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Abstract
For the family of multivariate probability distributions variously denoted as unified
skew-normal, closed skew-normal and other names, a number of properties are already
known, but many others are not, even some basic ones. The present contribution aims
at filling some of the missing gaps. Specifically, the moments up to the fourth order
are obtained, and from here the expressions of the Mardia’s measures of multivariate
skewness and kurtosis. Other results concern the property of log-concavity of the
distribution, closurewith respect to conditioning on intervals, and a possible alternative
parameterization.

Keywords Unified skew-normal distribution · Truncated multivariate normal
distribution · Mardia’s measures of multivariate skewness and kurtosis ·
Log-concavity · Non-standard conditional distribution

1 The unified skew-normal distribution

1.1 Early development, applications and some open problems

In recent years, there has been a vigorous impulse in the development of flexible
parametric families of distributions. This activity is specially lively and stimulating
in the multivariate setting, correspondingly to the ever increasing availability and
treatment of multivariate data in applied work.

An active direction of research within this process is represented by a family of
continuous distributions which has originated as a generalization of the multivariate
skew-normal (SN) distribution, which itself is a generalization of the classical normal
distribution; for a review of the SN distribution and its ramifications, see Azzalini and
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Capitanio (2014). The generalizationwe are concernedwith has originated frommulti-
ple independent sources, with some differences in the technical development, but with
common underlying structure, as explained later. Specifically, González-Farías et al.
(2004a) and González-Farías et al. (2004b) have developed the ‘closed skew-normal
distribution’. Motivated by Bayesian inference considerations, Liseo and Loperfido
(2003) have presented the ‘hierarchical skew-normal’. Another related construction is
the ‘fundamental skew-normal’ proposed by Arellano-Valle and Genton (2005), who
also consider a second version of closed skew-normal.

The interconnections among these apparently separate formulations have been
examined by Arellano-Valle and Azzalini (2006), showing their essential equivalence,
as well as the presence of overparameterizations in some cases. To accomplish their
project, they introduced a unifying version which embraces the above-recalled spe-
cific proposals, removing at the same time the existing overparameterizations. This
version was hence denoted ‘unified skew-normal (SUN) distribution’. Its main formal
properties will be summarized in the next subsection. However, in essence, the con-
structive mechanism starts from a (d + m)-dimensional normal distribution, where
m of the components play a role of hidden variables which modify non-linearly the
remaining d components via the presence of a certain conditioning event on the hid-
den components. The construction leads to a d-dimensional non-normal distribution,
with the regular normal distribution included as a special case. We shall refer to this
distribution as a SUNd,m .

The SUN family constitutes a superset of the SN family, more specifically the so-
called ‘extended skew-normal (ESN) family’, to which the SUN family reduces if
m = 1. Its building mechanism based on m latent variables leads to certain properties
not amenable to the SN and ESN distribution. An important specific fact is closure of
the family with respect to convolution; specifically, the sum of two independent SUN
variables of type SUNd,m1 and SUNd,m2 is of type SUNd,m1+m2 . This property has
proved convenient in a number of operational formulations which employ the SUN
distribution as its core stochastic component.

The closed skew-normal and the SUN distributions have been applied in a wide
range of applied domains, and their relevance appears to be growing. The following is
a non-exhaustive list of methodologies and applied domains where these distributions
have been employed: stochastic frontier analysis in the context of productivity analy-
sis, considered by Domínguez-Molina et al. (2007), Colombi (2013), Colombi et al.
(2014), Kumbhakar and Lai (2016); various models for the analysis of spatial data
have been introduced by Allard and Naveau (2007), Hosseini et al. (2011), Karimi
and Mohammadzadeh (2012), Rimstad and Omre (2014), among others; analysis of
longitudinal data for the distribution of random effects in work of Ghalani and Zad-
karami (2019), and again Colombi (2013); combination of phase II and III clinical
trials, by Azzalini and Bacchieri (2010); seismic inversion methodology for geologi-
cal problems, by Karimi et al. (2010) and Rezaie et al. (2014); extended formulations
of Kalman filter by Kim et al. (2014) and Rezaie and Eidsvik (2016); application to
small area estimation by Diallo and Rao (2018). In the context of binary data, Durante
(2019) has shown that, under Gaussian priors for the probit coefficients, the poste-
rior distribution has an exact unified skew-normal distribution; this formulation lends
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itself to interesting developments, such as those of Fasano et al. (2019) and Fasano
and Durante (2020).

While the SUNdistribution ismathematically quite tractable and it enjoys a number
of appealing formal properties, it is inevitably more complex than its progenitor, that
is, the skew-normal distribution. Consequently there are several aspects which are
still unexplored, or only partly explored; this situation concerns even some rather
basic properties. A case in point is represented by the computation of the moments
and associated quantities, of which little is known at present, as we shall discuss in
more detail later on. Therefore, given the above extensive (even if non-exhaustive)
list of applied problems where the SUN distribution provides theoretical support,
advancements in the knowledge of the formal properties of SUN distribution can
immediately be beneficial in the applied domain, although this side is not directly
tackled here.

More specifically, the main target of the present contribution is represented by a
set of results on the moments and derived quantities, considered in Sect. 2. Additional
properties are examined in Sect. 3, namely the study of the log-concavity of the density,
the conditional distribution of a SUN variable when some of its components belong
to a given interval, and a possible alternative form of parameterization.

1.2 Main properties of the SUN family

We summarize the main facts about the SUN family; this term is used to embrace also
the closed skew-normal and other essentially equivalent classes, provided a suitable
parameterization is adopted. The notation here is the one of Sect. 7.1.2 of Azzalini and
Capitanio (2014), which is largely the same of Arellano-Valle and Azzalini (2006),
with minor variations.

For positive integers d and m, consider the (d + m)-dimensional normal random
variable (

X0
X1

)
∼ Nd+m

(
0,�∗) , �∗ =

(
�̄ �

�� �

)
, (1)

where �∗ is a full-rank correlation matrix. Define Z to be a d-dimensional random
variable with the same distribution of (X0|X1 + τ > 0), where τ = (τ1, . . . , τm)�
and the notation X1 + τ > 0 means that the inequality sign must hold component-
wise for each one of the m components. Next, introduce the transformed variable
Y = ξ +ω Z , where ξ = (ξ1, . . . , ξd)

� and ω is a d×d diagonal matrix with positive
diagonal elements ω1, . . . , ωd , and denote � = ω�̄ω. It can be show that the density
of Y at x ∈ R

d is

fY (x) = ϕd(x − ξ ;�)
	m

{
τ + ���̄−1ω−1(x − ξ);� − ���̄−1�

}
	m(τ ;�)

(2)

where ϕh(u;
) and 	h(u;
) denote the Nh(0, 
) density function and distribution
function at u ∈ R

h , respectively, for any symmetric (h × h) positive-definite matrix

. In this case, we shall write Y ∼ SUNd,m(ξ,�,�, τ, �).

The SUN family enjoys numerous formal properties. For instance, we have already
anticipated inSect. 1.1 that this family is closedwith respect to convolution.Manyother

123



464 R. B. Arellano-Valle, A. Azzalini

interesting facts hold, but it would take too much space to review all such properties
here, and we only recall those which are required for the subsequent development;
additional information is summarized in Sect. 7.1 of Azzalini and Capitanio (2014). A
key fact is the expression of themoment generating function,M(t) or, equivalently, the
cumulant generating function of (2) as given byArellano-Valle and Azzalini (2006) is

K (t) = logM(t) = ξ�t + 2−1t��t + log	m(τ + ��ωt;�) − log	m(τ ;�), t ∈ R
d ;

(3)

essentially as in González-Farías et al. (2004a) and González-Farías et al. (2004b),
up to a change of parameterization. From this expression, many other results can be
derived. One of them is represented by the rule for obtaining the distribution of an
affine transformation: if a is a p-vector and A is a full-rank d × p matrix, then

a + A�Y ∼ SUNp,m(a + A�ξ, A��A,�A, τ, �) (4)

where �A = Diag(A��A)−1/2A�ω�, using the notation Diag(M) to denote the
diagonal matrix formed by the diagonal elements of a square matrix M , as in Mar-
dia et al. (1979, p. 455). Clearly, (4) can be used to compute the distribution of
p-dimensional marginals.

