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Abstract
Sleep is an essential and evolutionarily conserved process that affects many biological functions that are also strongly regu-
lated by cellular metabolism. The interdependence between sleep homeostasis and redox metabolism, in particular, is such 
that sleep deprivation causes redox metabolic imbalances in the form of over-production of ROS. Likewise (and vice versa), 
accumulation of ROS leads to greater sleep pressure. Thus, it is theorized that one of the functions of sleep is to act as the 
brain’s “antioxidant” at night by clearing oxidation built up from daily stress of the active day phase. In this review, we will 
highlight evidence linking sleep homeostasis and regulation to redox metabolism by discussing (1) the bipartite role that 
sleep–wake neuropeptides and hormones have in redox metabolism through comparing cross-species cellular and molecu-
lar mechanisms, (2) the evolutionarily metabolic changes that accompanied the development of sleep loss in cavefish, and 
finally, (3) some of the challenges of uncovering the cellular mechanism underpinning how ROS accumulation builds sleep 
pressure and cellularly, how this pressure is cleared.
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Introduction

Sleep is an instrumental biological process in restorative 
functions, memory consolidation, cognitive abilities, and 
energy conservation (Appelbaum et al. 2010; Kayaba et al. 
2017; Klinzing et al. 2019; Mullington et al. 2000). Using 
behavioural criteria, sleep has been described in all branches 
of the animal kingdom from invertebrate octopi, worms, and 
insects to vertebrates including fish and mammals (Campbell 
and Tobler 1984; Keene and Duboue 2018). These crite-
ria include reduced mobility, increased arousal threshold, 
rapid reversibility, place preference/posture, and homeostatic 
regulation (Campbell and Tobler 1984; Jaggard et al. 2021). 
Despite the concentrated research on mammals, the current 

sleep definition lacks an all-inclusive explanation to cover its 
evolutionary-conserved role, lending support to the hypoth-
esis that sleep serves a fundamental need, and the best way 
to define sleep would be to identify this need.

The neurological definition of sleep has been established 
since the 1950–60s to include the main electrophysiologi-
cal hallmarks of human sleep recorded by polysomnog-
raphy (PSG), combining electroencephalogram (EEG), 
electromyogram (EMG of voluntary muscles), electrocar-
diogram (ECG) and electrooculogram (EOG). Slow-wave 
sleep (SWS), the deepest stage of non-REM sleep (NREM), 
is characterized by slow, synchronized neocortical waves 
and low muscle activity. In contrast to NREM/SWS, Rapid 
Eye Movement sleep (REM), also known as Paradoxical 
Sleep (PS), has a core characteristic of muscle atonia with 
wake-like desynchronized EEG, cardiorespiratory irregu-
larities, tremors, and episodic bursts of rapid eye move-
ments. Until recently, these neurological sleep stages had 
only been reported in the more evolutionary-recent amniotic 
vertebrates: mammals and birds (Campbell and Tobler 1984; 
Leung and Mourrain 2018; Shein-Idelson et al. 2016). Our 
group has identified analogous cellular signatures of sleep in 
zebrafish including synchronous slow oscillation and para-
doxical sleep activity, suggesting that neural and muscular 
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patterns of NREM-REM sleep emerged at least 450 million 
years ago (Leung et al. 2019). To advance the understanding 
of conserved sleep need, the cellular and molecular func-
tions of sleep need to be further studied. Having phyloge-
netically conserved behavior and neural sleep profile, fish 
provides a simpler vertebrate model for sleep studies that 
overcomes the challenges of studying sleep in mammalian 
systems. Some of these challenges include, but not limited 
to, animal handling and care, invasiveness of live imaging 
as well as behavioural tracking, and accessibility of deeper 
tissues and organs.

