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Abstract
Peak lactation occurs when milk production is at its highest. The factors limiting peak lactation performance have been 
subject of intense debate. Milk production at peak lactation appears limited by the capacity of lactating females to dissipate 
body heat generated as a by-product of processing food and producing milk. As a result, manipulations that enhance capac-
ity to dissipate body heat (such as fur removal) increase peak milk production. We investigated the potential correlates of 
shaving-induced increases in peak milk production in laboratory mice. By transcriptomic profiling of the mammary gland, we 
searched for the mechanisms underlying experimentally increased milk production and its consequences for mother–young 
conflict over weaning, manifested by advanced or delayed involution of mammary gland. We demonstrated that shaving-
induced increases in milk production were paradoxically linked to reduced expression of some milk synthesis-related genes. 
Moreover, the mammary glands of shaved mice had a gene expression profile indicative of earlier involution relative to 
unshaved mice. Once provided with enhanced capacity to dissipate body heat, shaved mice were likely to rear their young 
to independence faster than unshaved mothers.

Keywords Heat dissipation limit · Milk production · Milk synthesis-related genes · Involution-related genes · Mammary 
gland involution · Mother-young conflict

Introduction

Provisioning young with milk is highly demanding (Clut-
ton-Brock et al. 1989; Speakman 2008). At the tissue level, 
lactation requires extensive expansion and differentiation 
of mammary glands, which is initiated during pregnancy 
(Macias and Hinck 2012; Lee and Kelleher 2016). Milk 
production is costly in terms of energy, nutrients, bioactive 
components (immune factors, growth modulators and hor-
mones) as well as water (McClellan et al. 2008; Andreas 
et al. 2015). Apart from the energy exported in milk, extra 
energy is also needed to offset milk production inefficiency 
(Butte and King 2005). Having milk-dependent young may 
increase the chance of predation due to increased foraging 
efforts before lactation (capital breeders) or during lactation 
(income breeders), and by staying in the proximity of young 
and actively defending young from predators or conspecif-
ics (Holmes 1991; Rӧdel et al. 2008; Larimer et al. 2011; 
Nunes 2014). Foraging for extensive periods of time may 
substantially increase the daily costs of locomotor activity 
and increase thermoregulatory costs by exposing lactating 
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females to cooler or hotter ambient temperatures (Kurta 
et al. 1989; Tarnaud 2006; Rogers et al. 2021). Together, the 
high physiological, behavioural, and ecological costs of lac-
tation are at the core of trade-offs between current and future 
reproduction and contribute to limits on lifetime reproduc-
tive success (Gittleman and Thompson 1988; Stearns 1992; 
Hamel et al. 2010; Festa-Bianchet et al. 2019).

The conflict between the mother and the young over 
maternal investment during pregnancy and lactation cul-
minates at the time of weaning (Trivers 1974; Rehling 
and Trillmich 2007; Haig 2010). While weaning allows 
the mother to exit lactational amenorrhea and prepare for 
another breeding event (or to focus on concurrent preg-
nancy), it withdraws resources from the currently reared 
young, forcing them to become nutritionally independent 
(Mandalaywala et al. 2014; Hayssen and Orr 2017). Further 
complication to the process of weaning may be added by 
within-litter variation in suckling abilities and weight gain 
in polytocous mammals, likely to spread the weaning over a 
longer period of time (Paul and Bhadra 2017). Importantly, 
the cessation of suckling initiates the regression of mam-
mary tissue to the pre-pregnant state necessary for the next 
breeding event, in a complex process called the post-lacta-
tional involution of mammary gland (Strange et al. 1992; 
Lund et al. 1996; Watson 2006; Macias and Hinck 2012; 
Watson and Khaled 2020). To experimentally induce and 
synchronise mammary involution in laboratory mice (Mus 
musculus), all suckling pups need to be removed from non-
concurrently pregnant mothers at the same time, typically 
at peak of lactation (Stein et al. 2004, 2007; Clarkson et al. 
2004; Blanchard et al. 2007). Involution is then triggered 
by the accumulation of milk in the alveolar lumens (milk 
stasis) and occurs in two distinct phases. The first phase 
is reversible, lasts ~ 48 h and is characterised by rapid pro-
grammed death of mammary secretory epithelial cells with 
limited alveolar collapse (Green and Streuli 2004; Baxter 
et al. 2007). If pups are returned to the mother within 48 h 
of removal, the involution can be reversed and lactation 
resumes. If pups are not returned, the circulating levels of 
prolactin decline and involution enters the second phase, 
which is irreversible, lasts ~ 2 weeks and is marked by exten-
sive mammary tissue remodelling and repopulation by adi-
pocytes (Li et al. 2017; Wang et al. 2018; Zwick et al. 2018). 
It has been demonstrated that mammary involution may be 
delayed but not prevented by concurrent pregnancy (Capuco 
et al. 2002). Any delay not related to concurrent pregnancy 
or defect in the process of mammary gland involution are 
likely to perturb the reproductive cycle of the female, poten-
tially affecting her lifetime reproductive success and fitness 
(Akhtar et al. 2016; Hughes and Watson 2018a; Jena et al. 
2019).

Peak lactation is a time during which a female mam-
mal’s milk production is at its highest and is unresponsive 

to elevated demands from the young (Hammond et al. 1994, 
1996; Johnson et al. 2001; Król and Speakman 2003a). The 
factors limiting the lactation performance have been subject 
of intense debate due to their implications for understanding 
many aspects of mammalian evolution (Speakman and Król 
2010a, b), human neonatal nutrition (Victora et al. 2016; 
Huang et al. 2021), and productivity of dairy livestock (Clay 
et al. 2020). To focus on physiological rather than ecological 
or behavioural limits to lactation, most studies have been 
performed in laboratory conditions, with ad libitum food 
supply, no predation risk and minimal costs of locomotion 
and thermoregulation. The physiological nature of the limits 
to lactation during a single breeding event has been recently 
demonstrated in laboratory mice (Zhao et al. 2020a). Over-
all, the limit-to-lactation studies aimed to remove the cap 
on maternal investment at peak lactation by a wide range 
of manipulations, including changes in (1) total metabolic 
demand during lactation (adding extra pups, prolonging 
lactation, making lactating females simultaneously preg-
nant, and requiring lactating females to run for food), (2) 
diet quality and composition, (3) environmental conditions 
(exposure of lactating females to different ambient tempera-
tures), and (4) heat exchange between lactating females and 
the environment at a fixed ambient temperature (for review 
and references see Speakman and Król 2005a, 2011; Król 
and Speakman 2019). Views about the constraints on lacta-
tion performance have changed over time. Initially, lacta-
tion performance was thought to be limited by the capacity 
of digestive tract to process the ingested food (Drent and 
Daan 1980; Peterson et al. 1990; Weiner 1992; Koteja 1996; 
Sadowska et al. 2019). This was followed by consideration 
that lactation performance was limited by capacity of the 
mammary gland to produce milk (Hammond et al. 1994, 
1996; Yang et al. 2013; Zhao et al. 2013; Wen et al. 2017). 
Finally, the concept of a heat dissipation limit (HDL) associ-
ated with the capacity of lactating females to get rid of body 
heat generated as a by-product of processing food and pro-
ducing milk was developed (Król and Speakman 2003a, b; 
Król et al. 2003, 2007, 2011; Speakman and Król 2010a, b; 
Sadowska et al. 2016; Deng et al. 2020; Huang et al. 2020a; 
Ohrnberger et al. 2020; Zhao et al. 2020b). Lactogenic heat 
production in laboratory mice is sufficiently high to double 
their daily energy expenditure at peak lactation (Król and 
Speakman 2019), leading to the sustainably elevated mater-
nal body temperature (Gamo et al. 2013), a phenomenon 
reported in several species of lactating rodents and in large 
domestic animals (Speakman 2008; Hansen 2009). Further 
increases in heat production that are not balanced by heat 
loss may put lactating females at risk of developing poten-
tially fatal hyperthermia (Speakman and Król 2010a).

An experimental manipulation instrumental for formu-
lating the HDL hypothesis was fur removal to reduce the 
external insulation of lactating females and thereby elevate 
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their capacity to dissipate body heat (Fig. 1). Shaving off 
dorsal fur increases the thermal conductance of lactating 
mice by 10–16% (Zhao and Cao 2009; Sadowska et al. 
2019). In MF1 mice that were shaved before peak lactation, 

food intake increased by on average 12.0% and assimilated 
energy increased by on average 30.9 kJ  day−1 compared with 
unshaved females (Król et al. 2007). With nearly identical 
mean litter sizes (11.4 pups for shaved and 11.3 pups for 
unshaved mice), shaved mothers exported on average 15.2% 
(22.0 kJ  day−1) more energy as milk than control individu-
als. The elevated milk production of shaved mice enabled 
them to wean litters that were on average 15.4% (12.2 g) 
heavier than young produced by unshaved mice. Since then, 
shaving-induced increases in milk production have been 
demonstrated in lactating female bank voles (Myodes glareo-
lus) and golden hamsters (Mesocricetus auratus) but not in 
Swiss mice or common voles (Microtus arvalis) (Table 1). 
These contrasting results are consistent with the idea that 
different species and strains may be constrained by different 
mechanisms and that the nature of these constraints may 
depend on the ambient temperature at which the experimen-
tal manipulation was performed (Speakman and Król 2011; 
Huang et al. 2020b). 

