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Abstract
There are various competing procedures to determine whether fractional cointegration
is present in a multivariate time series, but no standard approach has emerged. We
provide a synthesis of this literature and conduct a detailed comparative Monte Carlo
study to guide empirical researchers in their choice of appropriate methodologies.
Special attention is paid on empirically relevant issues such as assumptions about the
form of the underlying process and the ability of the procedures to distinguish between
short-run correlation and long-run equilibria. It is found that several approaches are
severely oversized in presence of correlated short-run components and that themethods
show different performance in terms of power when applied to common-component
models instead of triangular systems.

Keywords Long memory · Fractional cointegration · Semiparametric estimation and
testing

1 Introduction

The concept of cointegration derives its popularity from the fact that it allows to model
equilibrium relationships between non-stationary time series. Themost popular tests in
the standard I (1)/I (0) setting includes the two-step procedure by Engle and Granger
(1987), the trace test by Johansen (1988) and the principal component test by Phillips
and Ouliaris (1988) which are subject of several comparaitive studies like Reimers
(1992) and Höglund and Östermark (2003). In practice, however, standard cointegra-
tion analysis can often not be applied, since the I (1)/I (0) framework is too restrictive.
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For example, the series of interest may be persistent but not have a unit root, or the
deviations from the equilibrium may be more persistent than the I (0) model allows.

Fractional cointegration overcomes these shortcomings, by allowing for non-integer
integration orders of the variables in the system and any (possibly non-zero) memory
order in the cointegrating residuals as long as it is reduced compared to the original
system. Consequently, fractional cointegration promises to facilitate the modeling
of a larger number of equilibrium relationships compared to standard cointegration.
This has led to the development of various testing and rank estimation procedures to
determine whether fractional cointegration is present in a multivariate time series.

Parametric approaches include Johansen (2008), Łasak (2010), Johansen and
Nielsen (2012), Łasak and Velasco (2015), and Johansen and Nielsen (2019), among
others, who consider fractional extensions of the cointegrated VARmodel of Johansen
(1988). Furthermore, Breitung and Hassler (2002) introduce a trace test to deter-
mine the cointegrating rank, Avarucci and Velasco (2009) suggest rank estimation
in a regression framework, and Hassler and Breitung (2006) develop a time domain
residual-based test.

Semiparametric approaches, on the other hand, have the advantage that they allow
the researcher to focus on the long-run relationship between the series and do not
require the specification of short-run dynamics. This literature encompasses the
spectral-based rank estimation procedure ofRobinson andYajima (2002) and its exten-
sion by Nielsen and Shimotsu (2007), a Hausmann-type test based on the multivariate
local Whittle estimator introduced by Robinson (2008a), a number of residual-based
tests for the null hypothesis of no fractional cointegration developed by Marmol and
Velasco (2004), Chen andHurvich (2006), Hualde andVelasco (2008), andWang et al.
(2015), a variance-ratio test proposed by Nielsen (2010), a test based on a GPH-type
estimate of the cointegration strength introduced by Souza et al. (2018) and a rank
estimation procedure based on an eigenanalysis of the autocovariance function from
Zhang et al. (2019).

Unfortunately, the domain of applicability of most of these procedures is much
more restrictive than the definition of fractional cointegration. Some are only appli-
cable in stationary systems—some only in non-stationary systems. Some procedures
require the reduction in memory to be more than 1/2—some require the memory of
the cointegrating residuals to be less than 1/2.

Furthermore, there are different assumptions about the formof the fractionally coin-
tegrated system. Some approaches assume that one of the observed series itself is an
observation of the common underlying trend. Other approaches assume an unobserved
common underlying trend. We refer to these models as the triangular system and the
common-components model. Which of these assumptions is more suitable in practice
depends on the specific application. On the one hand, it may be appropriate to think of
the risk-free interest rate as an observed common component that is perturbed by risk
premia in risky bonds so that a triangular model can be used. For cointegrated pairs of
stocks, on the other hand, it is unclear why the price of one stock should be interpreted
as a perturbed version of another stock price so that a common-components model is
more appropriate. Finally, even though the development of each of these procedures
to determine whether fractional cointegration is present is a major theoretical contri-
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bution, relatively little effort has been devoted to analyze how they perform compared
to each other.

Here, we try to address these issues by providing a survey of all the rank estimation
and testing procedures discussed above. To study the relative performance of the
competing approaches, we conduct an extensive Monte Carlo analysis of their size
and power properties. It is found that several procedures - namely those of Nielsen
and Shimotsu (2007) or Robinson and Yajima (2002), Marmol and Velasco (2004),
and Hualde and Velasco (2008) show severe finite sample size distortions in systems
with correlated short-run components. The relative performance in terms of power
depends on the formof the system. For triangular systems and non-stationary common-
components models the test of Souza et al. (2018) performs best overall, whereas the
test of Chen and Hurvich (2006) is preferable for stationary common-components
models.

The rest of the paper is structured as follows. The next section gives the definition
andmodel of fractional cointegrationwe adopt and briefly reviews the basic estimation
methods required by the tests. Section 3 is divided into two subsections describing two
types of tests, 3.1 containing the tests based on a spectral matrix and 3.2 summarizing
the tests based on cointegrating residuals, Sect. 4 presents finite sample results, and
Sect. 5 concludes.

2 Fractional cointegration: models and definitions

A p-dimensional vector-valued time series Xt has long memory if its spectral density
fulfills

fX (λ) ∼ Λ j (d)G Λ j (d), as λ → 0+, (1)

where G is a real, symmetric, and non-negative definite matrix, Λ j (d) =
diag

(
λ−d1eiπd1/2, . . . , λ−dp eiπdp/2

)
is a p× p diagonal matrix,Λ j (d) is its complex

conjugate transpose and ‘∼’ implies that for each element the ratio of real and imag-
inary parts on the left- and right-hand side tends to one. The element in the a-th row
and b-th columns of the spectral matrix fX (λ) is denoted by fab(λ) ∼ gabλ−2d for
a, b ∈ {1, . . . , p} where gab denotes the respective element of G. The periodogram
of Xt at the Fourier frequencies is given by

IX (λ j ) = wX (λ j )wX (λ j ), (2)

with wX (λ) = 1√
2πT

∑T
t=1 Xteiλt , and λ j = 2π j/T , for j = 1, . . . , �T /2�, where

�·� denotes the greatest integer smaller than the argument.
There is a number of different definitions of fractional cointegration in the literature.

The most common one goes back to Engle and Granger (1987). According to this
definition the p-dimensional time series Xt is cointegrated of rank r , if all components
of Xt are integrated of order d (denoted by I (d)), and there exists a non-singularmatrix
β so that the r linear combinations vt = β ′Xt are I (d−ba) = I (dva )with d > ba > 0
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for all a = 1, . . . , r . The matrix β is called the cointegrating matrix and each of its
columns is a cointegrating vector. The elements of the vector vt are the cointegrating
residuals. Other definitions are given by Johansen (1995), Flôres Jr and Szafarz (1996),
Marinucci and Robinson (2001), and Robinson and Yajima (2002) who also provide
a discussion of the implications of the different definitions.

Standard cointegration is a special case of the definition above where d = 1 and
dva = 0 for all a. In this setup the system is non-stationary, whereas the cointegrating
residuals are stationary. In contrast to that, fractional cointegration allows for a more
flexiblemodel so that several cases can be distinguished:weak cointegration (b < 0.5),
strong cointegration (b > 0.5), stationary cointegration (0 < dv < d < 0.5), or non-
stationary cointegration (0.5 < dv < d).

In general, (fractional) cointegration is an equilibrium concept where the persis-
tence of the cointegrating residual dv determines the speed of adjustment towards
the cointegration equilibrium β ′Xt , and shocks have no permanent influence on the
equilibrium as long as dv < 1 holds.