To this date, there is no united opinion on the function of 
sleep. From the earlier sleep research, the theories behind 
the function of sleep remain similar (Rechtschaffen 1998). 
Some prominent theories on the function of sleep include: 
(1) restorative theory, suggesting that sleep repairs the body 
through increased production of growth hormone, induced 
muscle repair and strengthened immune system (Rechtschaf-
fen and Bergmann 2002), (2) memory consolidation theory, 
suggesting different stages of sleep contribute to various 
aspects of memory formation and organization (Diekelmann 
and Born 2010), (3) synaptic homeostasis hypothesis, sug-
gesting that sleep is necessary to downscale and reset synap-
tic strength in the brain, preventing overload and maintain-
ing optimal neuronal function (Tononi and Cirelli 2006), 
(4) energy conservation theory, suggesting that by reducing 
activity and metabolic rate during sleep, the body conserves 
energy that can be used during waking hours (Siegel 2005), 
and finally (5) brain plasticity and learning theory, suggest-
ing that sleep promotes brain plasticity to enhance learning 
and adaptation to new experiences (Frank 2006). It must 
be noted that these theories are not mutually exclusive, and 
sleep likely serves multiple functions. Furthermore, these 
theories do not provide an explanation to the evolutionary-
conserved roles of sleep.

Unquestionably, sleep is not solely for brain but also for 
the entire body. Chronic sleep deprivation systematically 
leads to weight gain and metabolic imbalances and sleep 
deprivation decreases antioxidant levels in rats and humans, 
leading to oxidative stress (D'Almeida et al. 1998; Ever-
son et al. 2005; Ramanathan et al. 2002; Silva et al. 2004; 
Trivedi et al. 2017; Van Cauter et al. 2008). As sleep regula-
tion and cellular sleep dynamics are highly conserved, so too 
may the interplay between sleep and redox homeostasis and 
the underlying mechanisms be similarly conserved across 
evolution. A theory for sleep, that also supports a restorative 
function for sleep, was proposed in which sleep functions 
essentially as an “antioxidant” for the brain where excess 
free radicals are removed during sleep (Reimund 1994). 
Wake periods consist of higher metabolic rates and higher 
brain activity and a selective metabolic shift occurs dur-
ing sleep (DiNuzzo and Nedergaard 2017). During sleep, 
the body’s metabolic rate decreases and this reduction in 

metabolic activity could contribute to a lower oxidative 
environment along with an increased antioxidant capacity, 
decreasing overall free radicals and the oxidized substrates, 
that accumulated throughout the wake period due to high 
cellular metabolic activities. Although it is unlikely that the 
sole function of sleep is to clear oxidation from the brain, 
this theory points towards a direction for the new definition 
of sleep: what are the metabolic, particularly redox-related, 
implications of sleep?

Redox metabolism represents the reduction and oxidation 
(redox) reactions induced via oxidized molecular oxygen, 
or reactive oxygen species (ROS). ROS are highly reactive 
chemicals, enabling electron transfer from one molecule 
to another. The cellular redox state is determined by the 
balance between ROS production and the counteracting 
cellular antioxidant systems. Under physiological redox 
conditions, the production and elimination of ROS are in 
homeostasis and redox signalling is in action, during which 
proteins are post-translationally modified via oxidation to 
relay signal transduction (Dickinson and Chang 2011; Finkel 
2011; Reczek and Chandel 2015). When the production and 
presence of ROS dominates the antioxidant capacity, cell 
undergoes oxidative stress, leading to damage to cellular 
components and causing aging, cancer, neurodegenerative 
diseases (Davalli et al. 2016; Park et al. 2008; Rama Rao 
et al. 2018; Weinberg et al. 2019). On the contrary, when 
ROS production is limited below physiological levels, dis-
ruption in redox signalling interferes with variety of cell 
functions including stem cell maintenance and differentia-
tion, cell migration, axonal growth and guidance (Le Belle 
et al. 2011; Munnamalai et al. 2014; Somanna et al. 2016; 
Terzi et al. 2020). Hence, it is critical to maintain physi-
ologically relevant levels of intracellular ROS for health and 
longevity.

The main cellular sources of ROS are (1) mitochondria, 
where electron-transport-chain (ETC) leads ROS produc-
tion through leakage of electrons during oxidative phospho-
rylation, (2) NADPH oxidases (NOXes), which generate 
superoxide and hydrogen peroxide (H2O2) through transfer-
ring electrons from NADPH donors to oxygen, regulating 
both immune response and homeostatic ROS signalling (3) 
peroxisomes, which produce H2O2 as a byproduct during 
breakdown of metabolic reactions such as breakdown of 
fatty acids and (4) xanthine oxidase, which generates super-
oxide and H2O2 as a byproduct of oxidative hydroxylation 
of hypoxanthine in purine metabolism; (5) cytochrome P450 
enzymes, a group of heme monooxygenases, which catalyse 
the metabolism of endogenous and exogenous molecules by 
electron transfer through NADPH cofactor, and finally (6) 
endoplasmic reticulum, which generates ROS in response to 
misfolded proteins (De Almeida et al. 2022).

