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Abstract
In this paper optimal properties of some circular balanced block designs under the
model with circular autoregression of order one are studied. Universal optimality of
some balanced block designs with equal block sizes is proven and E-optimality of
complete balanced block designs with the number of blocks equal to the number of
treatments or the number of treatments reduced by two is shown.

Keywords Circular autoregression of order one · Circular balanced block design ·
Universal optimality · E-optimality · Nondirectionally neighbor balanced design

1 Introduction

The block experiments have been widely used in sciences, medical and engineering.
The problem of universal optimality of block designs is widely studied for differ-
ent correlation structures. Chai and Majumdar (2000) showed that under the nearest
neighbor correlation structure the universally optimal block designs can be constructed
from semibalanced arrays. Recently, Khodsiani and Pooladsaz (2017) characterized
the universally optimal block designs under the hub correlation structure.
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Under the standard blockmodel in which correlation between observations in every
block decreases exponentially with the distance, the first-order linear autoregression
covariance structure, AR(1, L), is considered in the literature. For some values of cor-
relation parameterKunert (1987) proved that the nearest neighbor balanced incomplete
block designs, characterized by Gill and Shukla (1985), are universally optimal over
the class of incomplete block designs. For positive correlations Pooladsaz and Martin
(2005) extended the results of Kunert (1987) for the designs with block sizes exceed-
ing the number of treatments. Kunert and Martin (1987b) extended the optimality
results of some neighbor balanced designs for other autoregression correlation struc-
tures, such as e.g. circular autoregression (AR(1,C), defined in (2)) with positive
correlation. Circular designs were considered for example by Rees (1967), in sero-
logical experiment in which treatments are arranged in circular blocks where every
treatment has two neighbors. Another example is an experiment in marine biology
in which five genotypes of bryozoan such that neighboring genotypes might interfere
with each other were compared by suspending them in sea water around the circum-
ference of a cylindrical tank; see Bayer and Todd (1996). One of the aims of this paper
is to show universal optimality of some circular nondirectionally neighbor balanced
designs under the model with AR(1,C) for positive and negative values of correlation
coefficient.

Existence of universally optimal designs often has some limitations and for some
combinations of design parameters the universally optimal designs can not exist. In
such a case efficiency of some designs or optimality with respect to the specified cri-
teria is considered. E-criterion is one of the most popular criteria that can be studied
in this case, as it minimizes the largest variance among all best linear unbiased esti-
mators of normalized linear contrasts, and plays an important role in e.g. admissibility
investigations; cf. Pukelsheim (2006). Although determining the E-optimal designs is
not easy especially when the observations are correlated because E-criterion is based
on the eigenvalues of the information matrix of designs. Jacroux (1982, 1983) char-
acterized E-optimal block designs for uncorrelated observations. Kunert and Martin
(1987a) proved optimality of some neighbor designs with respect to the specific crite-
ria, such as e.g. A-, D- or E-optimality under the model with observations correlated
according to AR(1, L) with positive correlation parameter.

According to the circular structure of AR(1,C), optimality problem of block
designs under this correlation structure is similar to the determining optimal designs
in interference models. There are several results on optimality of circular neighbor
balanced designs (CNBDs) and orthogonal arrays of type I under the fixed and mixed
interference models, where the observations are correlated or not (see e.g. Druilhet
1999; Filipiak andMarkiewicz 2003, 2004, 2005, 2007). Similarly asKunert andMar-
tin (1987a) we will consider circular complete block designs (known also asWilliam’s
II(a) designs with extra plot). It is worth observing that designs with complete blocks
are often used in practice. For example in UPOV (The International Union for the
Protection of New Varieties of Plants) research, complete block designs are recom-
mended in experiments when the number of treatments is less than 16. The designs
with the same number of blocks as number of treatments and units are also applied in
clinical trials.
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Since complete CNBDs that are universally optimal under the interference models
exist only for specific combinations of design parameters, one can look for universally
optimal designs for some other combinations of parameters or to determine designs
which are optimal with respect to other criteria, e.g. E-optimality. Bailey et al. (2017)
considered optimality of circular weakly neighbor balanced designs under the inter-
ference model. They showed the construction methods of such designs, mostly based
on graph theory, and they applied Hamiltonian decomposition of matrices using GAP
(2014) or Mathematica software. Nevertheless, numerical algorithms start to be not
efficient for increasing number of treatments.

Regarding the circular block effectsmodelwith correlated errors and its connections
to the interference model with uncorrelated errors, construction methods of E-optimal
designs are even more complicated, and numerical algorithms fails even for relatively
small number of treatments. Nevertheless, algebraic concepts of construction methods
based on the left-neighboring matrix of a circular design being an incidence matrix of
some particular graph, can be used to more general models.

This paper is organized as follows. Section 2 introduces notation and definitions.
Section 3 presents some results about universal optimality of designs under the stan-
dard block model for any size of blocks when the observation errors are correlated
according to AR(1,C). In Sect. 4 some E-optimal complete block designs are char-
acterized.

2 Notation and definitions

Let us consider a set of circular block designsDt,b,k where t , b and k are respectively
the number of treatments, blocks and experimental units per block. A standard model
associated with a design d ∈ Dt,b,k can be written as

y = μ1bk + Tdτ + Bβ + ε (1)

whereμ is a general mean, τ and β are respectively the vectors of treatment and block
effects, and ε is a vector of random errors with E(ε) = 0bk and Cov(ε) = σ 2Ib ⊗ V.
The bk−vectors of ones and zeros are respectively denoted by 1bk and 0bk , the identity
matrix of order b is denoted by Ib, whilst σ 2 is a positive constant, V is a known,
symmetric, positive definite covariance matrix and ⊗ denotes the Kronecker product.
By Td and B = Ib ⊗ 1k respectively design matrices for treatments and blocks are
denoted.

