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Abstract
We consider designs for cancer trials which allow each medical centre to treat only
a limited number of cancer types with only a limited number of drugs. We specify
desirable properties of these designs, and prove some consequences. Then we give
several different constructions. Finally we generalize this to three or more factors,
such as biomarkers.
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1 First design problem

1.1 The problem

This problem was posed by Valerii Fedorov at the workshop on Design and Analysis
of Experiments in Healthcare held at the Isaac Newton Institute for Mathematical
Sciences at Cambridge, UK in July 2015. The context is basket trials, where several
different drugs are tested on several different diseases in a single protocol which
involves many medical centres: see Derhaschung et al. (2016) and Woodcock and
LaVange (2017). The combinatorial properties listed below have been proposed by
Fedorov and Leonov (2019) as potentially giving optimal designs, which may give a
benchmark for designs which are achievable in practice.

A trial is being designed to compare several drugs for their effects on several
different types of cancer. In order to keep the protocol simple for each medical centre
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406 R. A. Bailey, P. J. Cameron

involved, it is proposed to limit each medical centre to only a few of the cancer types
and only a few of the drugs. For each cancer type at that medical centre, each patient
will be allocated to one of the drugs at that medical centre, the aim being that the
numbers of such patients on each drug are nearly equal.

Let v1 be the number of cancer types, v2 the number of drugs, and b the number
of medical centres. The properties listed below are desirable. The first two are to keep
the protocol simple. Fedorov and Leonov (2019) propose several statistical models
for the response of each patient. The simplest is additive in the effects of medical
centre, cancer type and drug. It is not known a priori how many suitable patients will
enrol at each medical centre. If there are the same number at each medical centre then
conditions (c)–(e) give a design that is optimal in the sense ofminimizing the variances
of the estimators of parameters of interest: see Sect. 1.4.

(a) all medical centres involve the same number, say k1, of cancer types, where k1 <

v1;
(b) all medical centres use the same number, say k2, of drugs, where k2 < v2;
(c) each pair of distinct cancer types are involved together at the same non-zero num-

ber, say λ11, of medical centres;
(d) each pair of distinct drugs are used together at the same non-zero number, say λ22,

of medical centres;
(e) each drug is used on each type of cancer at the same number, say λ12, of medical

centres.

The inequalities in conditions (a) and (b) force the medical centres to be incomplete
both for cancer types and for drugs. Insisting that the parameters in conditions (c) and
(d) are non-zero is necessary to prevent the confounding of either cancer types or drugs
with medical centres.

For brevity, from now on the medical centres will be referred to as blocks. Figure 1
shows such a design for six cancer types and five drugs using 10 blocks; it has k1 = 3
and k2 = 2.

Conditions (a) and (c) specify that the design for cancer types is a balanced
incomplete-block design, also known as a 2-design, or, more specifically, a 2-

Fig. 1 Design for 6 cancer types and 5 drugs, using 10 blocks; each block has 3 cancer types and 2 drugs
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Multi-part balanced incomplete-block designs 407

(v1, k1, λ11) design. Likewise, conditions (b) and (d) specify that the design for drugs
is a 2-design. We call these the C-design and the D-design respectively.

We shall call a design satisfying conditions (a)–(e) a 2-part 2-design or 2-part
balanced incomplete-block design. These are not the same as the bipartite designs
defined by Hoffman and Liatti (1995).

1.2 Previous work

In Sect. 2 we concentrate on designs with only two different factors (cancer types and
drugs), before generalizing to three or more factors in Sect. 3. This is partly to help
the reader to become familiar with the ideas, and partly because this case seems likely
to be of practical importance in the clinical context described.

The more general case has already been considered by Sitter (1993), Mukerjee
(1998) and Hedayat et al. (1999, Sect. 10.8). Because conditions (a)–(d) specify bal-
anced incomplete-block designs and condition (e) is reminiscent of the definition
of orthogonal multi-array given by Brickell (1984), Sitter (1993) called these designs
balanced orthogonal multi-arrays. Brickell’s original definition was essentially a gen-
eralization of orthogonal arrays of strength two and minimal size, so it included the
conditions that b is a square and λ12 = 1. Sitter (1993) acknowledged that he was
removing those conditions.

However, the original definition of orthogonal multi-array continues to be in use
in many areas. They give an alternative definition of semi-Latin squares: see Bailey
(1992) and Soicher (1999, 2013). Dually, they are used in factorial designs: see Bailey
(2011). Phillips and Wallis (1996) used them in the study of tournaments. They are
used in cryptography: see, for example, Anthony et al. (1990) andMartin et al. (1992).
Recently, Li et al. (2015) have generalized them to strength t , so that b is a t-th power
of an integer. This generalization seems to bewithin the spirit of the original definition,
whereas Sitter’s does not.

Thus we think that “2-part 2-design” (or, more generally, a multi-part 2-design) is
a more suitable name.

Sitter (1993) also allowed the block sizewithin each factor to vary.Mukerjee (1998)
called the balanced orthogonal multi-arrays proper when this is not allowed. He also
restricted attention to the case where ki < vi , unlike Sitter (1993). Both allowed λi i

to be zero, which permits confounding: in Table 1 of Mukerjee (1998) one factor has
its levels confounded with blocks.

Mukerjee (1998) gave two general constructions for designs of this type. We shall
comment on the relationship of these to our constructions at the relevant places.

