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Abstract
An alternative look at the linear regression model is taken by proposing an original
treatment of a full column rank model (design) matrix. In such a situation, the Moore–
Penrose inverse of the matrix can be obtained by utilizing a particular formula which
is applicable solely when a matrix to be inverted can be columnwise partitioned into
two matrices of disjoint ranges. It turns out that this approach, besides simplifying
derivations, provides a novel insight into some of the notions involved in themodel and
reduces computational costs needed to obtain sought estimators. The paper contains
also a numerical example based on astronomical observations of the localization of
Polaris, demonstrating usefulness of the proposed approach.

Keywords Least squares method · Experimental data processing · Estimation
theory · Moore–Penrose inverse · Columnwise partitioned matrix · Astronomical
observations

1 Introduction

The problem of curve fitting on the basis of a finite number of observations arises
in almost all areas where mathematics is applied and one of the most powerful tools
used for this purpose is based on the least squares method. Over the years a rich
sample of results occurred in the literature providing an indisputable evidence that
the matrix analysis concepts and techniques offer handy means to apply the method.
The present paper constitutes a further contribution to this stream of considerations
by demonstrating how an expression for the Moore–Penrose inverse of a columnwise
partitioned matrix derived in Baksalary and Baksalary (2007, Theorem 1) may be
advantageously utilized to deal with the problems originating from linear regression.
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Among the benefits resulting from the proposed approach onemaymention: a simplifi-
cation of derivations, a novel insight into the notions involved in the regression model,
and reduction of computational costs necessary to obtain sought estimators. Fur-
thermore, by simplifying inevitable mathematical operations, the proposed approach
offers an attractive alternative to the researchers, who are not keen on exploiting more
advanced than necessary matrix methods or utilizing software packages which do not
provide a comprehensive control over the processed data, as the approach enables to
perform calculations almost “by hand” preserving an insight into every step of linear
regression.

The aforementioned representation of the Moore–Penrose inverse established in
Baksalary and Baksalary (2007, Theorem 1) is recalled in the following lemma.

Lemma 1.1 Let A be an n × m, m ≥ 2, real matrix columnwise partitioned as A =
(A1 : A2), with Ai denoting n × mi , i = 1, 2, matrices such that m1 + m2 = m.
Furthermore, let the ranges ofA1 andA2 be disjoint. Then theMoore–Penrose inverse
of A is of the form

A† =
(

(Q2A1)
†

(Q1A2)
†

)
, (1)

whereQi , i = 1, 2, is the orthogonal projector onto the null space of the transpose of
Ai and (QiA j )

†, i = 1, 2, i �= j , is the Moore–Penrose inverse of QiA j .

In the next section we briefy discuss particular linear regression models, shading a
spotlight on issues in which the Moore–Penrose inverse of a columnwise partitioned
matrix naturally emerges. These considerations are followed bySect. 3,which contains
an example demonstrating applicability of the present approach. The data used in the
example originated from the observations of the position of Polaris made onDecember
12, 1983, by S.G. Brewer, which were afterwards used by Pedler (1993) to develop a
solution to an (as the author claims) “astronomical problem” aimed at fitting a circle to
a set of points. Section 4 provides a number of remarks concerned with the proposed
approach.

2 Particular linear regressionmodels

All matrices occurring in what follows are of real entries and the superscript ′ stands
for a matrix transpose. Let us consider the linear regression model

y = Xβ + u, (2)

where y is an n×1 random vector of observations,X is an n× p knownmodel (design)
matrix of constants, β is a p × 1 vector of unknown parameters, and u is an n × 1
vector of unknown errors. The entries of the vector u = (u1, u2, . . . , un)′ are assumed
to have a mean of zero and (unknown) variance σ 2, and each pair ui , u j , i �= j , is
assumed to be uncorrelated, i.e., the expectation vector and the covariance matrix of
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An alternative look at the linear regression model 1501

u are E(u) = 0 and Cov(u) = σ 2In , respectively. Customarily, the symbol In stands
for the identity matrix of order n. We also assume that the matrix X is of full column
rank. Then, the least squares estimator (LSE) of β is given by

β̂ = (X′X)−1X′y.

It is worth emphasizing that the assumption thatX is of full column rank plays a crucial
role, and is most often made to assure uniqueness of the estimator of β; see Puntanen
et al. (2011, p. 34). It turns out that (X′X)−1X′ = X†, i.e., the Moore–Penrose inverse
of X; see Appendix A.

