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Abstract
Embryonic development is one of the most sensitive and critical stages when maternal effects may influence the offspring’s 
phenotype. In birds and other oviparous species, embryonic development is confined to the eggs, therefore females must 
deposit resources into the eggs to prepare the offspring for the prevailing post-natal conditions. However, the mechanisms 
of such phenotypic adjustments remain poorly understood. We simulated a maternal nutritional transfer by injecting 1 mg of 
l-methionine solution into Japanese quail eggs before the onset of incubation. The increase in early methionine concentration 
in eggs activated the insulin/insulin-like signalling and mechanistic target of rapamycin (IIS/mTOR) signalling pathways 
and affected post-natal developmental trajectories. Chicks from methionine-supplemented eggs had higher expression of 
liver IGF1 and mTOR genes at hatching but were similar in size, and the phenotypic effects of increased growth became 
apparent only a week later and remained up to three weeks. Circulating levels of insulin-like growth factor-1 (IGF-1) and 
expression of ribosomal protein serine 6 kinase 1 (RPS6K1), the mTOR downstream effector, were elevated only three weeks 
after hatching. These results show that specific nutritional cues may have phenotypic programming effects by sequentially 
activating specific nutrient-sensing pathways and achieving transgenerational phenotypic plasticity.
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Introduction

The early conditions experienced by animals are important 
in understanding the causes of phenotypic variation (Flatt 
2001; Meillère et al. 2015; Monaghan 2008). One key com-
ponent contributing to early phenotypic variation is the 
maternal investment (Lindström 1999). Mothers can transfer 
various signals and cues to the offspring to adjust their phe-
notype and fitness to the current environmental conditions. 
However, the importance of such transgenerational adaptive 
plasticity for phenotypic evolution remains debated (Mous-
seau and Fox 1998; Reed and Clark 2011; Williams and 
Groothuis 2015). Recently, it has become clear that embry-
onic development is one of the critical stages when mater-
nal effects may influence the offspring’s phenotypic and 
physiological responses (Groothuis et al. 2019; Reed and 
Clark 2011) and embryos have evolved the mechanisms to 
incorporate maternal signals for their adaptive performance 
(Groothuis et al. 2020; Stier et al. 2020).

In birds and other oviparous species, embryonic devel-
opment is confined to the eggs. Eggs are “sealed capsules” 
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where the mother needs to deposit all the transmitted fac-
tors such as nutrients, hormones, vitamins, carotenoids to 
influence offspring development and phenotype (Blount 
et al. 2002; Groothuis et al. 2019; Mentesana et al. 2021). 
However, the deposition of maternal resources into the egg 
depends on various conditions. For instance, habitat type 
and quality, perceived predation risk or social environment 
may affect the allocation of resources into the eggs (Jones 
et al. 2014; Sharda et al. 2021; Séchaud et al. 2022), which 
may explain offspring fitness (Lahaye et al. 2015).

One of the major ways maternal conditions influence 
individuals’ phenotype is through the programming 
effects of yolk hormones (Groothuis and Schwabl 2008; 
Groothuis et al. 2019; Martin and Schwabl 2008). The 
maternally deposited hormones are important in mediating 
the offspring’s phenotypes as they provide signals for 
adaptive growth conditions (Groothuis and Schwabl 2008). 
One of the hormonal systems that most directly influences 
development is the insulin/insulin-like signalling pathway 
(IIS) (Regan et  al. 2020). IIS is a network known to 
respond to the nutritional status of the organism and 
regulate metabolism, growth, and development (Schwartz 
and Bronikowski 2016). In vertebrates, insulin-like growth 
factor 1 (IGF-1) is the major ligand of this pathway that 
controls embryonic and postnatal growth and development 
by stimulating cell proliferation, migration, differentiation, 
and protein synthesis (Beccavin et al. 2001; Luisi et al. 
2012; Iresjö et al. 2022; Regan et al. 2020). Despite its 
fundamental importance (Lodjak and Verhulst 2020), the 
IIS pathway remains poorly studied in birds.