The counteracting cellular antioxidant systems include 
both enzymatic, such as catalase, superoxide dismutase 
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(SOD), glutathione peroxidase, and nonenzymatic, such as 
glutathione (GSH), vitamin C, vitamin E, members (Haida 
and Hakiman 2019). In addition, uncoupling proteins 
(UCPs), located in the inner mitochondrial membrane, 
prevents ROS accumulation, and lowers the mitochondrial 
membrane potential, and their overexpression was found to 
counteract oxidative stress (Barreiro et al. 2009; Hirschen-
son et al. 2022). Finally, autophagy and/or mitophagy 
mechanisms act against cellular oxidative stress (Filomeni 
et al. 2015). Increased ROS production triggers autophagy 
to mediate clearing of ROS and oxidative damage (Chen 
et al. 2007). As mitochondria are major source of ROS, 
chronic impairment of any kind of mitochondrial function 
overproduces ROS and triggers a self-removal signal, or 
mitophagy, to eliminate the further oxidative environment 
(Schofield and Schafer 2021). Redox metabolism is not 
only maintained by ROS producing enzymes and anti-
oxidants but also by nicotinamide adenine dinucleotide 
(NAD +) and its metabolites. NAD + and NAD + -related 
metabolites, NADH, NADP + and NADPH, are crucial 
in energy metabolism, DNA repair, epigenetic modifi-
cations, inflammation and circadian rhythms (Xie et al. 
2020). NAD + and its metabolites serve as co-enzymes for 
redox reactions, relaying oxidative and reductive signal-
ling between molecules. Coupled NAD + /NADH redox 
exert their main effect in mitochondria, by serving as an 
electron donor through ETC for oxidative phosphoryla-
tion and producing cellular ROS (Li and Sauve 2015), but 
they also exhibit protective effects by enhancing GSH lev-
els and the activity of antioxidant enzymes (Wang et al. 
2014). NADPH, also, serves both as an electron donor for 
NADPH oxidases, contributing to cellular ROS produc-
tion, and as a reductive power for antioxidant defence by 
transferring electrons from enzymatic antioxidants (Bed-
ard and Krause 2007; Bradshaw 2019). The major intracel-
lular redox players are summarized in Fig. 1.

At night, oxidized molecules are either repaired or 
replaced in plants (Bechtold et al. 2004). Similarly, in 
animals, wake and sleep loss elevate mitochondrial ROS 
in dorsal fan-shaped body (dFB) neurons (Kempf et al. 
2019). Like the night phase in plants, sleep has been 
involved in toxin elimination, DNA repair, and infection 
defense (Mourrain and Wang 2019). Further, recent stud-
ies in flies showed that (1) short-sleeping mutants are 
extremely sensitive to oxidative stress, suggesting that a 
key function of sleep is to defend against oxidative stress 
(Hill et al. 2018); (2) ROS accumulation builds sleep pres-
sure sensed in specific neurons that promote sleep, which 
in turn dissipate ROS burden and return the mitochon-
drial NAD + /NADH ratio to baseline (Kempf et al. 2019). 
Although the exact mechanisms have not been discovered 
yet, accumulation of ROS during the active phase or day, 

builds up sleep pressure that is cleared during inactive 
phase, or night, thus, getting the body and brain ready for 
the prospective day.

In the forthcoming sections, we will focus on the current 
knowledge on the relationship between redox metabolism 
and sleep homeostasis mainly in zebrafish and cavefish, 
where such processes are well conserved, as vertebrate mod-
els for human studies, and discuss the implications of this 
relationship on the universal definition of sleep.