To calculate X†, instead of bothering with the inverse of X′X, we may write the
regressor matrix X in the columnwise partitioned form

X = (X1 : X2), (3)

where Xi , i = 1, 2, denote n × pi matrices such that p1 + p2 = p. Since X is of full
column rank, it follows that

R(X1) ∩ R(X2) = {0}, (4)

where R(.) stands for the column space (range) of a matrix argument. According to
Lemma 1.1, the Moore–Penrose inverse of a matrix of the form (3), such that (4) is
satisfied, can be expressed as

X† =
(

(Q2X1)
†

(Q1X2)
†

)
, (5)

where Qi = In − XiX
†
i is the orthogonal projector onto N (X′

i ), the null space of X
′
i ,

i = 1, 2; seeAppendixA.Note that the condition (4), underwhich the representation of
theMoore–Penrose inverse (5) is valid, is weaker than the requirement thatX specified
in (3) is of full column rank (the assumption which will be extensively exploited in
what follows).

Let us consider a simple linear regression model

y = β01 + β1x + u,

where β0, β1 ∈ R, 1 = (1, 1, . . . , 1)′ is the vector of n ones and x = (x1, x2, . . . , xn)′
is the vector of observations onone regressor variable.Thevectoru = (u1, u2, . . . , un)′
consists of the unknown errors. To obtain the LSE of the parameter vector β =
(β0, β1)

′ we may partition n × 2 matrix X as

X = (1 : x), (6)
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where R(1) ∩ R(x) = {0} since we assume that X is of full column rank. By (5) it
follows that

X† =
(

(Qx1)†

(Q1x)†

)
, (7)

where Qx1 = (In − xx†)1 and Q1x = (In − 11†)x are both column vectors. Thus, by
the identity (A1) given in Appendix A,

(Qx1)† = 1′Qx

1′Qx1
and (Q1x)† = x′Q1

x′Q1x
. (8)

Consequently, the LSE of β = (β0, β1)
′ is

β̂ = X†y =
(

(Qx1)†y
(Q1x)†y

)
=

(
(1′Qx1)−11′Qxy
(x′Q1x)−1x′Q1y

)
=

(
β̂0

β̂1

)
. (9)

From (8) we obtain

(Qx1)†x = 0, (Q1x)†1 = 0, (Qx1)†1 = 1, (Q1x)†x = 1,

whence

E(β̂) =
(
E(β̂0)

E(β̂1)

)
=

(
(Qx1)†E(y)
(Q1x)†E(y)

)
=

(
(Qx1)†(β01 + β1x)
(Q1x)†(β01 + β1x)

)
=

(
β0

β1

)
.

Let us use the symbol H to denote the so-called hat-matrix, which represents the
orthogonal projector onto R(X), i.e., H = XX†. Then, the identities (6)–(8) entail

H = 1(Qx1)† + x(Q1x)† = 11′Qx

1′Qx1
+ xx′Q1

x′Q1x
, (10)

which means that the hat-matrix is a sum of two matrices of rank one. Furthermore,
each of the summands involved in (10) is idempotent. This observation leads to the
conclusion (see e.g., Rao and Mitra (1971, Theorem 5.1.2)) that the matrices neces-
sarily commute and their product is equal to the zero matrix, i.e.,

1(Qx1)†x(Q1x)† = 0 = x(Q1x)†1(Qx1)†.

Since 1 ∈ R(X), it follows that H1 = 1. Hence, by denoting ŷ = Hy, we see
that 1′ŷ = 1′Hy = 1′y, which gives

∑n
i=1 ŷi = ∑n

i=1 yi . Furthermore, by putting
û = (In − H)y, we obtain 1′û = 1′(In − H)y = 0, so

∑n
i=1 ûi = 0. Another

consequence of 1 ∈ R(X) is the identity

‖(In − J)y‖2 = ‖(H − J)y‖2 + ‖(In − H)y‖2, (11)
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An alternative look at the linear regression model 1503

with J = 11†; see Puntanen et al. (2011, Proposition 8.5). Alternatively, the equality
(11) can be expressed as SST = SSR + SSE , where SST stands for the total sum
of squares, SSR for the regression sum of squares, and SSE for the residual sum of
squares. The coefficient of determination defined as

R2 = SSR

SST

turns out to be

R2 = ‖(H − J)y‖2
‖(In − J)y‖2 = y′(H − J)y

y′(In − J)y
. (12)

Clearly, R2 ≥ 0. Another observation is that In −J−(H−J) = In −H is nonnegative

definite (as In − H is the orthogonal projector onto N (X′)). Hence, H − J
L≤ In − J,

where the symbol
L≤ denotes the Löwner partial ordering, from where we conclude

that 0 ≤ R2 ≤ 1. The fact that values of R2 are restricted to the interval [0, 1] is
known in the literature (see e.g., Davidson and MacKinnon (1993, p. 14)), but usually
it is demonstrated in rather more involved way than in the present paper.