The IIS system does not work in isolation in regulating 
energy metabolism; it is directly integrated with its 
downstream effector, the mechanistic target of rapamycin 
(mTOR) (Braun and Sweazea 2008; Fernandes and 
Demetriades 2021; Szwed et  al. 2021). The mTOR is 
an evolutionarily highly conserved nutrient sensing 
pathway that integrates intracellular signals from nutrient 
availability and serves as a central regulator of cell 
metabolism and growth (Laplante and Sabatini 2009; Reda 
et al. 2024; Regan et al. 2020; Saltiel and Kahn 2001). 
One of the nutrient cues that specifically activate mTOR is 
methionine (Zeitz et al. 2019). Methionine is an essential 
amino acid that alone may influence life history traits. 
Methionine concentration has a positive association with 
reproduction but a negative association with longevity 
(Mota-Martorell et al. 2021; Zou et al. 2020). However, 
when amino acids are in a balanced state, methionine 
has been observed to exert a positive influence on both 
fecundity and longevity (Grandison et al. 2009).

Deposited egg amino acids therefore may also serve 
as potential maternal signals through which the IIS/
mTOR pathway can influence embryonic and post-hatch 
development and have significant effects on the phenotype 

and performance fitness of the offspring (Giordano et al. 
2014; Ronget et al. 2018). While the maternal programming 
effects of growth hormones are well documented, whether 
a non-hormonal, nutritional amino acid can influence 
developmental trajectories through the activation of the 
IIS/mTOR remains uncertain. For example, embryonic 
supplementation of sulfur-containing amino acids 
(methionine plus cysteine) in chicken has been shown to 
improve embryonic development, circulating IGF-1 and 
intestinal growth of newly hatched chicks exposed to heat 
stress (39.6 °C) for 6 h per day during incubation (Elwan 
et al. 2019). However, the mechanisms behind these effects 
and whether they translate into post-natal phenotypic 
differences remain unknown.

We hypothesized that this nutritional cue would activate 
molecular mechanisms in the nutrient-sensing pathway that 
influence phenotypes. Therefore, we determined circulating 
levels of IGF-1, and hepatic expression of growth-related 
genes (IGF1, mTOR and a downstream effector of mTOR, 
the ribosomal protein serine 6 kinase 1, RPS6K1) that 
influence the early phenotypic development in the offspring.

Materials and methods

Experimental design

We collected freshly laid Japanese quail (Coturnix 
japonica) eggs from a total of 63 females of the same 
age group (18 month) and kept them at room temperature 
between 16 and 18  °C for 1–5  days. On the day of 
laying, we weighed the eggs on a digital scale (± 0.01 g) 
and separated eggs of similar mass (11.0 ± 0.5  g), to 
eliminate the effect of differences in egg mass. When 
we amassed a total of 200 eggs, we randomly selected 
half of them, to which we injected 1 mg L-methionine 
dissolved in 50 μl saline solution, while the remaining 
eggs (controls) received physiological saline solution. 
Our objective was to make only a slight increase in the 
methionine concentration in ovo. Methionine amino acid 
concentration in whole egg was quantified in duplicates, 
from a sample of 100 g pooled eggs (based on n = 12 eggs) 
at the accredited Central Laboratory of the Agriculture and 
Food Products, Faculty of Agricultural and Food Sciences 
and Environmental Management, University of Debrecen, 
Hungary. The whole egg methionine concentration was 
0.42 m/m %, which closely mirrored the value documented 
in the extensively studied Japanese quail egg contents by 
the US Department of Agriculture (0.421 m/m %, USDA 
2019). Given the average weight of 11.0 g of the eggs in 
our experiment, the 1 mg of extra L-methionine increased 
its concentration by 2.16% above the average in Japanese 
quail eggs and this post manipulation value was still in the 
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natural range of egg methionine concentrations reported 
by earlier publications (0.43  m/m %, Genchev 2012; 
0.43 m/m%, Tolik et al. 2014; 0.421 m/m %, USDA 2018).

Before the injections, we prepared a batch of the amino 
acid solution by dissolving crystalline L-methionine (CAS 
No. 63-68-3, Sigma Aldrich, BioUltra, > 99.5%) in 0.9% 
physiological saline solution (Sigma Aldrich). Saline 
and amino acid solutions were sterilized by autoclaving. 
Before the injection, we disinfected the broad end site of 
the egg with 70% ethanol, then we incised a hole using a 
sterile 26G needle. We then injected 50 μl of either the 
L-methionine or saline solution into the egg yolk using 
a 50 μl ethanol sterilized Hamilton syringe. Finally, we 
sealed the egg's injection point with candle wax. We 
performed all injections before the incubation started on 
embryonic day zero.