1.3 Representing the designs

How should we represent a design of this type? Each block has all combinations of k1
cancer types with k2 drugs, so a full display would show bk1k2 items. For example, in
the design in Fig. 1, Block 1 contains the ordered pairs
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Fig. 2 Dual representation of the
design in Fig. 1: the rows and
columns of the rectangle are
labelled by cancer types and
drugs respectively, and each
entry in each cell is the name of
a block

Fig. 3 Concise representation of
the design in Fig. 1

(C1,D1), (C1,D5), (C2,D1), (C2,D5), (C3,D1), (C3,D5).

It might be clearer to show these in rectangular form:

(C1,D1) (C1,D5)
(C2,D1) (C2,D5)
(C3,D1) (C3,D5)

The people running the clinical trial need this full representation.
A dual way to represent the design is to use a v1 × v2 rectangle with λ12 entries

per cell. Equation (3) below shows that this contains the same number of items as the
full representation. The rows are labelled by the cancer types, and the columns by the
drugs. The name of each block is shown in each cell (i, j) for which the combination
of cancer type i and drug j occurs in that block. Figure 2 shows the design in Fig. 1
in this format. This dual representation does not extend easily to the generalization of
the problem in Sects. 3–4.

The most concise way to represent the design is simply to list, for each block, the
cancer types and drugs allocated to it. This list has b(k1 + k2) items. This represen-
tation was used by Sitter (1993) and Mukerjee (1998). Figure 3 gives the concise
representation of the design in Fig. 1.

We shall use the concise representation for the remainder of this paper. However,
it can be misinterpreted when removed from the practical context. For example, the
reader might think that Block 1 in Fig. 3 contains five treatments, those in the union of
the sets {C1,C2,C3} and {D1,D5}, rather than the six treatment combinations in the
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Multi-part balanced incomplete-block designs 409

cartesian product of these sets. This misinterpretation gives a block design for v1 + v2
treatments in b blocks of size k1 + k2, which we call the zipped form of the original
design.

Figure 1 avoids this problem, but at the cost of repeating the information about the
drugs in each block. This format contains bk1k2 items, as many as the full represen-
tation, but it seems easier to read.

In the literature about block designs, the incidence matrix has (i, j)-entry equal
to the number of times that treatment i occurs in block j : see, for example, John
and Williams (1995); Caliński and Kageyama (2000); Bailey and Cameron (2009).
Let N1 be the v1 × b incidence matrix of cancer types in blocks in the zipped form
of the design. The (i, j)-entry is 1 if cancer type i occurs in block j ; otherwise, it
is 0. Let N2 be the analogous v2 × b incidence matrix for drugs in blocks. Then the
incidence matrices for the full design are k2N1 and k1N2 respectively, not allowing
for the unknown number of times that each combination will eventually be used in
any block.

1.4 Comparison with other designs

At first sight, the design in Fig. 1 appears to be a block design for two treatment factors
C and D. However, there are important differences between this and previous designs.
In our application, the medical centre represented by Block 1 will accept into the trial
only patients with cancer types 1, 2 or 3. It has no control in advance over how many
such patients will present themselves. For each of these three cancer types, it will
randomize approximately equal numbers of patients to drugs 1 and 5. In the original
proposal, the listed drugs include placebo. In a later variants, placebo is not listed, and
patients should be randomized approximately equally to drugs 1 and 5 and placebo,
or approximately one quarter each to placebo, drug 1, drug 5 and their combination.

Sitter (1993) introduced his designs for use in sampling. In designed experiments,
Mukerjee (1998) envisaged a completely different sort of application from the one
we describe here. In that, each block represents a single observational unit. For each
factor, subsets of the levels are applied, rather than single levels. For example, a group
of k1 people might be needed, all playing similar roles, or a hybrid variety of wheat
might be bred from k2 pure lines. See also Bailey (1992). In this context, it is not
problematic to have λi i = 0 (so that ki = 1) for either i = 1 or i = 2.

In classical factorial designs with blocks of size k, fromYates (1933), Fisher (1935,
1942) and Bose (1947) onwards, combinations of factor levels do not occur more
than once in any block: thus k1 = k2 = k. Moreover, the subsets of combinations
allocated to blocks are chosen depending on various assumptions about main effects
and interactions. For example, if v1 = v2 = 3 and there are six blocks of three
plots each then the design in Fig. 4 permits estimation of both main effects with full
efficiency and all interaction contrasts with efficiency factor 1/2.

The dual form of this design is shown in Fig. 5. The positions of the block names
show clearly how the block design was constructed from a pair of mutually orthogonal
Latin squares. However, unlike in Fig. 2, no block name occurs more than once in any
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Fig. 4 Usual representation of a
classical factorial design for two
3-level treatment factors in 6
blocks of size 3

Fig. 5 Dual representation of the
factorial design in Fig. 4

Fig. 6 Block design for two
non-interacting sets of
treatments, with v1 = 6, v2 = 5,
b = 10 and k = 3

Fig. 7 Dual representation of the
factorial design in Fig. 6

row or column. Consequently, the occurrences of each block name do not have the
rectangular layout that they do in Fig. 2.

Later in the twentieth century there was much literature on incomplete-block
designs for two non-interacting treatment factors with each treatment combination
occurring once, so that v1v2 = bk and k1 = k2 = k, where k is the block size. For
example, Preece (1966b) gave the design in Fig. 6. The dual form is in Fig. 7.

