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Abstract
For 100 years, the Journal of Comparative Physiology-A has significantly supported research in the field of neuroethology. 
The celebration of the journal’s centennial is a great time point to appreciate the recent progress in neuroethology and to 
discuss possible avenues of the field. Animal behavior is the main source of inspiration for neuroethologists. This is illustrated 
by the huge diversity of investigated behaviors and species. To explain behavior at a mechanistic level, neuroethologists 
combine neuroscientific approaches with sophisticated behavioral analysis. The rapid technological progress in neurosci-
ence makes neuroethology a highly dynamic and exciting field of research. To summarize the recent scientific progress in 
neuroethology, I went through all abstracts of the last six International Congresses for Neuroethology (ICNs 2010–2022) 
and categorized them based on the sensory modalities, experimental model species, and research topics. This highlights the 
diversity of neuroethology and gives us a perspective on the field’s scientific future. At the end, I highlight three research 
topics that may, among others, influence the future of neuroethology. I hope that sharing my roots may inspire other scientists 
to follow neuroethological approaches.
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Introduction

The neural mechanisms of behavior represent the central 
pillar of neuroethology, a discipline pioneered by Karl 
von Frisch, Erich von Holst and Theodore Bullock in the 
late 1950s. In contrast to systems neuroscience, where a 
reductionist approach under well controlled conditions is 
desired, neuroethologists seek to conduct experiments in a 
more naturalistic context (Miller et al. 2022; Hoffmann et al. 
2023). This includes monitoring brain activity in behaving 
animals (Yartsev and Ulanovsky 2013; Martin et al. 2015; 
Seelig and Jayaraman 2015; Vinepinsky et al. 2017; Jin 
et al. 2020; Beetz et al. 2022; Perentos et al. 2022; Wosnitza 
et al. 2022; Agarwal et al. 2023; Gutnick et al. 2023; Wal-
lach and Sawtell 2023) and conducting the recordings in the 
field (Hoffmann et al. 2019; Eliav et al. 2021; Römer 2021). 

Rapid technological progress makes the field of neuroethol-
ogy unpredictable, but at the same time highly dynamic. The 
interests of neuroethologists are represented by the Interna-
tional Society for Neuroethology (ISN), which organizes the 
International Congress on Neuroethology (ICN) that takes 
place every 2 years. To get an idea of the scientific future of 
neuroethology, I reflect on the recent directions of the field 
by going through all ICN contributions of the last 13 years 
and categorizing them into sensory modalities, taxa, and 
scientific topics. After reviewing the recent past, I will share 
my perspective on the future of neuroethology. To this end, 
I will highlight three research topics that recently fascinated 
me and that may inspire many scientists. To get an overview 
on the current funding situation or political and infrastruc-
tural challenges that many neuroethologists face in differ-
ent countries, I recommend recently published perspectives 
(Silva et al. 2022; Zupanc and Rössler 2022; Tomsic and 
Silva 2023).
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Box 1: My neuroethological roots

As a trained neuroscientist who started recording from 
visual neurons of desert locusts in a dark chamber, 
far away from any desert, I was always keen to dis-
cuss the behavioral relevance of my scientific findings 
(Beetz et al. 2016c). To this end, I joined the ISN and 
attended my first ICN in Uruguay in 2016. There, I was 
tremendously inspired to further investigate the loop 
between nervous systems and behavior. At the end of 
my master studies, I was still puzzled—what can neu-
ral recordings in restrained animals while presenting 
artificial stimuli tell me about how the brain operates 
in a behaving animal. This question has set my research 
path from the beginning of my PhD. As a PhD student, 
I shifted my focus from invertebrates to vertebrates and 
conducted neural recordings in echolocating bats. For 
short-range orientation, bats extract spatial information 
from echoes (Beetz and Hechavarría 2022). Given that 
the behavioral relevance of the echolocation signals is 
clear, I tested how such signals are processed in the 
bat brain (Beetz et al. 2016a, b; 2017). To mimic a 
naturalistic stimulus scenario, I presented echolocation 
signals in the presence of ambient noise that interfered 
with the echolocation signals (Beetz et al. 2018). After 
investigating how the stimulus context affects neural 
processing, I wanted to gain insight into the influence 
of behavior on neural processing. To this end, I started 
my postdoctoral research with the goal of monitoring 
brain activity from flying monarch butterflies tethered 
in a flight stimulator. While developing neural record-
ings from tethered flying butterflies, I noticed that the 
animal’s state of locomotion, i.e., quiescence, or fly-
ing, substantially affected the spatial tuning of compass 
cells (Beetz et al. 2022). These findings demonstrate 
that my initial goal to monitor brain activity from a 
behaving animal was essential to understand the inter-
actions between brain and behavior. However, this does 
not mean that experiments conducted in restrained ani-
mals are worthless. Under restrained conditions, neu-
ral mechanisms and circuits can often be better char-
acterized than in the field. In 2022, I started my own 
research group that investigates the spatial memory of 
insects (Konnerth et al. 2023).

Definition of neuroethology

While most scientists may agree that neuroethology inves-
tigates the neural mechanisms of behavior, most neuro-
ethologists would emphasize the relevance of investigating 

‘natural behavior’ (Miller et al. 2022). This is not sur-
prising because ethology, the study of natural behavior, 
represents an essential root of neuroethology. But what 
defines natural behavior? Is it restricted to innate behav-
ior, or does it also include learned behavior? What about 
a behavior learned in captivity that would not be observed 
in the wild? Are such behaviors beyond the scope of neu-
roethology? This had been debated in the early years of 
the field. Graham Hoyle, another pioneer of neuroethol-
ogy supported a rather restricted view of neuroethology. 
He feared that the field would otherwise ‘expand into a 
diffuse vapor without any substance at all’ (Hoyle 1984). 
Hoyle shared the opinion that ‘most complex behaviors 
[…] fall into the category of instinctive acts. They require 
no experience of the behavior in its context, nor learn-
ing, for their perfect execution.’ (Hoyle 1984). In contrast, 
Theodore Bullock, the first ISN president, defined neuro-
ethology under a much broader scope: ‘Neuroethology is 
used when there is some emphasis upon or relevance to the 
understanding of natural behavior’ (Bullock 1990). This 
also implies that even reduced or artificial approaches are 
eligible as long as they aim to elucidate the neural mecha-
nisms underlying natural behavior. One prime example 
who followed a reductionist approach in his early career 
was Eric Kandel, who was awarded with the Nobel Prize 
in 2000. Instead of working with billions of neurons in a 
rat brain, he focused first on a relatively simple, in terms 
of number of neurons, nervous system. To this end, he 
investigated the gill-withdrawal response of the sea slug 
Aplysia to understand the neural principles of learning 
and memory. Because his findings on gastropods were not 
fundamentally different from the cellular mechanisms that 
were described later in mammals, Kandel’s work is not 
only relevant for marine biologists with a keen interest 
in sea slugs but also for the entire neuroscience commu-
nity. His reductionist approach of working on invertebrates 
before shifting his attention to vertebrates undoubtedly 
inspires me.