As an example, consider the fractionally (co-)integrated bivariate model with Xt =
(X1t , X2t )

′, where

X1t = c1 + ξ1Yt + Δ−(d−b1)u1t1(t > 0) (3)

X2t = c2 + ξ2Yt + Δ−(d−b2)u2t1(t > 0) (4)

and Yt = Δ−det1(t > 0). (5)

Here, ut = (u1t , u2t )′ is a weakly-dependent zero-mean process with constant covari-
ance matrix Ωu and spectral density matrix fu(λ), et (with variance σ 2

e and spectral
density fe(λ)) is a univariate weakly-dependent zero-mean process that is allowed to
be correlated with ut , and L denotes the lag-operator so that LYt = Yt−1. The frac-
tional difference operatorΔd = (1−L)d is defined in terms of the binomial expansion

so that (1 − L)d = ∑∞
k=0

(d
k

)
(−1)k Lk , with

(d
k

) = d(d−1)(d−2)...(d−(k−1))
k! . Further-

more, 1(·) denotes the indicator function that takes the value one if its argument is
true and is zero, otherwise. Finally, it is assumed that d ≥ b1, b2 ≥ 0.

The truncated processesΔ−(d−ba)uat1(t > 0) are fractionally-integrated processes
of type-II which means they are only asymptotically stationary for d < 1/2, but in
contrast to type-I processes they are still defined for d > 1/2. For a detailed discussion
cf. Marinucci and Robinson (1999).

In this bivariate model there can be at most one cointegrating relationship. In this
case r = 1 and β itself is a cointegrating vector. Obviously, if the linear combination
β ′Xt = vt has reduced memory, the same is true for every scalar multiple of it.
To identify the cointegrating vector, it is therefore customary to apply some kind of
normalization such as setting the first element of the vector to unity. In Eqs. (3) to
(5), fractional cointegration arises if ξ1, ξ2 �= 0, and b1, b2 > 0. In this case the

normalized cointegrating vector is β =
(
1,− ξ1

ξ2

)′ =
(
1,−β̃

)′
and the cointegrating

residual vt is I (d − b) = I (dv), where b = min(b1, b2). Note that this model is a
common-components model, but it also nests a triangular system. This is obtained as a
special case ifΩu,22 = 0 so that X2t is a direct (rescaled) observation of the underlying
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common trend and only X1t is perturbed with a cointegration error so that b = b1.
Standard cointegration in the I (1)/I (0) framework is obtained as a special case if
d = 1 and b1 = b2 = 1. It is also possible to have ξ1, ξ2 �= 0, so that both X1t and
X2t contain the common component Yt , but they are not cointegrated if b1 = b2 = 0.

3 Tests for no fractional cointegration

In the following, we provide a comprehensive review of semiparametric tests and
estimation procedures that can be used to determine the order of fractional cointe-
gration in a p-dimensional vector-valued time series Xt . According to the definition
discussed above, this requires that the components of Xt are integrated of the same
order. In practice, this can either be assumed based on domain-specific knowledge,
or it can be tested with tests for the equality of memory parameters that allow for
cointegration introduced by, for example, Robinson and Yajima (2002), Nielsen and
Shimotsu (2007), Hualde (2013), and Wang and Chan (2016). In particular Robin-
son and Yajima (2002) discuss in detail how to partition a vector-valued time series
into subvectors with equal memory parameters. These can then be used for further
cointegration analysis.

In the following, it will be assumed that all components of Xt are I (d), which
means we abstract from these pre-testing issues to focus on the actual tests for the null
of no fractional cointegration. For all tests the hypotheses are defined by

H0: Xt is not fractionally cointegrated (d = dv),
H1: Xt is fractionally cointegrated (d > dv).

In contrast to standard I (1)/I (0) cointegration, the memory parameter d is
unknown in fractionally cointegrated systems and has to be estimated. Since mul-
tivariate memory estimation becomes inconsistent under cointegration, the memory
parameters are estimated univariately and, if not stated otherwise, we employ the
means of the univariate memory estimates in the tests.

The tests presented in this Section apply the most common estimators: the log-
periodogram estimator d̂GPH of Geweke and Porter-Hudak (1983) and Robinson
(1995b), the local Whittle estimator d̂LW of Künsch (1987) and Robinson (1995a), or
the exact local Whittle estimator d̂ELW of Shimotsu and Phillips (2005) and Shimotsu
(2010). All of these estimators are periodogram-based and employ the first m Fourier
frequencies. The general requirement is thatm < �T /2� tends to infinity more slowly
than T so that 1

m + m
T → 0 as T → ∞ and even the largest frequency 2πm/T is

asymptotically local to the zero frequency.
To estimate the cointegrating relationship β ′Xt = vt when r = 1, the vector is

partitioned such that Xt = (yt , xt ), where yt is a scalar and xt is (p − 1) × 1. By
doing so, the focus is on one possible cointegrating relation yt = β̃xt + vt where β̃ is
(p − 1)-dimensional.

As in standard cointgration analysis the vector β̃ can be estimated with ordinary
least squares (OLS) as long as d > 1/2 so that the series remains non-stationary. In
stationary long-memory time series, OLS is inconsistent in presence of correlation
between the stationary regressors and the innovation term vt (cf. Robinson (1994)).
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Robinson (1994) and Robinson and Marinucci (2001) introduce an alternative
estimator of the cointegrating vector that is based on the periodogram local to the
zero frequency. In contrast to OLS, this narrow-band frequency domain least squares
(NBLS) estimator is consistent under cointegration for all values of d and has a non-
normal limiting distribution in the non-stationary region. Christensen and Nielsen
(2006a) extend the asymptotic results to the stationary region where the estimate fol-
lows an asymptotic normal distribution and Nielsen and Frederiksen (2011) provide
a correction of the asymptotic bias under weak fractional cointegration.

Estimating the linear cointegrating relationship with NBLS requires calculating the
averaged cross-periodogram of xt with itself and yt by I av

xx (λ j ) = 2π
T

∑m
j=1 ωx (λ j )

ωx (λ j ) and I av
xy (λ j ) = 2π

T

∑m
j=1 ωx (λ j )ωy(λ j ). The NBLS estimate of β̃ is then

defined by

β̂m = I av
xx (λ j )

−1 I av
xy (λ j ). (6)

The bandwidth m has to fulfill the usual local-to-zero condition as T → ∞. If not
specified otherwise, we employ NBLS to estimate the cointegrating vector. Other
estimators suggested in the literature include estimation based on the eigenvectors
of a version of I av

X (λ j ) (cf. Chen and Hurvich (2006)) and joint estimation with the
memory parameters in multivariate local Whittle approaches such as those of Nielsen
(2007), Robinson (2008b) and Shimotsu (2012).

The following review is divided into tests based on the spectral density local to
the origin (Sect. 3.1) and tests based on estimates of the cointegrating residuals (Sect.
3.2). Of course, this distinction is not clear cut, since some of the residual-based
approaches also use the spectral properties of the potential cointegrating residuals
and for example the test of Nielsen (2010) is presented as a variance-ratio test. Many
different categorizations would be possible. Here, we refer to those approaches as
”spectral-based” that rely on the properties of the spectrum of the observed series
Xt itself, and those that rely on the spectrum of the cointegrating residual are called
”residual-based”.

3.1 Tests based on the spectral matrix

A number of procedures to determine the fractional cointegrating rank of the p-
dimensional time series Xt are based on properties of the rescaled spectral matrix
local to the zero frequency. This is denoted by G in Eq. (1) and has reduced rank if
and only if Xt is fractionally cointegrated. If fractional cointegration is present, the
number of eigenvalues that are equal to zero corresponds to the cointegrating rank r .
More details on the connection between fractional cointegration, unit coherence and
singularity of G are given in Velasco (2003b) and Nielsen (2004).