Many authors required the block design for each treatment factor separately to be
balanced. This is the analogue of conditions (a)–(d) when k1 = k2. From Agrawal
(1966) and Preece (1966a) onwards, another condition was often imposed, eventually
called adjusted orthogonality by Eccleston and Russell (1977): the product Ñ1 Ñ�

2
should have all its entries equal, where Ñ1 and Ñ2 are the v1 × b and v2 × b incidence
matrices for the first and second treatment factors, respectively, in blocks. Although
this is a consequence of condition (e), it is not equivalent to it. The duals of designs
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satisfying these conditions were called triple arrays by McSorley et al. (2005). The
design in Fig. 7 is a triple array.

The statistical relevance of adjusted orthogonality is discussed in Bailey (2017,
Sects. 7–8). If all medical centres recruit the same number of patients then, under
condition (b) and the first version of the proposal, condition (d) gives a design which
is optimal for the estimation of drug effects in the model which excludes the effects
of cancer types. These estimates are obtained by adjusting for block effects. Adjusted
orthogonality implies that, under the additive model for all three effects, once the
responses have been adjusted for block effects then drugs are orthogonal to cancer
types and so no further adjustment is needed. Hence conditions (d) and (e) give a
design optimal for the estimation of drug effects under condition (b). Likewise, con-
ditions (c) and (e) give a design optimal for the estimation of cancer effects under
condtion (a).

In spite of the similar conditions that they satisfy, triple arrays are not special cases
of 2-part 2-designs, nor vice versa. In a triple array, no block name occurs more than
once in any row or column. In the dual form of a 2-part 2-design, any block name
that occurs in a given row must occur k2 times in that row. A consequence of the
“non-zero” part of condition (d) is that k2 > 1.

Apart from the designs given by Preece et al. (2005), infinite families of triple
arrays have proved frustratingly hard to find: see Bailey (2017, Sect. 13). By contrast,
in Sects. 2 and 4 of this paper we give many simple constructions of 2-part 2-designs
and their generalizations.

1.5 Conditions on parameters

An ordinary block design is said to be α-resolved if its set of blocks can be partitioned
into classes in such a way that each treatment occurs α times in each class. This
terminology does not extend easily to 2-part 2-designs, because cancer types may
occur in different numbers of blocks from drugs. We propose calling a 2-part block
design c-partitionable if the set of blocks can be grouped into c classes of b/c blocks
each, in such a way that every cancer type occurs the same number of times in each
class and every drug occurs the same number of times in each class. It is convenient
to extend this terminology to ordinary block designs: such a design with replication r
is α-resolved if and only if it is c-partitionable, where αc = r .

Theorem 1 If there is a 2-part 2-design with the parameters given in conditions (a)–
(e), then each cancer type occurs in r1 blocks and each drug occurs in r2 blocks,
where

r1 = bk1/v1, r2 = bk2/v2. (1)

Moreover, the following equations are satisfied:

v1(v1 − 1)λ11 = bk1(k1 − 1), v2(v2 − 1)λ22 = bk2(k2 − 1), (2)
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and

bk1k2 = v1v2λ12, (3)

as well as the inequality

b ≥ v1 + v2 − 1. (4)

If the design is c-partitionable then

b ≥ v1 + v2 + c − 2. (5)

Proof The first two statements are the usual conditions for the 2-designs on cancer
types and drugs respectively, while Eq. (3) equates two different ways of counting the
number of choices of a cancer type, a drug, and a block containing both.

For inequality (5), let N = (N�
1 , N�

2 , N�
0 )�, where N1 and N2 are the incidence

matrices defined in Sect. 1.3 and N�
0 is the b×c incidence matrix of blocks in classes.

Then

N N� =
⎡
⎣

(r1 − λ11)I + λ11 J λ12 J (r1/c)J
λ12 J (r2 − λ22)I + λ22 J (r2/c)J

(r1/c)J (r2/c)J (b/c)I

⎤
⎦ ,

where I and J are identity and all-1 matrices of the appropriate sizes.
We claim that N N� has rank v1 + v2 + c − 2, from which inequality (5) follows.

First, let w1, w2 and w3 be column vectors of lengths v1, v2, c respectively whose
entries sum to 0. Then

N N�
⎛
⎝
w1
w2
w3

⎞
⎠ =

⎛
⎝

(r1 − λ11)w1
(r2 − λ22)w2

(b/c)w3

⎞
⎠ . (6)

Because the blocks are incomplete, λ11 < r1 and λ22 < r2, and so the restriction
of this matrix to the space of such vectors, which has dimension v1 + v2 + c − 3,
is invertible. The orthogonal complement of this space consists of all vectors of the
form (xj�1 , yj�2 , zj�3 )�, where j1, j2 and j3 are all-1 vectors of lengths v1, v2 and c
respectively. The action of N N� on this space is obtained by replacing the block
matrices by their row sums: using the results in (1)–(3), this simplifies to

⎡
⎣

r1k1 r1k2 r1
r2k1 r2k2 r2

(b/c)k1 (b/c)k2 (b/c)

⎤
⎦ ,

which has rank 1. So the claim (5) is proved.
The first part of the theorem shows that every 2-part 2-design is 1-partitionable.

Thus inequality (4) is a special case of inequality (5). ��
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Remark 1 Mukerjee (1998) remarked on the integrality conditions (1)–(3) without
stating them explicitly, and proved inequality (4).