In this paper we are interested in characterization of universally optimal design.
Thus, let us denote asCd the informationmatrix of design d for estimation of treatment
effects in the model (1). Due to Kiefer (1975, Proposition 1), if Cd1t = 0t for every
d ∈ Dt,b,k and if design d∗ is such thatCd∗ is completely symmetric and has maximal
trace over Dt,b,k , then d∗ is universally optimal among the class Dt,b,k . Recall, that a
t × t matrix A is completely symmetric, if all its diagonal elements are equal and all
its off-diagonal elements are equal, that is A = (α − β)It + β1t1′

t , α, β ∈ R.
For a design d in Dt,b,k let λ1(Cd) ≥ . . . ≥ λt−1(Cd) > λt (Cd) = 0 be the

eigenvalues of its information matrix. A design d∗ ∈ Dt,b,k is called E-optimal over
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Dt,b,k if
λt−1(Cd∗) ≥ λt−1(Cd) for any d ∈ Dt,b,k .

The above E-optimality criterion can be also expressed in terms of variance, that
is, E-optimal design minimizes the largest variance among all best linear unbiased
estimators of normalized linear contrasts; cf. Pukelsheim (2006).

From Kiefer and Wynn (1981) the information matrix of design d for estimation of
treatment effects in the model (1) has the form

Cd = T′
d(Ib ⊗ V∗)Td

where V∗ = V−1 − (1′
kV

−11k)
−1V−11k1

′
kV

−1. Observe that since 1bk belongs to
the column space of Td , we have Cd1t = 0t and Kiefer’s conditions for universal
optimality can be applied.

We will assume that the observations in different blocks are uncorrelated but that
observations within blocks are correlated according to a first-order circular autore-
gression process, AR(1,C), that is V = (vi j ), i, j = 1, . . . , k, with

vi j =
⎧
⎨

⎩

(1+ak)
(1−ak)(1−a2)

if |i − j | = 0

ah+ak−h

1+ak
if |i − j | = h

(2)

and |a| < 1 being a correlation parameter.
Following Kunert and Martin (1987b) and Filipiak and Markiewicz (2005), the

inverse of V can be presented as

V−1 = (1 + a2)Ik − a(Hk + H′
k)

where Hk denotes the k × k left-neighbor incidence matrix, that is the matrix with
(i, j)th element equal to 1 if i − j = 1 and h1,k = 1, and 0 otherwise. Hence

V∗ = (1 + a2)Ik − a(Hk + H′
k) − (1 − a)2

k
1k1′

k

and the information matrix can be written as

Cd = (1 + a2)Rd − a(Sd + S′
d) − (1 − a)2

k
NdN

′
d (3)

where Rd = T′
dTd is a diagonal matrix with replications of i th treatment on the

diagonal, Sd = T′
d(It ⊗ Hk)Td is a t × t left-neighboring matrix of a circular design

d (cf. Filipiak et al. 2008) and Nd = T′
dB is the treatment-block incidence matrix.

Recall, that the design is called circular if each block of a design has the form of a
circle or, if plots in blocks are arranged in linear forms, but there are additional border
plots at the beginning of each block, containing the same treatment as at the opposite
end of the block (cf. Druilhet 1999). The border plots receive treatments but are not
used for measuring the response variables. Note that the (i, j)-th element of Sd , sd,i j ,
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denotes the number of occurrences of treatment i with treatment j as a left neighbor.
If a design d has no self-neighbors, the diagonal entries of Sd are equal to zero. Since
in our considerations the matrix Sd + S′

d plays a crucial role we denote its elements
by ξi j , that is ξi j = sd,i j + sd, j i . It is clear that for designs without self-neighbors
ξi i = 0.

Throughout this paper we use some properties of a balanced block design (BBD),
i.e. such a design d ∈ Dt,b,k for which (i) all nd,i j = �k/t� or �k/t� + 1, (ii) all rd,i

are equal (say r ), and (iii) every pair of distinct treatments occurs together in the same
number of blocks (say λ), where �x� is the largest integer not exceeding x , rd,i is the
number of replications of the i th treatment ind, the i th diagonal entry ofRd , andnd,i j is
the (i, j)th entryNd (cf. Kiefer 1958). A BBD reduces to a balanced incomplete block
design (BIBD) when k < t . All designs satisfying (i) are called generalized binary
designs (Das and Dey 1989), while designs satisfying (ii) are called equireplicated
designs. The class of generalized binary designs with k ≤ t will be denoted by Bt,b,k .

The following algebraic notation and definitions is used in Sect. 4 of the paper.
An n × n matrix A is said to be reducible if either of the following conditions is

satisfied:

(a) n = 1 and A = 0;
(b) n ≥ 2 and there is a permutation matrix P ∈ Pn and an integer u with 1 ≤

u ≤ n − 1 such that P′AP =
(
B11 B12
� B22

)

where B11 ∈ R
u×u , B12 ∈ R

u×(n−u),

B22 ∈ R
(n−u)×(n−u) and � is an (n − u) × u zero matrix.

A matrix is called irreducible if it is not reducible.
Let Pn be the set of all permutation matrices of order n and let Pn ⊂ Pn be the

set of permutation matrices with zero diagonal (the set of derangement matrices of
order n). The matrix P′AP, where P ∈ Pn , is called permutationally similar to A. It is
worth noting that the eigenvalues of A and a matrix permutationally similar to A are
the same.

3 Universal optimality over the classDt,b,k

If a = 0 there is no correlation structure in model (1) and it is known that every
BBD is universally optimal over Dt,b,k (cf. Shah and Sinha 1989). In this section we
characterize universally optimal designs under model (1) with AR(1,C) structure,
where a ∈ (−1, 1)\{0}. We denote Dt,b,k as the subclass of Dt,b,k with no treatment
preceded by itself.

Theorem 1 The circular BBD d∗ such that Sd∗ + S′
d∗ is completely symmetric with

zero diagonal, is universally optimal under model (1) over the class Dt,b,k if a > 0,
and over the class Dt,b,k if a < 0.

Proof By (3) for the circular BBD d∗ such that Sd∗ + S′
d∗ is completely symmetric,

Cd∗ =
[

r(1 + a2) − (1 − a)2

k
(r − λ)

]

It − a(Sd∗ + S′
d∗) − λ(1 − a)2

k
1t1

′
t . (4)

123



432 K. Filipiak et al.

Thus, Cd∗ is completely symmetric and since tr
(
Sd∗ + S′

d∗
) = 0 we obtain

trCd∗ = bk

[

(1 + a2) − (1 − a)2

k

]

.