Based on this property Robinson and Yajima (2002) introduce an information cri-
terion to determine the fractional cointegration rank that is extended to non-stationary
processes by Nielsen and Shimotsu (2007). To obtain an estimate Ĝ of G, the first
step consists in applying the univariate exact local Whittle estimator of Shimotsu and
Phillips (2005) and Shimotsu (2010) to each component of Xt separately, using band-
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width m, and pooling them to the arithmetic mean d̂ELW . The estimate of Ĝ(d̂ELW )

is then defined by Ĝ(d̂ELW ) = 1
m1

∑m1
j=1 Re IΔd (λ j ), where IΔd is the periodogram

of Δd̂ELW Xt . The bandwidths have to fulfill
m1
m → 0 in order to ensure faster conver-

gence of d̂ELW than of Ĝ(d̂ELW ).1 Denote the empirical eigenvalues calculated from
Ĝ(d̂ELW ) and sorted in descending order by δ̂a,G for a = 1, . . . , p. The cointegrating
rank can then be estimated using a model selection criterion that is based on the partial
sum of the sorted eigenvalues

r̂N S = arg min
k=0,...,p−1

⎛

⎝n(T )(p − k) −
p−k∑

a=1

δ̂a,G

⎞

⎠ , (7)

where n(T ) is a function which fulfills n(T )+ 1√
m1 n(T )

→ 0 as T → ∞ so that n(T )

goes to zero more slowly than the estimation error in the eigenvalues that is of order

OP

(
m−1/2

1

)
. Asymptotically, the expression is therefore minimal if only estimates

of non-zero eigenvalues are included in the sum.
To deal with situations in which the scales of the components in Xt are different,

Nielsen and Shimotsu (2007) suggest to base the procedure on the correlation matrix

P̂(d̂ELW ) = R̂(d̂ELW )−1/2Ĝ(d̂ELW )R̂(d̂ELW )−1/2 instead of Ĝ, where R̂(d̂ELW ) =
diag(ĝ11, . . . , ĝpp) contains the diagonal elements of Ĝ(d̂ELW ). This is admissible
since the rank of P̂ is the same as that of Ĝ in the limit. Nielsen and Shimotsu
(2007) point out that this approach works better in simulations and also recommend
to use the bandwidth n(T ) = m−0.3

1 . The cointegrating rank estimate is consistent
for r ∈ {0, . . . , p − 1}. It is applicable for systems of dimension p ≥ 2, and it does
not impose restrictions on d and b. A similar rank estimation procedure based on the
average of finitely many tapered periodogram ordinates local to the origin was also
proposed by Chen and Hurvich (2003).

The inconsistency of the multivariate local Whittle estimator under fractional coin-
tegration is the basis for a test procedure originally proposed by Marinucci and
Robinson (2001). They suggest a Hausman-type test that compares multivariate and
univariate local Whittle estimates. Under the null hypothesis of no cointegration the
multivariate estimator is efficient and both are consistent, whereas under the alterna-
tive of fractional cointegration the univariate estimator remains consistent, while the
multivariate one does not.

This idea is formalized byRobinson (2008a). The test statistic is based on the objec-
tive function of the multivariate local Whittle estimator (cf. Lobato (1999), Shimotsu
(2007)) S(d) = log det Ĝ∗(d) − 2pd

m

∑m
j=1 log λ j with Ĝ∗(d) = 1

m

∑m
j=1 IX (λ j )λ

2d
j

and its derivative

s∗ (d) = tr
(
Ĝ∗(d)−1 Ĥ∗(d)

)
(8)

1 We follow the notation of Nielsen and Shimotsu (2007) and use m1 for the bandwidth in the estimation
of G(d) and m for that of d. Note that Robinson and Yajima (2002) chose the opposite notation.
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with Ĥ∗(d) = 1
m

∑m
j=1 ν j IX (λ j )λ

2d
j and ν j = log j − 1

m

∑m
k=1 log k. Similar to the

previous procedure, the memory parameter d is estimated by pooling the univariate
estimates obtained by applying the local Whittle estimator to each of the component
series. The equally weighted average is denoted by d̂LW . To obtain a test statistic, the
derivative s∗(d) from (8) is evaluated at this averaged univariate estimate:

W ∗
Rob = ms∗(d̂LW )2

N 2tr(F̂∗2) − p
(9)

with F̂∗ = R̂∗−1/2
Ĝ∗(d̂LW )R̂∗−1/2

and R̂∗ = diag(ĝ∗
11, . . . , ĝ

∗
pp), where ĝ∗

aa , a =
1, . . . , p, are the diagonal elements of Ĝ∗(d̂LW ). The scaled derivative m1/2s∗(d̂LW )

is asymptotically normal so that the test follows a χ2
1 -distribution if appropriately

standardized by the term in the denominator.
The test generates power because G(d) is singular under the alternative of frac-

tional cointegration so that the inverse Ĝ∗(d̂LW )−1 of the estimate and consequently

the trace s∗ (
d̂LW

)
become large. This is a score-type test that avoids the calcula-

tion of the multivariate local Whittle estimator that can be numerically expansive.
Since the efficiency of the multivariate estimate is obtained with a single Newton step
from the univariate estimate in direction of the multivariate one, s∗ (

d̂LW
)
is directly

proportionate to the difference between the efficient and the inefficient estimate.
This test allows series of dimensions larger than two, but it is restricted to processes

with d ∈ (−1/2, 1/2) and focuses on the empirically relevant range d ∈ (0, 1/2). A
non-stationary extension based on a trimmed version of the local Whittle estimator is
proposed, but the size and power properties of this test in simulations appear to depend
heavily on the sample size.2

An alternative way to allow for non-stationary processes would be to base the
test on the objective function of the multivariate exact local Whittle estimator (as in
Shimotsu (2012), but without allowing for fractional cointegration) and univariate
ELW estimates. Since the exact local Whittle estimates have the same asymptotic
properties as the local Whittle estimate for d ∈ (−1/2, 1/2), the test would have the
same limiting distribution.

For a bivariate process with known d ∈ (0, 1], Souza et al. (2018) propose a
test based on an estimate of b obtained from the determinant of the trimmed and
truncated spectral matrix of the fractionally differenced process via a log-periodogram
regression. Denote the fractionally differenced process by Δd Xt = (Δd X1t ,Δ

d X2t )
′

with spectral density matrix fΔd (λ), then the determinant DΔd (λ) of fΔd (λ) depends
on the memory reduction parameter b ∈ [0, d] and can be approximated by

DΔd (λ) ∼ g̃|1 − e−iλ|2b, as λ → 0+, (10)

where g̃ is a constant and finite scalar. Under cointegration, fΔd (λ) does not have full
rank near the origin (like G in (1)) so that its determinant DΔd (λ) approaches zero as
λ → 0+. The memory reduction b can be estimated from the logged version of Eq.
(10) using a log-periodogram type regression,

2 These results are available from the authors upon request.
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log DΔd (λ) ∼ log g̃ + 2b log |1 − e−iλ| + log
g̃∗(λ)

g̃
, as λ → 0+,

where limλ→0+ g̃∗(λ) = g̃.
In order to make the estimation of b feasible, the empirical determinant D̂Δd (λ)

has to be calculated from an estimate f̂Δd (λ) of the spectral density at the Fourier
frequencies with j = l, l + (2l − 1), l + 2(2l − 1), . . . ,m − (2l − 1),m with l + 1 <

m < T . The latter is obtained from the locally averaged periodogram f̂Δd (λ j ) =
1

2l−1

∑ j+(l−1)
k= j−(l−1) IΔd (λk), where IΔd (λk) is the periodogram of Δd Xt . At each j the

estimate f̂Δd (λ j ) is thus a local average of the periodogram at frequency j and the
l − 1 frequencies to its left and right and the λ j are spaced so that the local averages
are non-overlapping.

The resulting estimator for the cointegrating strength b is given by

b̂GPH =
⎛

⎝
m∑

j=l+1

Z̃∗2
j

⎞

⎠

−1
m∑

j=l+1

Z̃∗
j log D̂Δd (λ j ),

where Z̃∗
j = Z∗

j − Z̄∗, Z∗
j = log |1−eiλ| = log(2−2 cos(λ j )), and Z̄∗ is the mean of

the Z∗
j . Under the null hypothesis of no fractional cointegration we have b = 0. Under

this condition, and assuming that l andm fulfill the condition l+1
m + m

T + 1
m + logm

m → 0
as T → ∞, the estimate b̂GPH is consistent and asymptotic normal with variance

σ 2
b = 1

m (Ψ (1)(2l + 1) + Ψ (1)(2l)), where Ψ (1)(x) = δ2 logΓ (x)
δx2

is the polygamma
function of order 1 and Γ (·) denotes the gamma function.

The null hypothesis of no fractional cointegration can thus be tested using a simple
t-test:

WSRFB = b̂GPH

σb

d→ N (0, 1). (11)

The method has no restrictions regarding the range of d and b but is only applicable
to bivariate processes. For practical purposes, d is usually unknown and has to be
estimated, but as shown inour simulation study inSect. 4 this has no severe implications
for the quality of the test. However, a thorough theoretical examination of this aspect
would be interesting for further research. Note that the work by Velasco (2003a)
might help on this issue as he introduced a similar estimate focusing on knowing or
not-knowing the true residuals.

