, 0 < u ≤ 0.5,

where Fj denotes the cumulative distribution function of X j ( j = 1, . . . , d). Some
properties of this measure can be obtained by following the results in Sect. 9.

Another multivariate extension of the proposed bivariate measure is available by
adopting the approach in Embrechts et al. (2016) and Hofert and Koike (2019). With
this approach, an extended measure of tail asymmetry for (X1, . . . , Xd) is defined by

Ad(U) =

⎛
⎜⎜⎜⎝

α11(u11) α12(u12) · · · α1d(u1d)
α21(u21) α22(u22) · · · α2d(u2d)

...
...

. . .
...

αd1(ud1) αd2(ud2) . . . αdd(udd)

⎞
⎟⎟⎟⎠ ,

where U = (ui j ), αi j is the proposed measure (1) of the random vector
(Xi , X j ) (i, j = 1, . . . , d). This general dimensional measure essentially consists
of the proposed bivariate measures (1) applied to every pair of variables. The proper-
ties of each element of the measure Ad(U) are straightforward from the results of this
paper. The measure Ad(U) might be used to discuss joint tail behaviour when there
are more than two variables. It would be a possible topic for future work to investigate
properties of this extended measure as a matrix and evaluate the values of the measure
for multivariate copulas such as some examples of the vine copulas (Aas et al. 2009;
Czado 2010).
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