In the current study, we shaved lactating MF1 mice 
to establish how shaving-induced increases in milk pro-
duction are mediated at the level of mammary gland 

Fig. 1  Lactating MF1 mouse with dorsal fur shaved off to increase 
heat dissipation capacity (photo by John R. Speakman)

Table 1  Effects of fur removal on lactation performance (maternal food intake, milk production and mass of young) in laboratory and captive 
rodents

The difference between shaved (S) and unshaved (U) females is expressed as % of significant increase (↑), % of significant decrease (↓) or no sig-
nificant change ( ↔) relative to unshaved animals, calculated as (S − U)/U × 100. Data not available are indicated by ‘Na’
Source: 1, Król et al. 2007; 2, Zhao and Cao 2009; 3, Zhao et al. 2010; 4, Simons et al. 2011; 5, Sadowska et al. 2016; 6, Zhu et al. 2016; 7, Sad-
owska et al. 2019; 8, Ohrnberger et al. 2020
Superscripts and symbols
a Ambient temperature during lactation
b Day of lactation when shaving was performed (relative to parturition on day 0)
c Measured at peak lactation in g/day
d Measured at peak lactation in kJ/day
e Litter mass at weaning
f Pup growth rate
g Litter growth rate
h Mice selected for high or low basal metabolic rate (BMR)
i Pup mass at weaning
∼ Data retrieved from figures

Species/Strain Ta
a (°C) Shavingb Food  intakec Milk  productiond Mass of young Source

Laboratory mouse (Mus musculus, MF1) 21 Days 6, 10, 14 ↑ 12.0% ↑ 15.2% ↑ 15.4%e 1
Laboratory mouse (Mus musculus, Swiss) 23 Day 7 ↑ 6.9% Na  ↔ 2
Laboratory mouse (Mus musculus, Swiss) 23 Day 7 ↑ 8.8%  ↔  ↔ 3
Common vole (Microtus arvalis) 30 Day 2  ↔  ↔ ↑ ~ 5%f 4
Bank vole (Myodes glareolus) 20 Days 5, 9 ↑ 13.2% ↑ 11.8% ↑ 22.1%g 5
Yunnan red-backed vole (Eothenomys miletus) 25 Day 7 ↑ 9.0% Na  ↔ 6
Lab mouse (M. musculus, Swiss Webster, high BMR)h 23 Day 8  ↔ Na  ↔ 7
Lab mouse (M. musculus, Swiss Webster, low BMR)h 23 Day 8  ↔ Na ↓ ~ 40%f 7
Golden hamster (Mesocricetus auratus) 22 Day 6 ↑ 9.9% ↑ 23.4% ↑ 23.7%i 8
Laboratory mouse (Mus musculus, MF1) 21 Days 6, 10, 14 ↑ 18.7% ↑ 19.5% ↑ 19.5%e This study
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transcriptome. We were particularly interested in whether 
shaving mice to relax the HDL and reduce the risk of 
maternal hyperthermia affected the time of weaning 
manifested by involution of mammary gland (mother–off-
spring conflict). Two aspects of the increases in milk 
production at peak lactation were also investigated—the 
milk synthesis machinery at the transcriptomic level, and 
the mammary gland gene expression correlated with milk 
production. By RNA-seq profiling of the mammary gland 
in shaved and unshaved lactating mice, we identified dif-
ferentially expressed genes (DEGs) associated with shav-
ing and then compared them with sets of genes compiled 
from the mouse mammary gland literature, containing 
milk synthesis-related genes and involution-related genes.

Materials and methods

Animals and experimental protocol

We used 10 virgin female mice (Mus musculus L., out-
bred MF1) kept on a 12 h:12 h light:dark cycle (lights on 
07:00·h) at 21 °C (range 20–22 °C) and a relative humid-
ity of 59% (range 54–64%). Food (CRM, Pelleted Rat and 
Mouse Breeder and Grower Diet, Special Diets Services, 
BP Nutrition, Witham, Essex, UK) and water were avail-
able ad libitum. At 9–11 weeks of age, mice were accli-
mated to the single housing environment for 1 week, after 
which they were paired with MF1 males for 11 days. All 
females became pregnant and gave birth to young. Fol-
lowing previous convention, the day of birth was counted 
as day 0 of lactation.

Female body mass and food intake together with lit-
ter size and litter mass were recorded every other day 
from day 4 of lactation to the end of the experiment (day 
18). On day 6 of lactation, half of the lactating females 
(n = 5) were shaved, while the other half (n = 5) served as 
an unshaved control group (details below). Milk produc-
tion was evaluated within the peak of lactation (approxi-
mately days 10–18 post-partum, Johnson et al. 2001) from 
measurements of metabolizable energy intake (MEI) and 
daily energy expenditure (DEE) by doubly labelled water 
(DLW) technique (details below). On day 18 of lactation, 
all mothers were sacrificed by  CO2 overdose. The right 
inguinal mammary gland was removed, frozen immedi-
ately in liquid  N2 and stored at − 80 °C prior to RNA 
extraction. All procedures were authorized by the College 
of Life Sciences and Medicine Ethics Review Board at the 
University of Aberdeen and carried out under UK Home 
Office project licence PPL 60/2881.

Fur removal

Once the phenotype measurements on day 6 of lactation 
were completed, all 10 lactating females were anaesthetized 
with gaseous isoflurane for ~ 10 min. While under anaesthe-
sia, 5 females were shaved dorsally (using a Wella Contura 
Hair Clipper, Basingstoke, Hants, UK) to remove ~ 72% of 
fur (Król et al. 2007), as depicted in Fig. 1. Hair regrowth 
was prevented by repeating the shaving protocol on days 10 
and 14 of lactation. The remaining mice were handled and 
anaesthetised similarly but not shaved.

Metabolizable energy intake (MEI)

Measurements of MEI were performed on days 12–14 of 
lactation. Females and their litters were placed in cages with 
fresh sawdust on day 12 of lactation, and a weighed portion 
of food was added to the hopper. Samples of the food were 
taken to determine dry mass content, and the food remain-
ing in the hopper was reweighed on day 14 of lactation. 
Any uneaten food and faeces were removed from the cage, 
dried to a constant mass, and weighed. The gross energy 
content of food and faeces were measured with a Parr 6200 
calorimeter using an 1109A semi-micro oxygen bomb (Parr 
Instrument Company, Moline, IL, USA). MEI was estimated 
as the difference between energy consumed and defecated, 
assuming that urinary energy loss was 3% of the digestible 
energy intake (for details see Król et al. 2007).

Daily energy expenditure (DEE)

DEE was measured on days 15–17 of lactation, using the 
DLW technique (Speakman 1997). Lactating females were 
injected intraperitoneally with ~ 0.25 g of water enriched 
with 18O (28 atom%) and 2H (16 atom%). Initial blood 
samples were taken from the tail tip after 1 h of isotope 
equilibration to estimate initial isotope enrichments (Król 
and Speakman 1999); final blood samples were taken 48 h 
later to estimate isotope elimination rates (Speakman and 
Racey 1988). Blood samples were immediately heat sealed 
into glass capillaries and stored at room temperature prior 
to vacuum distillation. Water from the resulting distillate 
was used to produce  CO2 (Speakman et al. 1990) and  H2 
(Speakman and Król 2005b), and the isotope ratios 18O:16O 
and 2H:1H were analysed using gas source isotope ratio mass 
spectrometry (ISOCHROM μGAS system and IsoPrime 
IRMS, Micromass, Manchester, UK).

We used the intercept method (Coward and Prentice 
1985) to calculate the initial dilution space and the single-
pool model (Eq. 7.17 in Speakman 1997) to calculate the 
rate of  CO2 production (for details see Król et al. 2007). 
Energy equivalents of the rate of  CO2 production were cal-
culated using a conversion factor of 24.026 J  mL−1  CO2, 
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derived from the Weir equation (Weir 1949) for a respiratory 
quotient of 0.85 (Speakman 1997).

Milk energy output (MEO)

MEO was calculated as the difference between MEI (days 
12–14 post-partum) and DEE (15–17 post-partum) (Król 
and Speakman 2003b), with MEI being the main determi-
nant of milk production in lactating mice (Speakman 2008). 
Both MEI and DEE were measured within the peak of lacta-
tion (approximately days 10–18 post-partum, Johnson et al. 
2001) but on different days to avoid possible changes in 
behaviour and feeding patterns caused by DLW injection 
and blood sampling (Speakman and Król 2005b). To reduce 
possible effects of blood sampling on gene expression, tissue 
harvest was done on day 18 of lactation (~ 24 h after comple-
tion of DLW experiment).

RNA extraction

Total RNA from the inguinal mammary gland was isolated 
by homogenization of ~ 100 mg of tissue in  TRIzol® Reagent 
(Ambion by Life Technologies, Carlsbad, CA, USA), using 
3 mm tungsten carbide beads and a TissueLyser II Disrup-
tion System (Qiagen GmbH, Hilden, Germany). Following 
isolation, the RNA was quantified by spectrophotometry 
(NanoDrop Technologies, Wilmington, DE, USA) and its 
integrity was confirmed by electrophoresis (Agilent Tech-
nologies, Santa Clara, CA, USA). All RNA samples had a 
RIN number > 7.8, meeting the criteria for RNA-seq.