Representation of sensory modalities 
and the fascination for ‘hidden modalities’

To get an idea of the scientific future of neuroethology, I 
first want to review the recent progress in the field. To this 
end, I categorized 2636 abstracts from the last six ICNs 
(2010–2022) into the sensory modalities. Given the behav-
ioral relevance of vision, it is not surprising that 28% of 
the ICN contributions focused on the visual sense (Fig. 1, 
Table S1). In addition, the diversity of eye designs across 
the animal kingdom further triggers the fascination for 
vision (Sumner-Rooney 2023; Warrant 2023). The second 
most represented sensory modality was the auditory sense 
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representing with about 15% of abstracts. During the spring, 
one of the first sensory perceptions of the day is a singing 
bird, an auditory experience that gets replaced by chorusing 
frogs or crickets in the early evening hours. Hence, acoustic 
communication in diverse species is central to the research 
of many neuroethologists (Kelley 2004; Elie and Theunissen 
2020; Römer 2021; Narins et al. 2023). However, the acous-
tic sense is also useful for nocturnal orientation, whether 
it is used in the context of echolocation in bats (Beetz and 
Hechavarría 2022) or localizing potential prey by passively 
listening to prey-emitted sounds (Singheiser et al. 2012; 
Brewton et al. 2018). During foraging, chemosensation is 
also essential to localizing food and determining its qual-
ity. About, 9% of the ICN contributions were about che-
mosensation, which includes olfaction and gustation. With 
about 5% of the contributions, somatosensation (including 
nociception) was represented by a relatively low number 
of contributions at the ISN. However, understanding how 
sensory stimuli are neuronally processed is not sufficient 
to explain behavior. We must also understand how motor 
systems operate. Given its importance to behavior, motor 
systems were central to about 15% of the ICN contributions 
(Fig. 1, Table S1). Motor systems are not only important 
for limb control, but also in the context of digestion. For 
example, research on the stomatogastric nervous system has 
a long tradition in neuroethology (Marder and Bucher 2007; 
Daur et al. 2016).

Aside from the ‘classic’ senses, many neuroethologists 
are fascinated by sensory modalities that go beyond our own 
perception. For example, electric fish with their active elec-
trosensation represent about 7% of the ICN contributions 
(‘aquatic electrosensation’, Fig. 1, Table S1). In 2013, the 
discovery that even terrestrial animals such as bees perceive 
electric fields (Clarke et al. 2013; Greggers et al. 2013) was 

the beginning of a new research direction in neuroethol-
ogy. This gets reflected by an increase in ICN contributions 
on terrestrial electrosensation from 0.2 to 1%, over the last 
10 years. Since then, terrestrial electrosensation has been 
described in many other arthropods (England and Robert 
2022). Spiders use electrostatic forces for ballooning, a strat-
egy for aerial dispersal (Morley and Robert 2018) and more 
recently it has been demonstrated that ticks are passively 
attracted by electrostatic fields of their hosts (England et al. 
2023). The more we discover about terrestrial electrosensa-
tion, the more it seems to be that electrosensation is ecologi-
cally and evolutionarily more diverse than initially thought. 
Future studies might focus on the sensory processing of ter-
restrial electrosensation and to compare this with aquatic 
electrosensation.

Another sensory modality that humans cannot perceive 
is magnetosensation. Many animals, including vertebrates 
and invertebrates, detect and use the earth’s magnetic field 
for orientation (Mouritsen 2018). At first glance, too weak 
to be detected by receptors and too sensitive for electromag-
netic disturbances, the behavioral relevance of the earth’s 
magnetic field has often been questioned. However, behav-
ioral studies convincingly demonstrate that many organisms 
indeed use the earth’s magnetic field for orientation (Lohm-
ann et al. 2022; Wiltschko and Wiltschko 2022). Aside from 
the behavioral evidence, physiological processes underlying 
magnetosensation are less clear (Putman 2022). The most 
promising theory, the ‘radical-pair’ theory, hypothesizes the 
involvement of light and quantum physics in the process 
(Hore and Mouritsen 2016). However, magnetoreceptors 
have so far not been convincingly described, and we are 
even further away from dissecting the neural circuit of mag-
netosensation in any taxon.

Fig. 1  Proportion of sensory modalities and motor system represented at the last six ICNs. Values are listed in Table S1
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Although many nervous systems are biased to invest 
energy to process certain sensory modalities, behavior is 
often the result of multimodal processing. For instance, an 
echolocating bat with its highly specialized auditory system 
additionally uses visual information for orientation (Boon-
man et al. 2013). Bats may also use a magnetic compass 
to cover distances that are too long for acoustic or visual 
orientation (Holland et al. 2010; Schneider et al. 2023). 
Electric fish represent another animal group that has been 
initially thought to rely mostly on their active electric sense 
for orientation (Landsberger et al. 2008). However, many 
electric fish also possess well developed eyes (Kreysing et al. 
2012; Takiyama et al. 2015) that can be used for orientation 
and even for object recognition (Schumacher et al. 2016). 
These examples just give us a glance at the importance of 
multimodal processing in controlling behavior. Due to its 
behavioral relevance, multimodal processing should be 
increasingly considered to investigate neural mechanisms 
of behavior. Fortunately, between 2 and 6% (mean = 4%) 
of the ICN contributions over the last 13 years followed a 
multimodal approach (Fig. 1).

‘Animal models’ in neuroethology

According to Krogh’s principle (Krogh 1929), each ‘prob-
lem’ (i.e., behavior) can be investigated with ‘a few such 
animals on which it can be most conveniently studied’. 
Many neuroethologists often advise their students to find 
the ‘champion’, i.e., the species that is best adapted to the 
behavior of interest. These species often reveal sensory 
adaptations that may facilitate finding neural correlates of 
the behavior. A recent study in birds shows that following 
Krogh’s principle indeed maximizes the chance of finding 
sensory adaptations (Payne et al. 2021). The hippocampus, 
a brain region most extensively studied in rats houses place 
cells that are important for spatial coding (Moser et al. 
2017). When a rat traverses an environment, different sub-
sets of place cells are active in a location-dependent man-
ner. Hence, a population of place cells map the rat’s local 
environment and are therefore thought to represent a neural 
correlate for spatial memory. To find the evolutionary ori-
gin of place cells, scientists look for place cells in diverse 
species including fish (Vinepinsky et al. 2017, 2020) and 
more recently birds (Ben-Yishay et al. 2021; Payne et al. 
2021; Agarwal et al. 2023). While attempts to find place 
cells in quails were unsuccessful (Ben-Yishay et al. 2021), 
they were eventually discovered in tufted titmice (Payne 

et al. 2021). As a food-hoarding bird, the tufted titmouse has 
an extraordinary spatial memory. Importantly, Payne et al. 
2021 further demonstrated that chances of finding place cells 
were reduced in a non-hoarding bird species like the zebra 
finch. This example not only gives us crucial insights into 
the evolutionary origin of place coding (Vinepinsky and 
Segev 2023), but also that chances of finding neural cor-
relates of a behavior are maximized when focusing on the 
‘champion’ species that naturally demonstrates the behavior 
of interest. Altogether, the selection of the model species 
primarily depends on the behavior of interest and less on the 
techniques that are available for the species.