Another result to be used in our development is the expression of the distribution
function, which has been given in Lemma 2.2.1 of González-Farías et al. (2004b).
Since we adopt the SUN formulation for the reasons discusses by Arellano-Valle
and Azzalini (2006), we shall use the equivalent expression, given by Azzalini and
Bacchieri (2010),

FY (y) = P{Y ≤ y} = 	d+m(z̃; �̃)

	m(τ ;�)
(5)

where

z̃ =
(

ω−1(y − ξ)

τ

)
, �̃ =

(
�̄ −�

−�� �

)
.

There exist two stochastic representations of the SUN distribution, or equivalently
two constructive ways to generate a random variable Y with density (2). The first of
these is essentially the above-described process leading from the normal variable X in
(1) to the variable Y , via the intermediate variable Z . This is denoted ‘representation
by conditioning’ since it operates through the condition X1 + τ > 0.

The other stochastic representation is of convolution type, that is, as the distribution
of the sum of two independent random variables. Specifically, from the above-defined
quantities, introduce �̄� = �̄ − ��−1��, and the two independent variables U0 ∼
Nd(0, �̄�) andU1,−τ which is obtained by the component-wise truncation below −τ

of a variateU1 ∼ Nm(0, �). Then, Y ∼ SUNd,m(ξ,�,�, τ, �) can be expressed via
the so-called additive representation

Y
d= ξ + ω

(
U0 + ��−1U1,−τ

)
(6)
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whichwill play a key role in our development. For a detailed discussion of the interplay
of these two stochastic representations, see Sect. 2.1 of Arellano-Valle and Azzalini
(2006).

Although the moment generating function M(t) has been known since the early
work on this theme, it has not translated into decisive advances in the computation of
moments and cumulants. Most of the available results forE{Y } and var{Y } are limited
is some way or another. For instance, results in Sect. 3 of Gupta et al. (2004) refer
to the case m = d, and even so they employ very involved auxiliary functions. For
the case where � is a diagonal matrix, Arellano-Valle and Azzalini (2006) provide
explicit expressions for the expected value and the variance matrix, applicable for all
d and m.

To our knowledge, the general expression of E{Y } has been obtained by Azzalini
and Bacchieri (2010). This expression involves the following quantities: τ− j denotes
the vector obtained by removing the j component of τ , for j = 1, . . . ,m; �− j is the
(m − 1) × (m − 1) matrix obtained by removing the j th row and column of �; γ− j

denotes the j th column of �− j ; finally, �̃− j = �− j − γ− jγ
�− j . Then the mean value

can be written as

E{Y } = dK (t)

dt

∣∣∣∣
t=0

= ξ + ω �
1

	m(τ ;�)
∇	m (7)

where ∇	m is the m-vector with j th element

(∇	m) j =
{

ϕ(τ j ) if m = 1,

ϕ(τ j ) 	m−1

(
τ− j − �− jτ j ; �̃− j

)
if m > 1.

(8)

An expression of type (7) or (8) can be regarded as ‘essentially explicit’, at least
for moderate values of m, even if it involves the distribution function of a multivariate
normal distribution function, 	m . The phrase ‘essentially explicit’ seems justified in
the light of the current advances for computing 	m , similarly to the process which, a
few decades ago, has led to consider ‘explicit’ an expression involving the univariate
normal distribution function, 	.

Some intermediate expressions of the SUN variance matrix have been provided
by Gupta and Aziz (2012) and Gupta et al. (2013), where the word ‘intermediate’
reflects the presence in their result of the matrix of the second derivatives of 	m .
Since these second derivatives have been provided in an explicit form only for some
special sub-cases of the SUN family, the question of the general expression of the
SUN variance matrix appears to be open. This is the problem to be tackled in our next
section, followed by consideration of higher order moments.

123



466 R. B. Arellano-Valle, A. Azzalini

2 Moments and related quantities

2.1 The variancematrix

We compute the variance matrix var{Y } using second-order differentiation of the
cumulant generating function (3). Write

dK (t)

dt
= ξ + �t + d log P(t)

dt
= ξ + �t + 1

P(t)

dP(t)

dt
(9)

where P(t) = 	m(τ + ��ωt;�). The only non-obvious terms are ∂P/∂t j , for
j = 1, . . . ,m. Denote

u j = (τ + ��ωt) j = τ j + ��
j ωt,

where � j is the j th column of �, for j = 1, . . . ,m. For notational simplicity, we
focus on j = 1 since the other terms are analogous. Write the joint m-normal density
involved by P as the product of the first marginal component times the conditional
density of the other components, leading to

P(t) =
∫ u1

−∞
· · ·
∫ um

−∞
ϕ(x1) ϕm−1(x−1 − μ−1(x1); �̃−1) dx1 dx−1 (10)

where x−1 is the (d − 1)-vector obtained by removing the first component of x ,
μ−1(x1) = γ−1x1 denotes the mean value of the conditional normal distribution when
the first component of Nm(0, �) is fixed at x1, and �̃−1 denotes the corresponding
variance matrix; we have used the quantities introduced in connection with (7). There-
fore

∂P

∂t1
= ∂u1

∂t1

∂P

∂u1
= (ω�)1 ϕ(u1)

∫ u2

−∞
· · ·
∫ um

−∞
ϕm−1(x−1 − μ−1(u1); �̃−1) dx−1

= (ω�)1 ϕ(u1) 	m−1(τ−1 − γ−1u1; �̃−1) (11)

where the term 	m−1(·;·) must be interpreted as 1 when m = 1. This convention will
apply also to subsequent expressions.

Application of (11) with the other values of the subscript j produces the entire
gradient of P . Next, evaluation of the gradient (9) at t = 0 delivers the mean vector
(7).

The second derivative of K (t) is obtained by differentiation of (9), yielding

d2K (t)

dt dt�
= � + d

dt�

(
d log P(t)

dt

)
(12)

where two generic entries of the final term are of the type

∂2 log P

∂t1∂t2
= − 1

P2

∂P

∂t1

∂P

∂t2
+ 1

P

∂2P

∂t1 ∂t2
.
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The first summand on the right side is the product of quantities of type (11). For the
second summand consider first the case with t1 	= t2, and follow a similar logic used
for (10), but now separate out two components. Focusing of the first two components,
for notational simplicity, write

P(t) =
∫ u1

−∞
· · ·
∫ um

−∞
ϕ2(x1:2; �1:2)ϕm−2

(
x−(1:2) − μ−(1:2)(x1:2); �̃−(1:2)

)
dx1:2 dx−(1:2)

(13)
where x1:2 = (x1, x2)�, �1:2 is the submatrix of � formed by its top-left 2× 2 block,
and so on, in the same logic and notational scheme used before.

Here we have implicitly assumed that m ≥ 2. This is a legitimate assumption since
the case with m = 1 corresponds to the ESN distribution, for which var{Y } has been
given by Capitanio et al. (2003) along with other moment-related results of the ESN
distribution.

The mixed derivative at t1 = t2 = 0 is

∂2P(t)

∂t1∂t2

∣∣∣∣∣
t1=0,t2=0

= (ω�)1:2 ϕ2(τ1:2) 	m−2(τ−(1:2) − μ−(1:2)(τ1:2); �̃−(1:2))
(
��ω

)
1:2
(14)

where μ−(1:2)(τ1:2) denotes the conditional mean of the components (3, . . . ,m) con-
ditionally on x1:2 = τ1:2 and �̃−(1:2) denotes the conditional variance. It must be
intended that the term 	m−2(·) is 1 when m = 2. Expression (14) is immediately
adapted to any two other components (t j , tk), provided j 	= k.