3.2 Tests based on cointegrating residuals

By the definition of fractional cointegration the memory of the linear combination
vt = β ′Xt is lower than that of Xt itself. Under the null hypothesis of no fractional
cointegration one can still write vt = β ′Xt = yt − β̃xt , since yt can still depend on
the values of the other components of Xt . The difference to the cointegrated case is
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only that dv = d. It is therefore natural to test for fractional cointegration by testing
dv = d (or b = 0) versus dv < d (or b > 0) based on an estimate v̂t of the potential
cointegrating residual.

Under weak non-stationary fractional cointegration, i.e., d > dv > 1/2, Marmol
and Velasco (2004) suggest a Hausman (1978)-type F-test that compares the OLS
estimate β̂OLS of the cointegrating vector with an alternative estimate β̂N B with
opposite consistency characteristics.

The OLS estimator β̂OLS is consistent for β̃ under the alternative (as long as
d > 1/2) but inconsistent under the null hypothesis. Marmol and Velasco (2004)
propose an alternative estimator β̂N B that is consistent for the vector β̃ under the null
hypothesis but inconsistent under the alternative. The estimator is given by

β̂N B(d̂x , d̂v) = ĜMV
xx (d̂x )

−1ĝMV
xy (d̂v),

where ĜMV
xx (d) = 2π

m2

∑m2
j=1 Λ̃ j (d)−1Re

{
Ixx (λ j )

}
Λ̃−1

j (d), and ĝMV
xy (d) =

∑m2
j=1 Re Ixy(λ j )λ

2(d−1)
j , Λ̃ j (d) = diag(λ1−d

j , . . . , λ1−d
j ) and where Ixx (λ j ) and

Ixy(λ j ) are the respective elements of the periodogram IΔXΔX (λ j ) of the differenced
process ΔXt and m2 is subject to the usual bandwidth conditions. The estimator is
closely related to the narrow band least squares estimator β̂m from (6) but uses a
rescaled version of the periodogram. In fact, β̂N B(0, 0) would be equivalent to the
NBLS estimate based only on the real part of the periodogram. Note that Nielsen
(2005) introduced a very similar GLS-type estimate β̂N B(d, d).

Inconsistencyunder the alternative is onlyobtained through the choice β̂N B (d̂x , d̂v),
where d̂v is estimated from the OLS residuals. Since under the alternative v̂OLS

t is
a consistent estimate of the cointegrating residual, d̂v → dv < d, whereas d̂x is
estimated from the original series and is consistent for d. Under the null hypothesis,
on the other hand, β̂OLS is inconsistent so that v̂OLS

t is just some linear combination
of I (d) series, d̂v → d, and β̂N B(d̂x , d̂v) is consistent for β̃.

Since the process is non-stationary, the memory is estimated by local Whittle from
the differenced process. Alternatively, d could be estimated using a tapered localWhit-
tle estimator, or by the exact or fully extended localWhittle estimator. The test statistic
compares both estimates of β̃ where the normalizing variance V̂ MV is estimated from
the periodogram of the OLS residuals v̂OLS

t and that of xt so that

V̂MV =
⎛

⎝
m∑

j=−m

Ixx (λ j )

⎞

⎠

−1
m∑

j=−m

Ixx (λ j )Iv̂v̂(λ j )

⎛

⎝
m∑

j=−m

Ixx (λ j )

⎞

⎠

−1

.

This leads to the test statistic

WMV = 1

p − 1

(
β̂OLS − β̂N B

)′
V̂−1
MV

(
β̂OLS − β̂N B

)
. (12)

The choices ofm andm2 are not linked, but both have to satisfy the condition (md−2+
mγ−1 log T ) log2 T + m

T → 0 as T → ∞, with γ > 0 which is fulfilled if m ∼ T η,
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η ∈ (0, 1). The asymptotic distribution is non-standard and depends on the memory
parameter d. It is given by

WMV
d→ 1

p − 1

∫ 1

0
Wy(d; r)Wx (d; r)′drV−1

∫ 1

0
Wx (d; r)Wy(d; r)dr ,

with V = ∫ 1
0 γR(s)

{
γxx (s) + γ ′

xx (s) + γxx (1 − s) + γ ′
xx (1 − s)

}
ds, γR(s) =

∫ 1−s
0 Wy(d; r)Wy(d; r + s)dr , and γxx (s) = ∫ 1−s

0 Wx (d; r)Wx (d; r + s)′dr , where
Wy(d; r) is a fractional Brownian bridge, andWx (d; r) is a p×1 vector of independent
fractional Brownian bridges.

Critical values are tabulated in Marmol and Velasco (2004) for dimensions up to
p = 5 and different forms of detrending that affect the type of the fractional Brownian
bridges. The test statistic WMV diverges under the alternative since both β̂N B and
V̂−1
MV diverge under fractional cointegration. Although the consistency of the test is

derived assuming d > dv > 0.5, Marmol and Velasco (2004) state that the test
remains consistent if the stationarity border is crossed by the cointegrating residuals,
i.e. d > 0.5 > dv . Our simulations in Sect. 4 confirm this.

A direct residual-based test is proposed by Chen and Hurvich (2006) who estimate
the possible cointegrating subspaces using eigenvectors of the averaged periodogram
local to the zero frequency. The process Xt is assumed to be stationary after taking
(q − 1) integer differences which allows d ∈ (q − 1.5, q − 0.5). In order to account
for possible over-differentiation the complex-valued taper ht = 0.5(1 − ei2π t/T ) of
Hurvich and Chen (2000) is applied to the data. The tapered discrete Fourier transform
(DFT) and periodogram of Xt are defined by

w
tap
X (λ j ) = 1

√
2π

∑
t |h(q−1)

t |2
T∑

t=1

h(q−1)
t Xt e

iλ j t ,

I tapX (λ j ) = wX (λ j )wX (λ j ).

Based on the tapered periodogram, define the averaged periodogram matrix of Xt

by I av
X (λ j ) = ∑m3

j=1 Re
(
I tapX (λ j )

)
, where m3 is a fixed positive integer fulfilling

m3 > p + 3. The eigenvalues of I av
X (λ j ) sorted in descending order are denoted by

δ̂a,I av
X
and the corresponding eigenvectors are given by χ̂a,I av

X
, for a = 1, . . . , p. Under

the alternative hypothesis, if there are r > 0 cointegrating relationships, the matrix
consisting of the first r eigenvectors provides a consistent estimate of the cointegrating
subspace.

To construct a test for the null hypothesis of no fractional cointegration the potential
cointegrating residuals vt are estimated bymultiplying Xt with the eigenvectors χ̂a,I av

X

so that v̂av
at = χ̂ ′

a,I av
X
Xt , for a = 1, . . . , p.

Thememory of the p residual processes is estimatedwith the localWhittle estimator
using bandwidth m but calculated using shifted Fourier frequencies λ j̃ with j̃ =
j + (q − 1)/2 to account for the tapering of order q. These estimates are denoted by
d̂
va ,˜LW

, and they remain consistent and asymptotic normal.
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Since there can be at most p − 1 cointegrating relationships in a p-dimension-
al time series, the first residual corresponding to the largest eigenvalue cannot be a
cointegrating residual. Its memory must therefore equal the commonmemory d of Xt .
In contrast, the last residual v̂av

pt corresponding to the smallest eigenvalue is most likely
to be a cointegrating residual if there is cointegration so that its memory is reduced by
b under cointegration.

The test idea of Chen and Hurvich (2006) is therefore to compare the estimated
memory orders from the residual series v̂av

1t and v̂av
pt that correspond to d̂ (first residual)

and d̂v (last residual). Chen and Hurvich (2006) show that

√
m

(
d̂
va ,˜LW

− d̂
vb,˜LW

)
d→ N

(

0, VCH ,q

(

1 − G2
ab

GaaGbb

))

with VCH ,q = 1
2

Γ (4q−3)Γ 4(q)

Γ 4(2q−1)
. A conservative test statistic is therefore given by

WCH = √
m

(
d̂
v1,˜LW

− d̂
vp,˜LW

)

√
VCH ,q

. (13)

The test rejects if WCH is larger than the standard normal quantile z1−α/2. It is very
versatile, since it does not impose restrictions on the cointegration strengh b and can be
applied to stationary as well as non-stationary long-memory processes, but it requires
a priori knowledge about the location of d in the parameter space to determine the
order of differencing.