Behavioural and neural definition of sleep 
is conserved in fish

Zebrafish are diurnal animals and exhibit a recurring pattern 
of sleep and wakefulness, similar to humans. Zebrafish expe-
rience consolidated periods of sleep at night. This sleep state 
is characterized behaviourally by reduced locomotor activity, 
decreased responsiveness to stimuli, and homeostatic regula-
tion (Yokogawa et al. 2007; Zhdanova et al. 2001; Zhdanova. 
2006). Zebrafish also have sleep brain dynamics analogous 
to mammals, including Slow Bursting Sleep (SBS) and 
Propagating Wave Sleep (PWS). SBS shares many com-
monalities with NREM-Slow Wave Sleep by exhibiting 
synchronous, slow and high amplitude oscillations of the 
telencephalic neurons occurring in an overall background 
of reduced brain activity, low muscle tone, and reduced but 
steady cardiovascular activity (Leung et al. 2019). PWS is 
a sleep state sharing many features with REM/Paradoxical 
Sleep, including pontine activation, ponto-midbrain-telen-
cephalic wave propagation, rostro-caudal voluntary muscle 
atonia propagation, heart beat and breathing arrhythmia 
as well as wake-like activity of the telencephalon (Leung 
et al. 2019). The regulation of sleep involves at least two 
key processes in zebrafish as it does in other organisms: (1) 
the circadian process, which aligns sleep patterns with the 
natural 24-h day and night cycle, and (2) the homeostatic 
process, which increases the urge to sleep based on the dura-
tion of prior wakefulness. Here, we will engage in discussion 
on homeostatic regulation of sleep only in relation to redox 
metabolism.

Sleep‑modulating neuropeptides are 
conserved in zebrafish

Neuropeptides that control sleep–wake states in mam-
mals are conserved in fish as well. Galanin, an important 
neuropeptide in energy homeostasis and sleep regulation, 
is also required for homeostatic sleep rebound following 
sleep deprivation in zebrafish larvae (Martinelli et al. 2021; 
Reichert et al. 2019). Neuropeptide Y (NPY), another highly 
conserved neuropeptide, contributes to controlling energy 
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homeostasis, anxiety and sleep; exhibiting dual impact on 
sleep–wake behaviours in mammals (Hsieh et al. 2013; Shen 
et al. 2022). In zebrafish, NPY promotes sleep via inhibition 
of noradrenergic signaling and loss-of-function mutations of 
NPY resulted in decreased sleep (Singh et al. 2017). Neu-
romedin U, a key neuropeptide regulating feeding, energy 
metabolism and insulin secretion, has been shown to inhibit 
sleep in zebrafish, similar to its function in rats (Chiu et al. 
2016; Wren et al. 2002). The hypocretin/orexin neuropep-
tides are essential for the maintenance of wakefulness and 
the suppression of REM sleep, and zebrafish possess a 
functional hcrt-pineal gland circuit, connecting the hcrt and 
melatonin systems together in sleep consolidation (Appel-
baum et al. 2009). In addition to neuropeptides, melatonin, 
a naturally occurring hormone, is produced in the pineal 
gland at night and is also required for circadian regulation 

of zebrafish sleep (Kazimi and Cahill 1999; Zhdanova et al. 
2001). Melatonin’s ability to facilitate sleep is evolutionar-
ily conserved as it is widely used as an over-the-counter 
sleep aid. Finally, adenosine regulates homeostatic sleep 
by creating sleep pressure and inducing sleep as a result of 
accumulation during prolonged wakefulness (Wigren et al. 
2007). The role of adenosine in sleep homeostasis remains 
a topic of controversy in different species. In Drosophila, 
caffeine-mediated reduction and fragmentation of sleep did 
not depend on adenosine receptor (Wu et al. 2009). Simi-
larly, adenosine receptor knock-out mice did not exhibit any 
defects in sleep homeostasis (Stenberg et al. 2003). How-
ever, more recent evidence in mice suggests that intracel-
lular adenosine mediates sleep homeostasis through glial-
neural circuits; while homeostatic sleep drive was enhanced 
in glial-deficient adenosine, neural-deficient adenosine did 

Fig. 1   Summary of major 
intracellular ROS sources and 
antioxidant systems. The major 
intracellular ROS sources 
(upper panel) include: NADPH 
oxidases, peroxisomes, oxida-
tive phosphorylation in mito-
chondria, xanthine oxidases, 
and the endoplasmic reticu-
lum stress response towards 
unfolded proteins (UPR). The 
major antioxidant systems 
(lower panel) include enzymatic 
(grey): catalase, superoxide 
dismutase (SOD), glutathione 
peroxidases; and nonenzymatic 
(orange): glutathione (GSH), 
vitamin C, and vitamin E
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not influence sleep drive (Bjorness et al. 2016). In zebrafish, 
adenosine was reported to trigger sleep and prevent activity 
during the day but not at night (Mourrain lab unpublished 
data; Gandhi et al. 2015).