To determine whether neuroethologists still follow 
Krogh’s principle, I categorized the ICN abstracts based on 
the investigated model organisms. Based on Krogh’s prin-
ciple, the term ‘model organism’ defines the species that is 
suited to answer a specific neuroethological question. As 
not every abstract highlighted the investigated species, I 
used the term ‘taxa’ for categorization. The diversity of taxa 
represented at the ICN can be appreciated in Fig. 2 which 
indicates that Krogh’s principle is still followed by many 
neuroethologists. However, it also becomes clear that some 
taxa are more represented than others. With about 37% of all 
contributions, insects are by far the most represented animal 
group at the ISN (Fig. 2a). More precisely, flies (≈ 10%) rep-
resent the biggest group. This bias likely reflects the genetic 
tools that are available for Drosophila and allow scientists 
to dissect the neural circuits of behavior. Bees and wasps 
represent the second largest group of insect contributions (≈ 
7%). Here, research often focuses on spatial orientation and 
learning (Menzel 1999, 2023; Menzel et al. 2006). Addition-
ally, the eusocial lifestyle of bees with their age-related poly-
ethism represents another central topic of bee research (Groh 
and Rössler 2020). The third most represented insect group 
were locusts and crickets (≈ 6%). Crickets are often used to 
address questions on acoustic communication (Huber et al. 
1984; Pires and Hoy 1992; Ronacher 2019; Römer 2021), 
while locusts are often investigated in the context of orienta-
tion behavior (Beetz et al. 2016c; Beck et al. 2023; Homberg 
et al. 2023) or locomotion (Dürr et al. 2018; Dürr and Mesa-
novic 2023). Because of their relatively large size, descend-
ing neurons are highly accessible with electrodes enabling 
an investigation of flight control and looming induced escape 
behavior in locusts (Rowell 1989; Santer et al. 2006; Duch 
and Büschges 2022). The dominance of insect research at 
the ICN is unsurprising because insects represent one of the 
most diverse and successful animal groups on our planet. 
Additionally, housing costs are relatively low compared to 
the animal care of vertebrates. In contrast to these advan-
tages, experiments on insects are technically demanding 
because of the small body size. Devices for monitoring neu-
ral activity are too large to be carried by freely flying insects.

Fig. 2  a Proportion of model organisms represented at the last six 
ICNs. Values are listed in Table S2. b Detailed distribution of model 
organisms. Dot and whiskers represent mean and standard deviation, 
respectively

◂
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While the proportion of insect research was relatively sta-
ble over the last 13 years (33–42%), research on molluscs, 
particularly on gastropods, progressively decreased from 
3.13% in 2012 to 0.46% in 2022. In contrast, the proportion 
of research conducted in cephalopods was stable between 
1.3 and 2.3% (≈ 2%). From my perspective, cephalopods 
are one of the most fascinating creatures on our planet. Their 
brain organization is evolutionarily distinct from the rest of 
the animal kingdom, including their close relatives, and the 
selection pressure for developing such highly complex nerv-
ous systems is still under debate (Albertin and Katz 2023). 
The octopus brain comprises approximately 500 million neu-
rons, six times more neurons than a mouse brain (Albertin 
and Katz 2023). About two thirds of the cephalopod brain is 
devoted to the optic lobes, underlining the dominance of vis-
ual processing (Pungor et al. 2023). Cephalopods use vision 
for diverse behaviors such as navigation, hunting, communi-
cation and camouflage (Pungor et al. 2023). For communica-
tion and camouflage, chromatophores distributed across the 
skin, enable cephalopods to dynamically change their visual 
appearance within a few seconds (Montague 2023; Pungor 
et al. 2023). To fully merge with their surroundings, cepha-
lopods visually scan the texture of the surroundings to rec-
reate the three-dimensional texture with their skin papillae 
(Montague 2023). When considering their camouflage skills, 
it appears paradoxical that cephalopods are actually color-
blind (Marshall and Messenger 1996). It therefore remains 
enigmatic how they accomplish such remarkable camouflage 
and even fool animals that have high spatial resolution such 
as humans. The chemotactile sense of cephalopods is also 
the focus of ongoing research. The cephalopod’s eight 
independently moving arms are equipped with chemotac-
tile receptors that allow the animal to chemically probe its 
immediate surroundings (Allard et al. 2023). In addition to 
their sensory systems, cephalopods' intelligence and behav-
ioral flexibility to solve problems never stops fascinating 
scientists (Jozet-Alves et al. 2023). The rapid progress in 
neurogenomics lays the foundation to answer questions on 
brain (Albertin and Katz 2023) and eye evolution (Nilsson 
et al. 2023). More recently, the CRISPR-cas system has been 
used to breed transparent cephalopods (Ahuja et al. 2023), 
perfect for neuroimaging (Pungor et al. 2023). Additional 
progress has been made in recording neural activity in ceph-
alopods by using electrodes (Gutnick et al. 2023). The recent 
technological progress makes cephalopod research a highly 
promising field in neuroethology.

Among vertebrates, fish are the most frequently inves-
tigated group in the ISN (≈ 16%; Fig. 2, Table S2). Fish 
show a rich repertoire of social behaviors, (Akinrinade et al. 
2023) including collective behavior (Jolles et al. 2017) and 
agonism (Silva et al. 2013; Wayne et al. 2023). In addi-
tion, they show fascinating sensory adaptations like elec-
trosensation (Carr 1990; von der Emde 2006) and acoustic 

communication (Crawford et al. 1986; Hyacinthe et al. 2019; 
Dunlap et al. 2021). Fish represent the biggest vertebrate 
group in terms of species number and occupy diverse eco-
logical niches. Genomics and transcriptomics are useful in 
characterizing molecular mechanisms of social behavior 
(Renn et al. 2008; Eastman et al. 2020) and the ability to 
genetically modify zebrafish gives researchers unique oppor-
tunities to dissect neural circuits of behavior.