Remark 2 Inequality (4) can be regarded as a generalization of both Fisher’s andBose’s
inequalities: see Cameron and van Lint (1991, Chap. 1) and Bailey (2008, Chap. 11).
For Fisher’s inequality, take the C-design to be any 2-design with v = v1, and take a
single drug which occurs in all blocks; we have λ12 = r1 and λ22 = 0: although our
conditions thatλ22 > 0 and k2 < v2 fail for theD-design, the proof still works, because
the only vectorw2 in Eq. (6) is the zero vector: thus the proof gives b ≥ v +1−1. For
Bose’s inequality, take the C-design to be any resolvable 2-design with v = v1 and
replication r = r1, and the drugs to be labelled by the resolution classes of the design,
with a drug in every block in the corresponding resolution class, so that v2 = r . We
have λ12 = 1 and λ22 = 0. Again part of condition (d) fails, but the proof works,
giving b ≥ v+r −1. Inequality (5) seems to be the true analogue of Bose’s inequality
for 2-part 2-designs.

Remark 3 Although neither triple arrays nor 2-part 2-designs are special cases of the
other, they both satisfy inequality (4). Proofs for triple arrays are in Bagchi (1998),
Bailey (2017) and McSorley et al. (2005), and the proof that we have given here also
works for triple arrays.

2 Constructions of 2-part 2-designs

In this section, we give several constructions. In order to identify when two different
constructions give designs which are essentially the same, we say that two 2-part
2-designs are isomorphic to each other if one can be obtained from the other by
relabelling some of blocks, cancer types and drugs. Weak isomorphism generalizes
this by also allowing the roles of cancer types and drugs to be interchanged.

Given two or more non-isomorphic designs for the same parameters, there may be
practical reasons for preferring one over the rest.

Since interchanging roles does not affect conditions (a)–(e), fromnowonweusually
adopt the convention that

v1 ≥ v2. (7)

Given a 2-part 2-design, the procedure ofC-swap creates a new2-part 2-design. This
simply involves replacing the set of cancer types in each blockwith the complementary
set. This changes the parameters k1, λ11 and λ12 to v1−k1, b−2r1+λ11 and r2−λ12,
leaving b, v1, v2, k2 and λ22 unchanged. The new design fulfills all the conditions so
long as v1 − k1 ≥ 2. The combination of a C-swap and the analogous D-swap has the
effect of replacing each block by its complement (in the zipped form).

Thus, in our search for design constructions, we may assume that

for i = 1 and i = 2, either ki ≤ vi/2 or ki = vi − 1. (8)

All of our tables are limited to parameter sets which satisfy conditions (7) and (8).
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Table 1 Parameter sets for the
designs with the least number of
blocks that can be made by
Construction 1: v1 is the number
of cancer types, v2 is the number
of drugs, and b is the number of
blocks, each of which has k1
cancer types and k2 drugs

b v1 v2 k1 k2

9 3 3 2 2

12 4 3 3 2

15 5 3 4 2

16 4 4 3 3

18 4 3 2 2

18 6 3 5 2

20 5 4 4 3

21 7 3 3 2

21 7 3 6 2

24 4 4 3 2

24 6 4 5 3

24 8 3 7 2

25 5 5 4 4

27 9 3 8 2

28 7 4 3 3

28 7 4 6 3

30 5 3 2 2

30 5 4 4 2

30 6 3 3 2

30 6 5 5 4

32 8 4 7 3

33 11 3 5 2

33 11 3 10 2

35 7 5 3 4

35 7 5 6 4

Construction 1 (Cartesian products) One obvious method of construction is the carte-
sian product. This starts with two balanced incomplete-block designs, one for v1
treatments in b1 blocks of size k1, the other for v2 treatments in b2 blocks of size k2.
Form all b1b2 combinations of a block of each sort. For each combination, form the
cartesian product of their subsets of treatments.

This will usually result in rather large values of b. For example, when v1 = 6,
k1 = 3, v2 = 5 and k2 = 2 then the smallest possible values of b1 and b2 are both 10,
so this construction gives a design with 100 blocks, unlike the design with 10 blocks
in Fig. 1.

Table 1 shows the parameters of the designs with the least number of blocks which
can be constructed by this method with v1 ≥ v2, using the table of 2-designs in
Appendix I of Hall (1986); note that design 13 in that table should have k = 4.

Construction 2 (Subcartesian products) If k2 divides v2 then theremay exist a resolved
2-designΔ2 for v2 drugs in b2 blocks of size k2 with r resolution classes. Suppose that
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Δ1 is a 2-design for v1 cancer types in b1 blocks of size k1, where b1 is a multiple of r .
Now we can achieve a 2-part 2-design without taking the full product. Partition the
blocks of Δ1 into r classes of size b1/r in any way at all, and match these classes to
the resolution classes of Δ2 in any way. For each matched pair, construct the cartesian
product design. Putting these products together gives a design of the required type
with b1b2/r blocks, considerably fewer than the b1b2 blocks in the entire product of
Δ1 and Δ2.

More generally, if the design Δ2 is c-partitionable and c divides b1 then replace the
resolution classes in this construction by the c classes of blocks. This gives a 2-part
2-design with b1b2/c blocks. Putting c = 1 gives Construction 1 as a special case of
this.

Figures 8 and 9 show two possibilities when v1 = v2 = 4, k1 = k2 = 2 and r = 3.