RNA‑seq library preparation and sequencing

RNA-seq library preparation and sequencing were carried 
at the Beijing Genomics Institute (BGI, Shenzhen, China). 
The libraries for each of the 10 samples were constructed 
using the TruSeq Stranded mRNA Sample Preparation Kit 
(Illumina, San Diego, CA), according to the manufacturer’s 
instructions. The 50 bp paired-end sequencing was per-
formed on the HiSeq 2000 Sequencing System (Illumina, 
San Diego, CA) at a sequencing depth of ~ 50 million reads 
per library. The raw reads were trimmed and converted from 
BCL to FastQ format with bcl2fastq2 Conversion Software 
v2.19.1 (Illumina, San Diego, CA). All raw sequences 
have been deposited in the ArrayExpress repository (http:// 
www. ebi. ac. uk/ array expre ss/) under accession number 
E-MTAB-11654.

Read mapping

To assess the quality of the sequencing data, reads were ana-
lysed with FastQC v0.11.8 (Andrews 2010). All reads passed 
the quality control checks and were mapped to the mouse 

reference genome (GRCm38 release 81) using HISAT2 
v2.1.0. (Kim et al. 2015) with the pre-built genome index 
and default settings for paired-end reads. Alignment rates 
were above 90%. Aligned reads were counted at gene loca-
tions using featureCounts v1.6.4 (Liao et al. 2014).

Differential analysis of gene expression

Gene expression levels in the mammary glands of shaved 
and unshaved mice were summarized using principal com-
ponent analysis (PCA), as implemented by the Bioconductor 
package PCAtools (Blighe et al. 2018). Differential gene 
expression analysis was performed using the Bioconductor 
package edgeR v3.22.5 (Robinson et al. 2010). Both analy-
ses were executed in R v3.5.1 (R Core Team 2018).

To filter out lowly expressed genes, the analyses were 
performed only on the transcripts with at least 2 counts 
per million (CPM) in a minimum of 5 samples, amount-
ing to 10,901 such genes in total. Filtered counts were sub-
sequently normalized using a trimmed mean of M values 
(TMM) between each pair of samples. The PCA analysis 
was performed on the normalized CPM values that have 
added a prior count = 1 to avoid zeros during calculation 
of log-values. Scores for individual mice were calculated 
using the eigenvectors from the first (PC1) and second (PC2) 
principal components.

The gene expression data (normalized CPM values) were 
then fitted with a negative binomial generalized log-linear 
model (glmFit), with the contrast set up to compare shaved 
vs unshaved lactating mice (n = 5 females per group). Dif-
ferentially expressed genes (DEGs) were identified at false 
discovery rate (FDR) < 0.05 and absolute  Log2 FC > 0.5, 
yielding 752 DEGs in total.

Overlaps with gene sets from literature

Based on a literature search, we generated 2 sets of genes 
associated with the transcriptomic changes in the mouse 
mammary gland during and post lactation, including milk 
synthesis-related genes, and involution-related genes. The 
milk synthesis-related gene set was based on the research 
by Rudolph et al. (2007), Maningat et al. (2009), Moham-
mad and Haymond (2013), Lemay et al. (2013), Manjarin 
et al. (2014), Qian and Zhao (2014), Kobayashi et al. (2016), 
Osorio et al. (2016), Han et al. (2019), Patel et al. (2019), 
Cayre et al. (2020) and Martin Carli et al. (2020).

The mammary gland involution-related genes were 
identified by 3 independent microarray experiments 
(Stein et al. 2004; Clarkson et al. 2004; Blanchard et al. 
2007), which were then combined or re-analysed by oth-
ers (Stein et al. 2007; Bambhroliya et al. 2018). In all 3 
studies, the involution of mammary glands was induced 
by pup removal (Table 2). Because each experiment and 

http://www.ebi.ac.uk/arrayexpress/
http://www.ebi.ac.uk/arrayexpress/
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reassembly of data had a slightly different protocol and 
focus of investigation, we generated 4 lists of involution-
related genes, according to the outputs from Stein et al. 
2004, Clarkson et al. 2004, Stein et al. 2007 and Blanchard 
et al. 2007.

Overlaps between DEGs induced by shaving and gene 
sets from the literature were evaluated using a one-sided 
Fisher’s exact test. The test was performed on the gene 
set numbers arranged in 2 × 2 contingency tables, using a 
function fisher.test in R v3.5.1 (R Core Team 2018), with 
the parameter ‘alternative’ set to ‘greater’. The p values 
generated by the Fisher’s exact test were subjected to Bon-
ferroni correction for multiple comparisons.

Functional analysis of gene expression

DEGs in the mammary glands of shaved vs unshaved mice 
were analysed using Ingenuity Pathway Analysis (IPA, 
QIAGEN Redwood City, www. qiagen. com/ ingen uity). We 
submitted the whole RNA-seq output (n = 10,901 genes, 
along with their  Log2 FC and FDR values) to IPA and 
used this dataset as a reference set for functional analy-
sis of DEGs (n = 752, at FDR < 0.05 and absolute  Log2 
FC > 0.5). We used the default analysis settings, apart 
from species (we selected mice and excluded humans and 
rats). The focus of the functional analysis of DEGs were 
(1) canonical pathways, (2) upstream regulators, and (3) 
downstream effects associated with these genes. The sig-
nificance of the IPA outputs was based on the Benjamini-
Hochberg (B-H) multiple testing correction p value, with 

the overall activation/inhibition states predicted by the IPA 
z-score algorithm.

Correlation analysis of gene expression

Counts from mammary gland samples were normalized 
using the trimmed mean of M values (TMM) method with 
edgeR’s calcNormFactors function. To filter out lowly 
expressed genes, the correlation analysis was performed 
only on the genes with at least 5 CPM in at least 2 mice 
from the shaved group (9279 genes), 2 mice from the control 
group (9209 genes) and 4 mice from the pooled shaved and 
control groups (9164 genes). Correlation analysis between 
mammary gland gene expression (normalized  Log2 CPM 
values) and milk production (kJ/day) was performed sepa-
rately for 5 shaved mice, 5 unshaved mice, and both shaved 
and unshaved mice (n = 10). All analyses were done in R 
v3.5.1 (R Core Team 2018), using functions cor.test (for 5 
mice) and pcor.test (for 10 mice), based on the Pearson’s 
product moment correlation coefficient. The function pcor.
test was used to identify partial correlations between milk 
production, shaved status, and gene expression. By doing 
this, the potentially confounding effects of the shaved sta-
tus were removed (blocked). Correlations between gene 
expression and milk production were considered significant 
at FDR < 0.05.

Statistical analysis of non‑transcriptomic data

All non-transcriptomic data were assessed for normality and 
homogeneity of variance and are presented as mean ± stand-
ard deviation (n = 5). The whole-body phenotype (body 

Table 2  Details of the mammary gland involution experiments used to generate involution-related gene sets

The expression of these genes was studied by microarray analysis and refer to the involution of mammary gland induced by pup removal. Details 
of the shaving experiment (this study) are shown for comparison
Source: 1, Stein et al. 2004; 2, Clarkson et al. 2004; 3, Stein et al. 2007; 4, Blanchard et al. 2007
MA microarray gene expression analysis, RNA-seq RNA-seq gene expression analysis

Mouse strain Manipulation Tissue harvest Method Comparison/sample size Number of 
involution-related 
genes

Source

Balb/C Pup removal (day 7 of 
lactation)

Days 0, 1, 2, 3, 4, 20 of 
involution

MA Days 1, 2, 3, 4, 20 vs day 
0 (n = 3)

112 1

C57/Bl/6 Pup removal (day 10 of 
lactation)

Days 0, 0.5, 1, 2, 3, 4 of 
involution

MA Days 0.5, 1, 2, 3, 4 vs day 
0 (n = 3)

130 2

Reanalysis 
of studies 1 
and 2

Reanalysis of studies 1 
and 2

Reanalysis of studies 1 
and 2

MA Days 0.5, 1, 2, 3, 4 vs 
day 0

93 3

CD1 Pup removal (day 12 of 
lactation)

Days 0, 1 of involution MA Day 1 vs day 0 (n = 5) 101 4

MF1 Fur removal (days 6, 10, 14 
of lactation)

Day 18 of lactation RNA-seq Shaved vs unshaved (n = 5) – This study

http://www.qiagen.com/ingenuity
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mass, food intake and metabolism) and reproductive per-
formance of shaved vs unshaved mice were compared using 
Welch two-sample t tests. The differences between shaved 
and unshaved mice in their peak lactation food intake, MEI, 
DEE, MEO and litter mass were then compared with 95% 
confidence intervals for the same parameters detected as sig-
nificant in our original shaving experiment performed on a 
larger sample size (Król et al. 2007). Measurements repeated 
on the same individuals (maternal body mass, food intake 
and litter mass) were analysed using two-way repeated 
measures ANOVA, with group (shaved and unshaved mice) 
and day of lactation as factors, and interaction group × day. 
When the effect of group or interaction was significant, the 
Holm multiple comparison procedure was applied to deter-
mine differences between the groups within each day. Fur-
thermore, the peak lactation performance traits (i.e., food 
intake, MEI, DEE, MEO and litter mass) were tested for 
correlation with PC1 and PC2 scores from the PCA analysis 
of the mammary gene expression. All tests were performed 
in R v3.6.3 (R Core Team 2018), using default functions (t 
test, anova_test and cor.test).