When j = k, take j = k = 1 for simplicity of notation and write

∂2 log P

∂t21
= ∂

∂t1

(
1

P

∂P

∂t1

)
= − 1

P2

(
∂P

∂t1

)2

+ 1

P

(
∂2P

∂t21

)

where (∂P/∂t1) is given by (11). Consider its core part (∂P/∂u1) and take the suc-
cessive derivative

∂2P

∂u21
= ∂

∂u1

(
d

∂u1
ϕ(u1) 	m−1(τ−1 − μ1(u1); �̃−1)

)

= ∂

∂u1

(
ϕ(u1) 	m−1(τ−1 − γ−1u1; �̃−1)

)

= −u1ϕ(u1)	m−1(τ−1 − γ−1u1; �̃−1)

+ϕ(u1)ϕm−1(τ−1 − γ−1u1; �̃−1)1
�
m−1

∂(τ−1 − γ−1u1)

∂u1
= −u1ϕ(u1)	m−1(τ−1 − γ−1u1; �̃−1)

+ϕ(u1)ϕm−1(τ−1 − γ−1u1; �̃−1)1
�
m−1(−γ−1).
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Hence the second derivative (∂2P/∂t21 ) evaluated at t1 = 0 is

∂2P

∂t21

∣∣∣∣∣
t1=0

= (ω�)11
{− τ1ϕ(τ1) 	m−1(τ−1 − γ−1τ1; �̃−1)

−ϕ(τ1)ϕm−1(τ−1 − γ−1τ1; �̃−1)1
�
m−1γ−1

}
(��ω)11

= (ω�)11
{− ϕ(τ1)

[
τ1 	m−1(τ−1 − γ−1τ1; �̃−1)

+ϕm−1(τ−1 − γ−1τ1; �̃−1) 1
�
m−1γ−1

]}
(��ω)11 (15)

which, similarly to earlier expressions, must be replicated for the other values of j .
Finally, as a general expression encompassing all terms in a matrix notation, we

arrive at
var{Y } = � + ω�H��ω = 
, (16)

say, where H is the matrix formed by the elements other than �ω given in (11), (14)
and (15). Even if we have derived (16) under the assumption thatm ≥ 2, a subsequent
inspection has shown that the expression remains valid provided the above derivatives
are computed setting the ϕm−1 and	m−1 terms equal to 1 whenm = 1, as we recover
the known expressions for the ESN distribution. With this convention, (16) holds for
all m.

Starting from a different motivation, expressions for the derivatives of 	m similar
to those obtained above have been presented in Lemma 2.3 of Arellano-Valle et al.
(2013). Their motivation was the computation of mean value and the variance matrix
of the truncated multivariate normal distribution, which are given in their Lemma 2.2.
Taking into account the additive representation (6) of a SUN variable, those expression
could also be used to derive the SUN lower moments.

2.2 Higher-order moments

While in principle one could consider successive differentiations of K (t) to compute
higher-order moments, this process becomes algebraically cumbersome.We therefore
follow another route, based on the additive representation (6).

Our plan of work is as follows. A preliminary step is the development of various
expressions concerningmoments of the sumof two independent randomvectors,which
are presented separately in an appendix. Simplification can be obtained by the using
the fact that one of the components of (6) is a zero-mean normal variable. On this front,
we benefit from the extensive literature on computational method for the moments of
a multivariate truncated normal distribution. Combining representation (6) with these
results for the moments of a truncated normal variable, we obtain expressions for the
desired SUN moments.

For a p-dimensional random variable X , define its moments up to the fourth order
as

μ1(X) = E{X} ,

μ2(X) = E

{
X ⊗ X�} = E

{
XX�} ,
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Some properties of the unified skew-normal distribution 469

μ3(X) = E

{
X ⊗ X� ⊗ X

}
= E

{
X ⊗ XX�} = E

{
XX� ⊗ X

}
= E

{
vec(XX�)X�} ,

μ4(X) = E

{
X ⊗ X� ⊗ X ⊗ X�} = E

{
XX� ⊗ XX�} = E

{
vec(XX�) vec(XX�)�

}
.

provided the involved expectedvalues exist. The equivalence of the various expressions
for a given moment follows from standard properties of the Kronecker product. The
vec operator stacks the columns of a matrix in a single vector.

Also, the following notation will be used, adopted from Magnus and Neudecker
(1979) and Neudecker and Wansbeek (1983). For arbitrary natural numbers s, p, q,
denote by ei :s the i th s-dimensional unit vector formed by all 0’s except a 1 in the i th
position, and from here define Ei j = ei :pe�

j :q . Further, denote by

Kpq =
p∑

i=1

q∑
j=1

Ei j ⊗ E�
i j

the pq-dimensional square commutation matrix and let Kr = Krr .
For algebraic convenience, we rewrite (6) in an equivalent form. Introduce the

quantities
� = ω��−1, � = � − ω��−1��ω (17)

and denote by �1/2 the unique symmetric square root of �; however, it would make
no difference if another square root of � is considered. The fact that � > 0 follows
from the assumption that�∗ in (1) has full rank. Given a (d+m)-dimensional variable

Z0 =
(
V
W

)
∼ Nd+m

((
0
0

)
,

(
Id 0
0 �

))
(18)

denote U
d= (W | W + τ > 0), so that (6) becomes

Y
d= ξ + X = ξ + �U + �1/2 V . (19)

Proposition 1 (SUNmoments)Consider X = �U+�1/2V ∼ SUNd,m(0,�,�, τ, �),
where U, V and other involved quantities are defined in connection with expressions
(17)–(19). Then:

μ1(X) = �μ1(U ),

μ2(X) = �μ2(U )�� + �,

μ3(X) = (� ⊗ �)μ3(U )�� + (Id2 + Kd)(�μ1(U ) ⊗ �) + vec(�)μ1(U )���,

μ4(X) = (� ⊗ �)μ4(U )(� ⊗ �)� + vec(�) vec(�)�

+(Id2 + Kd)
{
(�μ2(U )�� ⊗ �) + (� ⊗ �μ2(U )��) + � ⊗ �

}
+ vec(�μ2(U )��) vec(�)� + vec(�) vec(�μ2(U )��)� .
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470 R. B. Arellano-Valle, A. Azzalini

Moreover, the variance matrix of X is

var{X} = � − �(� − 
U )�� = 
, (20)

say, having set 
U = var{U } = μ2(U ) − μ1(U )μ1(U )�. The inequality � > 


holds, in the sense that the difference of the matrices is positive definite.

Proof Make use of Proposition A.5 in the Appendix for the moments of a linear
combination of two independent multivariate variables, combined with expressions in
Proposition A.3 for the moments of V under the assumption V ∼ Nd(0, Id). After
some algebraic simplifications, one arrives at the stated expressions. The term �−
U

of (20) is a positive definite matrix, taking account (A.3) in the appendix, which in
the present case holds in the strict version of the matrix inequality. This implies that
� > 
. �

The expressions μk(X) given in Proposition 1 refer to a SUN variable X with
location parameter ξ = 0. For the general case with arbitrary ξ , consider the shifted
variable Y = ξ + X and use expressions A.5–A.8 in the appendix. Another annotation
is that Proposition 1 includes an expression of var{X} alternative to (16).

The actual usage of the expressions provided in Proposition 1 requires knowledge
of themoments of the truncated normal component,μk(U ). In general, thesemoments
are not amenable to explicit treatment, and one must resort on numerical computa-
tions. As already mentioned, there exists a vast literature concerned with this problem,
and its exhaustive review would take far too much space. We therefore indicate only
some recent results, referring the reader to the references quoted therein for earlier
developments. Among the more recent proposals, we mention the methods for com-
puting these moments presented by Arismendi (2013) and Kan and Robotti (2017).
For the latter approach, there exist publicly available computing routines written by
the authors in theMatlab language. Of these routines, a corresponding version is avail-
able in the R computing environment via either of its packages mnormt (Azzalini and
Genz 2020) or MomTrunc (Galarza et al. 2020).

We nowwant to obtain expressions for theMardia’s measures of multivariate skew-
ness and kurtosis, denoted β1,d and β2,d in the original publications of Mardia (1970,
1974), apart from the symbol d adopted here to denote the dimensionality. To sim-
plify the algebraic work, it is convenient to work with a suitably transformed variable,
exploiting the invariance properties of Mardia’s measures with respect to nonsingular
affine transformations. For a random variable Y ∼ SUNd,m(ξ,�,�, τ, �), consider
again its representation (19), and introduce additionally

μ0 = � μ1(U ), μ = E{Y } = ξ + μ0, Y = μ + X0, X0 = X − μ0, U0 = U − μ1(U )

where X is as in Proposition 1. Ruling out degenerate cases, 
 = var{Y } = var{X0}
is non-singular. Consider then any non-singular d × d matrix C such that 
 = C C�;
although not strictly necessary, a common choice is to set C = 
1/2, the unique
symmetric positive-definite square root of
. Next, introduce the standardized variable
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Z̃ = C−1(Y − μ) = C−1�U0 + C−1�1/2V

∼ SUNd,m

(
−C−1μ0,C

−1�(C−1)�,C−1ω�, τ, �
)

(21)

such that

E

{
Z̃
}

= 0, var
{
Z̃
}

= Id .