Immediately after the injections, we transferred the eggs 
to an automatic incubator (WQ-63 Model 2021 Version 2, 
AGROFORTEL, Budapest Hungary) setting conditions 
to 37.8 ± 0.5 °C and 50–60% relative humidity. On day 
8 of the embryonic development, we candled the eggs 
with a flashlight, and removed those where embryonic 
development had not started or had stopped. Egg freshness 
is a major determinant in hatchability. However, studies 
have shown that egg quality and freshness is reduced only 
after 7–10 days (Drabik et al. 2021; Tan et al. 2020) and 
therefore recommend incubating eggs collected within 
a week of laying (Abioja et  al. 2021; Fasenko 2007; 
Goliomytis et  al. 2015). To be more conservative, we 
only used eggs up to five days after laying. We did not 
consider egg age as a factor that may have induced embryo 
mortality. Since the experiment only used those eggs that 
hatched successfully and the treatment was assigned 
randomly, it is unlikely that any variation of egg age could 
have confounded our results. Moreover, we suppose that 
treatment could have caused selective mortality in the 
eggs of the slow growing embryos. We observed that 68% 
from the control and 61% from methionine-injected group 
showed embryonic development during candling on day 
8. Although hatching success tended to be lower in the 
methionine-injected group compared to the control one 
(31.15% vs. 51.47% hatched of developing embryos), this 
difference remained non-significant ( x2 = 1.80, df = 1, 
P = 0.176). On day 14 of incubation, we transferred the 
eggs from the incubator trails to the hatching tray and 
reduced the temperature to 37.5 °C and increased relative 
humidity to 65–70%. We checked the hatching process 
every 12 h for hatching events and hatchability of the 
fertile eggs.

Rearing experimental hatchlings

We transferred immediately the hatchlings from each 
experimental group to two separate cages based on 
their treatment (40  cm long × 50 wide × 40  cm height) 
and reared for three weeks (21 days). We provided free 
access to unlimited feed nutrient content according to 
(National Research Subcommittee on Poultry Nutrition 
and Subcommittee on Poultry Nutrition National Research 
Council, 1994) and water. We kept all hatchlings under 
uniform standard management conditions throughout the 
experimental period. We recorded post-hatch body mass 
using an electronic scale (± 0.01  g), and tarsal, head, 
and wing length were measured with a vernier calliper 
(± 0.01 mm) on day 1, 3, 5, 7, 14, and 21. All measurements 
were taken by the same person who was unaware of the 
treatment subjected to experimental groups. Given that 
Japanese quails lay one egg daily, and that only 51 total 
hatchlings were included in the study from 63 hens, most 
eggs are expected to be originated from different females, 
yet some chicks likely shared the same parents. Since all 
parents in the experiment arrived from the same breeding 
stock, birds in our study (both adults and chicks) are likely to 
genetically relate to various degrees. To fully accounting for 
the genetic relatedness requires a full pedigree, which was 
unavailable. Maternal identity of the eggs was not recorded, 
and juvenile individuals were thus treated as independent 
data points.

Sample collection

We randomly selected a total of 8 quail chicks from each 
experimental group for blood and tissue sampling post 
hatching after recording body mass (Fig. 1). Tissue and 
blood sampling was done at one time point on day 1 and 
21 post hatching. Body mass was recorded at variable days 
for the remaining chicks until 21 days when we collected 
the second blood and tissue samples. We collected blood 
samples (~ 65 µl for day-old and ~ 80 µl for 21 days old birds) 
into heparinised capillary tubes by venepuncture using a 
26G sterile needle. We immediately centrifuged the plasma 
samples and separated from red blood cells using a Hamilton 
syringe and stored at − 20 °C for further analyses. To reduce 
the variation in circulating IGF-1 levels in 24 h, blood sam-
ples on day 21 were collected at the same time as the first 
samples on day 1 (Lendvai et al. 2021). We sacrificed birds 
by cervical dislocation after blood collection; collected liver 
samples and snap-froze in dry ice, and then store at − 80 °C 
for further analysis. Liver is a multi-purpose vital organ 
responsible for many metabolic functions including nutri-
ent homeostasis, protein, carbohydrate, fat, vitamins and 
minerals metabolism, hormonal synthesis (Xu et al. 2019). 
Changes in nutrients status are easily adapted in the liver. 
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During the postnatal development many changes in the liver 
lead to differential functions of the liver at different devel-
opmental stages in broiler chickens (Lee et al. 2012; Payne 
et al. 2019; Xu et al. 2019). Changes in hepatic gene expres-
sion take place during prenatal and postnatal developmental 
stages to support the wide range of metabolic functions to 
influence trait fitness (Lee et al. 2012).