Fig. 8 Design for 4 cancer types
and 4 drugs, using 12 blocks,
each with 2 cancer types and 2
drugs. This can be made by
Construction 2 and by
Construction 3

Fig. 9 Design for 4 cancer types
and 4 drugs, using 12 blocks,
each with 2 cancer types and 2
drugs. This can be made by
Construction 2 but not by
Construction 3
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Table 2 shows some parameter sets for designs that can be made by Construction 2,
possibly after an interchange or a swap, with ki ≤ 10 for i = 1 and i = 2. See the
database in DesignTheory.org (2012) for the resolved designs used.

There are two special cases. When b1 = r then we simply match the blocks of Δ1
to the resolution classes of Δ2. When v1 = 3, k1 = 2, v2 = 4, k2 = 2 and r = 3, this
gives the design in Fig. 10. When v1 = v2 = 6, k1 = k2 = 3 and r = 10, this gives
the design in Fig. 11. When v1 = 7, k1 = 3, v2 = 15, k2 = 3 and r = 7, this gives a
2-part 2-design with b = 35, r1 = 15, r2 = 7, λ11 = 5, λ22 = 1 and λ12 = 3.

On the other hand, if Δ1 is also resolved with replication r then we may match the
resolution classes of the two designs. For example,when v1 = v2 = 4 and k1 = k2 = 2
then we may take r = 3 and b1 = b2 = 6 to get the design in Fig. 8. This is not even
weakly isomorphic to the design in Fig. 9, where the pairs of blocks from Δ1 do not
form resolution classes. When v1/k1 = v2/k2 = 2 and b1 = b2, Construction 3 also
gives designs with these parameters.

At first sight, the two general constructions given by Mukerjee (1998) are special
cases of this. His first construction needs both Δ1 and Δ2 to be c-partitionable, and
matches the classes. This includes the cartesian product when c = 1, and when c = 3
it gives the design in Fig. 8 but not the one in Fig. 9. His second construction uses a
c-partitionable design Δ2 only when b1 = c. However, if c divides b1 then we may
replace Δ2 by b1/c copies of it, giving a b1-partionable design whose classes can be
matched to the blocks of Δ1.

Thus Construction 2 is precisely equivalent to the combination of the two in Muk-
erjee (1998).

Some 2-part 2-designs in which v1 = v2 and k1 = k2 = v1/2 arise from Construc-
tion 2. Put n = k1. Suppose thatΔ0 is a 2-design for 2n treatments in 2r0 blocks of size
n. If Δ0 is resolvable then we may put Δ1 = Δ2 = Δ0 in Construction 2, and match
the resolution classes of Δ1 and Δ2 to obtain an r0-partitionable 2-part 2-design in
4r0 blocks. Figure 8 gives an example with n = 2. If Δ0 is not resolvable, then let Δ2
be the design with 4r0 blocks consisting ofΔ0 and its complement. This is resolvable,
with r = 2r0. Put Δ1 = Δ0 and apply Construction 2, matching the blocks of Δ1 to
the replicates of Δ2. Again, this gives a 2-part 2-design in 4r0 blocks. However, this
design is not r0-partitionable, because its C-design is not resolvable. Figure 11 shows
an example with n = 3.

There are sometimes be operational reasons for preferring resolvable designs.More-
over, they can be used as ingredients in Construction 9 in Sect. 4 to give designs
without too many blocks. The next construction always give resolvable designs for
such parameters.

Construction 3 (Hadamard matrices) Start with a Hadamard matrix H of order
4n in which the elements in the first row are all +1. Identify the 2n cancer
types with the columns in which the second row has entry +1, and identify
the 2n drugs with the columns in which the second row has entry −1. Each
of the remaining rows gives two blocks, one containing all the objects whose
columns have entries +1, and one containing all the objects whose columns have
entries −1. Thus b = 8n − 4. Moreover, each pair of blocks contains each
cancer type and each drug just once, in the concise representation, so the 2-
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Multi-part balanced incomplete-block designs 417

Table 2 Parameter sets for the
designs with the least number of
blocks with k1 ≤ 10 and
k2 ≤ 10 that can be made by
Constructions 2 or 3 but not 1:
v1 is the number of cancer types,
v2 is the number of drugs, and b
is the number of blocks, each of
which has k1 cancer types and
k2 drugs; r is a number used in
Construction 2

b v1 v2 k1 k2 r

6 4 3 2 2 3

* 12 4 4 2 2 3

12 6 4 5 2 3

12 9 4 3 3 4

14 8 7 4 3 7

14 8 7 4 6 7

15 6 5 2 4 5

18 9 4 8 2 3

20 6 5 3 2 10

* 20 6 6 3 3 10

20 10 6 9 3 10

20 16 5 4 4 5

22 12 11 6 5 11

22 12 11 6 10 11

24 9 4 3 2 3

24 9 8 3 7 4

28 8 7 2 3 7

28 8 7 2 6 7

* 28 8 8 4 4 7

30 6 4 2 2 3

30 6 5 2 2 5

30 6 6 3 2 5

30 10 4 4 2 3

30 10 6 9 2 5

30 15 4 7 2 3

30 16 3 8 2 15

30 16 5 8 4 15

30 16 6 8 2 15

30 16 10 8 4 15

30 16 15 8 7 15

30 25 3 5 2 6

30 25 4 5 2 6

30 25 6 5 5 6

33 12 11 4 5 11

33 12 11 4 10 11

35 15 7 3 3 7

35 15 7 3 6 7

Asterisks denote the only parameter sets for designs achievable by
Construction 3
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Fig. 10 Design for 3 cancer
types and 4 drugs, using 6
blocks, each with 2 cancer types
and 2 drugs

Fig. 11 A design for 6 cancer
types and 6 drugs, using 20
blocks, made from
Construction 2

part 2-design is (4n − 2)-partitionable and the lower bound in inequality (5) is
achieved.