Let d be a block design in Dt,b,k . By (3) we have,

trCd = bk(1 + a2) − 2atrSd − (1 − a)2

k
tr(NdN

′
d).

It is known (cf. Shah and Sinha 1989) that tr(NdN
′
d) is minimal for BBD. Thus, it

is immediately seen that trCd∗ is maximal for d∗ being BBD over the class Dt,b,k if
a > 0 and over the class Dt,b,k if a < 0. ��

It is worth noting that for a = 0 and d ∈ Dt,b,k\Bt,b,k , trCBBD > trCd . Moreover,
for k ≤ t , trSBBD = 0, and from continuity of the trace (as a function of a) it follows
that for negative a, sufficiently close to 0, the BBD is universally optimal over the class
Dt,b,k . Moreover, for small number of treatments (e.g. t = k = 3, 4, 5), the BBDs are
universally optimal over the class Dt,b,k even for all negative a.

One of the example of a designs satisfying conditions of Theorem 1 are nondirec-
tionally neighbor balanced designs (NdNBD), that is designs with Sd +S′

d = 1t1
′
t −It

(cf. Azaïs et al. 1993). However, NdNBD cannot exist for even t . Nevertheless, we
can consider generalized NdNBDs having the property of Sd + S′

d being proportional
to 1t1

′
t − It , which satisfies Theorem 1. For example the following design with blocks

represented as rows

d∗ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 2 3
1 4 5
1 2 6
1 4 6
1 3 5
2 4 3
2 5 6
2 4 5
3 4 6
3 5 6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

with Sd∗ + S′
d∗ = 2(161

′
6 − I6).

is a generalized NdNBD. Observe moreover, that CNBDs and circular neighbor bal-
anced designs at distance 2 (CNBD2) defined e.g. by Druilhet (1999), that can exist
also for even t , are also generalizedNdNBDs. Their constructionmethods for complete
blocks and blocks of size t − 1 can be found in Azaïs et al. (1993).

Universal optimality of CNBD2 under the wider model with AR(1,C), namely the
one-sided interference model, was shown in Filipiak and Markiewicz (2005).
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4 E-optimal complete block designs for b = t − 2 and b = t

In this section we assume t ≥ 3. We denote the subclass of equireplicated designs of
Dt,b,k by Rt,b,k and Rt,b,k consists of the equireplicated designs with no treatment
preceded by itself.

Assume that d ∈ Bt,b,t . Since the blocks of designs are complete now, that is k = t ,
every binary design is a BBD. Thus, due to (4),

Cd = b(1 + a2)It − b(1 − a)2

t
1t1

′
t − a(Sd + S′

d)

and Sd1k = S′
d1k = b1k . Hence λt (Cd) = 0 and, for i = 1, . . . , t − 1,

λi (Cd) = b(1 + a2) + λi (−a(Sd + S′
d)).

and it is enough to find minimum of λ2(Sd + S′
d) over d ∈ Bt,b,t if a > 0, and

maximum of λt (Sd + S′
d) over d ∈ Bt,b,t if a < 0.

Observe that every irreducible derangement matrix is permutationally similar to
the incidence matrix Hn defined in Sect. 2. From circularity of Hn it follows, that the
non-ordered eigenvalues μi (Hn), i = 1, 2, . . . , n, are equal to the roots of unity, that
is μi (Hn) = ωi−1. Hence,

μi (Hn + H′
n) = μi (Hn + H−1

n ) = 2 cos
2π(i − 1)

n
.

and

λ1(Hn + H′
n) = 2 (5)

λn(Hn + H′
n) =

{−2 for even n
2 cos (n±1)π

n → −2+ for odd n.
(6)

Moreover, since every reducible derangement matrix is permutationally similar to
the block-diagonal matrix with Hn j on the diagonal,

∑u
j=1 n j = n, 1 < u ≤ n, the

set of its eigenvalues consists of the n j th roots of unity, j = 1, . . . , u.
Throughout the paper the following inequalities for the eigenvalues of a diagonal

l × l block, say A11, of partitioned matrix A:

λn−m+1(A) ≤ λl−m+1(A11) (7)

λm(A) ≥ λm(A11) (8)

where m = 1, 2, . . . , l; cf. Marshall et al. (2011).
The following lemmas will be useful for characterization of E-optimal designs.

Lemma 1 If the derangement matrix P ∈ Pn is permutationally similar to the matrix

(i) Hn if n = 2, 7;
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(ii) I2 ⊗ H2 or H4 if n = 4;
(iii) Im ⊗ H3 if n = 3m, m ∈ N;
(iv) diag

(
Ii ⊗ H3, I j ⊗ H5

)
if n = 5 or n ≥ 8 and n �= 3m, m ∈ Nwith n = 3i +5 j

for some i ∈ N ∪ {0} and j ∈ N,

then the minimal eigenvalue of P + P′, that is λn(P + P′), is maximal over Pn.

Proof From (6) the maximum of λn(P + P′) is obtained for P ∈ Pn permutationally
similar to the block-diagonal matrix with irreducible diagonal blocks of odd order
as small as possible. Since n = 5 and every n ≥ 8 can be presented as 3i + 5 j for
some i, j ∈ N ∪ {0}, we obtain (iii) and (iv). Moreover, for n = 3i + 5 j , j �= 0, the
maximum of λn(P+P′) is equal to the maximum of λn(H5+H′

5), that is 2 cos (4π/5).
If n = 2 or 4 then any decomposition of n for odd numbers is possible and hence

λn(P+P′) = −2. Similarly, n = 7 cannot be decomposed for odd numbers and hence
max
P∈P7

λ7(P + P′) = λ7(H7 + H′
7) = 2 cos (6π/7).

Lemma 2 If the derangement matrix P ∈ Pn is permutationally similar to Hn, then
the second maximal eigenvalue of P + P′, that is λ2(P + P′), is minimal over Pn.

Proof From (5), λ1(Hn +H′
n) = 2 has multiplicity 1. For arbitrary reducible P ∈ Pn

permutationally similar to diag(Hn1, . . . ,Hnu ), the largest eigenvalue λ1(P+P′) = 2
has multiplicity u. Thus, the matrix P ∈ Pn which minimizes λ2(P + P′) has to be
irreducible.