Consider now the general linear model with intercept

y = β01 + Xβ + u = (
1 : X) (

β0

β

)
+ u,

whereX and β are of dimensions n×(p−1) and (p−1)×1, respectively, and
(
1 : X)

is assumed to be of full column rank. Then, by analogy to (9), the LSE of (β0,β)′ is
(

β̂0

β̂

)
=

(
(QX1)†y
(Q1X)†y

)
. (13)

On account of (A1), we obtain (QX1)† = (1′QX1)−11′QX. Hence, (QX1)† =
(QX1)†QX. Similarly, we arrive at (Q1X)† = (Q1X)†Q1. In consequence, since
E(y) = β01 + Xβ, and since both, Q1X and QX1, are of full column ranks, we have

(
E(β̂0)

E(β̂)

)
=

(
β0

β

)
.

Note that the hat-matrix turns out to be

H = 1(QX1)† + X(Q1X)†, (14)

a sum of two matrices of which the former is of rank one and the latter is of the same
rank as matrix X, i.e., p − 1. Similarly as above, both summands which determine
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1504 O. M. Baksalary, G. Trenkler

the hat-matrix specified in (14) are commuting idempotents, whose product equals the
zero matrix.

The formula (14) (as well as its particular case (10)) can be viewed as an alternative
to the representation of H as a sum of two orthogonal projectors, which reads H =
J + PCX, where PCX = CX(CX)†, with C denoting the so-called centering matrix
defined as C = In − J; see Puntanen et al. (2011, formula (8.108)). It is clear that
JPCX = 0.

3 Applications

As in Pedler (1993, Sect. 6), we consider now the linear regression model with 4
regressors ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
...

xn
y1
y2
...

yn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 a1 b1
1 0 a2 b2
...

...
...

...

1 0 an bn
0 1 b1 −a1
0 1 b2 −a2
...

...
...

...

0 1 bn −an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
p

q

u

v

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1
c2
...

cn
d1
d2
...

dn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

Let x = (x1, x2, . . . , xn)′, y = (y1, y2, . . . , yn)′, a = (a1, a2, . . . , an)′, b =
(b1, b2, . . . , bn)′, β = (p, q, u, v)′, c = (c1, c2, . . . , cn)′, d = (d1, d2, . . . , dn)′.
Furthermore, let X be a 2n × 4 matrix of the form

X =
(
1 0 a b
0 1 b −a

)
. (16)

Then (15) can be written as

z =
(
x
y

)
= Xβ +

(
c
d

)
.

As the matrixX is of full column rank, we can determine the LSE of β by applying the
representation derived in Baksalary and Trenkler (2021, Example 1) as a consequence
of Baksalary and Baksalary (2007, Theorem 1). In order to take advantage of this
result, let

A =
∑n

i=1 ai∑n
i=1

(
a2i + b2i

) , B =
∑n

i=1 bi∑n
i=1

(
a2i + b2i

) , (17)
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An alternative look at the linear regression model 1505

N = n − A
n∑

i=1

ai − B
n∑

i=1

bi , M =
n∑

i=1

(
a2i + b2i

) − 1

n

⎡
⎣(

n∑
i=1

ai

)2

+
(

n∑
i=1

bi

)2
⎤
⎦ ,

(18)

e =
(
1 − Aa − Bb
−Ab + Ba

)
, f =

(
Ab − Ba

1 − Aa − Bb

)
, g =

(
a − a1
b − b1

)
, h =

(
b − b1

−a + a1

)
,

(19)

where a = 1
n

∑n
i=1 ai and b = 1

n

∑n
i=1 bi . Then, on account ofBaksalary andTrenkler

(2021, formula (8)), we obtain a very handy representation of the Moore–Penrose
inverse of the model matrix (16), namely

X† =

⎛
⎜⎜⎜⎜⎝

(
N−1 0
0 N−1

) (
e′
f ′

)
(
M−1 0
0 M−1

)(
g′
h′

)
⎞
⎟⎟⎟⎟⎠ . (20)

Hence, analogously to (13), the LSE of the parameter vector β is given by

β̂ =

⎛
⎜⎜⎜⎝
p̂

q̂

û

v̂

⎞
⎟⎟⎟⎠ = X†z =

⎛
⎜⎜⎝
N−1e′z
N−1f ′z
M−1g′z
M−1h′z

⎞
⎟⎟⎠ . (21)

Let us now demonstrate the usefulness of the expressions (20) and (21) by applying
them to a set of real data.