For example, when n = 3 we can take

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
+1 +1 +1 +1 +1 +1 −1 −1 −1 −1 −1 −1
+1 −1 +1 −1 +1 −1 +1 −1 −1 +1 +1 −1
+1 −1 −1 −1 +1 +1 −1 −1 +1 −1 +1 +1
+1 +1 +1 −1 −1 −1 −1 +1 +1 −1 +1 −1
+1 −1 −1 +1 +1 −1 +1 +1 +1 −1 −1 −1
+1 −1 −1 +1 −1 +1 −1 +1 −1 +1 +1 −1
+1 −1 +1 +1 −1 −1 −1 −1 +1 +1 −1 +1
+1 +1 −1 −1 +1 −1 −1 +1 −1 +1 −1 +1
+1 +1 −1 +1 −1 −1 +1 −1 −1 −1 +1 +1
+1 +1 −1 −1 −1 +1 +1 −1 +1 +1 −1 −1
+1 −1 +1 −1 −1 +1 +1 +1 −1 −1 −1 +1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Labelling the columns as C1, …, C6, D1, …, D6 in order, the construction gives the
design in the first three columns of Fig. 12, ignoring the biomarkers. It is not weakly
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Fig. 12 A design for 6 cancer
types, 6 drugs and 5 biomarkers,
using 20 blocks, made by
Construction 3 followed by
Construction 9

isomorphic to the design in Fig. 11, because all triples of cancer types and all triples
of drugs occur.

The asterisked entries in Table 2 show the parameters of the smallest designs that
can be constructed by this method.

When n = 4 this construction gives the design in Fig. 8. For some values of n,
different choices ofHadamardmatrix, or different designations ofwhich row is second,
can give non-isomorphic designs. It may be that there are some values of n for which
there exists a Hadamard matrix of order 4n but no 2-(2n, n, n − 1) design. If so,
Construction 3 gives a design for these parameters but Construction 2 does not. Such
a value of n is likely to be too large to affect designs of practical size.

Construction 4 (Symmetric 2-designs) Here is another general method of construc-
tion. Consider a symmetric balanced incomplete-block design Δ for v treatments
in v blocks of size k. Every pair of distinct treatments concur in λ blocks, where
λ = k(k − 1)/(v − 1), and every pair of distinct blocks have λ treatments in common.
Let � be one block of Δ. Identify the treatments in � with k drugs D1, …, Dk and
the remaining treatments with v − k cancer types C1, …, Cv−k . Now consider the
design Δ′ consisting of all blocks of Δ except �. Each of these blocks contains λ

drugs and k − λ cancer types. In Δ′, each pair of drugs concur in λ − 1 blocks; each
pair of cancer types concur in λ blocks; and each drug occurs with each cancer type
in λ blocks. Thus b = v − 1, v1 = v − k, v2 = k, k1 = k − λ, k2 = λ, λ11 = λ12 = λ

and λ22 = λ − 1.

We can use Construction 4 whenever there exists a symmetric 2-(v, k, λ) design
with v = v1 + v2, k = v2 and λ = k2, provided that k1 + k2 = v2. In order to satisfy
condition (d), λ must be bigger than one. The lower bound in inequality (4) is always
met.
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Table 3 Parameter sets for
which small designs can be
made by Construction 4: v1 is
the number of cancer types, v2 is
the number of drugs, and b is the
number of blocks, each of which
has k1 cancer types and k2
drugs; v, k and λ are parameters
of the symmetric 2-design used
in the construction

b v1 v2 k1 k2 v k λ

6 4 3 2 2 7 4 2

10 6 5 3 2 11 5 2

12 9 4 6 3 13 9 6

14 8 7 4 3 15 7 3

15 10 6 4 2 16 6 2

18 10 9 5 4 19 9 4

22 12 11 6 5 23 11 5

24 16 9 6 3 25 9 3

The properties of symmetric 2-designs guarantee that conditions (c) and (d) hold,
but they also match up the blocks of the C-design and the D-design, which typically
produces fewer blocks than previous construction methods.

The design in Fig. 1 can be obtained by this construction with v = 11, k = 5 and
λ = 2. Figure 10 gives the design with v = 7, k = 4 and λ = 2.

Table 3 lists parameter sets for small designs that can be constructed by this method,
with an interchange and swaps where necessary: again using Table I.1 in Hall (1986).
After allowing for possible interchanges and swaps, this table represents 38 designs.

Construction 5 (Augmentation) Given a 2-part 2-designΔ in which v2 = 2k2+1, we
may augment it to one for one more drug by increasing v2 to v2 + 1 and k2 to k2 + 1
while merely doubling the number of blocks. Replace each block of Δ by two blocks,
both with the same set of cancer types as before. One of these blocks has the previous
set of drugs and the extra drug, while the other has all the remaining drugs.

For example, augmenting the design in Fig. 1 gives the design in Fig. 11.
Applying the augmentation just to the D-design gives a resolvable 3-design, as

shown in the Extension Theorem of Alltop (1972). This can be used directly in Con-
struction 2. However, augmentation is such a straightforward way of obtaining one
2-part 2-design from another that we think it is worth identifying.