Results

Whole‑body phenotype and reproductive 
performance

Both phenotypic and performance responses to fur removal 
closely resembled the patterns found in our original 

shaving study, performed on 20 shaved and 20 unshaved 
mice (Król et  al. 2007). Before shaving, lactating mice 
that were assigned to shaved and unshaved groups (n = 5 
females per group) did not differ in their mean body mass or 
food intake (Table 3, Supplementary Table 1). On average, 
shaved and unshaved mothers raised a similar number of 
pups (11.0 ± 1.0 and 11.4 ± 0.5, respectively), with all litter 
sizes remaining constant from birth to weaning. Likewise, 
mothers assigned to shaved and unshaved groups did not 
differ in their litter mass prior to shaving, averaging on day 
4 of lactation 34.8 ± 2.3 and 32.2 ± 2.7 g, respectively.

Once shaved, lactating mice increased their peak lacta-
tion food intake and MEI (days 12–14 post-partum) along 
with DEE (days 15–17 post-partum) by on average 18.7, 
15.6 and 10.8%, respectively, compared with unshaved 
mothers. As expected, shaved mothers produced on aver-
age more milk (by 19.5%) and weaned heavier litters (by 
19.5%) than control mice. Despite the same direction and 
similar magnitude of change as in our original study (Król 
et al. 2007) (Table 1), the shaving effects in the current 
study did not reach significance, apart from the litter mass, 
a proxy for milk production (for details see Supplementary 
Table 1). Importantly, the differences between 5 shaved and 
5 unshaved mice fell within the 95% confidence intervals for 
the same parameters detected as significant in our previous 
study with n = 20 mice per group.

Two-way repeated measures ANOVA demonstrated that 
the effects of shaving on litter mass depended on the day 
of lactation (group, F1,8 = 6.0, p = 0.040; day, F7,56 = 120.3, 
p < 0.001; interaction group × day, F7,56 = 2.9, p = 0.012). 

Table 3  Phenotypic 
characteristics and lactation 
performance of shaved vs 
unshaved mice (n = 5 females 
per group) before and after fur 
removal

All parameters were measured during lactation, on days counted from parturition (day 0). The difference 
between shaved (S) and unshaved (U) mice is calculated as S − U (first value) and then expressed as % of U 
((S − U)/U × 100) in the bracket. For statistical details, see Supplementary Table 1
DEE daily energy expenditure, MEI metabolizable energy intake, MEO milk energy output, SD standard 
deviation

Parameter Mean ± SD Difference

Shaved Unshaved

Before fur removal (first week of lactation)
 Body mass (day 4, g) 45.7 ± 3.0 45.7 ± 3.2 0.0 (0.0%)
 Food intake (days 4–6, g/day) 22.0 ± 3.4 20.7 ± 1.6 1.4 (6.6%)
 Litter size (day 4) 11.0 ± 1.0 11.4 ± 0.5  − 0.4 (− 3.5%)
 Litter mass (day 4, g) 34.8 ± 2.3 32.2 ± 2.7 2.5 (7.8%)

After fur removal (peak of lactation)
 Body mass (day 12, g) 49.2 ± 3.4 48.0 ± 2.2 1.3 (2.6%)
 Food intake (days 12–14, g/day) 26.0 ± 4.5 21.9 ± 3.9 4.1 (18.7%)
 MEI (days 12–14, kJ/day) 289.5 ± 42.8 250.3 ± 37.2 39.1 (15.6%)
 DEE (days 15–17, kJ/day) 123.4 ± 16.1 111.3 ± 11.3 12.0 (10.8%)
 MEO (days 12–17, kJ/day) 166.1 ± 41.9 139.0 ± 36.3 27.1 (19.5%)
 Litter size (day 16) 11.0 ± 1.0 11.4 ± 0.5  − 0.4 (− 3.5%)
 Litter mass (day 16, g) 75.7 ± 7.1 63.3 ± 11.4 12.3 (19.5%)
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For days 4 and 6 (before fur removal) along with day 18 of 
lactation, there was no significant difference between the lit-
ter mass of shaved and unshaved mice (p > 0.05). On days 8, 
10, 12, 14 and 16, litters of shaved mothers were heavier than 
litters of unshaved mothers, by on average 7.4 g (p = 0.024), 
11.3 g (p = 0.027), 12.3 g (p = 0.020), 12.5 g (p = 0.027) and 
12.3 g (p = 0.043), respectively (Supplementary Fig. 1). The 
effects of shaving on maternal body mass (group, F1,8 = 0.5, 
p = 0.496; day, F9,72 = 9.1, p < 0.001; interaction group × 
day, F9,72 = 1.9, p = 0.064) and food intake (group, F1,8 = 2.6, 
p = 0.149; day, F6,48 = 6.0, p < 0.001; interaction group × 
day, F6,48 = 1.6, p = 0.161) were not significant.

Mammary gland gene expression

PCA results for the mammary transcriptomes of shaved 
and unshaved lactating mice (n = 5 females per group) are 
summarized in Fig. 2A. The first and second principal com-
ponents (PC1 and PC2) accounted for 63.0 and 12.8% of 
the variability in the RNA-seq dataset (matrix of 10,901 
transcripts × 10 samples). Both groups of mice showed sub-
stantial variability along the PC1 axis, with no clear sepa-
ration of shaved mice from unshaved controls. In contrast, 
there was a clear separation between shaved and unshaved 
mice along the PC2 axis. Neither PC1 nor PC2 scores were 
significantly correlated with the peak lactation performance 
traits (Supplementary Table 2).

Differential analysis of gene expression performed on the 
mammary glands of shaved vs unshaved lactating mice iden-
tified 752 DEGs at FDR < 0.05 and absolute  Log2 FC > 0.5 
(Fig. 2B, Table 4, Supplementary Table 3). Among them 
were 721 protein-coding genes, 19 long noncoding RNA 
genes and 8 pseudogenes, with other gene types represented 
by single genes. Out of the 752 DEGs induced by shaving, 
425 were upregulated and 327 were downregulated. The 
 Log2 FC values associated with these DEGs varied from 
5.5 (Cyp24a1) to − 3.8 (Des), reflecting a 46.1-fold upregu-
lation and a 13.7-fold downregulation of gene expression, 
respectively.

Overlaps between DEGs induced by shaving 
and gene sets from literature

The literature search for transcriptomic changes in the 
mouse mammary gland identified 100 milk synthesis-
related genes (Supplementary Table 4) and 345 involu-
tion-related genes (Supplementary Table 5). The milk 
synthesis-related genes included prolactin and insulin 
receptor genes, numerous transcription factors and regu-
lators, as well as transcripts related to the synthesis of the 
main components of milk such as protein, fat, and lactose 
(Rudolph et al. 2007; Maningat et al. 2009; Mohammad 
and Haymond 2013; Lemay et al. 2013; Manjarin et al. 

2014; Qian and Zhao 2014; Kobayashi et al. 2016; Osorio 
et al. 2016; Han et al. 2019; Patel et al. 2019; Cayre et al. 
2020; Martin Carli et al. 2020). The involution-related 
gene set is a compilation of 112 (Stein et al. 2004), 130 

Fig. 2  Visualisation of principal component analysis (PCA) and dif-
ferential gene expression analysis performed on the mammary gland 
transcriptomes of shaved vs unshaved lactating mice (n = 5 females 
per group). A Biplot of the first (PC1) and the second (PC2) princi-
pal components, with numbers 1–10 representing the animal ID, and 
percentage referring to the variance captured by PC1 and PC2 scores. 
B Volcano plot showing 752 DEGs (at FDR < 0.05 and absolute  Log2 
FC > 0.5) that were either upregulated (425 genes in red) or down-
regulated (327 genes in green) in the mammary glands of shaved 
mice relative to control mice. The expression of remaining 10,149 
genes (in grey) was not significantly different. Gene symbols refer to 
the most upregulated (Cyp24a1, Angptl4 and Pdk4), downregulated 
(Des, AA914427 and Rspo1) and significantly altered (Ccng2 and 
Slc25a45) DEGs (for details see Supplementary Table 3)
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(Clarkson et  al. 2004), 93 (Stein et  al. 2007) and 101 
(Blanchard et al. 2007) study-specific genes (Table 2), 
which amounted to 345 unique involution-related genes.

Comparison of DEGs induced by shaving with the gene 
sets from the literature revealed 8 and 59 common genes 
for the milk synthesis-related and involution-related gene 
sets, respectively (Fig. 3, Table 5, Supplementary Tables 4 
and 5). The 8 common milk synthesis-related genes were 

all downregulated in the mammary glands of shaved mice, 
but the enrichment of the DEGs with milk synthesis-related 
genes was not significant (p = 0.385) (Supplementary 
Table 6). In contrast, the overlap between DEGs and the 
involution-related gene set (59 common genes) was highly 
significant (p = 5.00E − 11), indicating substantial enrich-
ment of DEGs with involution-related transcripts. The 
majority of the common involution-related genes (52 of 59) 
were upregulated in the mammary glands of shaved mice, 
which is consistent with the changes of these genes during 
involution induced by pup removal, with the magnitude of 
change  (Log2 FC values) ranging from 0.5 to 5.5 (Supple-
mentary Table 5). The remaining 7 of 59 common invo-
lution-related genes were downregulated in the mammary 
glands of shaved mice  (Log2 FC values from − 0.6 to − 2.2). 