Another ecologically diverse group of vertebrates are the 
birds. With 9% of ICN contributions, birds are the third most 
represented vertebrate group (Fig. 2, Table S2). One of the 
most notable behaviors associated with birds is their vocal 
behavior, which has been extensively studied in zebra finch 
(Vicario et al. 2002; Ma et al. 2020; Yu et al. 2020). How-
ever, birds are also well known for their migration behavior, 
another central topic of neuroethology (Chernetsov 2017; 
Wiltschko 2017). Corvids are often studied because of their 
cognitive capacities (Veit and Nieder 2013; Breen et al. 
2016; Balakhonov and Rose 2017; Rutz et al. 2018), such 
as their ability to count items (Kirschhock and Nieder 2023), 
while barn owls are often studied in the context of localizing 
prey-generated sounds (Carr and Peña 2016; Wagner 2019). 
Altogether, it seems to be that a ‘champion’ for almost each 
behavior can be found among birds and their phylogenetic 
position makes them perfect to answer important questions 
on the evolution of behavior.

According to the species number, reptiles are as diverse 
as birds. For each group more than 10, 000 species have been 
characterized (Uetz et al. 2021). Despite this similarity, rep-
tiles were relatively poorly represented at the last ICN. Less 
than 2% of ICN contributions from 2010 to 2022 were about 
reptiles and at the latest ICN in 2022 the proportion even 
dropped to 0.5% (Fig. 2). This trend is unexpected consid-
ering the rich behavioral repertoire and sensory adaptations 
found in reptiles. Chameleons, for example, can walk along 
vertical substrates upside-down, independently move their 
eyes, are highly successful predators, and are known for their 
camouflage (Ketter-Katz et al. 2020). Sea turtles are famous 
for their remarkable navigation skills that enable them to 
reach their home beach years after hatching (Lohmann 
et al. 2022). Snakes exhibit interesting sensory adaptations 
for prey detection. Infrared receptors sense the heat radiat-
ing from potential prey and allow prey detection in com-
plete darkness (Kaldenbach et al. 2016; Bothe et al. 2019). 
Despite these fascinating behaviors, scientists often hesitate 
to work with reptiles. One possible reason could be the rep-
tiles’ low reproduction rate which makes breeding extremely 
time consuming and expensive. The reptiles’ low metabolic 
rate further complicates working with reptiles because con-
ditioning experiments with food rewards are quite time con-
suming. Instead of being frustrated by such pitfalls, some 
scientists seek to take advantage of them. Because of their 
low metabolic rate, reptiles are physiologically resistant to 
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extreme hypoxia (Laurent et al. 2016). Some turtles sur-
vive periods of hibernation longer than 4 months at 3 °C 
(Laurent et al. 2016). This inspires research that seeks to 
understand how nervous tissues tolerate hypoxia (Laurent 
et al. 2016). In addition, the ‘laziness’ of reptiles is perfect 
to monitor physiological processes associated with sleep and 
hence represent enormous potential to investigate evolution-
ary aspects of sleep (Shein-Idelson et al. 2016; Fenk et al. 
2023). Research questions on brain evolution can also be 
answered by transcriptomics in reptiles (Hain et al. 2022).

Another evolutionarily interesting group of animals are 
amphibians. Similar to reptile studies, the proportion of 
ICN contributions on amphibians dropped from 7% in 2012 
to 3% in 2014 and since then has stayed at relatively low 
proportions (Fig. 2, Table S2). Working with amphibians 
has a long tradition in neuroethology. In particular, acoustic 
communication in frogs represents a core topic in neuro-
ethology (Narins et al. 2023). Nerve regeneration in axolotl 
(Lust et al. 2022) and poison resistance in newts are also 
studied (Hanifin and Gilly 2015; Vaelli et al. 2020). Despite 
the decreasing number of amphibian contributions, there is 
growing interest in investigating neural mechanisms of cog-
nitive processes (Liu et al. 2019; Khatiwada and Burmeister 
2022) or social behaviors such as parental care in poison-
ous frogs (Fischer 2023; Moss et al. 2023). To this end, 
scientists not only use behavioral assays but also transcrip-
tomics to find the molecular mechanisms of social behavior 
(Fischer et al. 2019, 2021). Transcriptomics are also quite 
useful in shedding light on the evolution of the amphibian 
brain (Woych et al. 2022). Altogether, amphibians provide 
many interesting questions for neuroethologists, and thus 
have great potential to influence the future of neuroethology.

Bats are the mammals that were most represented (≈ 5%) 
at the last ICNs, with the exception of the congress held 
in 2016. Bat research represents a good example of how 
neuroethological topics change over the years. Tradition-
ally, bats were investigated to understand how they negotiate 
obstacles in darkness without using their eyes (Simmons 
et al. 1978; Neuweiler 2003; Beetz and Hechavarría 2022). 
This remarkable feat, which is based on a highly specialized 
auditory sense, has fascinated scientists for decades. With 
the increasing knowledge of acoustic processing, some bat 
researchers have shifted their focus towards acoustic com-
munication (Salles et al. 2019). As highly social animals, 
bats live in colonies and exhibit a huge repertoire of different 
communication signals. It is not only interesting how com-
munication signals are processed in the bat brain but also 
how they are segregated from echolocation signals (López-
Jury et al. 2021). By taking a closer look at the ontogeny of 
vocalization signals, scientists have found that pups hand-
reared in the absence of conspecific vocalizations, but in the 
presence of an experimentally controlled bat call, fine-tuned 

their social call to the play-backed call. This phenomenon 
was not observed in pups that were not acoustically stimu-
lated (Esser 1994). These early findings triggered research 
on vocal learning in bats which is meanwhile a central topic 
in neuroethology (Vernes and Wilkinson 2020).

Nachum Ulanovsky, who has a keen interest in under-
standing the spatial representation in the bat hippocampus, 
has taken a different research direction. When he was post-
doctoral researcher in Cynthia Moss’ laboratory, research 
on spatial representation in the hippocampus was predomi-
nantly conducted in rodents that oriented in laboratory 
mazes. Nachum Ulanovsky, however, followed a neuro-
ethological approach and aimed to study the spatial code in 
bats that orient under more natural conditions. By record-
ing from the hippocampus of crawling bats (Ulanovsky and 
Moss 2007), his laboratory meanwhile investigates spatial 
coding in freely flying bats that navigate hundreds of meters 
in a tunnel (Eliav et al. 2021). What else could we learn from 
bats in the future? When I worked with bats during my PhD, 
I was astonished by the longevity of bats. Although they 
exhibit a high metabolic rate comparable to mice, it is not 
rare to find 10 or even 15-year old bats (Brunet-Rossinni 
and Austad 2004; Wilkinson and Adams 2019). The physi-
ological processes that may explain why bats became the 
Methuselah of small mammals still await to be discovered 
and could be applied to age-related neuro-degenerative dis-
eases, such as dementia.