Construction 6 (Group divisible designs) If v1 = v2 = v and k1 = k2 = k then the
zipped form of a 2-part 2-design is a semi-regular group-divisible incomplete-block
design for two so-called groups of v treatments in blocks of size 2k with k > 1: see
Bose and Connor (1952). Unzipping any one of these gives a 2-part 2-design.

Table VII of Clatworthy (1973) gives three such designs. Unzipping them gives the
product design for the first parameter set in Table 1, the design in Fig. 8 and the design
in the first three columns of Fig. 12.

Construction 7 (Group actions) Here is a construction based on group actions. Sup-
pose that the group G acts 2-transitively on two sets C and D of sizes v1 and v2
respectively, and that G is also transitive in the induced action on C × D. Choose a
subset of C and a subset of D, each containing at least two points; their union is a
block, and the images of this block under G give the remaining blocks. The blocks
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have to be unzipped to give a 2-part 2-design. This does not give much control over
b, except that we know it is a divisor of the order of G. A strategy for finding good
designs by this method is to choose a subgroup H of G which acts intransitively on
each of C and D, and to use fixed sets of H on C and D in the construction.

The three examples below arise from this construction, but can be more easily be
derived from the 3-(22, 6, 1) design Ξ whose automorphism group is the Mathieu
group M22. It has 22 points and 77 blocks of size 6, any two blocks meeting in zero
or two points; see Cameron & van Lint (1991, Chaps. 1 and 9). For simplicity, we
describe the cancer types as red points and the drugs as green points.

Take a block B0 of the design Ξ ; its points are red, and the remaining 16 points
are green. For each of the 60 blocks meeting B0 in two points, we define a block of
our new design containing two red and four green points. Now two red points lie in
five blocks, one of which is B0; so they lie in four more blocks. A red and green point
lie in five blocks, each containing two red points. Two green points lie in three blocks
meeting B0. For each point of B0 lies in a unique such block, and each block contains
two points of B0. So we have an example with v1 = 6, v2 = 16, b = 60, k1 = 2,
k2 = 4, and (λ11, λ12, λ22) = (4, 5, 3).

The other two examples use the 4-(23, 7, 1) design Θ in which the blocks through
the extra point are formed by adjoining that point to the blocks of Ξ : see Cameron
and van Lint (1991). The counting arguments that verify their properties are similar
to what we have just seen.

For the second design, we take a set A of seven points which form a block of Θ

not containing the extra point. These will be red, and the remaining 15 points of Ξ

green. Any block of Ξ meets A in one or three points; we take the blocks meeting
A in three points to be the blocks of the required design. We obtain an example with
v1 = 7, v2 = 15, b = 35, k1 = k2 = 3, and (λ11, λ12, λ22) = (5, 3, 1).

This has the same parameters as the fifth design made using Construction 2.
Finally, using the 23-point design Θ but not throwing away the extra point we

obtain a design with v1 = 7, v2 = 16, b = 140, k1 = 3, k2 = 4, and
(λ11, λ12, λ22) = (20, 15, 7). Another design with these parameters is the cartesian
product of the projective plane of order 2 and the affine plane of order 4; these designs
are not isomorphic.

To build these from the group action construction, the relevant groups are the
stabilizers of the sets of six or seven red points in the appropriate Mathieu groups;
these are the groups 24 : S6, A7, and 24 : A7 respectively.

3 Generalizing the design problem

3.1 The extended problem

In March 2016 Valerii Fedorov extended the problem as follows. Can we add a third
factor,whose levels are biomarkers in this case, subject to the obvious extra conditions?
Here we generalize this to an arbitrary number m of factors.
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The conditions for an m-part 2-design are as follows. The analogue of conditions
(a)–(b) is that, for 1 ≤ i ≤ m, factor i has vi levels and each medical centre involves
ki of them, where ki < vi ; the analogue of conditions (c)–(d) is that, for 1 ≤ i ≤ m,
each pair of levels of factor i are used together at the same non-zero number λi i of
medical centres.

The generalization of condition (e) is less clear. When i = 3, a weak generalization
is that each biomarker is used on each cancer type at the same number λ13 of medical
centres and that each biomarker is used with each drug at the same number λ23 of
medical centres. For now, we use this weak version. Note, however, that this gets
us into the territory of factorial design, so we might be confounding all or part of a
two-factor interaction with all or part of a main effect. By analogy with orthogonal
arrays (Hedayat et al. 1999), we call this weak generalization a 3-part 2-design with
strength 2, whereas a 3-part 2-designwith strength 3would have every triple of (cancer
type, drug, biomarker) at the same number λ123 of medical centres.

Thus the strength-2 generalization of condition (e) is that, for 1 ≤ i < j ≤ m, each
level of factor i occurs with each level of factor j at the same number λi j of medical
centres.

3.2 Conditions on parameters in the extended problem

The definition of c-partitionable extends to m-part 2-designs in the obvious way.

Theorem 2 In an m-part 2-design of strength 2, all of the following are satisfied.

(i) The analogues of Eqs. (1) and (2) hold for each factor.
(ii) Equation (3) generalizes to bki k j = vi v jλi j for 1 ≤ i < j ≤ m.
(iii) If the design is c-partitionable then b ≥ v1 + · · · + vm + c − m.
(iv) In particular, b ≥ v1 + · · · + vm − m + 1.