Hualde and Velasco (2008) propose another testing strategy in a residual-based
regression framework. As before, the series Xt is partitioned such that Xt = (yt , x ′

t )
′

and they consider the single-equation regression yt = β̃xt + vt .
The test idea is based on the observation that the fractionally differenced residual

Δdx vt is unrelated to the long-run level of xt under the null hypothesis. This is because
Δdx vt is I (0) and xt is I (d). The cross-spectrum of xt and Δdx vt should therefore be
zero at frequencies local to zero. Possible dependence between the short-run compo-
nents ut and et in (3) would manifest itself in form of a non-zero cross-spectrum at
higher frequencies.

The test statistic of Hualde and Velasco (2008) is therefore based on the quantity
τ̂m defined as

τ̂m =
m∑

j=1

wx (−λ j )ζ(λ j )wΔdv ,d X (λ j )

where Δdv,d Xt =
(
Δd̂v yt ,Δd̂ x ′

t

)′
and ζ(λ j ) = (1, 0′

p−1) f̂ X (λ j )
−1. The projection

vector ζ(λ j ) estimates the DFT of the residual process vt from
wΔdv ,d X (λ j )—the DFT of the fractionally differenced process Δdv,d Xt . As usual for
these semiparametric approaches, it is assumed that m ≤ T /2 and m/T → 0, as
T → ∞. This leads to the test statistic
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WHV = τ̂ ′
mV̂

−1
HV τ̂m (14)

with V̂HV = ∑m
j=0 a j Re κ(λ j )IX X (λ j ), and κ(λ j ) = ζ(λ j ) (1, 0′

p−1)
′, where the

weights are defined by a j = 1 if j ∈ {0, T /2} and a j = 2 otherwise. Under the
null hypothesis this test statistic follows an asymptotic χ2

p−1-distribution. Under the
alternative the test develops power, since dv is estimated from the NBLS estimate of
the cointegrating residuals. Since these have reducedmemory under the alternative, the
first component of Δdv,d Xt (yt ) is I (b) instead of I (0) and the cross spectrum of the
underdifferenced estimate of vt and xt in τ̂m becomes non-zero. As before, thememory
orders are estimated using consistent estimators that account for the (possible) non-
stationarity of the data—for example the exact local Whittle estimator of Shimotsu
and Phillips (2005).

Amodified test withmore power in bivariate systems Xt = (X1t , X2t )
′ is calculated

with τ̃m instead of τ̂m :

τ̃m =
m∑

j=0

a j

Re

(
I
Δd̂v X1,X2

(λ j ) − f̃12(λ j )

f̂22(λ j )
I
Δd̂v X2,X2

(λ j )

)

f̂11(λ j ) − f̂12(λ j ) f̂21(λ j )

f̂22(λ j )

.

Here, the respective elements of the spectral matrices of differenced processes
f̂
Δd̂ (λ j ) = 1

2m+1

∑ j+m
k= j−m I

Δd̂ X (λk), f̃
Δd̂v (λ j ) = 1

2m+1

∑ j+m
k= j−m I

Δd̂v X (λk) are

denoted by f̂ab(λ j ) and f̃ab(λ j ) with a, b ∈ {1, 2}. This is the same as τ̂m but with
f̂12(λ j ) replaced by f̃12(λ j ) that is constructed using d̂v so that it also diverges under
the alternative and constitutes an additional source of power. The asymptotic χ2

p−1-
distribution is unaffected by this modification.

It is not necessary to impose any restrictions on the range of d and dv except for
those implied by fractional cointegration, and processes of dimensions higher than
two are allowed. The asymptotic χ2

p−1 distribution depends only on the dimension of
the process. Furthermore, the memory parameters are allowed to differ as long as two
components of Xt share the same memory parameter and the vector is sorted so that
the component with the highest memory comes first.

Nielsen (2010) introduces a sequential testing approach to test fractional cointegra-
tion and to determine the cointegrating rank. The method is based on a variance-ratio
statistic and imposes the assumption that the process Xt is non-stationary and the
potential cointegrating residual process is stationary with dv < 0.5 < d.

Denote the demeaned process by Zt = Xt −Xt , where Xt is the vector of arithmetic
means of the component series. The fractionally integrated version of Zt is denoted
by Z̃t = Δ−εZt . Then the variance ratio is given by KT (ε) = ATC

−1
T , with AT =

∑T
t=1 Zt Z ′

t , and CT = ∑T
t=1 Z̃t Z̃t . Taking the ratio has the advantage of eliminating

the processes’ variance from the asymptotic distribution. The eigenvalues of KT (ε)

sorted in ascending order are denoted by δ̂a,K with a = 1, . . . , p.
Similar to the spectral matrix G, the rank of KT (ε) is reduced to p − r under

fractional cointegration. This leads to a non-parametric trace statistic whose structure
is similar to the trace statistic of Johansen (1991) in the parametric context
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WNiel(ε) = T 2ε
p−r∑

k=1

δ̂k,K , r = 1, . . . , p − 1, (15)

where r is the number of cointegrating relations under the null hypothesis. Using (15)
the cointegrating rank can be determined by a sequence of tests of the null hypothesis
H0: r = r0 vs. H1: r > r0.

The limiting distribution is given by

WNiel(ε)
d→ tr

{∫ 1

0
Wn−r (d; s)Wn−r (d; s)′ds

(∫ 1

0
W̃n−r (d + ε; s)W̃n−r (d + ε; s)′ds

)−1
}

,

where Wn−r (d, u) = Bn−r
d (u) − ∫ 1

0 Bn−r
d (v)dv, W̃n−r (d + ε; u) = Bn−r

d+ε (u) −
∫ u
0

(u−v)ε−1

Γ (ε)
dv

∫ 1
0 Bn−r

d+ε (v)dv, Bn−r
d is a n − r dimensional vector of mutually inde-

pendent standard fractional Brownian motions of type II, and the Brownian motions
driving the fractional Brownian motions Bn−r

d and Bn−r
d+ε are identical.

This asymptotic distribution is non-standard and depends on the dimension p, the
cointegrating rank r , the order of fractional integration ε and d. In practice d can be
estimated consistently, and the other parameters are known. Critical values for d = 1,
ε = 0.1, and p − r = 1, 2, . . . , 8 are given by Nielsen (2010), who recommends
to use ε = 0.1 to integrate the process because it leads to higher power than larger
values whereas smaller values improve power slightly but lead to size distortions at
the same time. For more details confer Nielsen (2009). Note that choosing a different
order of fractional summation changes the limiting distribution which implies that the
test performance is free from user-chosen tuning parameters.

To see why this test can be considered to be residual-based, note that

δ̂a,K = η̂a
′AT η̂a

η̂a
′CT η̂a

=
∑T

t=1 v̂2t∑T
t=1 ṽ2t

,

where η̂a denotes the eigenvector corresponding to δ̂a,K . Since the first r eigenvectors
are consistent estimates of the cointegrating space, the first r eigenvalues are thus
given by the ratio of the sum of the squared cointegrating residuals and the sum of
squares of their ε times integrated version ṽt . Here the squares are estimators of the
respective process variances and it is assumed that d > 1/2 > dv . Therefore, under
the null hypothesis of no fractional cointegration the enumerator grows with rate
OP (T 2d) and the more persistent denominator grows with rate OP (T 2(d+ε)), so that
the eigenvalue has rate OP (T−2ε). Under the alternative of fractional cointegration
with dv < 1/2, the process vt is stationary so that the process variance is finite and
the enumerator grows with rate OP (T ). The denominator that may or may not be
stationary due to the integration with ε is OP (Tmax{1/2,d−b+ε}). Consequently, the
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eigenvalue is OP (Tmin{0,1−2(d−b+ε)}), so that it goes to zero more slowly than under
the null hypothesis.

The test is restrictive in that it requires non-stationary processes and, preferably,
stationary residual processes, but as shown by his Monte Carlo simulation the test still
exhibits power if dv > 0.5 and b > 0. Furthermore, it is applicable to multivariate
systems and is able to estimate the number of cointegrating relations.