The overlap between DEGs induced by shaving and the 
involution-related genes was also investigated at the level 
of study-specific gene lists (Table 2). Comparison of DEGs 
with the 4 involution-related gene lists revealed 33, 11, 19 
and 21 common transcripts for the outputs from Stein et al. 
2004, Clarkson et al. 2004, Stein et al. 2007 and Blanchard 
et al. 2007, respectively (Supplementary Table 5). These 
overlaps were significant for the gene lists from Stein et al. 
2004 (p = 3.29E − 13), Stein et al. 2007 (p = 1.54E − 05) and 
Blanchard et al. 2007 (p = 4.13E − 06) but not for Clarkson 
et al. 2004 (p = 0.285) (Supplementary Table 7).

Functional analysis of DEGs induced by shaving

IPA identified 3 canonical pathways that that were signifi-
cantly altered in the mammary gland of shaved mice at B-H 
p value < 0.05, including p53 Signalling, Docosahexaenoic 
Acid (DHA) Signalling and IL-23 Signalling (Table 6). 
These pathways contained 18, 9 and 8 DEGs induced by 
shaving, which constituted 23.1, 30.0 and 32.0% of all genes 
that make up p53 Signalling, DHA Signalling and IL-23 
Signalling pathways, respectively. Because some DEGs 

Table 4  Results of the 
differential gene expression 
analysis performed on the 
mammary gland transcriptomes 
in shaved vs unshaved lactating 
mice (n = 5 females per group)

Genes were considered differentially expressed at FDR < 0.05 and absolute  Log2 FC > 0.5 (for visualisation 
and details see Fig. 2B and Supplementary Table 3)

Gene type Number of differentially expressed genes (DEGs)

Upregulated Downregulated Total

Protein-coding genes 408 313 721
Long noncoding RNA genes 12 7 19
Pseudogenes 3 5 8
Immunoglobulin gene segments 1 0 1
Antisense long noncoding RNA genes 1 0 1
Unclassified genes 0 1 1
Unmapped genes 0 1 1
All genes (total) 425 327 752

Fig. 3  Venn diagram showing the number of common (at intersec-
tions) and unique (outside intersections) genes between DEGs in the 
mammary gland of shaved lactating mice (this study, n = 752) and 
gene sets from literature with milk synthesis-related genes (n = 100) 
and involution-related genes (n = 345) (for details see Supplementary 
Tables 4 and 5)
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Table 5  Overlaps between gene 
sets generated in this study and 
from literature

All gene sets represent mouse mammary gland. The gene sets from this study include DEGs for shaved vs 
unshaved mice and genes correlated with milk production in both shaved and unshaved mice (n = 10) with 
the fur effect blocked (Supplementary Tables 3 and 10). The literature gene sets include milk synthesis-
related and involution-related genes (Supplementary Tables  4 and 5). The overlap is represented by the 
number of common genes, with the significance evaluated by a one-sided Fisher’s exact test (Supplemen-
tary Table 6). An asterisk (*) refers to a significant overlap after applying Bonferroni correction for multi-
ple comparisons (p value < 0.05/2)
1 Significant at p value = 5.00E-11

Gene set (this study) Milk synthesis-
related genes 
(n = 100)

Involution-related 
genes (n = 345)

Shaving-
induced DEGs 
(n = 752)

Shaving-induced DEGs (n = 752) 8 59*1 –
Milk-correlated genes in all 10 mice (n = 2) 0 0 0

Table 6  Details of canonical pathways altered in the mammary gland of shaved vs unshaved lactating mice (n = 5 females per group), identified 
by Ingenuity Pathway Analysis (IPA)

The analysis was performed on 752 DEGs (for details see Supplementary Table 3). Pathways were considered significantly altered at Benjamini-
Hochberg (B-H) multiple testing correction p value < 0.05. The ratio is calculated as the number of genes in each pathway that are present in our 
experimental dataset (contributing genes), divided by the total number of genes that make up that pathway and are present in the reference set. 
The overall activation/inhibition states of canonical pathways are predicted based on a z-score algorithm; z-score ≥ 2 predicts an increase in the 
pathway activity while z-score ≤  − 2 predicts a decrease in the pathway activity. No information on the pathway activity is indicated by a hyphen 
(–)
a Gene symbols (in bold) and gene names, followed by  Log2 FC (in bold)
Akt1, thymoma viral proto-oncogene 1, − 0.7
Akt3, thymoma viral proto-oncogene 3, 0.8
Apaf1, apoptotic peptidase activating factor 1, 0.6
Bax, BCL2-associated X protein, 1.2
Bbc3, BCL2 binding component 3, 1.3
Bik, BCL2-interacting killer, 1.2
Ccnd1, cyclin D1, − 1.4
Cycs, cytochrome c, somatic, − 0.6
Fas, Fas (TNF receptor superfamily member 6), 0.8
Gadd45a, growth arrest and DNA-damage-inducible 45 alpha, 2.2
Gnl3, guanine nucleotide binding protein-like 3 (nucleolar), − 0.7
Hipk2, homeodomain interacting protein kinase 2, 0.6
Jak2, Janus kinase 2, 0.6
Pidd1, p53 induced death domain protein 1, − 0.9
Pik3c2a, phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2 alpha, 0.8
Pik3cb, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta, 0.6
Pik3r1, phosphoinositide-3-kinase regulatory subunit 1, 0.8
Runx1, runt related transcription factor 1, 1.7
Sirt1, sirtuin 1, 0.9
Socs3, suppressor of cytokine signalling 3, 1.8
Thbs1, thrombospondin 1, 1.9
Tigar, Trp53 induced glycolysis regulatory phosphatase, − 0.7
Trp53inp1, transformation related protein 53 inducible nuclear protein 1, 2.2

Canonical pathway B-H p value Ratio z-score Contributing  genesa

p53 Signalling 0.002 18/78 (0.231) 0.3 Akt1, Akt3, Apaf1, Bax, Bbc3, Ccnd1, Fas, Gadd45a, Gnl3, 
Hipk2, Pidd1, Pik3c2a, Pik3cb Pik3r1, Sirt1, Thbs1, Tigar, 
Trp53inp1

Docosahexaenoic Acid 
(DHA) Signalling

0.032 9/30 (0.300) – Akt1, Akt3, Apaf1, Bax, Bik, Cycs, Pik3c2a, Pik3cb, Pik3r1

IL-23 Signalling 0.032 8/25 (0.320) 1.4 Akt1, Akt3, Jak2, Pik3c2a, Pik3cb, Pik3r1, Runx1, Socs3
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contributed to more than one pathway, the number of unique 
DEGs present in all three pathways was 23 (17 upregulated 
and 6 downregulated). None of the pathways were signifi-
cantly activated or inhibited, with IL-23 Signalling being the 
closest to the activation state (z-score 1.4).

The IPA software predicted 11 upstream regulators 
responsible for differential gene expression in the mam-
mary glands of shaved mice, at B-H p value < 0.05 and 
absolute z-score ≥ 2 (Table 7, Supplementary Table 8). 
Among them were 4 transcription factors (Trp53, 
Cdkn2a, Id3 and Zbtb33) 3 kinases (Jak1, Mapk8 and 
Egfr), a cytokine (Ifng), an actin-related protein (Actl6a), 
a peptidase (Zmpste24) and a cytoskeletal linker protein 
(Gas2l3). Out of the 11 upstream regulators, 7 were acti-
vated (z-score ≥ 2) and 4 were inhibited (z-score ≤  − 2). 
The number of DEGs regulated by each upstream regulator 

varied from 4 (Zbtb33) to 83 (Trp53). Because some DEGs 
induced by shaving appeared to be regulated by more than 
1 upstream regulator, the number of unique DEGs regu-
lated by all 11 upstream regulators was 144.

The consequences of transcriptomic changes in the 
mammary glands of shaved mice were predicted by IPA as 
4 downstream effects at B-H p value < 0.05 and the num-
ber of contributing genes > 100, including Apoptosis, Cell 
Movement, Solid Tumour and Migration of Cells (Table 8, 
Supplementary Table 9). The prediction of the activation 
state was available only for Solid Tumour, with the z-score 
of − 2.9 indicating a decreased activation state. The num-
ber of DEGs contributing to each downstream effect varied 
from 113 (Migration of Cells) to 150 (Apoptosis), with 
the total number of unique DEGs associated with all 4 
downstream effects being 247.