On setting �̃ = C−1� and �̃ = C−1�(C−1)�, where � and � are given in (17),
and a matching definition of �̃1/2, we also note that

Z̃
d= �̃U0 + �̃1/2V . (22)

where
d= means identically distributed.

The reason for introducing the variable Z̃ is represented by the following fact. For
a standardized variable X∗, say, having zero mean vector and identity variance matrix,
the Mardia’s measures can be conveniently computed using the expressions given by
Kollo and Srivastava (2005), namely

β1,d = tr{μ3(X
∗)�μ3(X

∗)} = vec{μ3(X
∗)}� vec{μ3(X

∗)} , β2,d = tr{μ4(X
∗)} .

The next statement presents the evaluation of these expressions for the SUN variable
Z̃ .

Proposition 2 For the random variable Z̃ specified as in (21) or, equivalently, as in
(22), the following expected values hold:

μ3(Z̃) = (�̃ ⊗ �̃)μ3(U0)�̃
�,

μ4(Z̃) = (�̃ ⊗ �̃)μ4(U0)(�̃ ⊗ �̃)�

+(Ip2 + Kp)(�̃
U �̃� ⊗ �̃ + �̃ ⊗ �̃
U �̃� + �̃ ⊗ �̃)

+ vec(�̃
U �̃�) vec(�̃)� + vec(�̃) vec(�̃
U �̃�)� + vec(�̃) vec(�̃)�,

where 
U = μ2(U0) = var{U }, �̃ = C−1�, �̃ = C−1�(C−1)�, and C C� = 
.
Moreover, the Mardia’s measures of multivariate skewness and kurtosis are

β1,d = tr{(��
−1� ⊗ ��
−1�)μ3(U0)�
�
−1�μ3(U0)

�}
= vec{μ3(U0)}�(�̃��̃ ⊗ �̃��̃ ⊗ �̃��̃) vec{μ3(U0)},

β2,d = tr{(��
−1� ⊗ ��
−1�)μ4(U0)} + 2tr(
U��
−1�)tr{�
−1}
+tr{�
−1}2 + 4tr{
U��
−1�
−1�} + 2tr{�
−1�
−1},
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where

μ3(U0) = (Iq2 + Kq ){μ1(U ) ⊗ μ1(U )μ1(U )� − μ1(U ) ⊗ μ2(U )}
− vec{μ2(U )}μ1(U )� + μ3(U ),

μ4(U0) = −3μ1(U )μ1(U )� ⊗ μ1(U )μ1(U )� + (Iq2 + Kq ){μ1(U )μ1(U )� ⊗ μ2(U )

+μ2(U ) ⊗ μ1(U )μ1(U )� − (μ1(U ) ⊗ Iq )μ3(U )� − μ3(U )(μ1(U )� ⊗ Iq )}
+ vec{μ2(U )}(μ1(U ) ⊗ μ1(U ))� + (μ1(U ) ⊗ μ1(U )) vec{μ2(U )}� + μ4(U ) .

Proof The expressions of μ3(Z̃) and μ4(Z̃) follow directly from Proposition 1, by
using it with the terms X ,�,� specified as Z̃ , �̃, �̃.

Therefore, we concentrate on the derivation of β1,p and β2,p only. An algebraically
convenient route to obtain these quantities is from the stochastic representation in
(21). Denote by Y ′ = μ +C Z̃ ′ an independent replicate of Y = μ +C Z̃ , so that the
Mardia’s measure of skewness can be expressed as

β1,d = E

{
[(Y − μ)�
−1(Y ′ − μ)]3

}

= E

{
(Z̃� Z̃ ′)3

}
.

First, introduce the matrices M00 = ��
−1�, M01 = ��
−1�1/2, M10 =
�1/2
−1� = M�

01, and M11 = �1/2
−1�1/2. Then expand

(
Z̃� Z̃ ′)3 = [(U�

0 ��(C−1)� + V��1/2(C−1)�)(C−1�U ′
0 + C−1�1/2V ′)]3

= (U�
0 M00U

′
0 +U�

0 M01V
′ + V�M�

01U
′
0 + V�M11V

′)3

= (U�
0 M00U

′
0 +U�

0 M01V
′)3

+3(U�
0 M00U

′
0 +U�

0 M01V
′)2(V�M�

01U
′
0 + V�M11V

′)
+3(U�

0 M00U
′
0 +U�

0 M01V
′)(V�M�

01U
′
0 + V�M11V

′)2

+(V�M�
01U

′
0 + V�M11V

′)3

= (U�
0 M00U

′
0)

3 + 3(U�
0 M00U

′
0)

2(U�
0 M01V

′)
+3(U�

0 M00U
′
0)(U

�
0 M01V

′)2 + (U�
0 M01V

′)3

+3[{(U�
0 M00U

′
0)

2 + 2U�
0 M00U

′
0U

�
0 M01V

′ + (U�
0 M01V

′)2}V�M�
01U

′
0

+{(U�
0 M00U

′
0)

2 + 2U�
0 M00U

′
0U

�
0 M01V

′ + (U�
0 M01V

′)2}V�M11V
′]

+3[U�
0 M00U

′
0{(V�M�

01U
′
0)

2 + 2V�M�
01U

′
0V

�M11V
′ + (V�M11V

′)2}
+U�

0 M01V
′{(V�M�

01U
′
0)

2 + 2(V�M�
01U

′
0V

�M11V
′ + (V�M11V

′)2}]
+(V�M�

01U
′
0)

3 + 3(V�M�
01U

′
0)

2(V�M11V
′)

+3(V�M�
01U

′
0)(V

�M11V
′)2 + (V�M11V

′)3.

Take into account that U0 and U ′
0 are independent and identically distributed (i.i.d.)

random vectors with mean zero, as well as that V and V ′ are i.i.d. random vectors with
spherical normal distribution, so that all the terms involving odd functions of V or V ′
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have zero expectation. Consider also thatU0,U ′
0, V and V ′ are mutually independent.

Then, by taking the expectation and removing the terms with zero mean, we have

E

{(
Z̃� Z̃ ′)3} = E

{(
U�
0 M00U

′
0

)3}

= E

{
U�
0 M00U

′
0U

�
0 M00U

′
0U

�
0 M00U

′
0

}

= E

{
(U ′

0)
�M00U0U

�
0 M00U

′
0(U

′
0)

�M00U0

}

= E

{
tr(M00)U0U

�
0 M00U

′
0(U

′
0)

�M00U0(U
′
0)

�} .

Nowuse the equality tr(EFGH) = vec(H�)�(G�⊗E) vec(F) given in Lemma 3 of
Magnus andNeudecker (1986)with E = M00U0U�

0 M00, F = U ′
0(U

′
0)

�,G = M00U0
and H = (U ′

0)
�, and write

β1,d = E

{(
Z̃� Z̃ ′)3} = E

{
vec(U ′

0)
�(U�

0 M00 ⊗ M00U0U
�
0 M00) vec(U

′
0(U

′
0)

�)
}

= E

{
(U ′

0)
�M00(U

�
0 ⊗U0U

�
0 )(M00 ⊗ M00)(U

′
0 ⊗U ′

0)
}

= E

{
tr{(M00 ⊗ M00)(U

′
0(U

′
0)

� ⊗U ′
0)M00(U

�
0 ⊗U0U

�
0 )}
}

= tr
{
(M00 ⊗ M00)E

{
U ′
0(U

′
0)

� ⊗U ′
0

}
M00E

{
U�
0 ⊗U0U

�
0 )
}}

= tr
{
(M00 ⊗ M00)μ3(U

′
0)M00μ3(U0)

�} ,

where μ3(U ′
0) = μ3(U0) since U ′

0 and U0 are i.i.d. variables.
Proceeding in a similar way for the measure of kurtosis, we have

β2,d = E

{[
(Y − μ)�
−1(Y − μ)