Wang et al. (2015) propose a simple residual-based test in a bivariate setting where
Xt = (X1t , X2t )

′. The test statistic is based on the partial sum ofΔdv X2t , which is the
demeaned second component series fractionally differenced with the memory order
of the potential cointegrating residual vt . It is given by

WWWC = T−1/2
∑T

t=1 Δd̂v Z2t√
2π f̂22(0)

, (16)

where f22 is the spectral density of either u2t or et in (3), depending on whether a
triangular model or a common-components model is assumed.

Under the null hypothesis dv = d so that Δdv Z2t is I (0) and the appropriately
rescaled sum is asymptotically standard normal. Under the alternativeΔdv Z2t is I (b),
so that the test statistic diverges with rate OP (T b).

To make this test statistic feasible the spectral density f22 can be estimated from
the periodogram of the fractionally differenced processΔd̂ Z2t following the approach
of Hualde (2013): f̂22(0) = 1

(2m+1)

∑m
j=−m I

Δd̂ Z2
(λ j ), where I

Δd̂ Z2
(λ j ) is the peri-

odogram of Δd̂ Z2t .
While Wang et al. (2015) are agnostic about the method that is used for the esti-

mation of the memory parameters d and dv , they assume that d > 1/2 so that the
cointegrating vector can be estimated using ordinary least squares. Thememory orders
can be estimated from v̂OLS

t and Z2t using any of the common semiparametric esti-
mates such as ELW with bandwidth m as in f̂22 that fulfills the usual bandwidth
conditions. The method does not impose any restrictions on the fractional cointe-
grating strength b. As the Monte Carlo simulations below show, the non-stationarity
requirement (d > 1/2) can be circumvented if the cointegrating residual vt is based
on the NBLS estimate of the cointegrating vector instead of the OLS estimate.

Zhang et al. (2019) propose an alternative estimator of the cointegrating space that
is based on the eigenvectors of the non-negative matrix M̂ = ∑ j0

j=0 Ω̂Z ( j)Ω̂Z ( j)′,
where Ω̂Z ( j) = 1

T

∑T− j
t=1 Zt+ j Z ′

t is the autocovariance matrix at lag j and j0 is
a fixed integer. The matrix M̂ is thus the sum of the outer products of the first j0
autocovariance matrices with themselves. The outer product is used instead of the
covariance matrices Ω̂Z ( j) to ensure that there is no information cancellation over
different lags in M̂ . It is assumed that d > 0.5 and dv < 0.5.

The eigenvalues of M̂ in descending order are denoted by δ̂a,M for a = 1, . . . , p
and the corresponding eigenvectors are denoted by χ̂a,M . Similar to the matrix G in
(1), the first p − r eigenvalues of M are non-zero, whereas the remaining r are zero.
For known r the eigenvectors corresponding to the r smallest eigenvalues provide a
consistent estimate of the cointegrating space.
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If r is unknown, the p potential cointegrating residuals are estimated using the
eigenvectors so that v̂M

at = χ̂ ′
a,M Xt . By the same argument as in the procedure of

Chen and Hurvich (2006), the residual corresponding to the smallest eigenvalue is
most likely a cointegrating residual with reduced memory of dv = d − b and the
residual corresponding to the largest eigenvalue is I (d).

The cointegrating rank can be estimated using a simple criterion based on the
summed autocorrelations of the potential cointegrating residuals. Define

Qa(k0) =
k0∑

k=1

ρ̂a(k),

with ρ̂a(k) =
1

T−k

∑T−k
t=1 (̂vM

a,t+k − v̂M
at )(̂vat − v̂M

at )
′

1
T

∑T
t=1(̂v

M
at − v̂M

at )
2

,

where v̂M
at is the mean of v̂M

at . The cointegrating rank estimator counts the instances
when the averaged autocorrelation is smaller than a threshold c0 ∈ (0, 1):

r̂Z RY =
p∑

a=1

1

{
Qa(k0)

k0
< c0

}
. (17)

If the residual v̂M
at is stationary (dv < 1/2), the rescaled sum of autocorrelations

Qa(k0)/k0 converges to zero asymptotically for k0 → ∞, since the autocorrelations
are asymptotically proportionate to k2dv−1. Under certain regularity conditions this
estimate is consistent. Even though the consistency is only proven for r ≥ 1 inTheorem
4.2 of Zhang et al. (2019), our simulations below show that it also works well in
discriminating between r = 0 and r = 1.

It should be noted that the authors define r = p if all components of Xt are I (0).
This leads to some abuse of notation and r cannot be interpreted as the cointegrating
rank in a narrow sense. Based on their simulations Zhang et al. (2019) recommend to
use j0 = 5, k0 = 20 and c0 = 0.3. The estimator is easy to implement and applicable
to higher dimensional processes. However, the requirement of d > 0.5 and dv < 0.5
is restrictive.

4 Monte Carlo Study

The asymptotic properties of all tests and rank estimates presented in Sect. 3 are derived
by the respective authors, and some of them also present simulations to explore the
finite sample results of the test statistics. This however is not the case for all tests and a
comprehensive comparative study suited to guide the choice of appropriate methods in
practical applications is entirely missing. To close this gap, we conduct an extensive
Monte Carlo study. In addition to general results, we are particularly interested in
answering two empirically motivated questions.
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(i) How does correlation between the underlying short-run components influence
the size of the tests? This question is important, since applied researcherswill generally
want to test for fractional cointegration if two related series seem to be co-moving.
Similar trajectories, however, can also be generated by persistent processeswith highly
correlated innovations. Tests for the null hypothesis of no fractional cointegration
should therefore be robust to a relatively high degree of correlation between the short-
run components of the series.

(ii) Is there a notable difference in the power of the tests depending on whether the
data is generated from a triangular model or from a common-components model? Both
models are used in the literature tomotivate and construct testing procedures, but to our
knowledge simulation results are typically based on the triangular representation. In
practice, either model could be justified—depending on the application. For example,
if one is considered with potential fractional cointegrating relationships between stock
prices, it is not clear why one of the stock prices should be seen as a perturbed version
of the other one (as it is the case in the triangular model that treats the series in an
asymmetric way) so that the common-components model is more suitable. In contrast
to that, in the case of the potential parity between implied volatility and the expected
average realized volatility over the next month (the so-called implied-realized parity
analyzed by Christensen and Prabhala (1998), Christensen and Nielsen (2006b), and
Nielsen (2007), among others), there is theoretical reason to assume that the implied
volatility is a perturbed version of the expected average future realized volatility, since
it contains a variance-risk premium (cf. Chernov (2007)). Therefore, a triangularmodel
is more suitable.

We focus on three data generating processes (DGPs) based on the general model
from Eqs. (3) to (5). For simplicity we set c1 = c2 = 0 and b = b1 = b2 so that the
processes are mean zero and have a common memory reduction parameter. A simple
bivariate model without fractional cointegration is constructed by setting ξ1 = ξ2 = 0.
This model—referred to as (size) DGP1—is given by

X1t = Δ−du1t1{t > 0}, (18)

X2t = Δ−du2t1{t > 0}, (19)

where correlation between u1t and u2t is allowed. This is our size-DGP. For the power
simulations, we consider a triangular model and a common-components model. In
both cases we set ξ1 = ξ2 = 1 which implies a cointegrating vector of β = (1,−1)′.
The triangular model DGP2 is given by

X1t = Yt + Δ−(d−b)u1t1{t > 0}, (20)

X2t = Yt , (21)

and the common-components model DGP3 is defined by

X1t = Yt + Δ−(d−b)u1t1{t > 0}, (22)

X2t = Yt + Δ−(d−b)u2t1{t > 0}. (23)
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In both DGP2 and DGP3 we have Yt = Δ−det1{t > 0}. The underlying short-run
components u1t and u2t , or u1t and et—depending on the DGP—have unit variance
and correlation ρ.