ELISA

We measured circulating plasma IGF-1 levels by a 
competitive enzyme-linked immunosorbent assay (ELISA) 
as described previously (Mahr et al. 2020). We analysed 
samples in duplicates (n = 64) on a single plate and the intra-
assay coefficient of variation (CV) was 9.8%.

Real‑time PCR

We extracted total RNA from frozen liver tissue using TRIzol 
reagent and Direct-zol™ RNA MiniPrep (Zymo Research; 
Orange, CA, USA) according to the manufacturer's proto-
col, including DNA digestion step. We checked RNA integ-
rity by 1.5% agarose gel electrophoresis, then determined 
the RNA concentration (ng/µl) and percentage purity (%) 
spectrophotometrically with SYNERGY/HTX multi-mode 
plate reader (BioTek Instruments Inc, USA). We performed 
reverse transcription using the qScript cDNA synthesis kit 
(Quantabio Reagent Technologies; QIAGEN Beverly Inc., 
USA) in a 20 μl final volume containing 5 × cDNA supermix, 
200 ng RNA template and distilled water, using PCRmax 
Alpha thermal cycler (Cole-Parmer Instrument Co. Ltd., 
UK). Conditions consisted of reverse transcription 25 °C for 
5 min, 42 °C for 30 min and 85 °C for 5 min. We designed 
intron-spanning forward and reverse primers for quail using 
the Oligo 7 software and checked for target identity using 
Primer-Blast software of the National Centre for Biotech-
nology Information (NCBI) (http:// www. ncbi. nlm. nih. gov, 

supplementary material Table S2). We performed quantita-
tive PCR in Agilent AriaMx Real-time PCR System (Agi-
lent Technologies, USA) and applied 5 × HOT  FIREPol® 
 EvaGreen® qPCR Mix Plus (Solis BioDyne; Tartu, Estonia), 
2 ng cDNA template, 200 nM of each primer, and distilled 
water in a 10 μl final volume of each sample. We ran the 
samples in duplicates.

We normalised relative changes in gene expression 
against RPL19 gene expression as the most stabile reference 
gene selected from 6 housekeeping genes such as ACTB, 
GAPDH, RPL19, RPS8, 18S, and RPL13 by 3 algorithms 
(delta Ct, Best Keeper, NormFinder) (Simon et al. 2018; 
Vitorino Carvalho et al. 2019). Relative gene expression 
compares the expression level of gene of interest or the 
target gene to the expression level of the reference gene 
housekeeping genes that are usually expressed relatively 
constant in all cells and most of the conditions (Joshi et al. 
2022). We collected raw data with Aria AgilentMx 1.8 
software. We calculated relative gene expression of the 
target genes (mTOR, RPS6K1, and IGF1) in fold change 
using the double-ΔCT method (Schmittgen and Livak 2008). 
We considered the sample with the highest delta Ct value 
as calibrator to calculate the double-ΔCT value (Pabinger 
et al. 2014).