Importance of comparative studies

In contrast to the approach of systems neuroscience, neu-
roethology seeks to investigate behavior in diverse species 
(Bleckmann 2023). If physiological processes are conserved 
across the evolutionary scale, we can make general state-
ments. At the same time, physiological adaptations that are 
distinct in a few species help us not only to understand how 
the nervous system works, but also how subtle modifica-
tions in the neural circuit may affect behavior. To this end, 
comparative approaches are essential to understand how 
nervous systems operate and how they evolved. This can 
be appreciated by recent findings in the mammalian hip-
pocampus. The activity of place cells oscillates in the theta 
range (Buzsáki 2002). These brain oscillations had been 
suggested to have different functions such as neural com-
munication (Colgin et al. 2009), memory (Lisman John and 
Jensen 2013), and navigation (Burgess and O'Keefe 2011). 
Unexpectedly, a theta rhythmicity could not be detected in 
monkeys (Hori et al. 2011), nor in flying bats (Yartsev and 
Ulanovsky 2013), suggesting that theta oscillations are not 
essential for place coding. This example demonstrates that 
results can only be circumscribed as ‘fundamental’ when 
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the mechanisms are conserved across diverse species. For-
tunately, neuroethologists show a keen interest in following 
a comparative approach. This is reflected by an increase in 
ICN contributions that work with multiple different species, 
from 1% at the ICN in 2012 to 7% at the ICN in 2022 (Fig. 2, 
Table S2).

Research topics

To get an overview of the current research directions of 
the field, I categorized the ICN abstracts into different 
research topics. Because of the diversity of topics, it was 
challenging to determine a limited number of research top-
ics. I decided against using topic categorizations as defined 
by the ICNs because each congress had a slightly differ-
ent categorization, making a direct comparison difficult. 
To acknowledge the diversity of research topics, I named 
55 research topic categories. A brief explanation for each 
category is given in the glossary. I assigned research top-
ics to each abstract based on its content. I often assigned 
multiple topics to a single contribution. For example, frog 
studies often focus on acoustic communication in the con-
text of mating, and some studies additionally investigate 
hormones. In that case, I assigned three topics, i.e., ‘com-
munication’, ‘courtship behavior’, and ‘hormones’. To also 
highlight technological advances, I included some meth-
odological categories, such as the use of virtual realities 
or tracking techniques. Together, with the quantification of 
contributions to the Journal of Comparative Physiology-A/
Zeitschrift für vergleichende Physiologie (Wagner et al. 
2024), we may get a representative view of the recent past, 
as well as the present status, of neuroethology.

Spatial orientation, memory, 
and communication are the top 3 research 
topics

A substantial fraction of ISN delegates work on spatial ori-
entation (≈ 16%; Fig. 3a, Table S3). Over the last decade, 
this topic has attracted many neuroethologists (Fig. 3b). 
While 13% of ICN contributions in 2010 were about spa-
tial orientation, more than one fifth of the abstracts (21%) 
covered this topic at the last ICN in 2022. A keen interest 
in this topic is not surprising when considering the evo-
lutionary conservation of spatial orientation. In essence, 
every species that actively moves must need some sense 
for orientation. Orientation behavior is relevant across dif-
ferent spatial scales from just a few centimeters as it is the 
case for thermotaxis in C. elegans (Mori and Ohshima 
1995), to thousands of kilometers as seen in many migra-
tory species (Mouritsen 2018). Depending on the spatial 

scale, different sensory modalities are used for spatial 
orientation. In most cases, however, spatial orientation 
is based on multimodal processing. This complicates 
research on spatial orientation, but further drives the fas-
cination for this topic. While neural activity can be moni-
tored in diverse species and under well-controlled labora-
tory conditions, it remains a mystery as to how the brain 
operates when an animal orients over several kilometers 
in its natural habitat. The development of ultralightweight 
recording devices undoubtedly advances the field of navi-
gation and will allow scientists to unravel the secrets of 
animal navigation (Gaidica and Dantzer 2022; Givon et al. 
2022; Ide and Takahashi 2022; Menz et al. 2022).

For efficient orientation in a familiar habitat, many spe-
cies form a spatial memory which can be represented by 
vectors, as it is the case in insects (Webb 2019), or as a spa-
tial layout of the environment, a so called ‘cognitive map’ 
(Whittington et al. 2022; Farzanfar et al. 2023). Understand-
ing neural processes of spatial memory is a central topic in 
neuroethology (Menzel et al. 2006; Geva-Sagiv et al. 2015; 
Ardin et al. 2016; Stone et al. 2017; Webb 2019). However, 
spatial memory reflects only a small portion of memory 
research. Memory is also essential for communication, 
another ‘hot topic’ of neuroethology (Fig. 3a, b). On aver-
age 14% of ICN contributions from 2010 to 2022 were about 
communication with many of them covering vocal learn-
ing (Knörnschild 2014; Jarvis 2019; Vernes et al. 2021). 
Communication is crucial for our daily life and understand-
ing its neural underpinnings, especially in the context of 
vocal learning is essential. Comparative research beautifully 
demonstrates the importance of auditory feedback for vocal 
learning (Brainard and Doupe 2000; Smotherman et al. 
2003; Tschida and Mooney 2012) such as in the case of the 
sensitive phase in infants in order to learn how to vocalize.

Communication is not only based on acoustic signals. 
Weakly electric fish, for example, use self-generated elec-
tric fields for communication (Zupanc et al. 2006; Jones 
et al. 2021; Caputi 2023). Depending on the species, these 
electric signals are sine waves or pulses that are repro-
ducible in the laboratory. This allows scientists to ‘com-
municate’ with electric fish and perturb the fishes’ elec-
tric sense, an elegant approach to investigate the active 
electric sense. Electric fish also use their electric sense 
for short-range orientation, referred to as electrolocation 
(Caputi and Budelli 2006; von der Emde 2006). Objects 
surrounding the fish distort the electric field which can 
be sensed by electroreceptors distributed across the fish’s 
skin. The larger and closer the object is, the more elec-
troreceptors sense the distortion (Haggard and Chacron 
2023). In addition to localizing close-by-objects, the elec-
tric sense allows the fish to discriminate between living 
and non-living objects. Depending on the conductivity 
of objects, electric fields get differently distorted, which 
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allows a rapid categorization between a stone or a poten-
tial prey. While 4% of the ICN 2016 contributions were 
about electrolocation, the proportion decreased to less than 
1% at the ICN in 2022 (Fig. 3b). This reflects the current 
situation of electric fish research which seems to focus 
more on aspects of electric communication and antagonis-
tic behavior and its hormonal control (Perrone and Silva 
2018; Metzen 2019; Dunlap et al. 2021). The ability to 
monitor brain activity in freely swimming fish (Takahashi 
et al. 2021; Cohen et al. 2023) has a great potential for 
investigating electrolocation under more natural conditions 
in the future.