Similar results as in Lemmas 1 and 2 can be found in Filipiak et al. (2008).

4.1 E-optimal complete block designs for b = t− 2

Let define the following subclass of Bt,t−2,t :

B̃t,t−2,t = {d : Sd = 1t1
′
t − It − Pd , Pd ∈ Pt }.

Then, for every d ∈ B̃t,t−2,t the information matrix has the form

Cd = [(t − 2)(1 + a2) + 2a]It − β1t1
′
t + a(Pd + P′

d)

with β = 2a+ (t−2)(1−a)2

t , and β > 0 for every |a| < 1. Thus, to determine E-optimal
design over B̃t,t−2,t it is enough to find a design d∗ such that for any d ∈ B̃t,t−2,t

λt (Pd∗ + P′
d∗) ≥ λt (Pd + P′

d) if a > 0; (9)

λ2(Pd∗ + P′
d∗) ≤ λ2(Pd + P′

d) if a < 0. (10)

We prove the following theorem.

Theorem 2 If there exists design d∗ with Sd∗ = 1t1
′
t − It − Pd∗ such that Pd∗ is

permutationally similar to the matrix
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(i) Ht if t = 2, 7;
(ii) I2 ⊗ H2 or H4 if t = 4;
(iii) Im ⊗ H3 if t = 3m, m ∈ N;
(iv) diag

(
Ii ⊗ H3, I j ⊗ H5

)
if t = 5 or t ≥ 8 and t �= 3m, m ∈ N with t = 3i + 5 j

for some i ∈ N ∪ {0} and j ∈ N;

then d∗ is E-optimal under model (1)with AR(1,C) and a > 0 over the classRt,t−2,t .

Proof Let a > 0. We prove the thesis in three steps.
Step 1. Let d ∈ B̃t,t−2,t . We obtain the thesis by condition (9) and Lemma 1.
Step 2. Let d ∈ Bt,t−2,t\B̃t,t−2,t . We have to show that

λ2(Sd∗ + S′
d∗) ≤ λ2(Sd + S′

d). (11)

From nonnegative definiteness of Cd it is known that λ1(Sd + S′
d) = 2b and Sd + S′

d
has positive and negative eigenvalues. Observe, that one of the eigenvalues of Sd +
S′
d − 2b

t 1t1
′
t is equal to zero. For convenience wewill study the properties of thematrix

Gd = 2b1t1
′
t − t(Sd + S′

d), also with zero eigenvalue, for which condition (11) is
equivalent to

λt−1(Gd∗) ≥ λt−1(Gd). (12)

Note that λt−1(Gd∗) ≥ 0. Since the diagonal entries ofGd are equal to 2(t−2) and the
off-diagonal entries, gd,i j , are of the form 2(t − 2) + tξi j with ξi j ∈ {0, 1, . . . , t − 2},
we will consider several cases of Gd .

(a) Let ξi j ≤ 2 for every i �= j . Then, there exists a design d̃ ∈ B̃t,t−2,t such that
Sd + S′

d = S
d̃

+ S′
d̃
and the thesis follows from Lemma 1.

(b) Assume now that ξi j ∈ {0, 1, 2, 3} for every i �= j and there exist at least one i
and j such that ξi j = 3. We consider four cases separately.

(b1) Let t ≤ 7. Then there exists a submatrix of Gd of the form

M(1) = 2(t − 2)121
′
2 − t

(
0 3
3 0

)

such that det(M(1)) = 3t(t−8) < 0. From (7) λt (Gd) ≤ λ2(M(1)) < 0. Since
additionally Gd is singular, λt−1(Gd) ≤ 0 and (12) is satisfied trivially.

(b2) Let t ≥ 8 and there exists at least one i and j , i �= j , such that ξi j = 0. Then
we can find a submatrix of Gd of the form

M(2) = 2(t − 2)131
′
3 − t

⎛

⎝
0 0 ξi j
0 0 ξi ′ j ′
ξ j i ξ j ′i ′ 0

⎞

⎠

for which det(M(2)) = −2(ξi j − ξi ′ j ′)2t2(t − 2) ≤ 0 for every t ≥ 3 and
ξi j , ξi ′ j ′ ∈ {0, 1, 2, 3}. Thus, λ3(M(2)) < 0 (also in the case ξi j = ξi ′ j ′ , for
which additionally λ2(M(2)) = 0). From (7) λt (Gd) ≤ λ3(M(2)) < 0. Since
additionally one of the eigenvalue of Gd is equal to zero, λt−1(Gd) ≤ 0 and
(12) is satisfied trivially.
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(b3) Let t ≥ 8 and there exist exactly one i �= j such that ξi j = 3, and for every
i �= j we have ξi j �= 0. Then we can find one of the submatrices of Gd of the
form:

M(3) = 2(t − 2)131
′
3 − t

⎛

⎝
0 3 1
3 0 1
1 1 0

⎞

⎠ ,

M(4) = 2(t − 2)161
′
6 − t

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 3 1 1 2 2
3 0 2 2 1 1
1 2 0 2 2 2
1 2 2 0 2 2
2 1 2 2 0 2
2 1 2 2 2 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 2(t − 2)161
′
6 − tV(4),

M(5) = 2(t − 2)181
′
8 − t

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 3 2 2 2 1 1 1
3 0 1 1 1 2 2 2
2 1 0 1 2 2 2 2
2 1 1 0 2 2 2 2
2 1 2 2 0 1 2 2
1 2 2 2 1 0 2 2
1 2 2 2 2 2 0 1
1 2 2 2 2 2 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 2(t − 2)181
′
8 − tV(5).

It is easy to calculate that det(M(3)) = −12t2 < 0 for every t . From (7)
λt (Gd) ≤ λ3(M(3)) < 0. Since additionallyGd is singular, λt−1(Gd) ≤ 0 and
(12) is satisfied trivially.
In two remaining cases it can be calculated thatV(u), u = 4, 5, is singular with
λ2(V(u)) = 0. From (8) λ2(Sd + S′

d) ≥ λ2(V(u)) = 0 and condition (11) is
satisfied trivially.