Statistical analyses

We carried out all statistical analyses and made inferences 
using R-version 4.0.3 software (RStudio Team 2020). We 
used a linear model to analyze the effects of IGF-1 levels as 
a response variable while treatment and days as independent 
variables. We analysed growth in terms of increasing body 
mass and development of morphological traits (wing, head, 
tarsal, and feather lengths) and body condition using scaled 
mass index (Peig and Green 2009) across the days (1, 3, 
5, 7, 14, and 21) in a linear mixed model with body mass 
and morphological traits as dependent variables, treatment, 

Fig. 1  A Schematic representation of the experimental protocol. A 
syringe icon indicates the L-methionine manipulation before incuba-
tion; the lab scale, the ruler and the centrifuge tubes represent body 
mass measurements, morphological measurements, and blood plus 

tissue sampling, respectively. B Simplified diagram showing the 
investigated elements of the nutrient sensing pathway (IGF1: insu-
lin-like growth factor 1, mTOR: mechanistic target of rapamycin, 
RPS6K1: ribosomal protein serine 6 kinase 1)

http://www.ncbi.nlm.nih.gov
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and days as fixed factors, while individual bird identity as 
random factor. We also fitted a fixed factor linear model 
to analyse the effects of treatment on the relative gene 
expression of mTOR, IGF1, and RPS6K1 as a response 
variable with treatment and day as fixed factors. We 
used estimated marginal means to compare body mass/
morphological traits and relative gene expression between 
the treatment groups within each day using the ‘emmeans’ 
package and significance p-values were adjusted based on 
tukey method package (Searle et al. 1980).

Results

Body mass and morphological traits

The body mass at hatching through day 5 was not differ-
ent between treatment groups. However, chicks in the 
methionine-injected group grew faster (treatment × age 
interaction, P < 0.001), starting from day 7, their body mass 

was consistently higher than controls till day 21 (Fig. 2, 
Table S3). Wing and head length did not differ between treat-
ments through all days (Fig. S1–3) respectively while tarsus 
length became only significant on day 21 (P = 0.033, Fig. 
S3). Body condition did not differ, as the scaled mass index 
remained statistically non-significant) between the control 
and treatment groups throughout the study (P > 0.05).

IGF‑1 levels

IGF-1 levels increased with the age of birds, but in a treat-
ment-specific manner. IGF-1 levels on day 1 did not differ 
significantly between the methionine-treated and control 
chicks (P = 0.964, Fig. 3a). In contrast, three weeks later, 
at 21 days, while all chicks had higher IGF-1 levels than 
after hatching (P < 0.001), methionine-treated birds had sig-
nificantly increased their IGF-1 levels more than the control 
group (P < 0.001, Fig. 3b).

Fig. 2  L-methionine injection in eggs speeds up post-hatch body 
mass gain in Japanese quail chicks (see Table S3 for detailed infor-
mation on sample size). The thick line indicates the median, the box 
shows the interquartile range, and the whiskers extend to the mini-
mum and maximum values. ‘Ctrl’ and ‘Met’ refer to the control and 

methionine-injected groups, respectively. Asterisks denote signifi-
cant differences (P < 0.05) among the treatment groups at each time 
point and numbers at the top of each panel indicates the age of the 
chicks (days)
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Relative gene expression

The relative gene expression of IGF1, mTOR, and RPS6K1 
were influenced by L-methionine treatment. On day-old 
chicks, relative gene expression of IGF1 significantly 
increased in the methionine-treated group compared to the 
controls (P = 0.005), however, by day 21, the relative gene 
expression of IGF1 became similar between the groups 
(P = 0.998, Fig. 4a). Further, methionine treatment also 
increased mTOR expression in day-old chicks (P = 0.001), 
which disappeared by day 21 (P = 0.993, Fig. 4b). However, 

while treatment groups did not differ in their initial RPS6K1 
expression in day-old chicks (P = 0.164), by day 21 methio-
nine-treated chicks expressed more RPS6K1 than controls 
(P < 0.001, Fig. 4c).

Discussion

The essential amino acid, L-methionine is a key trigger for 
the mTOR signalling pathway that has a major impact on 
life history as it regulates cellular and organismal growth, 

Fig. 3  L-methionine injection 
in eggs increased post-hatch 
circulating levels of IGF-1 in 
Japanese quail chicks (n = 8 
in each group). Asterisks*** 
denote significant differences 
between the treatment groups at 
P < 0.001, panels indicate age of 
the chicks (a) 1-day old chicks 
and (b) 21-days old chicks. The 
big circles or triangles and error 
bars indicate mean ± standard 
error, the small circles show 
individual measurements