Sleep‑modulating neuropeptides, hormones 
and their connection to redox metabolism

Sleep–wake regulating neuropeptides are implicated in 
cellular redox metabolism. For instance, elevated NPY 
enhances cellular redox potential by increasing NADPH and 
the production of NPY itself is mediated by ROS (Raghura-
man et al. 2011; Schwetz et al. 2013). Another example is 
that the loss of functional galanin causes mitochondrial 
oxidative stress in mice (Boal et al. 2022). In addition, 
increased orexin A/hypocretin 1 peptide causes mitochon-
drial impairment and dysfunction, contributing to increased 
cellular ROS (Li et al 2020). Lastly, adenosine alleviates oxi-
dative stress by increasing expression levels of an essential 
antioxidant gene, nuclear factor (erythroid‑derived 2)‑like 
2 (Nrf2) (Gholinejad et al. 2018), suggesting that adenosine 
and oxidative burden could act together to drive sleep and 
bring redox balance back to homeostatic levels.

A direct relationship between ROS and sleep-regulating 
neuropeptides remain to be elucidated to better understand 
the mechanism of action of ROS on these neuropeptides, 
however, there is evidence from C. elegans studies that 
mitochondrial-produced ROS can modulate neuropeptide 
release: in cholinergic motor neurons, neuropeptide-like 
protein (NLP-21) secretion was inhibited in two-different 
mutant types, both mutants causing enhanced mitochondrial 
ROS production via different mechanisms (Zhao et al. 2018). 
On the other hand, mitochondria-derived ROS increased 
secretion of neuropeptide FMRP-like peptide (FLP-1) in 
AIY interneurons, which in turn induced a major antioxidant 
mechanism, Nrf2, to eliminate excess ROS and ameliorate 
oxidative stress (Jia and Sieburth 2021). Hence, depending 
on cell type and upstream activators, ROS can have differ-
ent effects on neuropeptide secretion. Overall, major cell-to-
cell signalling molecules regulating sleep–wake behavior in 
mammals and zebrafish have also been implicated in oxida-
tive stress/redox homeostasis, which may involve positive 
as well as negative feedback loops for further regulation of 
redox control and neuropeptide production and/ or release.

Melatonin is the first hint connecting redox metabolism 
to sleep function through its functions beyond regulating cir-
cadian rhythms. Melatonin is quite a peculiar compound as 
the function of melatonin has evolved and diversified over 3 
billion years. Melatonin is believed to serve as an antioxida-
tive agent, evolving in photosynthetic bacteria and acquiring 
new roles in circadian regulation and sleep in the present 
day (Manchester et al. 2015; Tan et al. 2013). While pineal 

melatonin regulates the circadian rhythms, extra pineal mel-
atonin performs various functions beyond its primary role, 
which includes acting as an antioxidant, stimulating the pro-
duction of endogenous antioxidant enzymes, scavenging free 
radicals, and playing a homeostatic role within mitochondria 
(Aranda‐Martínez et al. 2022; Gandhi et al. 2015; Zhdanova 
et al. 2001). It has been shown that melatonin is capable of 
indirectly scavenging free radicals by regulating the activity 
and expression of other antioxidant systems in both plant and 
mammals (Bidabadi et al. 2020; Morvaridzadeh et al. 2020; 
Nogués et al. 2006). In zebrafish, like in other animals, mela-
tonin also maintains the redox balance by regulating the ratio 
of reduced glutathione to oxidized glutathione (GSH/GSSG), 
reducing lipid peroxidation, and enhancing the activity and 
expression of other antioxidant enzymes such as SOD and 
catalase (Duarte et al. 2023; Lunkes et al. 2021; Yan et al. 
2022). Furthermore, melatonin administration alleviated the 
reduction in catalase, glutathione peroxidase and SOD activ-
ity following sleep-deprivation and enhanced GSH/GSSG 
ratio levels to normal (Alzoubi et al. 2016). In zebrafish, 
there is only one study that utilized melatonin treatment in 
sleep-deprived animals, and showed that melatonin treat-
ment did not rescue the learning performance in zebrafish 
(Pinheiro-da-Silva et al. 2018). However, this study lacks 
in-depth biochemical measures at the cellular level to assess 
any improvement in the cellular effects of sleep deprivation. 
Finally, in a zebrafish model of Parkinson’s disease (PD), 
a neurodegenerative disorder where sleep disturbances are 
among the most prevalent symptoms, melatonin administra-
tion restored the sleep–wake cycles of animals with impaired 
rhythm and dysfunctional mitochondria (Aranda-Martínez 
et al. 2023; Mattis and Sehgal 2016). This is similar to stud-
ies where melatonin administration prevents sleep loss in PD 
patients and confers protective effects on mitochondria in 
mice and rat models of PD (Daneshvar Kakhaki et al. 2020; 
López et al. 2017; Paul et al. 2018). Thus, melatonin has 
a bipartite role in sleep through circadian and homeostatic 
redox regulation.