Technical approaches

Many neuroethologists work on species that cannot be 
genetically modified. To overcome these technological con-
straints, there is strong effort in developing genome editing 
tools in different species (Dierick et al. 2021). The CRISPR-
Cas system represents a broadly used gene-editing tool in 
neuroethology (Dierick et al. 2021; Alward and Juntti 2023). 
Since the discovery of its potential, scientists have edited 
genes in diverse species including cephalopods (Ahuja 
et al. 2023), butterflies (Markert et al. 2016; Livraghi et al. 
2018), beetles (Gilles et al. 2015), fish (Barske et al. 2020; 
Bedbrook et al. 2023), axolotl (Fei et al. 2018), lamprey 
(Square et al. 2015), lizards (Rasys et al. 2019), and opos-
sums (Kiyonari et al. 2021). Genome editing is not only used 
to knockout genes, but it also helps to monitor the activ-
ity of anatomically traceable neurons. With the PiggyBac 
transposon system (Schulte et al. 2014), scientists recently 
generated a pan-neuronal genetic driver in the honeybee 
(Carcaud et al. 2023). By expressing a calcium indicator 
under the control of a presynaptic protein (synapsin) promo-
tor, scientists simultaneously imaged the neural activity in 
multiple brain regions upon olfactory stimulation (Carcaud 
et al. 2023). Although these recordings were conducted in 
restrained bees, this technique could potentially be com-
bined with a virtual reality setup that allows the insect to 
interact with a visual scene under closed-loop settings. The 
use of virtual realities has a long tradition in insect science 
(Reichardt 1973; Heisenberg and Wolf 1979). One of the 
early studies that used a virtual reality setup to investigate 
visual pattern learning in Drosophila had been published in 
Journal of Comparative Physiology-A (Wolf and Heisenberg 
1991). At that time, a fly was attached to a torque meter 
at the center of a cylinder whose inner wall was equipped 
with visual patterns. The torque meter measured the fly’s 
intended rotatory movements which correspondingly adjusts 
the angular position of the cylinder. Over the years, these 
settings substantially changed. Instead of mechanically 
moving a cylinder, a visual pattern displayed on a circular 

LED screen can be rotated, depending on the fly’s orien-
tation behavior (Reiser and Dickinson 2008). In addition, 
the torque meter had been replaced by a video camera that 
monitors the wing beat amplitude from both wings. Based 
on the wing beat amplitude difference between left and right 
wing, the fly’s intended steering direction can be measured, 
and the LED screen gets accordingly updated. While these 
virtual realities are limited to simulate the insect’s rotatory 
movements, more recently developed setups additionally 
simulate translatory (i.e., forward and backward) move-
ments of the insect (Haberkern et al. 2019; Kaushik et al. 
2020). One of the most sophisticated virtual realities used 
in insects, but also in vertebrates, are settings that create 
a closed loop between a visual scene and a freely moving 
animal (Stowers et al. 2017). However, monitoring brain 
activity from an insect that is moving freely currently works 
only with extracellular recording techniques (Martin et al. 
2015; Jin et al. 2020; Wosnitza et al. 2022). In contrast, in 
freely moving vertebrates, brain activity can be monitored 
with ultralight microscopes attached to the scalp (Düring 
et al. 2020; Liberti et al. 2022; Zong et al. 2022; Hasani et al. 
2023). Despite these technological advances, the proportions 
of ICN contributions focusing on virtual realities were sta-
ble over the last decade (1%, Fig. 3b), a situation that may 
change when neuroethologists combine virtual realities with 
neural recordings in genetically non-tractable species.

Instead of conducting research under constrained labo-
ratory conditions, we should always evaluate the possibil-
ity of moving from the lab into the field (Hoffmann et al. 
2023). Field experiments, however, come with challenges. 
For example, stimuli in the field are much more diverse than 
the ones tested in the laboratory. In the field, stimulus sce-
narios are usually unique and cannot easily be replicated. 
This makes it impossible to compare neural data collected 
in the field with conventional methods that had been con-
ceptualized under the premise that the data were collected in 
response to many identical trials (Miller et al. 2022). How-
ever, this analytical concept is miles away from the natural 
situation when a brain must reliably work at any moment 
in time and initiate the behavior that is most appropriate 
for the current situation. Not only the quantity of stimulus 
replicates is unpredictable in the field, but also the qual-
ity, i.e., the stimulus salience. Since the beginning of elec-
trophysiology, scientists have presented salient stimuli in 
absence of any potentially interfering stimuli. An auditory 
scientist for example performs experiments in a sound-proof 
room. While this approach undoubtedly gives insights into 
the principles of neural coding, under these conditions it 
is challenging to test how the neurons process naturalistic 
stimuli that are embedded in a sensory stream. Fortunately, 
neuroethologists were aware of this problem early on and 
this may also be the reason why a substantial fraction of 
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3 ± 0.9% of ICN contributions investigated how potentially 
interfering stimuli may mask the neural response to the 
behaviorally relevant stimulus (topic: ‘internal or external 
noise’ Fig. 3, Table S3). Understanding how the nervous 

system processes more naturalistic stimulus scenarios is 
essential to interpret brain activity recorded in the field. For 
example, the extensive literature on the neural processing 
of bird songs (Keller and Hahnloser 2009; Fortune et al. 

Fig. 3  Representation of research topics at the last six ICNs. a Distri-
bution of 55 research topics. For topic descriptions see the glossary. 
Dot and whiskers represent mean and standard deviation, respec-

tively. b Proportional change of selected research topics over the last 
twelve years. POL polarization, quant quantification
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2011; Theunissen and Elie 2014; Moore and Woolley 2019; 
Das and Goldberg 2022) paved the way to monitor brain 
activity from vocalizing birds in the field (Hoffmann et al. 
2019; Coleman et al. 2021). It is therefore encouraging to 
see an increasing trend testing how naturalistic stimuli are 
processed in the brain (from 0.2% in 2010 to almost 1.4% in 
2022, Fig. 3, Table S3) and performing recordings outdoors 
(from 0.3% in 2016 to almost 1% in 2022).