Fig. 4  Gene expression patterns (mean ± SE) of insulin-like growth 
factor 1 (IGF1), mechanistic target of rapamycin (mTOR) and ribo-
somal protein serine 6 kinase 1 (RPS6K1). L-methionine injection 
increased the relative gene expression of (a) IGF1 on 1  day post 

hatching, (b) mTOR on day 1 post hatching, and the relative gene 
expression of (c) RPS6K1 in 21 days old Japanese quail chicks. Num-
bers on each column indicate sample size per group
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reproduction, and ageing (Kitada et al. 2020; Zhou et al. 
2016). Here, we present evidence for the first time, that 
increase in yolk L-methionine concentration influences 
the IIS/mTOR signalling pathways and affects post-natal 
developmental trajectories in a bird species.

Our manipulation simulated an early maternal transfer of 
nutritional L-methionine, as injections were made before the 
onset of incubation. Since eggs were incubated and chicks 
raised under standardized conditions, any difference between 
the treatment groups must be related to the L-methionine 
supplementation. This mild increase in L-methionine 
however, altered the developmental trajectory of the chicks, 
with different elements manifesting at different time points. 
At hatching (day 1) treatment groups had equivalent body 
mass and biometric measurements. However, already at this 
stage, the treatment induced significant gene expression 
signature of IGF1 and mTOR. Despite the early upsurge 
of mTOR/IGF1 expression, circulating levels of IGF-1 at 
hatching was similar between the treatment groups, and 
body mass and skeletal growth also remained identical up 
to a week. However, starting from day 7, chicks hatched 
from the methionine-injected group consistently increased 
body mass more than the control. While this difference in 
body mass lasted until the end of the experimental period, 
the methionine treatment did not induce a significant 
difference in skeletal measurements (wing, head length and 
tarsus length), except for tarsus that by day 21 also became 
significantly larger in the methionine treated group. Despite 
the birds in the treatment group becoming heavier, the body 
condition, as measured by the scaled mass index, remained 
consistent and statistically non-significant compared to the 
control group throughout the study. This result indicates that 
chicks in the methionine group did not gain a significantly 
greater proportion of body mass compared to the control 
group, implying that the treatment induced both increased 
skeletal growth and body mass gain, albeit the latter 
becoming apparent sooner.

Three weeks after hatching, we saw a reorganization of 
the physiological and gene expression pattern. At this time, 
plasma IGF-1 levels and RPS6K1 gene expression increased 
in L-methionine-treated individuals compared to controls, 
while mTOR and IGF1 gene expression were no longer 
different between the treatment groups. These unmatched 
protein and gene expression suggest that proteins may be 
post-transcriptionally regulated, such as stability of mRNA 
or elevated half-life of the protein resulting from the post-
translational modifications often altering the protein levels 
(Csernus et al. 2023; Ideker et al. 2001). After hatching, 
an increased hepatic IGF1 mRNA expression may lead 
to increased production of IGF-1 protein. However, there 
can be delays in the translation of mRNA into protein and 
post-translational modifications that affect the secretion and 
stability of the IGF-1 protein (Gedeon and Bokes 2012). 

This could explain the lag in the elevation of circulating 
IGF-1 levels. Even once hepatic IGF1 mRNA expression 
returned to control levels, other tissues or organs may have 
responded to the manipulation by producing more IGF-
1, contributing to the delayed elevation in plasma levels. 
Nestlings at one day old and nestlings at 21 days old may 
have different physiological states and developmental stages. 
These differences could affect how their bodies respond to 
the manipulation and regulate IGF-1 levels.