(b4) Let t ≥ 8 and there exist at least two pairs of indices (i ′, j ′) �= (i ′′, j ′′), such
that ξi ′ j ′ = ξi ′′ j ′′ = 3, and for every i �= j we have ξi j �= 0. Then we can find
one of the submatrices of Gd of the form:

M(6) = 2(t − 2)141
′
4 − t

⎛

⎜
⎜
⎝

0 3 1 1
3 0 2 2
1 2 0 3
1 2 3 0

⎞

⎟
⎟
⎠ = 2(t − 2)141

′
4 − tV(6),

M(7) = 2(t − 2)141
′
4 − t

⎛

⎜
⎜
⎝

0 3 1 2
3 0 2 1
1 2 0 3
2 1 3 0

⎞

⎟
⎟
⎠ = 2(t − 2)141

′
4 − tV(7)

or M(3). Observe, that the case with two 3s in one row is not excluded here,
as more 3s bring some additional 1s. It can be calculated that λ2(V(u)) ≥ 0,
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u = 6, 7, and again from (8) λ2(Sd + S′
d) ≥ λ2(V(u)) > 0 which satisfies

condition (11) trivially. For M(3) the thesis follows as in (b3).

(c) Let there exists at least one i �= j such that ξi j = ξ ≥ 4. Then, we can find a
submatrix of Gd of the form

M(8) = 2(t − 2)121
′
2 − t

(
0 ξ

ξ 0

)

for which λ1(M(8)) = tξ > 0 and λ2(M(1)) = −8 − t(ξ − 4) < 0 for every t .
From (7) λt (Gd) ≤ λ2(M(8)) < 0. Since additionally one of the eigenvalue ofGd

is equal to zero, λt−1(Gd) ≤ 0 and (12) is satisfied trivially.

Step 3. Let d ∈ Rt,t−2,t \ Bt,t−2,t . In the previous steps we have shown that for
every db ∈ Bt,t−2,t inequality λt−1(Cd∗) ≥ λt−1(Cdb ) is satisfied. Observe, that if
d ∈ Rt,t−2,t \ Bt,t−2,t , there exists a design db such that Sd = Sdb . Moreover, from
the optimality of BBD it is known that Ndb

N′
db

= (t − 2)1t1
′
t ≤L NdN

′
d , and thus

Cd ≤L Cdb . Hence λt−1(Cd) ≤ λt−1(Cdb ) ≤ λt−1(Cd∗). ��

For a < 0 there are some limitations for the class of optimality. Let B(3)
t,t−2,t , t ≥ 7,

be the class of binary designs for which:

(i) there exists at least one pair of unordered treatments that meet as the nearest
neighbors three times,

(ii) every pair of unordered treatments appears as the nearest neighbors at most three
times.

It means, that for every d ∈ B(3)
t,t−2,t and i �= j , ξi j = sd,i j + sd, j i ∈ {0, 1, 2, 3} and

there exist at least one pair (i, j) such that ξi j = 3.

The following cases describe subclasses of B(3)
t,t−2,t :

– there exists exactly one pair (i, j) such that ξi j = 3 and at least one pair (i ′, j ′)
such that ξi ′ j ′ = 0.

– there exists at least one pair (i, j) such that ξi j = 3 and at least one pair (i ′, j ′)
such that ξi ′ j ′ = 0.

– for every i �= j , ξi j �= 0.

Let us denote byB(3,0)
t,t−2,t the class of designs fromB(3)

t,t−2,t for which there is exactly
one pair (i, j) such that ξi j = 3 and at least one pair (i ′, j ′) such that ξi ′ j ′ = 0. By

B(3,1)
t,t−2,t we denote B(3)

t,t−2,t \ B(3,0)
t,t−2,t .

Theorem 3 Let t ≥ 3. If if there exists design d∗ with Sd∗ permutationally similar to
1t1

′
t − It − Ht , then d∗ is E-optimal under model (1) with AR(1,C) and a < 0 over

the class

(i) Rt,t−2,t if t ≤ 6,
(ii) Rt,t−2,t \ B(3,1)

t,t−2,t if t ≥ 7.
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Proof Let a < 0. We prove the thesis in three steps.
Step 1. Let d ∈ B̃t,t−2,t . We obtain the thesis by condition (10) and Lemma 2.
Step 2. Let d ∈ Bt,t−2,t\B̃t,t−2,t . We have to show that

λt (Sd∗ + S′
d∗) ≥ λt (Sd + S′

d). (13)

Note that λt (Sd∗ + S′
d∗) ≥ −4. Since the diagonal entries of ξi i = 0 and ξi j ∈

{0, 1, . . . , t − 2}, we will consider several cases of Sd + S′
d .

(a) If the off-diagonal entries ξi j ≤ 2 for every i �= j , then there exists a design
d̃ ∈ B̃t,t−2,t such that Sd + S′

d = S
d̃

+ S′̃
d
and the thesis follows from Lemma 2.

(b) Assume that t ≤ 6 and ξi j ∈ {0, 1, 2, 3} for every i �= j and there exists at least
one i �= j such that ξi j = 3. Then we can find a submatrix of Sd +S′

d of the form

M(1) =
(
0 3
3 0

)

for which λ2(M(1)) = −3. From (8) we have λt (Sd + S′
d) ≤ λ2(M(1)) = −3 and

since λt (Sd∗ + S′
d∗) ≥ −3 for t ≤ 6 we obtain (13).

(c) Let t ≥ 7 and let d ∈ B(3,1)
t,t−2,t .

Assume that there is exactly one ξd,i ′ j ′ = 0, which is in the same row as 3, i.e.,
i ′ = i . Because of the fixed sums of rows and columns of Sd , it can be observed
that:

• (t − 4) off-diagonal entries of Sd + S′
d must be equal to 2, one entry is equal

to 0, one is equal to 1 and one is equal to 3 in the i th row;
• (t − 5) off-diagonal entries of Sd + S′

d must be equal to 2, three are equal to
1 and one is equal to 3 in the j th row;

• (t − 2) off-diagonal entries of Sd + S′
d must be equal to 2, and one is equal to

0 in the row j ′;
• (t − 3) off-diagonal entries of Sd + S′

d must be equal to 2 and two are equal
to 1 in the remaining rows.