We consider sample sizes of T ∈ {100, 500, 1000, 2500} and values of d ∈
{0.4, 0.7, 1} in the stationary and non-stationary region. Under fractional cointe-
gration, the memory reduction b is linked to the value of d so that b ∈ {d/3, d}.
Consequently, there is either a memory reduction to 0 if b = d or a weaker form of
cointegration if b = d/3. In order to examine the impact of correlation between the
short-run components, we consider ρ ∈ {0, 0.45, 0.9, 0.99}. Note that the results
for b = d/3, δm = 0.55 and further robustness tests (other size DGPs and p = 3-
dimensional processes) are available online as supplementary material.

The semiparametric nature of the tests and rank estimates requires several band-
width choices. The memory estimation with (E)LW estimators involved in all methods
is based on the bandwidth m that determines the number of frequencies included in
the estimation. We usem = �T δm �with δm = {0.55, 0.75} to account for sensitivities
regarding bandwidth choice. With regard to the other bandwidth choices, we follow
the recommendations by the authors:m1 = �T δm−0.1� and p(T ) = m−0.3

1 for Nielsen
and Shimotsu (2007) or Robinson and Yajima (2002), l = 1 for Souza et al. (2018),
m3 = 25 for Chen and Hurvich (2006), c0 = 0.3, j0 = 5 and k0 = 20 for Zhang et al.
(2019), and for Marmol and Velasco (2004) we set m = �T 2/3� and m2 = �T δm �. All
tests are carried out allowing for a non-zero mean.

The results presented are based on 5000 replications and a nominal significance
level of α = 0.05. Since the tests impose different conditions on d and dv , wemark the
cells in the tables in bold where the methods have well-defined asymptotic properties
and are supposed to deliver good results. In some cases the methods give satisfactory
results beyond these limitations. For example, we implement themethod ofWang et al.
(2015) using a NBLS estimate of the cointegrating vector instead of the OLS estimate.
This makes the test applicable in stationary time series as well as in non-stationary
ones.

Since the limiting distributions of the non-pivotal test statistics of Marmol and
Velasco (2004) and Nielsen (2010) depend on d and it is assumed that d > 1/2, it is
unclear which critical values would be used in the stationary region. The respective
fields are therefore left blank.

Further, it should be noted that the methods of Nielsen and Shimotsu (2007) (or
Robinson and Yajima (2002)) and Zhang et al. (2019) are not tests but rank estimates.
Instead of the rejection frequency, we therefore report the ratio of correctly estimated
cointegrating ranks. Therefore, the results cannot be interpreted as size or power, and
in the size table and graphs the estimates should yield 0 instead of 0.05, since the
estimates do not involve any significance level.

Table 1 displays size results based on DGP 1 with δm = 0.75. The methods that
have well defined asymptotic properties across all parameter constellations covered
in the table are those of Nielsen and Shimotsu (2007), Chen and Hurvich (2006),
Hualde and Velasco (2008), and Souza et al. (2018). It can be observed that all of
these methods achieve good size properties for ρ = 0, except for the test of Chen and
Hurvich (2006), when d = 0.4. Among those four procedures, only the tests of Souza
et al. (2018) (disregarding the smallest sample) and Chen and Hurvich (2006) do not
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A comparison of semiparametric tests for fractional cointegration 2017

over-reject if ρ increases.3 For low values of d the test of Hualde and Velasco (2008)
already becomes oversized for ρ = 0.45 and as ρ increases it becomes oversized for
higher values of d, too. The rank estimation procedure of Robinson and Yajima (2002)
and Nielsen and Shimotsu (2007) is even more affected and estimates a cointegrating
rank of one in nearly all cases if ρ ≥ 0.9.

In addition to the tests of Souza et al. (2018) and Chen and Hurvich (2006), the
modified version of the test byWang et al. (2015) that is based on the NBLS estimator
instead of OLS also maintains satisfactory size properties across all values of ρ and
d.

The group of procedures that is only applicable to non-stationary systems consists of
Marmol andVelasco (2004),Nielsen (2010), andZhang et al. (2019). It can be observed
that the procedure of Marmol and Velasco (2004) behaves similar to that of Hualde
and Velasco (2008) in the sense that it is very liberal for higher values of ρ and lower
values of d. For non-stationary series and larger sample sizes the procedure by Zhang
et al. (2019) estimates correctly the cointegrating rank to be zero—independently of
the degree of correlation. The variance-ratio statistic of Nielsen (2010) turns out to be
slightly liberal for d = 0.7 in larger samples, but holds the nominal size for d = 1
even in small samples. In particular, the performance is independent of the degree of
correlation.

Finally, the test of Robinson (2008a) is only applicable for stationary systems.
Here, it can be observed that the test does not hold its size for ρ = 0. This is because
the Hausman-testing principle requires one of the estimates of the memory parameter
to be more efficient than the other one, but the multivariate estimate is not more
efficient in absence of correlation. For other values of ρ, however, the test has good
size properties. Interestingly, the test also has good size properties if d = 1, even
though it assumes stationarity. The intermediate value of d = 0.7, on the other hand,
leads to a moderately oversized test.

Figure 1 analyzes the interaction between the degree of correlation ρ and the choice
of the bandwidth δm . It shows the size of the tests in scatterplots where the results with
no correlation (ρ = 0) are plotted against results with high correlation (ρ = 0.99).
In the upper panel, tests that allow for stationary processes (d = 0.4) and in the
lower panel (d = 1) the non-stationarity-robust tests, i.e. all except that of Robinson
(2008a), are displayed. The dashed lines mark the nominal size level of 0.05 so that
ideally all points would lie on the intersection between these two lines. The dotted
line is the bisector implying that methods above the bisector do better with correlation
and methods below the bisector do better without. Black symbols give results with a
bandwidth parameter of δm = 0.75 and gray symbols with δm = 0.55.

It can be observed that the procedures by Marmol and Velasco (2004), Nielsen and
Shimotsu (2007) and Hualde and Velasco (2008) lie below the bisector and are thus
negatively affected by high correlation, whereas the tests by Chen and Hurvich (2006)
and Robinson (2008a) lie above the bisector. The remaining tests lie on the bisector
indicating robustness to correlation. Regarding bandwidth choice, the tests byMarmol
and Velasco (2004), Chen and Hurvich (2006), Hualde and Velasco (2008) and Wang
et al. (2015) are more liberal with a small bandwidth, whereas Nielsen and Shimotsu

3 The test of Chen and Hurvich (2006) is conservative by construction as discussed in the previous section.

123



2018 C. Leschinski et al.

CH06

NS07*

R08

SRFB18

WWC15

HV08

CH06

WWC15

HV08

0.00

0.05

0.10

0.15

0.20

0.25

0.00 0.25 0.50 0.75 1.00

High correlation

Ze
ro

 c
or

re
la

tio
n

Bandwidth

a
a

δm=0.75

δm=0.55

Size with varying correlation and bandwidth, d=0.4

CH06

MV04

NS07*

SRFB18

WWC15

HV08

N10

ZRY18*

WWC15

HV08

0.00

0.05

0.10

0.15

0.00 0.25 0.50 0.75 1.00

High correlation

Ze
ro

 c
or

re
la

tio
n

Bandwidth

a
a

δm=0.75

δm=0.55

Size with varying correlation and bandwidth, d=1

Fig. 1 Size (*rank estimation) based on DGP1 depending on correlation ρ ∈ {0, 0.99} and bandwidth
δm ∈ {0.55, 0.75} with T = 1000

(2007), Robinson (2008a), Nielsen (2010), Souza et al. (2018) and Zhang et al. (2019)
are relatively robust in terms of size. In general, correlation in the underlying short-
run component is mistaken for cointegration more often in stationary systems than in
non-stationary ones.

Overall, in terms of size for bivariate systems and taking the range of admissible
parameter values into account, we find that the test of Souza et al. (2018) has the best
performance, followed by those of Chen and Hurvich (2006) and Wang et al. (2015).
Considering procedures only applicable to non-stationary systems, Nielsen (2010) and
Zhang et al. (2019) are very reliable options as well.
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To analyze the power of the procedures, we focus on the triangular representation
in DGP2 with b = d so that the memory reduces to zero in the cointegrating relation.
Again, δm is set to 0.75. The results are shown in Table 2. In the following, we focus
on the results for parameter constellations for which the tests have reasonable size
properties.