Table 7  Upstream regulators of gene expression changes in the mammary gland of shaved vs unshaved lactating mice (n = 5 females per group), 
predicted by Ingenuity Pathway Analysis (IPA)

The analysis was performed on 752 DEGs (for details see Supplementary Table 3). Upstream regulators were considered significant at Benja-
mini-Hochberg (B-H) multiple testing correction p value < 0.05 and absolute z-score ≥ 2. The z-score ≥ 2 predicts an activation of upstream regu-
lators, while z-score ≤  − 2 predicts their inhibition
a Number of differentially expressed genes (DEGs) regulated by each upstream regulator (for details see Supplementary Table 8)

Upstream regulator (gene symbol and name) Gene type B-H p value z-score Target  genesa

Predicted state of activation (z-score ≥ 2)
 Trp53, transformation related protein 53 Transcription regulator 0.0180 3.4 83
 Ifng, interferon gamma Cytokine 0.0166 2.9 38
 Cdkn2a, cyclin dependent kinase inhibitor 2A Transcription regulator 0.0139 2.2 13
 Jak1, Janus kinase 1 Kinase 0.0180 2.2 8
 Mapk8, mitogen-activated protein kinase 8 Kinase 0.0044 2.2 13
 Id3, inhibitor of DNA binding 3 Transcription regulator 0.0418 2.1 17
 Zbtb33, zinc finger and BTB domain containing 33 Transcription regulator 0.0418 2.0 4
Predicted state of inhibition (z-score ≤  − 2)
 Actl6a, actin-like 6A Actin-related protein 0.0044  − 2.1 8
 Zmpste24, zinc metallopeptidase, STE24 Peptidase 0.0431  − 2.2 8
 Gas2l3, growth arrest-specific 2 like 3 Cytoskeletal linker protein 0.0316  − 2.4 6
 Egfr, epidermal growth factor receptor Kinase 0.0211  − 2.5 16

Table 8  Downstream effects 
predicted from gene expression 
changes in the mammary gland 
of shaved vs unshaved lactating 
mice (n = 5 females per group) 
by Ingenuity Pathway Analysis 
(IPA)

The analysis was performed on 752 DEGs (for details see Supplementary Table 3). Downstream effects 
were considered significant at Benjamini-Hochberg (B-H) multiple testing correction p value < 0.05 and 
the number of contributing genes > 100. The z-score ≥ 2 predicts increased downstream effects, while 
z-score ≤  − 2 predicts decreased downstream effects; the lack of prediction is indicated by a hyphen (–)
a Number of differentially expressed genes (DEGs) that are associated with each downstream effect (for 
details see Supplementary Table 9)

Downstream effect 
(biological process or 
disease)

Functional category B-H p value Activation state z-score Contrib-
uting 
 genesa

Apoptosis Cell death and survival 0.012 – 0.0 150
Cell Movement Cellular movement 0.012 – 1.1 125
Solid Tumour Cancer 0.012 Decreased  − 2.9 122
Migration of Cells Cellular movement 0.012 – 0.9 113
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Correlation of gene expression and milk production

Correlation analysis identified no genes in the mammary 
gland of shaved (n = 5) or unshaved (n = 5) mice that were 
correlated with milk production at FDR < 0.05 (Supple-
mentary Table 10). When analysis was performed on both 
shaved and unshaved mice (n = 10) with the fur effect 
blocked, only two genes (Cd276 and Daglb) reached bor-
derline significance at FDR = 0.049. Both these genes were 
negatively correlated with milk production at correlation 
coefficients of − 0.976 (Cd276) and − 0.973 (Daglb), and 
they were not part of milk synthesis-related, involution-
related or DEG gene sets (Table 5).

Discussion

Both humans and other animals are limited in their maxi-
mum performance by intrinsic constraints, whether it is 
growth, reproduction, physical activity or thermoregula-
tion (Drent and Daan 1980; Peterson et al. 1990; Ham-
mond and Diamond 1997; Thurber et al. 2019). Because 
the physiological limits to performance may also depend 
on environmental conditions, identifying the mechanisms 
constraining performance has important ramifications for 
understanding animal distribution and migration or human 
athleticism, especially under climate change (Humphries 
et al. 2002; El Helou et al. 2012; Haïda et al. 2013; Rogers 
et al. 2021). While many studies were designed to exper-
imentally remove the cap on the performance and then 
measure the immediate gain in performance (reviewed 
in Speakman and Król 2005a, 2011; Król and Speakman 
2019), the wider context and implications of such gains 
have not often been investigated. In our previous work, 
we focussed on the peak lactation performance in MF1 
laboratory mice and proposed that lactating females are 
limited by their capacity to dissipate body heat generated 
as a by-product of processing food and producing milk (the 
HDL hypothesis) (Król and Speakman 2003a, b; Król et al. 
2003; Speakman and Król 2010a). To remove the perfor-
mance limit, we shaved off the dorsal fur of the lactating 
females to enhance their capacity to dissipate body heat 
and then measured the gain in performance as the shaving-
induced increases in food intake, milk production and litter 
mass (Król et al. 2007). In the current study, we used the 
same model system to explore the effects of fur removal on 
the mammary gland, the site of milk production and secre-
tion. By performing RNA-seq profiling of the mammary 
glands of shaved and unshaved lactating mice, we aimed 
to understand how the extra milk production is regulated 
at the level of gene expression.

Phenotypic responses to shaving

The effects of fur removal on the whole-body phenotype 
and reproductive performance reported for MF1 mice in the 
current study were consistent with the results of our origi-
nal shaving experiment (Król et al. 2007). Furthermore, the 
shaving-induced increases in food intake, milk production 
and litter mass in the current study were consistent with 
the results of shaving experiments performed in lactating 
bank voles (food intake, milk production and litter mass by 
13.2, 11.8 and 22.1%, respectively) and golden hamsters 
(food intake, milk production and litter mass by 9.9, 23.4 
and 23.7%, respectively) (Table 1). Overall, the phenotypic 
outcome of our shaving experiment was as expected from 
the previous work (Król et al. 2007; Sadowska et al. 2016; 
Ohrnberger et al. 2020).

Transcriptomic responses to shaving

Transcriptome profiling of mammary glands has become a 
powerful tool for identifying genes and molecular pathways 
involved in tissue development and function, especially dur-
ing the cycles of proliferation (pregnancy), functional differ-
entiation (lactation), and death of alveolar epithelium (invo-
lution) that occur with each breeding event (Hennighausen 
and Robinson 2001; Stein et al. 2004, 2007; Clarkson et al. 
2004; Blanchard et al. 2007; Cristea and Polyak 2018; Li 
et al. 2020). Our study demonstrates a link between fur 
removal and mammary gene expression in lactating mice. 
Consistent with the other RNA-seq experiments using a 
small number of biological replicates (Schurch et al. 2016), 
our study had sufficient power to detect DEGs with larger 
fold changes (absolute  Log2 FC > 0.5) but not with smaller 
fold changes (absolute  Log2 FC ≤ 0.5) (Fig. 2B). While the 
majority of RNA-seq analytical tools successfully control 
their FDR at < 5% for all numbers of replicates, we specifi-
cally used edgeR recommended for a lower number of repli-
cates, based on its superior combination of true positive and 
false positive performances (Robinson et al. 2010; Schurch 
et al. 2016). As a result, we demonstrated that shaving off 
dorsal fur in lactating mice significantly altered the mam-
mary expression of 752 genes (Table 4, Supplementary 
Table 3). For comparison, an exposure of lactating mice to 
a daily 2 h heat treatment (36 °C) for 14 days was associated 
with the changes in the mammary expression of 409 genes 
(n = 8 females per group, FDR < 0.01 and absolute  Log2 
FC > 0.6) (Han et al. 2019). In another study, feeding lactat-
ing mice with a high-fat diet altered the mammary expres-
sion of 628 genes (n = 6 females per group, FDR < 0.1 and 
absolute  Log2 FC > 1) (Cheng et al. 2018). Using the number 
of DEGs as a proxy for the magnitude of transcriptomic 
changes, we conclude that the mammary gland responses 
to shaving were of similar size to those induced by other 
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whole-animal manipulations, including ambient temperature 
and diet treatments (Cheng et al. 2018; Han et al. 2019).

Overlap with milk synthesis‑related gene set

The milk synthesis machinery was represented in our study 
by the milk synthesis-related gene set compiled from the 
mouse mammary gland literature, containing 4 hormone 
receptors, 12 transcription factors and regulators, 25 milk 
protein synthesis-related, 46 milk fat synthesis-related and 
13 lactose synthesis-related transcripts (Supplementary 
Table 4). The 19.5% increase in milk production of shaved 
mice did not appear to be associated with any substantial 
changes in the milk synthesis machinery at the level of tran-
scriptome (Table 5, Supplementary Table 6). The lack of 
significant overlap between mammary DEGs induced by 
shaving and milk synthesis-related genes may have several 
explanations. Firstly, there may be other groups of genes 
involved in the regulation of milk synthesis and its secretion 
into the alveolar lumen (Ramanathan et al. 2008; Wei et al. 
2013). Secondly, a substantial part of such regulation may 
be post-transcriptional rather than transcriptional (Lemay 
et al. 2007; Osorio et al. 2016; Mu et al. 2021). Thirdly, 
milk production of shaved mice may have a different tra-
jectory of changes during lactation than that of unshaved 
mice. If the latter is the case, then the separation of meas-
urements of milk production and mammary gene expression 
by a few days may contribute to the data being temporarily 
mismatched and thus unlinked to each other. In our study, 
the main determinant of milk production (MEI) was meas-
ured on days 12–14 of lactation, while the mammary gene 
expression was evaluated on day 18 of lactation, assuming 
no changes in these parameters between approximately days 
10–18 post-partum (Johnson et al. 2001).

Of the 100 milk synthesis-related genes, only 8 genes 
were differently expressed in the mammary gland of shaved 
mothers, including 1 transcription factor (Srebf1), 5 milk 
fat synthesis-related genes (Scd1, Fads1, Fads2, Gpd1 and 
Dhcr7) and 2 lactose synthesis-related genes (Gale and 
Slc35a2) (Supplementary Table 4). The transcription factor 
encoded by Srebf1 has been proposed to regulate the expres-
sion of genes involved in lipolysis, lipogenesis de novo, fatty 
acid activation, and triglyceride and cholesterol biosynthesis 
in the mammary gland during lactation in mice (Rudolph 
et al. 2010), humans (Mohammad and Haymond 2013) and 
cows (Ma and Corl 2012), with the confirmed regulation of 
3 desaturase genes altered in our dataset (Scd1, Fads1 and 
Fads2) (Nakamura and Nara 2002). The other milk fat syn-
thesis-related genes with altered expression were involved 
in glycerol activation (Gpd1) and cholesterol synthesis 
(Dhcr7), while the changes in the lactose synthesis pathway 
were associated with the gene regulation of UDP-galactose 
synthesis (Gale) and transport (Slc35a2).