]2}

= E

{
(Z�Z)2

}

= E

{[(
U�
0 ��(C−1)� + V��1/2(C−1)�

) (
C−1�U0 + C−1�1/2V

)]2}

= E

{
(U�

0 M00U0 +U�
0 M01V + V�M�

01U0 + V�M11V )2
}

= E

{
(U�

0 M00U0 +U�
0 M01V )2

}

+2E
{
(U�

0 M00U0 +U�
0 M01V )(V�M�

01U0 + V�M11V )
}

+E

{
(V�M�

01U0 + V�M11V )2
}

= E

{
(U�

0 M00U0)
2
}

+ 2E
{
(U�

0 M00U0)(U
�
0 M01V )

}
+ E

{
(U�

0 M01V )2
}

+2E
{
(U�

0 M00U0)(V
�M�

01U0 + V�M11V )
}
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+2E
{
(U�

0 M01V )(V�M�
01U0 + V�M11V )

}

+E

{
(V�M�

01U0)
2
}

+ 2E
{
(V�M�

01U0)(V
�M11V )

}
+ E

{
(V�M11V )2

}

= E

{
(U�

0 M00U0)
2
}

+ E

{
(U�

0 M01V )2
}

+2E
{
(U�

0 M00U0)(V
�M11V )

}
+ 2E

{
(U�

0 M01V )(V�M�
01U0)

}

+E

{
(V�M�

01U0)
2
}

+ E

{
(V�M11V )2

}
,

where the terms with zero expectation have been removed, namely those associ-
ated with odd functions of V . The remaining expected values can be worked out
recalling that the powers of quadratic forms can be expressed as the trace of matrix
products, combined with properties of the trace of products of matrices, specifi-
cally that tr(Kpq(P� ⊗ Q)) = tr(P�Q) as stated by Theorem 3.1, item (xiii),
of Magnus and Neudecker (1979) and, in case p = q, tr(P ⊗ Q) = tr(P)tr(Q),
tr(P�Q) = vec(P)� vec(Q). We then obtain

β2,d = E

{
tr(M00U0U

�
0 M00U0U

�
0 )
}

+ 2 E
{
tr(M01VV�M�

01U0U
�
0 )
}

+2 E
{
tr(M00U0U

�
0 )tr(M11VV�)

}
+ 2 E

{
tr(M01VV�M�

01U0U
�
0 )
}

+E

{
tr(M11VV�M11VV�)

}

= E

{
vec(U0U

�
0 )�(M00 ⊗ M00) vec(U0U

�
0 )
}

+2 E
{
vec(U0U

�
0 )�(M01 ⊗ M01) vec(VV�)

}

+2 E
{
tr(M00U0U

�
0 )tr(M11VV�)

}

+2 E
{
tr(M01VV�M�

01U0U
�
0 )
}

+E

{
vec(VV�)�(M11 ⊗ M11) vec(VV�)

}

= tr
[
(M00 ⊗ M00)E

{
vec(U0U

�
0 ) vec(U0U

�
0 )�

}]

+2 E
{
vec(U0U

�
0 )�

}
(M01 ⊗ M01)E

{
vec(VV�)

}

+2 tr
[
M00E

{
U0U

�
0

})
tr
(
M11E

{
VV�}]+ 2 tr

[
M01E

{
VV�}M�

01E
{
U0U

�
0

}]

+tr
[
(M11 ⊗ M11)E

{
vec(VV�) vec(VV�)�

}]

= tr {(M00 ⊗ M00)μ4(U0)} + 2 vec{μ2(U0)}�(M01 ⊗ M01) vec{μ2(V )}
+2 tr (M00μ2(U0)) tr (M11μ2(V )) + 2 tr(M01μ2(V )M�

01μ2(U0))

+tr [(M11 ⊗ M11)μ4(V )] .

Taking into account Lemma A.3 in an appendix, we can substitute μ2(V ) = Id ,
vec{μ2(V )} = vec(Id), μ4(V ) = Id2 + Kd + vec(Id) vec(Id)�, and μ2(U0) =
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var{U0}, leading to

β2,d = tr [(M00 ⊗ M00)μ4(U0)] + 2 vec{μ2(U0)}�(M01 ⊗ M01) vec(Id)

+2 tr (M00μ2(U0)) tr (M11) + 2 tr(M01M
�
01)

+tr
{
(M11 ⊗ M11)(Id2 + Kd)

}+ tr
{
(M11 ⊗ M11) vec(Id) vec(Id)

�}

= tr {μ4(U0)(M00 ⊗ M00)} + 4 tr(μ2(U0)M01M
�
01)

+2 tr(μ2(U0)M00)tr(M11) + tr(M11)
2 + 2 tr(M2

11) ,

where M01M�
01 = ��
−1�
−1�, tr(M11) = tr(�
−1) and tr(M2

11) =
tr(�
−1�
−1). �

3 Other properties

3.1 Log-concavity of the SUN distribution

The SN distribution is known to be log-concave, even in its extended version, ESN;
see Azzalini and Regoli (2012) for a proof. Since the ESN distribution corresponds to
the SUN with m = 1, it is natural to investigate the same property for a general value
of m.

An often-employed definition of log-concave distribution in the continuous case
requires that the logarithm of its density function is a concave function. In the more
specialized literature, the concept of log-concavity is expressed via the corresponding
probability measure, by requiring that

P{λA + (1 − λ)B} ≥ P{A}λ P{B}1−λ (23)

for any two Borel sets A and B, and for any 0 < λ < 1. For general information on
this theme, we refer to Chapter 2 of Dharmadhikari and Joag-dev (1988) and Chapter 4
of Prékopa (1995), which provide extensive compendia of a vast literature.

Established results ensure the equivalence of the definition of log-concavity based
on the density function and the one in (23); see Theorems 4.2.1 of Prékopa (1995), and
Theorem2.8 ofDharmadhikari and Joag-dev (1988).Moreover, also the corresponding
distribution function is a log-concave function; see Theorem and 4.2.4 II of Prékopa
(1995).

Proposition 3 The SUN distribution is log-concave.

Proof The proof is based on its additive representation in the form (19), which involves
the underling variable Z0 indicated in (18). For the multivariate normal distribution,
log-concavity is a well-known fact. Next, recall Theorem 9 of Horrace (2005) which
ensures log-concavity of a normal distribution subject to one-sided truncation. In our
case the truncation operates on the variable Z0 = (V�,W�)� in the formW +τ > 0.

Since U
d= (W |W + τ > 0), this establishes log-concavity of the distribution of
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(V�,U�). A variable Y ∼ SUNd,m(ξ,�,�, τ, �) can be obtained from (V�,U�)

by the affine transformation

Y = ξ +
(

�1/2 0
0 �

)(
V
U

)
.

Preservation of log-concavity after an affine transformation has been proved by
Henningsson and Åström (2006). Strictly speaking, their statement refers to a trans-
formation involving a square matrix, having dimension d + m in our notation, but it
is easy to see that fact extends to reduced-dimension transformations, since one can
think of a full-rank transformation to an augmented variable of dimension d + m,
followed by marginalization to extract the Y component. Since marginalization pre-
serves log-concavity, as stated for instance by Theorem 4.2.2 of Prékopa (1995), this
concludes the proof. �

3.2 Conditional density generated by interval selection

For a random variable Y ∼ SUNd,m(ξ,�,�, τ, �), consider a partition of Y and its
associated quantities, as follows

Y =
(
Y1
Y2

)
, ξ =

(
ξ1
ξ2

)
, � =

(
�11 �12
�21 �22

)
, ω =

(
ω1 0
0 ω2

)
, � =

(
�1
�2

)

(24)
where Y1 and Y2 have dimension d1 and d2, with a corresponding partition for the
scaled matrix �̄ which appears in (1) and (2).

In Proposition 2.3.2 of González-Farías et al. (2004b), it is proved that the condi-
tional distribution of Y2 given that Y1 = y1, for any vector y1 ∈ R

d1 , is still of SUN
type. Here, we want to examine another conditional distribution of Y2, namely the one
which arises when the conditioning event on Y1 is instead an orthant-type interval of
the form (Y1 + y1 > 0), where the inequality sign holds for each variable component,
or some similar orthant-type condition.