Proofs are similar to those in Sect. 1.5. Part (iv) is precisely Theorem 1 ofMukerjee
(1998).

4 Constructions ofm-part 2-designs of strength at least 2

4.1 Twomain constructions

Here we give the main construction of Mukerjee (1998) in the language of this paper.

Construction 8 (Orthogonal arrays) Suppose that there is a positive integer c such
that, for i = 1, …, m, Δi is a c-partitionable 2-design for vi treatments in bi blocks
of size ki . Moreover, there is an orthogonal array � with m columns, where column i
contains bi/c symbols for 1 ≤ i ≤ m.

Match the c classes of blocks of Δ1, …, Δm . For j = 1, …, c separately, each row
ρ of � gives a block of the new design, as follows. For i = 1, …, m, identify the block
in class j of Δi labelled by the symbol in row ρ and column i of �: then form the
cartesian product of these m blocks. This gives a c-partitionable m-part 2-design in sc
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Fig. 13 A 3-part 2-design for 3
cancer types, 3 drugs and 3
biomarkers, made from
Construction 8

Fig. 14 A 3-part 2-design for 4
cancer types, 4 drugs and 4
biomarkers, made from
Construction 8

blocks, where s is the number of rows of �. The strength of this new design is equal
to the strength of the orthogonal array �.

In one extreme case, � has all possible different rows, so that s = (∏m
i=1 bi

)
/cm .

If, in addition, c = 1, then s = ∏m
i=1 bi and we obtain the full cartesian product.

The design in Fig. 13 can be made in this way with c = 1, using an orthogonal
array with three columns, each with three symbols.

An example with m = 3 and c = 3 is shown in Fig. 14, which is contained in
Table 1 of Mukerjee (1998). Here, vi = 4, ki = 2 and bi = 6 for i = 1, 2, 3, and each
ofΔ1,Δ2 andΔ3 can be resolved into three pairs of blocks. For each design, label the
replicates 1, 2, 3 in any order. For j = 1, 2, 3, combine the j-th replicates from the
three designs, not by the full cartesian product, which would give eight blocks, but by
using an orthogonal array of strength 2 with four rows and three columns, each with
two symbols. This 3-part 2-design has strength 2 but not strength 3.

Table 1 of Sitter (1993) gives a 7-part 2-design made in this way with b = 24 and
vi = 2ki = 4 for i = 1, …, 7.

Construction 9 (Products of multi-part designs) The ingredients of the previous con-
struction are m individual 2-designs and an orthogonal array, which may be trivial.
Instead, we may start with multi-part 2-designs, or an assortment of 2-designs and
multi-part 2-designs. The use of orthogonal arrays and/or c-partitioning can be
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extended to this method too. As in Construction 2, we can allow one of the constituent
designs to be not c-partitionable, so long as its number b of blocks is divisible by c.

The full product of an m1-part 2-design Θ1 with b1 blocks and an m2-part 2-design
Θ2 with b2 blocks is an (m1 + m2)-part 2-design with b1b2 blocks and strength 2. If
Θ1 has strengthm1 andm2 = 1 then the full product has strengthm1+1. For example,
if m = 3, v3 = 3 and k3 = 2 then the product of the design in Fig. 1 and a 2-design
with three blocks of size 2 gives a 3-part 2-design with 30 blocks and strength 3.

As an example of the relaxation of the c-partionable condition, suppose that Θ is a
c-partitionable 2-part 2-design for drugs and cancer types and Δ is a 2-design for v3
biomarkers in c blocks of size k3. We can simply match the blocks of Δ to the classes
of Θ in any way. The 3-part 2-design in Fig. 12 was made like this by starting with a
2-part 2-design made by Construction 3, grouping blocks into ten classes of the form
{2i − 1, 2i}, and matching these classes to the ten blocks of a 2-design Δ for five
biomarkers. Similarly, if v1 = v2 = v3 = 6 and k1 = k2 = k3 = 3 we can obtain a
3-part 2-design in 20 blocks by matching the ten blocks of a 2-(6, 3, 2) design to the
ten classes in the left-hand side of Fig. 12.

The special case of the last part of this construction with b = c is the second general
construction given by Mukerjee (1998). As noted in Sect. 2, this specialization does
not restrict his designs. However, because we have now given more constructions for
the case that m = 2, applying the various product constructions to them produces new
designs for higher values of m also.

4.2 Other constructions

The augmentationmethod inConstruction 5 easily generalizes to three ormore factors.
If vi = 2ki + 1 then vi and ki can be increased by one while the number of blocks is
merely doubled.

If v1 = · · · = vm = v and k1 = · · · = km = k then the zipped form of an m-part
2-design is a semi-regular group-divisible design for mv treatments in blocks of size
mk with k > 1. Just as in Construction 6, any such design can be unzipped to give a
m-part 2-design. There are two such designs with m = 3 in Table VII of Clatworthy
(1973). Their unzipped forms are the designs in Figs. 13 and 14. The one with m = 4
gives the design in Fig. 15, which can also be obtained from a 9× 4 orthogonal array
with three symbols in each column.

Fig. 15 A 4-part 2-design
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The group method in Construction 7 also easily extends to three or more factors:
simply take a permutation group with more than two 2-transitive actions.

Acknowledgements We thank Valerii Fedorov for posing this interesting problem.
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