Example 3.1 As mentioned in Introduction, Pedler (1993) considered “astronomical
problem” of fitting a circle to a set of points and solved it from first principles. The con-
siderations in Pedler (1993) contain also an example which exploits the data collected
by S.G. Brewer from the observations of the position of Polaris made on December
12, 1983. The data are given in Table 1.

The data provided in Table 1 enable to calculate the scalars A, B, M , N as well as
the vectors e, f , g, h defined in (17)–(19). Hence, we obtain the vector inner products
of the four vectors and the vector z. It should be emphasized that these straightforward
calculations involve only scalars and vectors and require relatively low computational
cost; for details on advantages of the algorithm to calculate theMoore–Penrose inverse
which takes into account columnwise partitioning into range disjoint matrices see
Baksalary and Trenkler (2021). The outcomes of these computations are provided in
Table 2.

In the light of (21), we arrive at the components of the estimator of β̂, which are
given in Table 3. As expected, the values coincide with the ones given in Pedler (1993,
Table 2).
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1506 O. M. Baksalary, G. Trenkler

Table 1 At the i th observation at
time ti , (xi , yi ) denotes
(observed) cartesian coordinates
of the Polaris position, whereas
ai = cos(2π ti /T ) and
bi = sin(2π ti /T ), where
T = 23h 56m 04s is the length
of the sidereal day. The values
are recalled from Pedler (Pedler
1993, Table 1)

i xi yi ai bi

1 2.7 1.9 −0.1829 − 0.9831

2 2.6 2.0 −0.0963 − 0.9953

3 2.4 2.05 0.0348 − 0.9994

4 2.2 2.15 0.1653 − 0.9862

5 2.0 2.2 0.2720 − 0.9623

6 1.7 2.3 0.4935 − 0.8698

7 1.4 2.3 0.6204 − 0.7843

8 1.2 2.3 0.7023 − 0.7119

9 1.0 2.2 0.8026 − 0.5965

10 0.8 2.1 0.8942 − 0.4476

Table 2 Values of the scalars calculated on account of the data provided in Table 1

A B M N e′ z f ′ z g′ z h′ z

0.371 −0.834 1.677 1.677 2.649 1.174 −2.271 −1.453

Table 3 Least squares
estimators obtained on account
of (21)

p̂ q̂ û v̂

1.579 0.700 −1.354 −0.867

Table 4 Values of SST , SSR,
SSE , and R2 obtained on
account of (11) and (12)

SST SSR SSE R2

0.170 0.072 0.098 0.426

The values of the total sumof squares SST , regression sumof squares SSR, residual
sum of squares SSE , and the coefficient of determination R2 are provided in Table 4.

4 Supplementary remarks

In the linear regression models considered in Sect. 2 it was assumed that the model
matrices are of full column ranks and that the vector 1 is one of the columns. Such
assumptions are well justified as they correspond to several common situations. How-
ever, the present approach enables to generalize the considerations by weakening the
assumption that the model matrix is of full column rank to the requirement that it
can be columnwise partitioned into two range disjoint matrices and by relaxing the
assumption that one of the columns is the vector 1. To demonstrate this fact, let us
assume that the model matrix X in (2) is partitioned in accordance with (3), i.e.,

y = X1β1 + X2β2 + u, (22)

123



An alternative look at the linear regression model 1507

where vectors β i are of orders pi × 1, i = 1, 2. Provided that the condition (4) holds,
by (5) we conclude that the LSE of (β1,β2)

′ is given by

(
β̂1

β̂2

)
=

(
(Q2X1)

†y
(Q1X2)

†y

)
. (23)

Visibly, the expression (13) is obtained from (23) by taking X1 = 1 and X2 = X.
Furthermore, from (3) and (5) we obtain

H = X1(X′
1Q2X1)

†X′
1Q2 + X2(X′

2Q1X2)
†X′

2Q1, (24)

which under X1 = 1 and X2 = X leads to the formula (14). Note that the expression
(24) is given in Puntanen et al. (2011, Proposition 16.1) along with its equivalent
counterparts, one of which is (4).