Thus for every Sd + S′
d there exists a submatrix

M(2) =

⎛

⎜
⎜
⎝

0 3 0 2
3 0 2 1
0 2 0 2
2 1 2 0

⎞

⎟
⎟
⎠

for which λ4(M(2)) = −4.11. From (8) λt (Sd + S′
d) ≤ λ4(M(2)) < −4 ≤

λt (Sd∗ + S′
d∗).
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Assume now that there is exactly one ξd,i ′ j ′ = 0, which is in different row than 3,
i.e., i ′ �= i . Then, we can find a submatrix of Sd + S′

d permutationally similar to

M(3) =

⎛

⎜
⎜
⎝

0 0 2 2
0 0 2 2
2 2 0 3
2 2 3 0

⎞

⎟
⎟
⎠ .

Moreover, in the row i ′ the only possible off-diagonal entries different than 0 are
2s. Thus, one of the eigenvectors of Sd + S′

d is of the form (α11′
2 : α21′

t−2)
′ and

it corresponds to the – 4 egienvalue of Sd + S′
d . From (8) we obtain the thesis.

Let now assume that there exist at least two pairs of indices (i ′, j ′), (i ′′, j ′′) such
that ξi ′ j ′ = ξi ′′ j ′′ = 0. Observe that the only possible situation is i ′ �= i ′′ and
j ′ �= j ′′. Thus, there are one off-diagonal 0 in rows j ′, j ′′ with the remaining
elements off-diagonal entries are equal to 2. Hence, there exist a submatrix of
Sd + S′

d of the form

M(4) =

⎛

⎜
⎜
⎝

0 3 0 2
3 0 2 0
0 2 0 2
2 0 2 0

⎞

⎟
⎟
⎠

for which λ4(M(4)) = −4. From (8) we obtain the thesis.
(d) Let there exist at least one i , j such that ξi j ≥ 4. Then there exists a submatrix

M(2) =
(
0 ξi j
ξi j 0

)

for which λ2(M(3)) = −ξi j ≤ −4. By (8), λt (Sd + S′
d) ≤ λ2(M(2)) ≤ −4 and

(13) is satisfied.

Step 3. If d ∈ Rt,t−2,t \ Bt,t−2,t then the proof follows the same lines as in Theorem
2. ��

It is worth noting that B(3,1)
t,t−2,t is a class which can contain better design than d∗.

For example, if t = 7 then there exists design

d# =

⎛

⎜
⎜
⎜
⎜
⎝

1 2 3 4 5 6 7
1 2 4 3 7 5 6
1 3 5 7 2 6 4
1 3 6 7 5 2 4
1 3 2 4 7 6 5

⎞

⎟
⎟
⎟
⎟
⎠
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with blocks represented as rows, such that

Sd# + S′
d# =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 2 3 2 1 1 1
2 0 2 3 1 1 1
3 2 0 2 1 1 1
2 3 2 0 1 1 1
1 1 1 1 0 3 3
1 1 1 1 3 0 3
1 1 1 1 3 3 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and λ7(Sd# + S′
d#

) = −3. Observe, that in this case λ7(Sd∗ + S′
d∗) = −2 +

2 cos(6π/7) ≈ −3.8 and thus λ6(Cd# ) > λ6(Cd∗). Moreover, d# is E-optimal over
the class of allR7,5,7 because

– the highest λ7(Sd + S′
d) over d ∈ B̃7,5,7 is −3.8;

– if there exist at least one i , j , such that ξi j ≥ 3 then we can find a submatrix

Md =
(

0 ξi j
ξ j i 0

)

for which λ2(Md) = −ξi j ≤ −3;
– optimality over the class R7,5,7 follows directly from Theorem 3.

For t ≥ 8, if d ∈ B(3,1)
t,t−2,t there are a lot of possible forms of Sd + S′

d . We are

not aware of finding any general method for proving E-optimality of d∗ over B(3,1)
t,t−2,t

however we conjecture that d∗ is E-optimal over at least Rt,t−2,t .

Example 1 For t = 3, 5, 7, the designs satisfying conditions of Theorems 2 and 3
can be constructed from CNBDs by removing one block, since in these cases Sd∗ are
permutationally similar to 1t1

′
t − It − Ht . The E-optimal designs are respectively

d∗ = (
1 2 3

)
, d∗ =

⎛

⎝
1 2 3 4 5
1 3 5 2 4
1 4 2 5 3

⎞

⎠ , d∗ =

⎛

⎜
⎜
⎜
⎜
⎝

1 2 3 4 5 6 7
1 3 5 7 2 4 6
1 4 7 3 6 2 5
1 5 2 6 3 7 4
1 6 4 2 7 5 3

⎞

⎟
⎟
⎟
⎟
⎠

.

with blocks represented by rows.

It is worth noting that E-optimal designs presented in Theorem 3 are also E-optimal
under the one-sided interference model with uncorrelated observations (cf. Filipiak
et al. 2008) and thus, some of the construction methods of E-optimal designs can be
adopted.
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4.2 E-optimal complete block designs for b = t

Let define the following subclass of Bt,t,t :

B̂t,t,t = {d : Sd = 1t1
′
t − It + Pd , Pd ∈ Pt }.

For a design d ∈ B̂t,t,t ,

Cd = (t(1 + a2) + 2a)It − (1 + a2)1t1
′
t − a(Pd + P′

d)

Similarly to the previous section E-optimality condition can be expressed as

λ2(Pd∗ + P′
d∗) ≤ λ2(Pd + P′

d) if a > 0, (14)

λt (Pd∗ + P′
d∗) ≥ λt (Pd + P′

d) if a < 0. (15)

Inequalities (14) and (15) correspond respectively to inequalities (10) and (9) from
Sect. 4.1.

For simplicity of the proofs of the next theorems, for every d ∈ Bt,t,t let define
Qd = (qd,i j ) as

Qd = 21t1
′
t − (Sd + S′

d).

It is clear that all diagonal entries of Qd are equal to 2 and for every i �= j

qd,i j ∈ {2, 1, . . . , 2 − 2t}.

Moreover, Qd1t = 0 · 1t . Since the elements of Sd + S′
d are denoted by ξi j in Sect. 2,

it is clear that qd,i j = 2 − ξi j .