While conducting field experiments, it is not only the sen-
sory stimuli that vary but also the animal’s internal state. 
Internal states, such as hunger, arousal, and hormonal levels, 
not only substantially affect behavior but also neural activity 
(Abbott 2020; Kanwal et al. 2021). To decode the recorded 
brain activity, scientists must conduct experiments under 
diverse internal states. This could be achieved with long-
term recordings. The development of mesh-structured elec-
trodes allows scientists to perform life-long neural record-
ings (Dhawale et al. 2017; Luo et al. 2020; Steinmetz et al. 
2021; Guan et al. 2023; Zhao et al. 2023). Measuring brain 
activity in the field is just one side of the coin. The neural 
data must also be related to the animal’s behavior. To this 
end, the behavior must be tracked in sufficient detail, which 
is not trivial when considering small, highly mobile animals. 
Fortunately, camera systems have improved over the years 
and allow scientists to precisely track animals (Vo-Doan and 
Straw 2020; Fabian et al. 2024). In addition, video analy-
ses are also improving. While reflective markers had to be 
mounted on the animals in the past, state-of-the-art tracking 
software, such as DeepLabCut (Nath et al. 2019; Mathis 
et al. 2020), Ctrax (Branson et al. 2009) or DeepPoseKit 
(Graving et al. 2019) enable marker-free pose tracking in 
diverse species. Camera-based tracking approaches may 
not be ideal to track animals in highly cluttered environ-
ments. Under these conditions, radar-based methods may be 
favored. Radar tracking is widely used and transmitters/tran-
sponders that must be mounted on the animal are meanwhile 
so tiny so that they barely interfere with the animal’s behav-
ior. Radar tracking however bears limitations. For example, 
it reveals only a two-dimensional coordinate, and it does 
not reach the spatio-temporal accuracy of video tracking. 
Altogether, each tracking method must be carefully evalu-
ated before moving from the lab into the field. Fortunately, 
technological progress is rapid (Daniel Kissling et al. 2014; 
Nourizonoz et al. 2020; Vo-Doan and Straw 2020; Lioy et al. 
2021; Shearwood et al. 2021; Walter et al. 2021; Gaidica and 
Dantzer 2022; Raab et al. 2022; Nagy et al. 2023), which is 
reflected by ICN contributions working on tracking tech-
niques. These contributions have increased since the ICN in 
2014 from 0.45% to almost 3% (Fig. 3b).

Glossary

Adaptations to dim light: This topic deals with research 
focusing on sensory adaptations to dim light. It includes 
research on nocturnal vision and additional sensory adapta-
tions related to dim light conditions.

Aggression: Resources, such as space, food, or mates, are 
limited. This limitation often results in aggressive behavior 
which is central to many neuroethological projects.

Aging: This topic includes research related to the molecu-
lar mechanisms of aging.

Attention: This broad term refers to ICN abstracts that 
explicitly stated ‘attention’.

Automated quantifications: This topic refers to any tool 
that enables an automated quantification. Many behavioral 
studies on Drosophila monitored the behavior of single flies 
with the goal to fully describe the behavioral repertoire.

Binocularity: This topic investigates the neural computa-
tions of stereo vision.

Biological clocks: This topic refers to research that 
focuses on biological rhythms.

Brain size: This topic includes research that relates brain 
sizes to behavioral or sensory adaptations.

Camouflage: This topic refers to research on the neural 
mechanisms of camouflage.

Cognition: Under this broad term, I assigned only 
abstracts that explicitly stated ‘cognition’.

Collective behavior: This research topic refers to projects 
focusing on collective behavior such as swarm intelligence.

Color vision: This topic includes research that focuses on 
the discrimination of wavelengths.

Communication: This topic includes any kind of com-
munication between at least two conspecifics. While most 
research focuses on acoustic communication, other sensory 
modalities used for communication are also included in this 
topic.

Courtship behavior: This topic includes research that 
deals with mating or courtship behavior. This also includes 
research on acoustic communication in frogs or crickets 
whose ultimate goal is to localize potential mates.

Decision making: This broad topic only contains 
abstracts that explicitly stated ‘decision’.

Echolocation: This topic refers to research on the bioso-
nar of marine mammals or bats.

Electrolocation: This topic includes research on active 
and passive electrolocation. In contrast to passive electrolo-
cation in which animals perceive electric fields emitted 
from surrounding organisms, active electrolocation refers 
to the ability to produce electric discharges for orientation 
purposes.

Fear: This topic refers to research on the effects of fear on 
the nervous or hormonal systems or on behavior.



336 Journal of Comparative Physiology A (2024) 210:325–346

Flight control: This topic includes research that focuses 
on the biomechanics of flight, especially on how visual feed-
back is important for flight control.

Foraging: Finding food is essential for survival. This cat-
egory refers to the research focusing on foraging.

Gravity sensing: This topic refers to research focusing 
on how animals sense gravity.

Hibernation: This topic refers to research focusing on the 
physiological processes involved in hibernation.

Hormones: This topic includes research focusing on the 
hormonal control of neural processing and behavior.

Impulse control: Most research represented at the ICN 
on impulse control investigated impulse control in domestic 
chicks (Amita et al. 2010).

Individual variability: This topic refers to research 
that aims to understand the inter-individual variability of 
behavior.

Internal/external noise: Behaviorally relevant stimuli are 
usually embedded in non-relevant stimuli. This topic focuses 
on research on signal processing in the presence of poten-
tially interfering stimuli. In addition, neurons often show 
an inter-trial variability, i.e., the presentation of a stimulus 
does not always evoke the same neural response. Research 
focusing on how neurons convey information despite the 
inter-trial variability are categorized into ‘internal noise’.

Lateralization: This topic refers to research that focuses 
on right-left brain asymmetries or lateralization of a 
behavior.

Memory: This topic represents a broad spectrum of 
research such as vocal learning, visual memory in the con-
text of spatial orientation, but also molecular mechanisms 
of learning and memory.

Motor efferences: Any voluntary movement creates 
an internal copy of the motor pattern (efference copy) that 
allows a prediction of the sensory input. This prediction may 
for example be used for flight stabilization.

Natural stimuli: This topic represents research that uses 
naturalistic stimuli, e.g., communication calls.

Nerve regeneration: Some species show remarkable 
abilities to regenerate neuropathic injuries. This topic refers 
to research that focuses on the molecular mechanisms of 
nerve regeneration.

Numerosity: This topic refers to research that focuses on 
numerical discrimination, a behavior not restricted to ver-
tebrates [see (Howard et al. 2019; Bengochea et al. 2023)].

Odor tracking: Many animals, such as moths locate 
potential mates by tracking pheromones. This topic also 
refers to research dealing with host seeking behavior based 
on olfactory cues.

Outdoor recordings: This topic includes projects that 
use electrophysiology outdoors in the field. In this topic, I 
also include measurements of electric organ discharges in 
the natural habitat of electric fish.

Pain: This topic refers to research on nociception.
Parasites/diseases: This topic includes research on para-

sites and diseases that affect the nervous system (including 
behavior).

Parental care: This topic refers to research that investi-
gates parental care. 

Plasticity: This topic includes research on age-related 
synaptic plasticity often observed in the context of age poly-
ethism in eusocial insects.

Polarization vision: Many species use polarization infor-
mation for diverse behaviors such as orientation or commu-
nication. This topic refers to research that investigates the 
neural mechanisms of polarization vision.