Role of redox metabolism in sleep 
homeostasis

It is well-documented that during prolonged sleep depriva-
tion, ROS production is elevated in multiple species and 
in multiple organs including different regions of the brain 
(hippocampus, frontal cortex, cerebellum, neocortex), 
liver, heart, gut, and skeletal muscle (Kempf et al. 2019; 
Rodrigues et al. 2018; Vaccaro et al. 2020; Villafuerte 
et al. 2015). However, the source of this over-produced 
ROS following sleep-deprivation is currently unknown. 
The possible sources are: (1) decreased expression and 
activity of cellular antioxidant systems (discussed above), 
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or (2) increased production of ROS through major sources, 
such as mitochondria, that overcome the cellular antioxi-
dant capacity, or (3) both. Mitochondria undergo sev-
eral ultrastructural and biochemical changes after sleep 
deprivation. Mitochondrial size and density increases, 
fusion/fission dynamics are dysregulated, ETC efficiency 
decreases, and ROS production increases (De Vivo et al. 
2016; Flores et al. 2022; Lu et al. 2021). Mitochondria-
derived ROS turns on the dFB neurons, which are more 
excitable with higher sleep pressure in fruit flies. dFB 
neurons are activated through the voltage-gated potassium 
channel Shaker and its subunit Hyperkinetic, and loss-
of-function mutations in either protein cause insomnia 
(Bushey et al. 2007; Cirelli et al. 2005; Kempf et al. 2019). 
Hyperkinetic has a redox-sensing capability via its binding 
to NADPH in its active site; as sleep pressure increases, 
mitochondria ETC enhances ROS production, which in 
turn oxidizes NADPH to NADP + . As a result, Hyperki-
netic is more likely converted to its NADP + -bound form, 
such that A-type potassium current flows through Shaker 
with slower inactivation, and thus enhancing the activ-
ity of sleep-control neurons (Kempf et al. 2019). Simi-
larly, loss of voltage-gated potassium channel kcna2 and 
Na + /K + pump atp1a3 genes in zebrafish reduced sleep, 

and it is highly likely that redox metabolism and sleep 
are mechanically connected in zebrafish as in fruit flies 
(Barlow et al. 2023; Srdanovic et al. 2017). In zebrafish, 
intracellular NAD(H) levels were shown to be reduced in 
the absence of Letm1, a conserved mitochondrial cation 
exchanger which follows diurnal rhythms together with 
NAMPT, the key enzyme in NAD + production (Dao et al. 
2022). Finally, Parp1, which is both an NAD + consuming 
and a DNA repair enzyme, can trigger sleep in zebrafish 
and adult mice. Zada et al., showed that neuronal DNA 
damage, which builds up during the day, increases sleep 
pressure and that Parp1 activity promotes sleep to facili-
tate efficient DNA repair and clearing of the pressure 
(Zada et al. 2021). Thus, the redox metabolites NAD + /
NADH and NADP + /NADPH serve as a link between cel-
lular metabolism and sleep. It has been acknowledged that 
during the active phase, high cellular activity concentrates 
ROS from different sources, leading to increased sleep 
drive. During sleep, antioxidant mechanisms take over to 
counteract the ROS accumulation and restore the cellular 
redox balance. When the ROS burden cannot be alleviated 
because of reduced or lack of sleep, the redox imbalance 
persists and causes cellular damage. The metabolic regula-
tion of sleep and the redox state is summarized in Fig. 2.