It can be seen that the rank estimate of Nielsen and Shimotsu (2007) correctly iden-
tifies the presence of fractional cointegration even in relatively small samples. Since
the estimate works well under the null hypothesis if ρ is low, it clearly outperforms its
competitors in this situation. The power of the test of Hualde and Velasco (2008) is
also high, but it suffers from similar size issues in case of strongly correlated short-run
components.

Among the tests that are more widely applicable the approach of Souza et al. (2018)
generates higher power than that of Wang et al. (2015) (except for ρ = 0.99), which
in turn outperforms the approach of Chen and Hurvich (2006). Furthermore, it can be
seen that the test of Souza et al. (2018) outperforms more restrictive approaches in
small samples such as those of Robinson (2008a) and Nielsen (2010). In large sample
this observation vanishes. For the test of Chen and Hurvich (2006) we can observe
that the power is lower for d = 0.7 than for other values of d. Furthermore, the
power becomes non-monotonic in T in some cases. This effect is likely to be caused
by the fact that the order of differentiation required may be estimated incorrectly for
intermediate values of d. The approach of Zhang et al. (2019) behaves similarly as
that of Nielsen (2010).

With regard to the test of Robinson (2008a), it is noteworthy that the power is
considerably lower for ρ = 0.9 than it is for ρ = 0.45 or ρ = 0.99. Further simulation
results on this V-shaped dependence pattern between the power of the test and ρ (not
reported here) show that the test has no power if ρ = 0.8 and its power is very low in
a neighborhood of this point.

The test of Marmol and Velasco (2004) develops good power for stationary values
of dv , even though its theoretical properties are derived under the assumption that
dv > 0.5.

Overall, we find that the rank estimation of Nielsen and Shimotsu (2007) per-
forms best in identifying the correct order of fractional cointegration if the correlation
between the series is low. For non-stationary data Nielsen (2010) is a good choice,
and among the more broadly applicable methods the test of Souza et al. (2018) clearly
performs best in terms of size and power.

The previous table is generated based on the triangular model (DGP2), but we are
also interested in the performance based on the common-components model (DGP3).
Those results are displayed in Table 3. It can be seen that there is a number of striking
differences in the relative performance of the tests. For low values of d, the rank
estimation procedure of Nielsen and Shimotsu (2007)/Robinson and Yajima (2002)
loses precision. At the same time, the test of Chen and Hurvich (2006) becomes more
powerful so that overall the two procedures become comparable in terms of their
ability to identify the correct rank. Unfortunately, the non-monotonicity of the test of
Chen and Hurvich (2006) for intermediate values of d becomes even more apparent.
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Fig. 2 Power (*rank estimation) depending on model specification (DGP2 or DGP3) and bandwidth δm ∈
{0.55, 0.75} with T = 1000, ρ = 0.45, and b = d/3

The test of Souza et al. (2018) still performs relatively well—especially for larger
values of d. The same holds true for that of Wang et al. (2015) which reaches a
relatively high power in smaller samples but approaches 1 only slowly.

With respect to the other tests, it can be seen that the test of Hualde and Velasco
(2008) has very good power properties—also for low values of ρ where it maintains
its size. The procedures of Nielsen (2010) and Zhang et al. (2019) have lower power
for d = 0.7 in small samples but in all other constellations their power results are very
good.

We further conduct a similar analysis to that for the size in Figure 2 in order to
analyze the effect of the model construction and that of the bandwidth choice on the
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A comparison of semiparametric tests for fractional cointegration 2025

power of the procedures. As before, black symbols represent results with δm = 0.75
and gray symbols represent δm = 0.55. The values of d and b are selected such that
the power of the procedures tends to be low and changes in their behavior are easier to
identify. First of all, most procedures perform better in the triangular model except for
the tests by Chen and Hurvich (2006) and Robinson (2008a). Furthermore, while an
increase of the bandwidth leads to a considerable power gain for the tests of Chen and
Hurvich (2006), Robinson (2008a), and Souza et al. (2018), the approaches ofMarmol
andVelasco (2004), Hualde andVelasco (2008) andNielsen and Shimotsu (2007) have
higher power with a smaller bandwidth—at least in the common-components model.
This, however, might be due to the larger size distortions visible in Figure 1. The
performance of the approaches of Nielsen (2010) and Wang et al. (2015) is relatively
independent of the bandwidth choice. For the test of Nielsen (2010) this is explained
by the fact that the bandwidth only influences the estimate of d that determines the
correct set of critical values. The test statistic itself does not depend on the bandwidth.

A strong advantage of semiparametric methods is the theoretical robustness to
short-run dynamics. We therefore consider the previous experiments with u1t , u2t , et
as AR(1) processes with φ ∈ {−0.5, 0.5}. Table 4 contains both size and power results.
Most tests and rank estimates exhibit performance differences compared to the white
noise case, in particular with respect to size. For Souza et al. (2018), Wang et al.
(2015) and Zhang et al. (2019) we observe sensitivity to the sign of the AR parameter
as they tend to become liberal (or have a higher error rate for Zhang et al. (2019))
with φ = −0.5 and become conservative (have a lower error rate) with φ = 0.5.
Additionally, the test by Souza et al. (2018) does not hold the nominal size if d = 1
andφ = 0.5. Similar as the estimate ofZhang et al. (2019) does not yield 0 anymore, the
one by Nielsen and Shimotsu (2007) has an error rate of 2-10% instead of 0%. The test
of Chen and Hurvich (2006) becomes more conservative with stationary data and gets
closer to the nominal significance level for non-stationary data, and the procedures
by Hualde and Velasco (2008) and Marmol and Velasco (2004) both turn out very
conservative. The test by Nielsen (2010) holds the nominal size only with d = 1 and a
negative AR parameter and becomes very liberal in the other cases. In comparison to
analogous results without short-run dynamics we find weaker performances in small
samples for the tests by Robinson (2008a) and Marmol and Velasco (2004) in terms
of size, and for the methods by Nielsen and Shimotsu (2007), Souza et al. (2018) and
Marmol and Velasco (2004) in terms of power. In general, we observe a tendency of
slightly lower power in some occasions like stationary data with the tests of Chen and
Hurvich (2006) and Souza et al. (2018), but overall the power results differ not that
much compared to the white noise case.

5 Conclusion

This review is written with the objective to provide guidance for the selection of
methods in practical applications. We judge the methods based on (i) the range of
values of d and b that are allowed, (ii) the ability to distinguish correctly between
common trends and correlated innovations, and (iii) the performance across different
DGPs—namely triangular systems as well as common-components models.
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Based on our Monte Carlo studies, we find that some of the proposed approaches
have weaknesses in their finite sample behavior in some empirically relevant
scenarios—especially in presence of correlated short-run components. This concerns
mostly the methods of Nielsen and Shimotsu (2007) (or Robinson and Yajima (2002)),
Marmol and Velasco (2004), and Hualde and Velasco (2008) that have the highest
power but have size issues in case of strongly correlated short-run components. With
regard to iii.), we find that the size properties of the tests in the triangular case and the
common-components model is generally comparable (see online material). For the
power of the tests, however, there are important differences between the two cases. In
particular, the test of Chen and Hurvich (2006) has much better power for stationary
systems under the common components specification, whereas the methods of Robin-
son and Yajima (2002) and Hualde and Velasco (2008) become worse in their ability
to detect fractional cointegration.

Although themethods of Robinson (2008a), Nielsen (2010), and Zhang et al. (2019)
turn out to be robust to short-run correlation and are appealing due to their simplicity,
they impose practically relevant restrictions on the permissible range of d and b.
However, if there is prior knowledge about the (non-) stationarity of the data, those
procedures are very good options.

Overall, we conclude that the test of Souza et al. (2018) for bivariate systems
has the best properties, both theoretically and empirically, and is a good choice for
the applied econometrician. It allows for the whole empirically relevant range of d
and b, it is robust to correlation and short-run dynamics with positive coefficients,
and it provides comparable performance in both—triangular systems and common-
components models.

In higher dimensional systems, however, the test of Souza et al. (2018) is no longer
applicable and that of Chen and Hurvich (2006) turns out to be liberal in finite samples
from stationary processes. Here, the procedure of Robinson (2008a) can be recom-
mended for stationary processes and the rank estimation by Nielsen (2010) and Zhang
et al. (2019) should be preferred for non-stationary systems if the cointegrating resid-
uals can be expected to be stationary.
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