Proposition 4 If Y ∼ SUNd,m(ξ,�,�, τ, �) with elements partitioned as indicated
in (24), then

(Y2|Y1 + y1 > 0) ∼ SUNd2,d1+m

(
ξ2,�22, (�2, �̄21),

(
z̃1
τ

)
,

(
�̄11 �1

��
1 �

))
(25)

where z̃1 = ω−1
1 (ξ1 + y1) and the inequality sign must be intended to hold for each

component of Y1, if d1 > 1. In the case where the inequality sign is reversed, we have

(Y2|Y1 + y1 < 0) ∼ SUNd2,d1+m

(
ξ2,�22, (�2,−�̄21),

(
ẑ1
τ

)
,

(
�̄11 −�1

−��
1 �

))

(26)
where ẑ1 = ω−1

1 (ξ1 − y1).
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Proof Recall formula (4) for computing the distribution of an affine transforma-
tion of a SUN variable. Using these transformation rule, Z j = ω−1

j (Y j − ξ j ) ∼
SUNd j ,m(0, �̄ j j ,� j , τ, �) for j = 1, 2. Then, on setting z2 = ω−1

2 (y2 − ξ2), the
conditional distribution function of (Y2|Y1 + y1 > 0) evaluated at y2 ∈ R

d2 is

FY2(y2|Y1 + y1 > 0) = P{Y2 ≤ y2 | Y1 + y1 > 0}
= P{Y1 + y1 > 0,Y2 ≤ y2}

P{Y1 + y1 > 0}
= P{ξ1 + ω1Z1 + y1 > 0,Y2 ≤ y2}

P{ξ1 + ω1Z1 + y1 > 0}
= P{−Z1 < z̃1, Z2 ≤ z2}

P{−Z1 < z̃1}
= F−Z1,Z2(z̃1, z2)

F−Z1(z̃1)
. (27)

where FX (·) denotes the distribution function of a SUNvariable X , given by (5). Using
again formula (4), write

(−Z1
Z2

)
∼ SUNd1+d2,m

((
0
0

)
,

(
�̄11 −�̄12

−�̄21 �̄22

)
,

(−�1
�2

)
, τ, �

)
(28)

and

−Z1 ∼ SUNd1,m(0, �̄11,−�1, τ, �) ,

so that the two ingredients of (27) are

F−Z1,Z2(z̃1, z2) = 1

	m(τ ;�)
	d1+d2+m

⎧⎨
⎩
⎛
⎝z̃1z2

τ

⎞
⎠ ;
⎛
⎝ �̄11 −�̄12 �1

−�̄21 �̄22 −�2

��
1 −��

2 �

⎞
⎠
⎫⎬
⎭

and

F−Z1(z̃1) = 1

	m(τ ;�)
	d1+m

{(
z̃1
τ

)
;
(

�̄11 �1

��
1 �

)}
,

Taking the ratio of the last two expressions, we obtain

FY2(y2|Y1 + y1 > 0) = 1

	d1+m

{(
z̃1
τ

)
;
(

�̄11 �1

��
1 �

)} ×

	d1+d2+m

⎧⎨
⎩
⎛
⎝z̃1z2

τ

⎞
⎠ ;
⎛
⎝ �̄11 −�̄12 �1

−�̄21 �̄22 −�2

��
1 −��

2 �

⎞
⎠
⎫⎬
⎭
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which is the distribution function of a SUN variable with parameters indicated in (25),
taking into account (5).

For statement (26), notice that the event {Y1 + y1 < 0} coincides with {−Y1 +
(−y1) > 0} and apply (25) to the distributions of (−Y1,Y2) with y1 replaced by −y1.
The distribution of (−Y1,Y2) is essentially given by (28), up to a change of location
and scale. �

Clearly, the special case of Proposition 4 where m = 1 applies to the extended
SN distribution. By following the same logic of Proposition 4, it is conceptually
simple, although algebraically slightly intricate, to write the conditional distribution
of (Y2|Y1 ∈ I ) where I is an event specified by mixed-direction inequalities on the
components of Y1.

3.3 An alternative parameterization

The currently used parameterization of a SUN distribution involves the triplet
(�,�,�) formed bymatrices of respective size d×d, d×m,m×m. The components
of this triplet cannot be chosen independently from each other since they must satisfy
the requirement that

�∗ =
(

�̄ �

�� �

)
(29)

is a positive definite correlation matrix; here �̄ denotes the correlation matrix associ-
ated to �.

This scheme differs from the one the SN family, where the components of the pair
(�, α) can be selected separately from each other. For any choice of (�, α), there
exists a vector δ such that the analogue of (29) is a positive definite matrix. Vice versa,
for any such �∗ we can determine the corresponding (�, α) pair.

Our aim is to introduce an alternative parameterization of the SUN family, based on
an alternative triplet (�, A, �) where the three components can be selected indepen-
dently, in a logic similar to the SN case. The constraints on the individual components
will remain identical, namely it is required that � > 0, � is a correlation matrix with
� > 0.

To accomplish our task we make use of the following matrix theory result, which
we state in general form because of its wider applicability. Given two symmetric
positive definite matrices, the results shows how to build a larger matrix with the
original matrices on its diagonal, for any choice of an arbitrary additional matrix of
conformable dimension.

For any symmetric positive definite matrix H , the expression H1/2 denotes the
unique symmetric positive definite square root of H .

Lemma 5 Given symmetric positive definite matrices Q and S of respective size d×d
and m × m, and an arbitrary d × m matrix B, the matrix
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M =
(

Q R
R� S

)
(30)

is positive definite if we define

R = Q B S1/2
(
Im + S1/2 B�QB S1/2

)−1/2
S1/2 . (31)

Moreover, given a positive definite matrix M partitioned like in (30), where Q and S
are square matrices, we can associate a matrix

B = Q−1R S−1/2
(
Im − S−1/2R� Q−1RS−1/2

)−1/2
S−1/2 (32)

such that the transformation of this matrix via (31) returns back the original matrix
R in (30).

Proof Since Q > 0, the fact that M > 0 is proved by showing that S− R�Q−1R > 0
when R is as in (31). Introduce the auxiliary matrix B̃ = S1/2B and expand

S − R�Q−1R = S − S1/2(Im + B̃�Q B̃)−1/2 B̃�Q B̃(Im + B̃�Q B̃)−1/2S1/2

= S1/2
{
Im − (Im + B̃�QB̃)−1/2 B̃�QB̃(Im + B̃�QB̃)−1/2

}
S1/2

= S1/2(Im + B̃�QB̃)−1/2{Im + B̃�QB̃ − B̃�QB̃}(Im + B̃�QB̃)−1/2S1/2

= S1/2(Im + B̃�QB̃)−1S1/2

= (S + B�QB)−1 > 0.

An alternative proof of the fact M > 0 works by recalling that S > 0 and by showing
that

Q − RS−1R� = Q − QB̃(Im + B̃�QB̃)−1/2S1/2S−1S1/2(Im + B̃�QB̃)−1/2 B̃�Q

= Q − QB̃(Im + B̃�QB̃)−1 B̃�Q

= (Q−1 + B̃ B̃�)−1 = (Q−1 + BSB�)−1 > 0.

To prove the second statement, we compute (31) when matrix B is as given in (32).
For algebraic convenience, define C = S−1/2R�Q−1RS−1/2 and expand

R = RS−1/2(Im − C)−1/2{Im + (Im − C)−1/2C(Im − C)−1/2}−1/2S1/2

= RS−1/2(Im − C)−1/2{(Im − C)−1/2(Im − C + C)(Im − C)−1/2}−1/2S1/2

= RS−1/2(Im − C)−1/2{(Im − C)−1}−1/2S1/2

= R . �
For the above-stated purpose in the SUN context, we use Lemma 5 as follows.

Given two positive definite correlation matrices �̄ and � of size d × d and m × m
and an arbitrary matrix A of size d ×m, we compute the right-hand side of (31) with
Q = �̄, S = � and B = A. The resulting matrix provides a suitable term � for (29).
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Note that, when m = 1, we obtain a well-known expression linking quantities of the
SN family, as recalled in the second paragraph of the present subsection.
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A Appendix

A.1 Onmoments of a variable after a selection

The following results are presumably well-known. However, since we are not aware
of similarly explicit statements in the literature, they are included here.