Fig. 2   Schematics of redox-
related changes during sleep–
wake cycle. ROS accumulates 
from high cellular activity and 
increased NADH during the 
wake period (top left), creating 
sleep pressure (top right) in the 
form of membrane lipid peroxi-
dation, redox imbalances and 
DNA damage. The effects of 
the wake period are ameliorated 
during the sleep period (bottom 
left), where DNA damaged dur-
ing the day period is repaired 
and membrane lipids and redox 
systems are replenished and 
returned to homeostatic levels. 
Inadequate sleep and sleep dep-
rivation (bottom right) worsen 
the redox imbalance with lower 
antioxidant systems (GSH, 
SOD, catalase) that cannot pre-
vent further ROS accumulation
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Astyanax mexicanus: lessons to be learned 
from fish that sleep less

Astyanax mexicanus, commonly known as the Mexican 
tetra, exhibits two-different morphotypes: surface- and 
cave-dwelling populations (Jeffery 2020). These popula-
tions have diverged due to their contrasting habitats and 
environmental conditions. The surface populations reside 
in rivers and streams with access to nutrients, while the 
cave populations inhabit underground cave systems, hav-
ing adapted to scarce nutrient environments (Rohner 
2018). The surface populations have retained their pig-
mentation and functional eyes, allowing them to thrive 
in lighted environments. In contrast, the cave populations 
have undergone evolutionary changes, resulting in reduced 
pigmentation, and degenerated or non-functional eyes, as 
they inhabit dark cave environments with limited or no 
access to light (Krishnan and Rohner 2017; Moran et al. 
2015). These adaptations reflect the selective pressures 
acting on each population, such as the surface populations 
adapting to visual cues and the cave populations relying 
on other sensory mechanisms for survival in the darkness. 
The study of these distinct populations provides valuable 
insights into evolutionary processes, as well as metabolic 
and molecular adaptations to extreme environments.

Interestingly, cavefish exhibited 80% reduction in their 
sleep compared to surface-dwelling populations, thus 
becoming a robust model for understanding evolutionary 
changes in sleep (Jaggard et al. 2018; Keene and Appel-
baum 2019; Yoshizawa et al. 2015). Two interconnected 
mechanisms have been reported to affect the sleep reduc-
tion in cavefish populations: sensory input and the wake-
promoting Hcrt neuropeptide. The lateral line of fish con-
sists of mechanosensory organs called neuromasts, and 
the number, size and sensitivity of neuromasts to sensory 
stimuli are more profound in cavefish than in surface-
dwelling populations (Yoshizawa et al. 2014). Targeted 
ablation of neuromasts in cavefish enhanced their sleep, 
suggesting that increased sensory input is responsible 
for sleep loss (Jaggard et al. 2017). In addition, the Hcrt/
orexin network is conserved in Mexican tetra, and loss of 
Hcrt function in cavefish restores sleep to levels similar to 
those in surface fish (Jaggard et al. 2018). Furthermore, 
ablating mechanosensory lateral line reduced Hcrt levels 
in cavefish, implying that the recognition of sensory cues 
through the lateral line plays a crucial role in promoting 
Hcrt signalling (Jaggard et al. 2018), thereby maintaining 
wakefulness. Despite the given role of sensory respon-
siveness in sleep reduction, it is noteworthy that lateral 
line ablation did not have an impact on sleep in four sepa-
rate populations of cavefish (Jaggard et al. 2017). This 
finding implies that unique mechanisms likely govern 

the evolutionary process of sleep loss in independently 
derived cavefish populations, or there are other commonly 
evolved mechanisms that are important in sleep regulation, 
that have yet to be studied.