All these 8 milk synthesis-related genes were paradoxi-
cally downregulated in the mammary gland of shaved mice, 
rather than upregulated as we would have expected in mice 
producing more milk because of shaving (with  Log2 FC 
values from − 0.5 to − 1.2, Supplementary Table 4). Such a 
decline may indicate a gradual loss of replenishment of the 
secretory machinery at the mRNA level (Lemay et al. 2007), 
leading potentially to earlier cessation of milk production 
and thus earlier completion of the lactation cycle in shaved 
mice. Our results suggest potentially different trajectories of 
changes in milk production for shaved and unshaved mice.

Overlap with involution‑related gene set

Using microarray technology, transcriptional profiles of the 
mouse mammary gland during involution have been studied 
by numerous research groups (Table 2), providing a basis for 
the involution-related gene set with 345 transcripts in total 
(Supplementary Table 5). Comparison of DEGs induced by 
shaving and the involution-related gene set from the litera-
ture revealed a highly significant overlap of 59 protein-cod-
ing genes (Fig. 3, Table 5), with the direction of change (52 
upregulated and 7 downregulated) closely resembling the 
expression patterns of these genes in the mice undergoing 
forced involution following pup removal (Stein et al. 2004, 
2007; Clarkson et al. 2004; Blanchard et al. 2007).

At the onset of involution, milk stasis causes distension 
of the alveolar lumen, which in turn changes the shape of 
the mammary epithelial cells and increases the local produc-
tion of leukaemia inhibitory factor (LIF) (Schere-Levy et al. 
2003). In shaved mice, LIF gene expression was 6.9-fold 
higher than in unshaved controls. LIF acts to phosphorylate 
signal transducer and activator of transcription 3 (STAT3), a 
master regulator of mammary gland involution coordinating 
both programmed cell death and removal of dead cells by 
the immune system (Chapman et al. 1999). Once activated, 
STAT3 regulates the expression of genes involved in the 
uptake of milk lipids from the lumen back to the mammary 
epithelial cells for their degradation in lysosomes, which has 
been linked to the increased permeability of the lysosomal 
membranes (Sargeant et al. 2014). This then results in the 
leakage of cathepsin proteases into the cytosol, activating 
the lysosomal-mediated programmed cell death (Kreuzaler 
et al. 2011). Both lysosome-related genes (Scarb2 and Dna-
se2a) and cathepsin genes (Ctsa and Ctsl) were significantly 
upregulated in shaved mice. Furthermore, phosphorylation 
of STAT3 by LIF shifts the balance between pro- and anti-
apoptotic signals in favour of programmed cell death, by 
activation of pro-apoptotic BCL-2 family members and 
downregulation of PI3K-AKT survival signalling (Hughes 
and Watson 2018b; Jena et al. 2019). The presence of such 
shift in the mammary gland of shaved mice was supported 
by upregulated expression of two pro-apoptotic genes from 
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the BCL-2 family (Bax and Bik) and downregulation of 
the gene encoding AKT1, a serine/threonine protein kinase 
involved in regulation of cell survival and proliferation.

The wave of cell death that occurs during the first phase 
of involution is marked by the increased expression of cell 
death receptors and ligands (Clarkson et al. 2004; Stein et al. 
2007), represented in the mammary gland of shaved mice 
by a number of significantly upregulated genes, including 
Fas, Cebpd, Igfbp5, Pik3r1 and Pik3c2a. The gene with 
the highest upregulation induced by shaving (a fold change 
of 46.1) was Cyp24a1, associated with the cell death pro-
grammes mediated by vitamin D (Lopes et al. 2012). The 
removal of dead cells from the mammary gland requires 
the STAT3-mediated switch of mammary epithelial cells 
from a secretory to a phagocytic phenotype to perform so 
called non-professional phagocytosis, with the involvement 
of professional phagocytes such as macrophages (Monks 
et al. 2008; Akhtar et al. 2016). The presence of phagocytic 
phenotype of mammary epithelial cells in shaved mice was 
inferred from the significantly increased expression of genes 
encoding C/EBPδ (a fold change of 2.2) and CD14 (a fold 
change of 5.4). In addition, upregulation of Ccl8, Chil1 and 
Thbs1 genes in the mammary gland of shaved mice was con-
sistent with activation of macrophages (Marion et al. 2016; 
Urao et al. 2016; Farmaki et al. 2020). The involvement 
of macrophages in the vasculature remodelling during the 
regression of mammary gland (Elder et al. 2020) in shaved 
mothers was also supported by the increased expression of 
angiopoietin-4 (a fold change of 11.9).

Finally, the permeability of the mammary alveolar tight 
junctions probably differs between shaved and unshaved 
mice, as indicated by changes in the gene expression of 
claudin-1 and claudin-4. Similarly to the involuting mam-
mary gland following pup removal (Stein et al. 2004, 2007; 
Blanchard et al. 2007), the expression levels of these genes 
were upregulated in shaved mice. In contrast, we did not 
detect any shaving-induced changes in the gene expres-
sion of matrix metalloproteinases, carboxypeptidases or 
eosinophils/neutrophil markers, which are part of the tran-
scriptomic signature associated with the second, irrevers-
ible phase of mammary gland involution (Clarkson et al. 
2004; Stein et al. 2007). Together, our gene expression data 
strongly suggest that the mammary gland of shaved mothers 
was already in the process of regressing from secretory to 
non-secretory phenotype, pointing towards the first (revers-
ible) phase of involution.

Shaving vs pup removal experiments

Our results raise the question of why the overlap between 
mammary DEGs induced by shaving (n = 752) and the 
involution-related gene set from the literature (n = 345) was 
not larger than 59 genes, if the mammary gland of shaved 

mice was indeed involuting. The reasons for such outcome 
are probably not related to the differences in the statistical 
power of the contributing experiments as all studies were 
performed either on 3 mice per time point or 5 mice per 
group in the single-point experiments (Table 2). Instead, the 
natural involution accelerated in our study by fur removal 
and investigated on day 18 of lactation may have a slightly 
different transcriptomic signature than the forced involution 
induced by pup removal on days 7–12 of lactation (Stein 
et al. 2004; Clarkson et al. 2004; Blanchard et al. 2007). 
The differences between natural and forced involution of 
mammary gland have been discussed elsewhere (Silanik-
ove 2014). Secondly, even if the transcriptomic profiles of 
natural and forced involution are similar, forced involution 
was typically synchronised across the experimental mice 
(by removing their litters simultaneously), which makes the 
rapid and dramatic changes in the mammary gene expression 
easier to detect (Lemay et al. 2007). In contrast, the onset 
of natural involution is likely to differ in time and intensity 
between mothers, generating the nonsynchronous expres-
sion of the involution-related genes, which in turn increases 
their inter-individual variability at single time point and 
thus decreases the chance of detection of these genes as sig-
nificantly altered. Thirdly, gene expression patterns associ-
ated with mammary involution may differ between differ-
ent strains of mice, as indicated by the significant overlaps 
between shaving-induced DEGs and the involution-related 
gene lists from the experiments on Balb/C mice (Stein et al. 
2004) and CD1 mice (Blanchard et al. 2007), but not C57/
Bl/6 mice (Clarkson et al. 2004) (Supplementary Table 7). 
Finally, the involution-related gene set from the literature 
represent the complete process of mammary regression from 
secretory to non-secretory phenotype (including revers-
ible and irreversible stages of involution), while the DEGs 
induced by shaving contain only transcripts associated with 
the early (reversible) involution, which reduces the number 
of potential genes being in common. Insights into the poten-
tial role of shaving-induced DEGs not overlapping with the 
involution-related gene set (n = 752–59) were gained from 
the functional analysis of gene expression performed on all 
DEGs.

Functional analysis of DEGs

Functional analysis of DEGs induced by fur removal iden-
tified 3 canonical pathways, 11 upstream regulators and 4 
downstream effects that were significantly altered in the 
mammary gland of shaved mice (Tables 6, 7, 8, Supple-
mentary Tables 8 and 9). The most striking features of our 
analysis were changes in the p53 tumour suppressor protein 
in the mammary gland of shaved mice, predicted both at the 
level of upstream regulators (that drive the observed changes 
in gene expression) and canonical pathways (that reflect the 
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enrichment of DEGs). Specifically, p53 (encoded in mice 
by Trp53) was identified as the most activated upstream 
regulator of DEGs, while p53 Signalling was the most sig-
nificantly altered pathway. The p53 protein is a master tran-
scription factor that responds to a variety of cellular stresses 
and regulates key cellular processes such as DNA repair, 
cell-cycle progression, angiogenesis and apoptosis, with the 
p53-dependent pathways typically eliminating damaged cells 
either through apoptosis or cell-cycle arrest (reviewed in 
Sullivan et al. 2018). The pro-apoptotic role of p53 in mam-
mary gland involution has been demonstrated in a series 
of mammary-specific knockout studies. The involution pro-
gramme was delayed in mice with Trp53 null mammary 
gland by a few days and hyper-delayed (by a few weeks) in 
mice with Stat3-Trp53 doubly null gland, but successfully 
executed by p53 in mice with Stat3 null gland, (Jerry et al. 
1998, 2002; Chapman et al. 1999; Matthews and Clarke 
2005). These studies clearly demonstrate that STAT3 and 
p53 act together in synergistic manner to assure the regres-
sion of the mammary gland and underscore the importance 
of redundant apoptotic pathways in the involution pro-
gramme (Allen-Petersen et al. 2010; Yallowitz et al. 2014).