Lemma A.1 For a m-dimensional random variable W and an arbitrary Borel set A ⊆
R
m, such that π = P{W ∈ A}, consider the associate variables obtained by selection

U
d= (W |W ∈ A) and Uc d= (W |W /∈ A). If the expected value E{h(W )} exists, for

a given function h, then E{h(U )} and E
{
h(Uc)

}
also exist, and are such that

E{h(W )} = E{h(U )} π + E
{
h(Uc)

}
(1 − π) . (A.1)

Proof Existence of E{h(U )} and E{h(Uc)
}
follows from the fact that |h(x) IA(x)| ≤

|h(x)| and |h(x) IAc (x)| ≤ |h(x)|, where IS denotes the indicator function of set S,
and integrability of |h(x)| is ensured by the existence of E{h(W )}. The expression in
(A.1) follows from law of iterated expectation. �

Proposition A.2 Under the conditions of LemmaA.1, assume that the variance matrix
var{W } exists and it is positive semidefinite, written as var{W } ≥ 0, then var

{
Uc}

and var
{
Uc} also exist, such that

var{W } = var{U } π + var
{
Uc} (1 − π)

+ (E{U } − E
{
Uc}) (

E{U } − E
{
Uc})� π(1 − π) (A.2)

and
var{W } − var{U } ≥ 0 (A.3)

where the inequality sign holds strictly if var{W } > 0 and 0 < π < 1.
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Proof Using Lemma A.1 with h equal to the identity function and to the function
selecting the generic entry of W W�, write

E{W } = E{U }π + E
{
Uc} (1 − π),

E

{
WW�} = E

{
UU�}π + E

{
Uc(Uc)�

}
(1 − π),

and then

var{W } = E

{
WW�}− E{W }E

{
W�}

= E

{
UU�}π + E

{
Uc(Uc)�

}
(1 − π)

− [E{U } π + E
{
Uc} (1 − π)

] [
E{U } π + E

{
Uc} (1 − π)

]�
= var{U } π + var

{
Uc} (1 − π) + E{U }E

{
U�}π + E

{
Uc}

E

{
(Uc)�

}
(1 − π)

− [E{U } π + E
{
Uc} (1 − π)

] [
E{U } π + E

{
Uc} (1 − π)

]�
= var{U } π + var

{
Uc} (1 − π) + (E{U } − E

{
Uc}) (

E{U } − E
{
Uc})� π(1 − π)

which proves (A.2). For (A.3), consider

var{W } − var{U } = var{U } (1 − π) + var
{
Uc} (1 − π)

+ (E{U } − E
{
Uc}) (

E{U } − E
{
Uc})� π(1 − π)

= (
var{U } + var

{
Uc}) (1 − π)

+ (E{U } − E
{
Uc}) (

E{U } − E
{
Uc})� π(1 − π)

≥ 0 (A.4)

since the two summands of (A.4) are non-negative definite matrices.
Consider now the case when var{W } > 0 and 0 < π < 1. For an arbitrary

vector a ∈ R
m , define Wa = a�W and Ua = a�U . Provided a 	= 0, the condition

var{W } > 0 ensures that var{Wa} = a�var{W } a > 0, which means thatWa is a non-
degenerate variable. To show that also Ua is a non-degenerate variable, assume that
the opposite holds, which means that there exists a vector a such thatUa = a�U ≡ b,
for some constant b. Then

1 = P

{
a�U = b

}
= P

{
a�W = b|W ∈ A

}

=
P

{
a�W = b,W ∈ A

}
P{W ∈ A} ≤

P

{
a�W = b

}
P{W ∈ A} = 0

π
= 0

where the last equality uses the condition π > 0. Since we have obtained a con-
tradiction, then Ua cannot be degenerate and var{U } > 0. By a similar argument
and the condition π < 1, we can establish that var

{
Uc} > 0. Therefore the term

var{U } + var
{
Uc} in (A.4) is positive definite, while the final summand of (A.4) is at

least positive semidefinite, implying that var{W } − var{U } > 0. �
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A.2 Onmoments of multivariate normal variables

Lemma A.3 If V0 ∼ Nr (0, Ir ), then

(i) E

{
V0 ⊗ V�

0

}
= E

{
V0V

�
0

}
= Ir ,

(i i) E

{
V0V

�
0 ⊗ V0

}
= E

{
V0 ⊗ V0V

�
0

}
= 0,

(i i i) E
{
V0V

�
0 ⊗ V0V

�
0

}
= Ir2 + Kr + vec(Ir ) vec(Ir )�,

(iv) var
{
vec(V0V

�
0 )
}

= Ir2 + Kr .

The proof of statements (i) and (ii) is direct. For (iii) and (iv), see for instance Theo-
rem 4.1 (i) and Lemma 4.1 (ii) of Magnus and Neudecker (1979).

A.3 Onmoments of the sum of two independent multivariate random variables

Proposition A.4 Let X = AU + BV , where A ∈ R
p×q and B ∈ R

p×r are constant
matrices, and U ∈ R

q and V ∈ R
r are independent random vector. If the required

moments exist, then

μ1(X) = Aμ1(U ) + Bμ1(V ) = AE{U } + BE{V } ,

μ2(X) = Aμ2(U )A� + Aμ1(U )μ1(V )�B� + Bμ1(V )μ1(U )�A� + Bμ2(V )B�,

μ3(X) = (A ⊗ A)μ3(U )A� + (A ⊗ A) vec{μ2(U )}μ1(V )�B�

+(Ip2 + Kp)(A ⊗ B)
{
(μ2(U ) ⊗ μ1(V ))A� + (μ1(U ) ⊗ μ2(V ))B�}

+(B ⊗ B) vec{μ2(V )}μ1(U )�A� + (B ⊗ B)μ3(V )B�,

μ4(X) = (A ⊗ A)μ4(U )(A ⊗ A)�

+(A ⊗ A)μ3(U )(Iq ⊗ μ1(V ))�(A ⊗ B)�

+Kp(A ⊗ A)μ3(U )(Iq ⊗ μ1(V ))�(A ⊗ B)�Kp

+(A ⊗ B)(Iq ⊗ μ1(V ))μ3(U )�(A ⊗ A)�

+Kp(A ⊗ B)(Iq ⊗ μ1(V ))μ3(U )�(A ⊗ A)�Kp

+(A ⊗ B)(μ2(U ) ⊗ μ2(V ))(A ⊗ B)�

+(A ⊗ B)(μ2(U ) ⊗ μ2(V ))(A ⊗ B)�Kp

+Kp(A ⊗ B)(μ2(U ) ⊗ μ2(V ))(A ⊗ B)�

+Kp(A ⊗ B)(μ2(U ) ⊗ μ2(V ))(A ⊗ B)�Kp

+(A ⊗ A) vec{μ2(U )} vec{μ2(V )}�(B ⊗ B)�

+(B ⊗ B) vec{μ2(V )} vec{μ2(U )}�(A ⊗ A)�

+(A ⊗ B)(μ1(U ) ⊗ Ir )μ3(V )�(B ⊗ B)�

+Kp(A ⊗ B)(μ1(U ) ⊗ Ir )μ3(V )�(B ⊗ B)�Kp

+(B ⊗ B)μ3(V )(μ1(U ) ⊗ Ir )
�(A ⊗ B)�
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+Kp(B ⊗ B)μ3(V )(μ1(U ) ⊗ Ir )
�(A ⊗ B)�Kp

+(B ⊗ B)μ4(V )(B ⊗ B)�.

Proof The proof of μ1(X) is trivial. To obtain the other moments, first note that

XX� = (AU + BV )(U�A� + V�B�)

= AUU�A� + AUV�B� + BVU�A� + BVV�B�,

leading to μ2(X). Also,

X ⊗ XX� = (AU + BV ) ⊗ (AUU�A� + AUV�B� + BVU�A� + BVV�B�)

= (AU ⊗ AUU�A�) + (AU ⊗ AUV�B�)

+(AU ⊗ BVU�A�) + (AU ⊗ BVV�B�)

+(BV ⊗ AUU�A�) + (BV ⊗ AUV�B�)

+(BV ⊗ BVU�A�) + (BV ⊗ BVV�B�)

= (A ⊗ A)(U ⊗UU�)A� + (A ⊗ A)(U ⊗UV�)B�

+(A ⊗ B)(U ⊗ VU�)A� + (A ⊗ B)(U ⊗ VV�)B�

+(B ⊗ A)(V ⊗UU�)A� + (B ⊗ A)(V ⊗UV�)B�

+(B ⊗ B)(V ⊗ VU�)A� + (B ⊗ B)(V ⊗ VV�)B�

= (A ⊗ A)(U ⊗UU�)A� + (A ⊗ A)(U ⊗U )V�B�

+(A ⊗ B)(UU� ⊗ V )A� + (A ⊗ B)(U ⊗ VV�)B�

+(B ⊗ A)(V ⊗UU�)A� + (B ⊗ A)(VV� ⊗U )B�

+(B ⊗ B)(V ⊗ V )U�A� + (B ⊗ B)(V ⊗ VV�)B�

= (A ⊗ A)(U ⊗UU�)A� + (A ⊗ A)(U ⊗U )V�B�

+(Ip2 + Kp)(A ⊗ B)(UU� ⊗ V )A� + (Ip2 + Kp)(A ⊗ B)(U ⊗ VV�)B�

+(B ⊗ B)(V ⊗ V )U�A� + (B ⊗ B)(V ⊗ VV�)B�,

where we have used

(B ⊗ A)(V ⊗UU�) = (B ⊗ A)Krq(UU� ⊗ V ) = Kp(A ⊗ B)(UU� ⊗ V );
(B ⊗ A)(VV� ⊗U ) = (B ⊗ A)Krq(V ⊗UU�) = Kp(A ⊗ B)(U ⊗ VV�).