Another evidence of the applicability of Lemma 1.1 in statistical estimation theory
was provided in Baksalary and Trenkler (2021), by deriving an original representation
for the best linear unbiased estimator (BLUE) of Xβ under the generalized version
of the (consistent) linear model (2) with Cov(u) = σ 2V, where V denotes a known
n × n positive semidefinite matrix. It was shown in Baksalary and Trenkler (2021,
Example 4) that Gy with

G = X(QVQXX)† = X(X′QVQXX)†X′QVQX (25)

is BLUE of Xβ.
Analogously, we can derive representations for BLUE of both, X1β1 and X2β2

under the model (22) when Cov(u) = σ 2V. From Puntanen et al. (2011, for-
mula (10.5)) it follows thatG1y is BLUE of an (estimable) parametric function X1β1
if G1 satisfies the equation

G1(X1 : X2 : VQX) = (X1 : 0 : 0). (26)

On account of (4), which is a necessary and sufficient condition for X1β1 to be
estimable, we arrive atR(X1) ∩R(X2 : VQX) = {0}. In consequence, we can utilize
the representation of the Moore–Penrose inverse provided in Lemma 1.1, which leads
to the conclusion that one of the solutions of (26) is of the form

G1 = X1(X′
1Q(X2:VQX)X1)

†X′
1Q(X2:VQX).

Hence,

BLUE(X1β1) = X1(X′
1Q(X2:VQX)X1)

†X′
1Q(X2:VQX)y.

Similarly, by interchanging the subscripts “1” and “2” in (26), we obtain

BLUE(X2β2) = X2
(
X′
2Q(X1:VQX)X2

)†X′
2Q(X1:VQX)y.
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1508 O. M. Baksalary, G. Trenkler

The paper is concluded with some remarks concerned with advantages of utilizing
the representation of the Moore–Penrose inverse provided in Lemma 1.1 from the
computational point of view. In comparison to the methods of determining the inverse
based on the singular value decomposition (SVD), which are exploited in several
popular software packages (e.g.,Matlab, Mathematica or R), an algorithm based
on the representation (1) seems to have three main advantages, each leading to a
dropping of computational costs. The first one is that it reduces sizes of matrices to
be Moore–Penrose inverted—instead of the inverse of an n × m matrix A, we need
to compute two inverses of matrices Q2A1 and Q1A2 of orders n × m1 and n × m2,
respectively, where m1 +m2 = m; as several software tools impose limits on sizes of
matrices which can be stored, one can encounter a situation in which the inverse of A
may exceed the limit, while the inverses ofQ2A1 andQ1A2 are still manageable. The
second benefit is that the algorithm allows computing both block entries occurring
in the inverse (almost) simultaneously—in the light of Baksalary and Trenkler (2021,
formula (6)), the two entries involved in the representation (1) are linked by the identity

(
QiA j

)† = A†
j

[
In − Ai

(
Q jAi

)†]
, i, j = 1, 2, i �= j,

which means that one of the Moore–Penrose inverses involved in the representation
can be derived from the knowledge of the other. The third advantage of the algorithm is
that it can be executed iteratively in each subsequent step tomatrices of smaller order—
fromBaksalary and Trenkler (2021, Lemma 1) it follows that whenA is of full column
rank, then Q2A1 and Q1A2 are of full column ranks as well, which means that the
inverses (Q2A1)

† and (Q1A2)
† can be computed by applying the same algorithm;

the procedure might be carried out iteratively till the matrices to be inverted are all
reduced to (row) vectors.

Acknowledgements The authors are thankful to the two referees for their pertinent comments and sugges-
tions on the first version of the paper, which resulted in a noticeable betterment of its content. The authors
are also grateful to the handling editor for highlighting several relevant facts, the mentioning of which
distinctly enriched the paper.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Moore–Penrose inverse of a matrix

Let S be an n × m matrix. Then there exists a unique matrix S† such that

SS†S = S, S†SS† = S†, (SS†)′ = SS†, (S†S)′ = S†S.
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An alternative look at the linear regression model 1509

The matrix S† is called the Moore–Penrose inverse of S.
It can be verified that

S† = (S′S)†S′, (A1)

which takes the form S† = (S′S)−1S′, when S is of full column rank. Another relevant
property of the Moore–Penrose inverse is that it offers a handy way to represent
orthogonal projectors inRn (symmetric idempotentmatrices of order n). To be precise,
an n × n matrix P is an orthogonal projector if and only if it is expressible as SS†

for some n × m matrix S. Then, SS† is the orthogonal projector onto R(S) and,
consequently, In − SS† is the orthogonal projector onto the orthogonal complement
ofR(S), which coincides withN (S′). Similarly, S†S and Im −S†S are the orthogonal

projectors onto R(S′) and N (S), respectively, where R(S′)
⊥⊕ N (S) = R

m . An
important feature is that there is a one-to-one correspondence between the orthogonal
projector and the subspace onto which it projects.
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