Cavefish face extreme conditions in their natural habi-
tats such as long periods of nutrient deprivation, which in 
turn triggers chronic stress. As opposed to other organisms, 
for which these conditions would be deleterious, cavefish 
overcome the environmental challenges and maintain physi-
ological health via metabolic adaptations, potentially con-
tributing to reduced sleep phenotype in cavefish. Compared 
to surface-dwelling populations, cavefish acquired insulin 
resistance and elevated blood glucose in multiple cave popu-
lations to develop metabolic resilience (Riddle et al. 2018). 
Decreasing sleep duration significantly reduced insulin 
sensitivity in healthy individuals, and sleep loss is a risk 
factor for insulin resistance and type 2 diabetes in humans, 
suggesting insulin-mediated metabolic changes could have 
impact on sleep regulation (Buxton et al. 2010; Spiegel et al. 
2005). Furthermore, redox alterations have bidirectional role 
in developing insulin resistance: H2O2 has been shown in 
mice to attenuate insulin resistance while chronic ROS pro-
duction via mitochondria and NOXes contribute to develop-
ment of insulin resistance by pro-inflammatory cytokines 
(Loh et al. 2009; Tiganis 2011). Unlike the surface mor-
photype, cavefish have lower levels of ROS and enhanced 
antioxidant activities, which could contribute to reduced 
need for sleep and weaker oxidative response to stress con-
ditions. Key antioxidant genes involving GSH metabolism 
were upregulated and the major cellular antioxidant, GSH, 
as well as vitamin C, were increased in the liver and brain 
of cave populations, but not in surface-dwelling populations 
(Krishnan et al. 2020; Medley et al. 2022). Moreover, under 
stress conditions of prolonged starvation, cavefish exhibited 
lower cytoplasmic ROS compared to surface fish (Medley 
et al. 2022), indicating that ROS accumulation is likely to 
be at a lesser extent in cavefish populations, supporting the 
hypothesis that ROS accumulation creates sleep pressure 
and ROS is cleared during sleep.

Concluding remarks

Despite being evolutionarily conserved across all animals, 
the core physiological function of sleep remains unclear. 
The imbalance between the antioxidant defense system 
and the generation of oxidants creates oxidative stress 
which can further cellular damage and compound adverse 
issues from chronically impaired sleep such as obesity and 
even neurodegenerative disorders. Redox metabolism, like 
sleep, is well conserved such that from plants to animals, 
it has been found that oxidized molecules are dissipated 
at night to facilitate processes like DNA repair. Here, we 
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primarily focus on zebrafish, a highly amenable model in 
which sleep, and metabolic mechanisms are highly con-
served, to delineate the reciprocal relationship between 
sleep homeostasis and redox metabolism.

As mentioned above, it is well documented across spe-
cies that prolonged sleep deprivation increases susceptibil-
ity to oxidative stress in the form of increased mitochon-
drial ROS which in turn increases sleep pressure. During 
sleep, this pressure is ameliorated by removing scavenging 
free radicals with antioxidant enzymes which can be regu-
lated with sleep–wake modulators like melatonin. Con-
cordantly, some species, like the cavefish highlighted in 
this review, have evolved metabolic evolutionary changes 
different from their surface-dwelling counterparts to 
increase their resilience to oxidative stress via lower ROS 
and higher antioxidant levels. If a key function of sleep is 
to defend against oxidative stress accumulated during the 
wake period, these metabolic changes to prevent oxida-
tive stress in cavefish may be contributing to their shorter 
sleep phenotype and might mean that differences in sleep 
between animals or species is due in part to metabolic 
differences. In addition, it is possible that evolution led 
to shared redox-sensing channels (e.g., Hyperkinetic and 
Shaker) to mechanically link sleep-active neurons and 
redox metabolism in order to more efficiently serve a com-
mon fundamental need. This fundamental need requires 
identification to truly define sleep in an explanation that 
accounts for the many evolutionarily conserved roles of 
sleep, such as in redox metabolism as we covered here.

In this review, we cover the significance and the mech-
anisms of redox metabolism and sleep homeostasis and 
how they are connected. However, there are challenges 
remaining to pinpoint the cellular mechanisms that explain 
where and how exactly ROS accumulation builds sleep 
pressure and how precisely this sleep pressure is cleared. 
We focus particularly on to explore how this ROS accu-
mulation contributes to sleep pressure buildup and the 
exact mechanisms by which this sleep pressure is cleared 
as these questions remain unknown in this group of organ-
isms. Metabolic homeostasis and the cellular redox sys-
tems are delicate systems that differ in subcellular com-
partments and depend on the physiological condition of 
the animal/cell (e.g., circadian rhythm, cell cycle stage, 
disease pathology). Due to these finer differences, non-
targeted treatments of reactive oxidant radicals which are 
highly specific in their signalling, may fail as a remedy if 
subcellular precision at specific timepoints is necessary. 
Therefore, the study of intracellular mechanisms at the 
interplay of redox metabolism and sleep–wake regulation 
remains a difficult endeavor. Future studies may require 
precise targeting of both systems in tandem to fully elu-
cidate this key function of sleep that maintains metabolic 
homeostasis.
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