This leads to μ3(X). Finally,

XX� ⊗ XX� = (AUU�A� + AUV�B� + BVU�A� + BVV�B�)

⊗(AUU�A� + AUV�B� + BVU�A� + BVV�B�)

= (AUU�A� ⊗ AUU�A�) + (AUU�A� ⊗ AUV�B�)

+(AUU�A� ⊗ BVU�A�) + (AUU�A� ⊗ BVV�B�)

+(AUV�B� ⊗ AUU�A�) + (AUV�B� ⊗ AUV�B�)

+(AUV�B� ⊗ BVU�A�) + (AUV�B� ⊗ BVV�B�)
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+(BVU�A� ⊗ AUU�A�) + (BVU�A� ⊗ AUV�B�)

+(BVU�A� ⊗ BVU�A�) + (BVU�A� ⊗ BVV�B�)

+(BVV�B� ⊗ AUU�A�) + (BVV�B� ⊗ AUV�B�)

+(BVV�B� ⊗ BVU�A�) + (BVV�B� ⊗ BVV�B�)

= (AUU�A� ⊗ AUU�A�) + (AUU�A� ⊗ AUV�B�)

+(AUU�A� ⊗ BVU�A�) + (AUU�A� ⊗ BVV�B�)

+Kp(AUU�A� ⊗ AUV�B�)Kp + (AUV�B� ⊗ AUV�B�)

+(AUU�A� ⊗ BVV�B�)Kp + (AUV�B� ⊗ BVV�B�)

+Kp(AUU�A� ⊗ BVU�A�)Kp + (AUU�A� ⊗ BVV�B�)Kp

+(BVU�A� ⊗ BVU�A�) + (BVU�A� ⊗ BVV�B�)

+Kp(AUU�A� ⊗ BVV�B�)Kp + Kp(AUV�B� ⊗ BVV�B�)Kp

+Kp(BVU
�A� ⊗ BVV�B�)Kp + (BVV�B� ⊗ BVV�B�),

where we used the fact that, ifC and D are p×q and s× t matrices, respectively, then
the following equalities hold: (D⊗C) = Ksp(C⊗D)Kqt , Kps(D⊗C) = (C⊗D)Kqt ,
(D ⊗ C)Ktq = Ksp(C ⊗ D).

After rearranging common terms, we obtain

XX� ⊗ XX� = (A ⊗ A)(UU� ⊗UU�)(A� ⊗ A�)

+(A ⊗ A)(UU� ⊗U )(Iq ⊗ V�)(A� ⊗ B�)

+Kp(A ⊗ A)(UU� ⊗U )(Iq ⊗ V�)(A� ⊗ B�)Kp

+(A ⊗ B)(Iq ⊗ V )(UU� ⊗U�)(A� ⊗ A�)

+Kp(A ⊗ B)(Iq ⊗ V )(UU� ⊗U�)(A� ⊗ A�)Kp

+(A ⊗ B)(UU� ⊗ VV�)(A� ⊗ B�)

+(A ⊗ B)(UU� ⊗ VV�)(A� ⊗ B�)Kp

+Kp(A ⊗ B)(UU� ⊗ VV�)(A� ⊗ B�)

+Kp(A ⊗ B)(UU� ⊗ VV�)(A� ⊗ B�)Kp

+(A ⊗ A)(U ⊗U )(V� ⊗ V�)(B� ⊗ B�)

+(B ⊗ B)(V ⊗ V )(U� ⊗U�)(A� ⊗ A�)

+(A ⊗ B�)(U ⊗ Ir )(V
� ⊗ VV�)(B� ⊗ B�)

+Kp(A ⊗ B)(U ⊗ Ir )(V
� ⊗ VV�)(B� ⊗ B�)Kp

+(B ⊗ B)(V ⊗ VV�)(U� ⊗ Ir )(A
� ⊗ B�)

+Kp(B ⊗ B)(V ⊗ VV�)(U� ⊗ Ir )(A
� ⊗ B�)Kp

+(B ⊗ B)(VV� ⊗ VV�)(B� ⊗ B�)

whose expectation is μ4(X). �
The above results simplify considerably if one of the two variables is symmetric

about the origin, hence with null odd-order moments. This the case of interest for us,
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since one of summands in each of (6) and (19) is of this type. The next statement is
the pertaining corollary of Proposition A.4.

Proposition A.5 Let X = AU + BV , where A ∈ R
p×q and B ∈ R

p×r are constant
matrices, and U ∈ R

q and V ∈ R
r are independent random vectors. If μ1(V ) and

μ3(V ) are zero, then

μ1(X) = Aμ1(U ),

μ2(X) = Aμ2(U )A� + Bμ2(V )B�,

μ3(X) = (A ⊗ A)μ3(U )A� + (Ip2 + Kp)(A ⊗ B)(μ1(U ) ⊗ μ2(V ))B�

+(B ⊗ B) vec{μ2(V )}μ1(U )�A�,

μ4(X) = (A ⊗ A)μ4(U )(A ⊗ A)� + (Ip2 + Kp){(A ⊗ B)(μ2(U ) ⊗ μ2(V ))(A ⊗ B)�

+(B ⊗ A)(μ2(V ) ⊗ μ2(U ))(B ⊗ A)�}
+(A ⊗ A) vec{μ2(U )} vec{μ2(V )}�(B ⊗ B)�

+(B ⊗ B) vec{μ2(V )} vec{μ2(U )}�(A ⊗ A)� + (B ⊗ B)μ4(V )(B ⊗ B)�

provided the required moments exist. Moreover,

var{X} = μ2(X) − μ1(X)μ1(X)�

= A var{U } A� + B var{V } B�,

cov{X ⊗ X , X)} = μ3(X) − vec{μ2(X)}μ1(X)�

= (A ⊗ A)cov{U ⊗U ,U })A� + (Ip2 + Kp)(A ⊗ B)(μ1(U ) ⊗ μ2(V ))B�,

var{X ⊗ X} = μ4(X) − vec{μ2(X)} vec{μ2(X)}�
= (A ⊗ A)var{U ⊗U } (A ⊗ A)� + (B ⊗ B)var{V ⊗ V } (B ⊗ B)�

+(Ip2 + Kp)
{
(A ⊗ B) (μ2(U ) ⊗ μ2(V )) (A ⊗ B)�

+(B ⊗ A) (μ2(V ) ⊗ μ2(U )) (B ⊗ A)�
}
.

For the shifted variable Y = h + X , where h is an arbitrary p-vector, the moments
are:

μ1(Y ) = h + μ1(X) , (A.5)

μ2(Y ) = h h� + h μ1(X)� + μ1(X) h� + μ1(X) μ1(X)�, (A.6)

μ3(Y ) = h ⊗ h h� + (h ⊗ h) μ1(X)� + (Ip2 + Kp){h h� ⊗ μ1(X) + h ⊗ μ2(X)}
+ vec{μ2(X)} h� + μ3(X) , (A.7)

μ4(Y ) = h h� ⊗ h h� + (Ip2 + Kp){h h� ⊗ h μ1(X)� + h h� ⊗ μ1(X)h�

+h h� ⊗ μ2(X) + μ2(X) ⊗ h h� + (h ⊗ Ip)μ3(X)� + μ3(X)(h� ⊗ Ip)}
+ vec{μ2(X)}(h ⊗ h)� + (h ⊗ h) vec{μ2(X)}� + μ4(X) . (A.8)
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