Our findings align with the concept that nutrient 
developmental programming during critical development 
windows can have short-term and longer-term consequences 
in the offspring (Andrieux et  al. 2022; Buchanan et  al. 
2022). The increased mTOR and IGF1 gene expression on 
day 1 indicates that these genes are important during the 
embryonic and early post-natal growth and development, the 
effects mediated by methionine manipulation. Subsequently, 
plasma IGF-1 levels and RPS6K1 gene expression appeared 
to be more important during the late post-natal development 
as they were increased at the juvenile stage. Principally, 
the evidence reveals that mTOR mediate essential roles 
during the embryonic development and early postnatal, 
with RPS6K1 controlling the physiological reorganisation 
during the post-natal growth and development. While 
body mass and circulating levels of IGF-1 measured late 
during the postnatal period was increased, it suggested that 
methionine programming may improve further growth and 
development through the enhancement of IGF-1 synthesis 
(Wan et al. 2017; Wen et al. 2017). The fact that circulating 
IGF-1 activity increases towards developmental stages of 
birds (Lodjak et al. 2018; Lodjak and Verhulst 2020), could 
be the reason to explain why the effects of our treatment 
on body mass was delayed and became only apparent a 
week later post-hatching. This is supported by the lack of 
significant difference in body mass between the chicks at 
day 1 of the same age, but also at different developmental 
stages of first week and apparently significant a week later. 
Our findings coincide with a study in chicken that reported a 
lack of significant increase in body mass of a day-old broiler 
chicks hatched from eggs injected with L-methionine during 
the late embryonic stage (Chen et al. 2021). Although in our 
study, the treatment did not induce faster growth at hatching, 
recent studies showed that L-methionine supplemented 
to day-old broiler chicks stimulated faster growth and 
development (Akter et al. 2020; Shen et al. 2015). While 
methionine supplementation at an early stage of growth from 
day 3 to 6 in blue tit and magpie nestlings impaired growth 
(Brommer 2004; Soler et al. 2003), in contrast, methionine 
supplementation in great tit nestlings from day 9 did not 
alter their growth rate (Wegmann et al. 2015). The weaker 
effect of growth in body size in nestlings may demonstrate 
the casual relationship between IGF-1 and early postnatal 
growth where IGF-1 levels were significantly higher in 
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7 days old than 13 days old in pied flycatcher nestlings 
(Lodjak et al. 2018).

Our results point to a nutritional mechanism through 
which maternal effects may be manifested. However, the 
extent to which mothers utilize this mechanism, the degree 
of control they exert over methionine deposition and the 
varying sensitivity of different species to this form of 
maternal influence remain intriguing questions awaiting 
further exploration. Current evidence from field studies 
suggests that the differences in food supply may induce 
variation plasma amino acids levels. For instance, Herring 
gulls (Larus argentatus) from different geographical 
locations exhibited different levels of plasma methionine 
compared to the reference value (Hebert et al. 2002). The 
variations of the plasma amino acids in gulls are possibly 
linked to the geographical variations of protein availability 
which may be influenced by prey availability. Additionally, 
increased plasma concentrations of non-essential amino 
acids and decreased essential amino acids were associated 
with egg formation (Taylor et  al. 1970). Birds may 
prioritize early maternal allocation by adjusting amino acids 
deposition into eggs based on the environmental factors such 
as habitat quality, predation risk and social environments 
(Dixit et al. 2017; Macelline et al. 2021; Mori et al. 2020). 
These cues may shape early maternal allocation strategies 
through specific amino acid deposition into the egg such 
as methionine, serving as energy budget for the offspring 
growth and development (Fontaine and Martin 2006).

The results of this experiment shed light on the 
mechanisms by which early maternal investment can affect 
the offspring phenotype. To control growth and development 
of the embryos and subsequent offspring, mothers allocate 
non-genetic resources including nutrients in the eggs (Reed 
and Clark 2011). While earlier studies have shown how 
early maternal investment in eggs can impact the offspring’s 
fitness (Price 1998; Valcu et al. 2019), the major route of 
maternal programming was thought to be the direct transfer 
of hormones into the eggs (Darras 2019; Groothuis et al. 
2019; Kumar et al. 2019). Here, we show that nutritional 
cues may also enhance postnatal growth and development 
through specific nutrient-sensing pathways.

Conclusion

We have shown that a mild increase in L-methionine 
before the onset of embryonic development upregulated 
mTOR/IGF1 gene expression at hatching, which resulted 
in significant increase in growth only after a week post-
hatching. This single, initial amino acid cue resulted 
in increased IGF-1 hormonal level and RPS6K1 gene 
expression even three weeks post-hatching. These results 
show that maternally derived nutritional cues may have 

powerful programming effects on post-natal developmental 
trajectories with maintained increased body mass showing 
that it is responded for growth and development during the 
post-natal period and highlights the importance of amino 
acids as maternal signals to promote transgenerational 
phenotypic plasticity in birds.
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