If a > 0 there are some limitations for the class of optimality. For t ≥ 7 let B(1)
t,t,t

be the class of binary designs such that

(i) there exists at least one pair of unordered treatments that meet as the nearest
neighbors once,

(ii) every pair of unordered treatments appears as the nearest neighbors at least once
and at most three times.

It means, that for every d ∈ B(1)
t,t,t and i �= j , ξi j = sd,i j + sd, j i ∈ {1, 2, 3} and there

exists at least one pair (i, j) such that ξi j = 1.

Theorem 4 If there exists design d∗ with Sd∗ permutationally similar to 1t1′
t −It +Ht ,

then d∗ is E-optimal under model (1) with AR(1,C) and a > 0 over the class

(i) Rt,t,t if t ≤ 6,
(ii) Rt,t,t \ B(1)

t,t,t if t ≥ 7.

Proof Let a > 0. We prove the thesis in three steps.
Step 1. Let d ∈ B̂t,t,t . The thesis follows from (14) and Lemma 2.
Step 2. Let d ∈ Bt,t,t \ B̂t,t,t . To show (11) it is enough to prove

λt−1(Qd) ≤ λt−1(Qd∗) .
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Note that λt−1(Qd∗) ≥ 0. We consider several cases of Qd .

(a) Let ξi j ∈ {2, 3, 4} for every i �= j . Thus, there exists d̂ ∈ B̂t,t,t such that Sd+S′
d =

S
d̂

+ S′
d̂
and the thesis follows from Lemma 2.

(b) Let ξi j ∈ {0, 1, 2, 3, 4} for every i �= j . Assume that there exists at least one pair
(i, j) such that ξi j = 0. Then there exists a 2 × 2 zero submatrix of Sd + S′

d , for
which trivially the eigenvalues are equal to 0. From (8) we obtain the thesis.

(c) Assume now that ξi j ∈ {1, 2, 3, 4} for every i �= j and there exists at least one
pair (i ′, j ′) such that ξi ′ j ′ = 1. We cosider two cases separetely.

(c1) Let t ≤ 6 and let ξi j ∈ {1, 2, 3} for every i, j = 1, . . . , t . Since the rows and
columns ofQd sum to zero and the diagonal entries are equal to 2, there exists
a submatrix of Qd of the form

M(1) = 2131
′
3 −

⎛

⎝
0 1 3
1 0 3
3 3 0

⎞

⎠ .

From (7) we have λt−1(Qd) ≤ λ2(M(1)) = 1 ≤ 2
(
1 − cos

( 2π
t

)) =
λt−1(Qd∗).

(c2) Let t ≥ 3 and d ∈ Bt,t,t \B(1)
t,t,t . It means that ξi j ∈ {1, 2, 3, 4} and there exists

at least one pair (i, j) such that ξi j = 4. Then we can find a submatrix of Qd

of the form

M(2) = 2141
′
4 −

⎛

⎜
⎜
⎝

0 1 4 ξ1
1 0 ξ2 ξ3
4 ξ2 0 ξ4
ξ1 ξ3 ξ4 0

⎞

⎟
⎟
⎠ .

with ξm ∈ {1, 2, 3, 4}, m = 1, 2, 3, 4. It is easy to verify that det(M(2)) < 0
for every ξm . It implies that there exists at least one negative eigenvalue of
M(2) (and from (7) also ofQd ). Since one of the eigenvalues ofQd is zero we
obtain that λt−1(Qd) ≤ 0 ≤ λt−1(Q∗

d).

(d) Let there exist at least one pair (i, j) such that ξi j ≥ 5.Then there exists a submatrix

M(3) = 2121
′
2 −

(
0 ξi j

ξ j i 0

)

.

Since det(M(3)) < 0 the thesis is proved by the same lines as in (c2).

Step 3. If d ∈ Rt,t,t \ Bt,t,t then the proof follows the same lines as in Theorem 2. ��
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It is worth noting that B(1)
t,t,t is a class which can contain better design than d

∗. For
example, if t = 7 then there exists design (with blocks represented as rows)

d# =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 2 3 4 5 6 7
1 5 2 6 3 7 4
1 6 4 7 2 5 3
1 7 3 5 2 4 6
1 5 4 6 3 2 7
1 4 3 5 7 2 6
1 2 6 3 7 4 5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, with Sd# + S′
d# =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 2 1 2 3 3 3
2 0 2 1 3 3 3
1 2 0 2 3 3 3
2 1 2 0 3 3 3
3 3 3 3 0 1 1
3 3 3 3 1 0 1
3 3 3 3 1 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and λ2(Sd# + S′
d#

) = −1 < λ2(Sd∗ + S′
d∗) = −0.75. Thus λ6(Cd# ) > λ6(Cd∗).

Moreover, d# is E-optimal over the class of all R7,7,7 because

– the smallest λ2(Sd + S′
d) over d ∈ B̂7,5,7 is −0.75;

– if ξi j ∈ {1, 2, 3} and there exists at least one pair (i, j), such that ξi j = 1. Then
we can find submatrix 121

′
2 − I2 of Sd + S′

d for which λ2(121
′
2 − I2) = −1. By

(8) we obtain λ2(Sd +S′
d) ≥ −1 = λ2(Sd# +S′

d#
) and finally λ6(Cd) ≤ λ6(Cd# );

– optimality over the class R7,7,7 follows directly from Theorem 4.

For t ≥ 8, if d ∈ B(1)
t,t,t there are a lot of possible forms of Sd +S′

d . We are not aware

of finding any general method for proving E-optimality of d∗ over B(1)
t,t,t however we

conjecture that d∗ is E-optimal over at least Rt,t,t .

Theorem 5 If there exists design d∗ with Sd∗ = 1t1
′
t − It + Pd∗ , such that Pd∗ is

permutationally similar to the matrix

(i) Ht if t = 2, 7;
(ii) I2 ⊗ H2 or H4 if t = 4;
(iii) Im ⊗ H3 if t = 3m, m ∈ N;
(iv) diag

(
Ii ⊗ H3, I j ⊗ H5

)
if t = 5 or t ≥ 8 and t �= 3m, m ∈ N with t = 3i + 5 j

for some i ∈ N ∪ {0} and j ∈ N;

then d∗ is E-optimal under model 1 with AR(1,C) and a < 0 over the classRt,t,t .