Furthermore, the potential shift from a pro-survival to 
pro-apoptotic environment in the mammary gland of shaved 
mice was supported by the predicted activation of upstream 
regulators such as Ifng (involved in caspase-8-JAK1/2-
STAT1-dependent cell death, Woznicki et al. 2021), Cdkn2a 
(inhibits cell proliferation through LDHA-mediated AKT/
mTOR pathway, Luan et al. 2021), Jak1 (phosphorylates 
STAT proteins in mammary epithelium, Sakamoto et al. 
2016), Mapk8 (promotes expression of involution-related 
genes, Girnius et al. 2018), Id3 (inhibits cell proliferation 
and induces apoptosis in vitro, Chen et al. 2016) and Zbtb33 
(enhances apoptosis in a p53-dependent manner, Koh et al. 
2015). At the same time, the predicted inhibition of upstream 
regulators such Actl6a (an oncogenic driver in many human 
cancers, Jian et al. 2021) and Egfr (a major regulator of 
proliferation and differentiation in epithelial cells, Ramírez 
Moreno and Bulgakova 2022) points towards reduced cell 
survival and proliferation in the mammary gland of shaved 
mice.

Apart from p53 Signalling, the other pathways altered 
in the mammary gland of shaved mice included IL-23 Sig-
nalling and Docosahexaenoic Acid (DHA) Signalling, both 
potentially linked to the increased presence of immune 
cells in the tissue. IL-23 is a key pro-inflammatory cytokine 
expressed by activated monocytes, macrophages, dendritic 
cells and other antigen presenting cells, which signals to 
activate STAT proteins, predominantly STAT3 (Kortylewski 
et al. 2009). DHA is suggested to attenuate macrophage 
death and potentiate efferocytosis, with the net effect of 
reducing accumulation of cell corpses in the tissue (Rajas-
inghe et al. 2020).

Finally, Apoptosis, Cell Movement, Solid Tumour and 
Migration of Cells were identified by IPA as the top down-
stream effects predicted to be present in the mammary gland 
of shaved mice. These effects (especially Apoptosis, Cell 
Movement and Migration of Cells) may reflect processes 
such as programmed cell death, acute phase response as 
well as removal of dead cells by professional and non-pro-
fessional macrophages in the involuting gland (Stein et al. 
2004; Pensa et al. 2009). The predicted Solid Tumour down-
stream effect agrees with the upregulation and activation 
of tumour-promotional factors in the mammary epithelium 
and surrounding stroma once lactation ceases (Wallace et al. 
2019; Borges et al. 2020). Together, the results of functional 
analysis performed on gene expression patterns associated 
with fur removal are consistent with the ongoing involution 
of the mammary gland in shaved mice.

Mother‑young conflict over weaning

Weaning from lactation is a time when the interests of the 
mother and the young are likely to differ, with the young 
expected to benefit from prolonged lactation and larger size 
while the mother is expected to maximise her fitness by ini-
tiating another breeding event (Trivers 1974).

The mechanisms by which prolonged lactation benefits 
offspring metabolism have been recently uncovered in rats 
(Félix-Soriano and Stanford 2022; Pena-Leon et al. 2022). In 
contrast, lactating female rodents typically benefit from hav-
ing more litters in a short breeding season by being simul-
taneously pregnant, which sets the duration of lactation to 
the sufficient minimum rather than to the extended period 
of time (Roy and Wynne-Edwards 1995). These contrasting 
interests trigger mother–young conflict because the optimal 
time for weaning is likely to be later for the young than for 
the mother, leading to the evolution of complex behaviours 
such as solicitation displays in the young and the avoidance 
of offspring by the mother (Kӧlliker and Richner 2001; 
Fouts et al. 2005; Cox and Hager 2016). Typically, it is the 
mother who drives the onset of weaning. In house mice (Mus 
domesticus), this starts around day 17 post-partum when 
the mother starts to rest alone and remains away from the 
litter (Kӧnig and Markl 1987). Cross-fostering experiments 
(with natural litters replaced by younger or older pups) 
demonstrated that the time of weaning may be either fixed 
relative to the day of parturition (as in guinea pigs, Cavia 
aperea f. porcellus, Rehling and Trillmich 2007) or flexible 
in response to variation in offspring development (as in rats, 
Rattus norvegicus, Nicoll and Meites 1959). However, no 
experimental studies have investigated the effects of extra 
milk production on the time of weaning in the mothers with 
natural litters. Would the mothers with the extra milk pro-
duction wean the litters earlier than normal to benefit from 
a shorter interbirth interval or would they rather wean the 
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litters at normal time to benefit from the bigger young? Both 
the length of interbirth interval and the size of young at 
weaning are important life history traits that contribute to 
the mother’s lifetime reproductive success (Clutton-Brock 
et al. 1989; West and Capellini 2016).

By experimentally increasing milk production in labora-
tory mice, we demonstrated that on day 18 of lactation, the 
mammary gland of shaved mice was already involuting, pro-
viding strong evidence for shorter lactation and weaning the 
young earlier than normal, a strategy that could potentially 
lead to more frequent breeding events in these mice. Based 
on the chronology of transcriptomic events in the mammary 
gland following pup removal (Clarkson et al. 2004; Stein 
et al. 2007), the mammary gland of shaved mice was at the 
first (reversible) phase of involution that probably started 
within ~ 48 h prior to tissue sampling. Because the individual 
pups of shaved mice were on average substantially heavier 
than the pups of unshaved mice (75.7 g/11.0 pups = 6.9 g and 
63.3 g/11.4 pups = 5.6 g, respectively, Table 3), our data are 
consistent with the idea that the females adjust their repro-
ductive investment according to the size of young (a proxy 
for quality) by advancing or delaying the time of weaning 
to reach the minimum size necessary for the young to sur-
vive and breed (Kӧnig and Markl 1987; West and Capellini 
2016). More work is needed to couple our transcriptomic 
data with the behavioural manifestations of the weaning, 
and to establish whether earlier involution of the mammary 
gland in shaved mice leads to a shorter interbirth interval.

Study limitations

The results of our study are drawn from a relatively small 
number of shaved and unshaved mice, with 5 lactating 
females per group. In consequence, some phenotypic effects 
associated with fur removal did not reach significance (Sup-
plementary Table 1). The proper interpretation of these 
results was possible because of the full characterisation of 
the shaving effects performed in our earlier study, using 
the four times larger sample size (Król et al. 2007). The 
transcriptomic results were probably also affected by n = 5, 
mainly by limited statistical power to detect DEGs with 
relatively small fold changes (Fig. 2B). Yet the pup removal 
studies with the sample size of 3 mice per time point (Stein 
et al. 2004; Clarkson et al. 2004) or 5 mice per group in the 
single-point experiment (Blanchard et al. 2007) were suf-
ficient to characterise the unique transcriptomic signature 
of the involuting mammary gland. Similarly, our study had 
sufficient power to recognise that signature, despite different 
mechanisms behind triggering the regression of mammary 
gland.

Our experimental design to have a single snapshot of 
mammary transcriptome to cover both milk production and 
involution processes did not work as expected. That design 

was based on our earlier study indicating no changes in MEI 
and thus milk production between approximately days 10–18 
post-partum in MF1 mice (Johnson et al. 2001). In contrast, 
our current study indicated potentially different trajectories 
of changes in milk production for shaved and unshaved mice. 
On day 18 of lactation, the mammary gland of shaved mice 
was already in the process of regressing from secretory to 
non-secretory phenotype. As such, changes in the mammary 
transcriptome on day 18 post-partum no longer represented 
greater milk production of shaved mice measured on days 
12–14 of lactation (Table 5, Supplementary Table 6). A sim-
ilar mismatch (no correlation) between milk production and 
mammary gene expression was also observed in unshaved 
mice as well all mice with the fur effect blocked (Supple-
mentary Table 10), highlighting the need for simultaneous 
measurements of these parameters in future studies linking 
transcriptome to function.

Conclusions

We shaved lactating MF1 mice to increase their milk pro-
duction (Król et al. 2007) and investigated their mammary 
gene expression profiles relative to unshaved mice. The 
focus of the study was to search for transcriptomic clues 
on the mechanisms underlying the increased milk produc-
tion and for consequences of the extra milk production 
for the mother–young conflict over weaning, manifested 
by advanced or delayed involution of mammary gland. 
We demonstrated that the mammary glands of shaved and 
unshaved mice were at different stages of the lactation cycle 
when sampled. The extensive transcriptomic analysis indi-
cated that the mammary gland of shaved mice had a gene 
expression profile indicative of earlier involution relative 
to unshaved mice. Our interpretation of these results is 
that once provided with the enhanced capacity to dissipate 
body heat, shaved mice were likely to rear their young to 
independence faster than unshaved mothers, thereby poten-
tially benefiting from shorter lactation and shorter interbirth 
interval to maximise their lifetime reproductive success 
(Clutton-Brock et al. 1989; West and Capellini 2016). Fur-
ther research is needed to establish the link between earlier 
regression of the mammary gland and the timing of the next 
breeding event. We argue that the association between HDL 
and female fecundity is understudied and should be consid-
ered when investigating lactation performance in laboratory 
and natural conditions.
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