Proof Let a < 0. We prove the thesis in three steps.
Step 1. Let d ∈ B̂t,t,t . The thesis follows from (15) and Lemma 1
Step 2. Let d ∈ Bt,t,t \ B̂t,t,t . To show (13) it is enough to prove

λ1(Qd∗) ≤ λ1(Qd) (16)

Note that λ1(Qd∗) ≤ 4. We consider several cases of Qd .

(a) Let ξi j ∈ {2, 3} for every i �= j . Thus, there exists d̂ ∈ B̂t,t,t such that Sd + S′
d =

S
d̂

+ S′
d̂
and the thesis follows from Lemma 1.

(b) Let there exists at least one pair i �= j such that ξi j ∈ {0, 4, 5, . . . , t}. Then we
can find a submatrix

M(1) = 2121
′
2 −

(
0 ξi j

ξi j 0

)
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for which λ1(M(1)) ≥ 4. By (8) we have λ1(Qd) ≥ λ1(M(1)) ≥ 4 ≥ λ1(Qd∗).
(c) Assume now that ξi j ∈ {1, 2, 3} for every i �= j and there exists at least one pair

(i, j) such that ξi j = 1. Because of the fixed sums of rows and columns of Sd , it
can be observed that:

• if there exists exactly one 1 in a rowofSd+S′
d then there are (t−5) off-diagonal

entries of Sd + S′
d equal to 2 and three entries equal to 3 in this row;

• if there exist more than one 1 in a row of Sd + S′
d then there are more than

three entries equal to 3 in this row.

Due to these observations we consider two cases.

(c1) If there exists exactly one pair of i �= j such that ξi j = 1, then we find one of
the following submatrices of Qd :

M(2) = 2131
′
3 −

⎛

⎝
0 1 3
1 0 3
3 3 0

⎞

⎠ ,

M(3) = 2151
′
5 −

⎛

⎜
⎜
⎜
⎜
⎝

0 1 2 2 3
1 0 3 2 2
2 3 0 3 2
2 2 3 0 3
3 2 2 3 0

⎞

⎟
⎟
⎟
⎟
⎠

,

M(4) = 2181
′
8 −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 3 3 3 2 2 2
1 0 2 2 2 3 3 3
3 2 0 3 2 2 2 2
3 2 3 0 2 2 2 2
3 2 2 2 0 3 2 2
2 3 2 2 3 0 2 2
2 3 2 2 2 2 0 3
2 3 2 2 2 2 3 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

It can be calculated that λ1(M(m)) = 4 for m = 2, 3, 4. Thus by (8) inequality
(16) is satisfied.

(c2) If there exists more than one pair of i �= j such that ξi j = 1, then we can find
one of the submatrices of (c1) or:

M(5) = 2141
′
4 −

⎛

⎜
⎜
⎝

0 1 3 2
1 0 2 3
3 2 0 1
2 3 1 0

⎞

⎟
⎟
⎠ ,

M(6) = 2141
′
4 −

⎛

⎜
⎜
⎝

0 1 3 3
1 0 2 2
3 2 0 1
3 2 1 0

⎞

⎟
⎟
⎠ ,
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M(7) = 2161
′
6 −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 3 3 2 2
1 0 2 2 3 3
3 2 0 2 2 2
3 2 2 0 2 2
2 3 2 2 0 2
2 3 2 2 2 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

It can be calculated that λ1(M(m)) ≥ 4 for m = 5, 6, 7. Thus by (8) inequality
(16) is satisfied. ��

It is worth noting that E-optimal designs presented in Theorem 5 are also E-optimal
under the one-sided interference model with uncorrelated observations [cf. Filipiak
et al. (2008)] and thus, some of the construction methods of E-optimal designs can
be adopted from Filipiak et al. (2008) or Filipiak and Różański (2005). Moreover, for
a > 0 E-optimal designs can be constructed from CNBDs by repeating one block.

Example 2 For t = 6, the designs satisfying conditions of Theorem 4 is d∗
1 , whilst for

arbitrary a and t = 4 an example of E-optimal design is d∗
2 , with

d∗
1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 2 3 4 5 6
1 2 4 6 5 3
1 3 2 5 6 4
1 4 5 2 6 3
1 5 4 3 6 2
1 6 4 2 3 5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, d∗
2 =

⎛

⎜
⎜
⎝

1 4 3 2
1 2 3 4
1 2 4 3
1 3 4 2

⎞

⎟
⎟
⎠

and blocks represented by rows.

5 Concluding remarks

In the paper universal optimality of some circular NdNBD designs over the class of
circular designs with arbitrary block size under AR(1,C) and a > 0 is shown. For
a < 0 universal optimality of these designs over the class of circular designs with
no treatment preceded by itself is proven. The only limitation on design parameters
in this case is the existence of BBD design with completely symmetric nondirected
neighboring matrix.

If a circular universally optimal BBD cannot exist, E-optimality is considered in
the class of complete block designs. If the number of blocks is smaller by two than
the number of treatments and the correlation parameter a is positive as well as if the
number of blocks is equal to the number of treatments and the correlation parameter
is negative, the left-neighboring matrix of an E-optimal design over the class of all
equireplicated designs without self-neighbors is given. In the remaining cases the
class of optimality is more limited, however, we conjecture that the designs with left-
neighboring matrices presented in Theorems 3 and 4 are still optimal over at least the
class of equireplicated designs with no treatment preceded by itself.
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In all the cases at least one example of E-optimal design is given. To construct such
designs one can regard the left-neighboringmatrix as an adjacencymatrix of a directed
graph and use its decomposition into Hamiltonian cycles. Such a decomposition can
be done for example with the use of FindHamiltonianCycles procedure available
inMathematica 9.0 and later versions. The problem however is that looking for such a
decomposition is extremely time-consuming even for relatively small number of treat-
ments (vertices in graphs). Therefore some combinatorial methods of construction of
E-optimal designs will be subject of the future research. It is especially interesting
because optimal designs in the standard block effects model with observations corre-
lated with respect to circular autoregression can be also shown to be optimal in more
general models, e.g. with carry-over effects as additional nuisance parameters.
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