Predation: This topic refers to research on hunting or 
escape behavior. Many of the projects use looming stim-
uli to evoke escape behavior and to understand its neural 
mechanisms.

Proprioception: This topic refers to research that focuses 
on how animals receive sensory feedback from their body, 
e.g., body postures.

Recognition of conspecifics: This topic includes research 
on recognizing conspecifics or nest mates. Recognition of 
conspecifics is crucial, for example, for eusocial insects that 
must discern nest mates from potential intruders.

Robotics: This topic is dedicated to research that aims 
to transfer empirical data into robots to test the behavioral 
relevance of the neural findings.

Sexual dimorphism: This topic refers to research on sex 
specificity. This includes sexual dimorphism at anatomical, 
physiological, or behavioral levels.

Sleep: This topic includes research on the neuroethology 
of sleep.

Social behavior: This topic includes research that aims to 
understand the neural mechanisms of eusocial behavior. In 
addition, many studies on fish investigate a diverse repertoire 
of social behaviors without giving explicit details in their 
abstracts. These together with studies on eusocial insects 
are represented in this topic.

Social learning: Many species learn from conspecifics, 
often referred to as observational learning. Abstracts focus-
ing on observational learning from conspecifics are catego-
rized here.

Sound localization: Localizing sound sources is critical 
for many behaviors such as finding prey in the example of 
nocturnal birds or bats, or a potential mate as it is the case 
for frogs or crickets.

Spatial orientation: This topic includes research that 
focuses on goal-directed movements.

State dependence: Behavior and neural processing 
strongly depends on the animal’s state, e.g., whether it is 
quiescent, moving. In addition, the animal’s internal state 
(e.g., hunger, alertness), determine the motivation to show a 
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particular behavior. This topic refers to research that focuses 
on state dependence.

Stimulus specific adaptation: Neurons often adapt to 
repetitive stimuli, i.e., the neural response decays with the 
number of stimulus presentations. The sensitivity to rarely 
occurring stimuli however is preserved. Research dealing 
with this specific adaptation was grouped into ‘stimulus spe-
cific adaptation’ (SSA), a field that often focuses on auditory 
signals.

Stress: This topic includes research on the influence of 
stress on the brain and behavior.

Symbiosis: This topic refers to research that investigates 
symbiosis, i.e., a social interaction from which at least two 
species profit from.

Tracking techniques: This topic refers to tools that aim 
to track the position or the posture of animals.

Virtual reality: This topic refers to research that uses 
virtual realities to answer neuroethological questions.

Research highlights

For the remaining part of this perspective, I highlight three 
research topics that have recently captured my interest and 
that will hopefully gain more attention in the neuroethology 
community in the future. Due to space constraints, I focus 
here on three topics, which does not mean that other neuro-
ethological research topics are less fascinating.

Neural correlates of social interactions

Whether a male cricket sings to attract a female or a pup 
calls for her mother in a bat colony, each individual is inter-
acting with conspecifics. Characteristic for such social inter-
actions is that at least two individuals form a sensory-motor 
loop. For example, acoustic signals emitted by a male cricket 
are detected by a female which initiates a phonotactic behav-
ior. In other words, the sensory information received by the 
female elicits a corresponding motor output. Although social 
behavior implies the engagement of multiple individuals, 
neural recordings are usually conducted in single individu-
als. To fully understand the neural mechanisms of social 
behavior, it is essential to record simultaneously from multi-
ple individuals. Recently, scientists managed to record from 
a pair of vocally interacting birds (Hoffmann et al. 2019; 
Coleman et al. 2021). These recordings revealed that audi-
tory feedback from the conspecific is crucial to synchronize 
the neural activity in premotor brain regions. Importantly, 
this neuronal synchrony was not observed in anaesthetized 
birds emphasizing the importance of the sensory loop 
between two individuals (Fortune et al. 2011). Synchronized 
brain activity between two interacting individuals has also 

been demonstrated in communicating bats (Zhang and Yart-
sev 2019). However, in addition to neural synchrony, there 
were also rapid fluctuations of activity differences between 
the two individuals (Zhang et al. 2022). Both examples 
focused on acoustic communication. Whether neural syn-
chrony can also be observed in communications based on 
other sensory modalities, for example in electrocommunica-
tion or visual communication (such as during the courtship 
behavior of jumping spiders), remains unanswered. In addi-
tion to conducting neural recordings in pairs of individuals, 
it may also be interesting to see if and how the brains of ani-
mals in groups, such as in swarms, are synchronized to each 
other. The neuroethology of collective behavior represents 
an exciting research topic, and the combination of virtual 
realities, computational simulations, and neural recordings 
may be a promising approach to unravelling the secrets of 
collective behavior (Couzin 2009; Sridhar et al. 2021).

Neural mechanisms of sleep

Traditionally, neuroethologists get inspired by observing 
animals in the field. But what about behavior that is diffi-
cult to observe because it is only mentally represented? For 
example, what happens in the brain when we are sleeping? 
According to the four criteria of sleep [quiescence, increased 
arousal threshold, rapid reversibility, and homeostasis 
(Campbell and Tobler 1984)], sleeping behavior has been 
described in diverse species (Lakhiani et al. 2023) including 
cnidarians (Nath et al. 2017; Kanaya et al. 2020), molluscs 
(Vorster et al. 2014), and insects (Kaiser and Steiner-Kaiser 
1983; Hendricks et al. 2000; Shaw et al. 2000). Sleep is 
often biphasic with alternating periods of quiescence and 
active sleep. Active periods are described as rapid eye move-
ment (REM) phases (Aserinsky and Kleitman 1953), which 
humans often experience as story-like dreams (Hobson 
2009). While REM phases have also been reported in non-
mammals, such as spiders (Rößler et al. 2022) and reptiles 
(Shein-Idelson et al. 2016), it remains unclear whether these 
animals dream. Answering this question might help us to 
understand the function of sleep. One proposed function is 
that sleep is important for memory consolidation (Smith 
et al. 1974; Stickgold and Walker 2013). During sleep the 
activity of our brain oscillates, a neural signature common 
to many species (Shein-Idelson et al. 2016; Yamazaki et al. 
2020). In spite of these physiological parallels, we still can-
not assess whether non-human species dream. However, we 
can test whether sleep promotes memory consolidation in 
different species. For example, when a sleeping bee gets 
stimulated with a previously learned odor, her memory 
improves compared to a honeybee that is not exposed to the 
odor while sleeping (Zwaka et al. 2015). To characterize 
the neural mechanisms of memory consolidation associated 
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with sleep, scientists monitored the brain activity of resting 
rats that had recently explored a novel environment. While 
recording from the hippocampus, they noticed that the neural 
activity of a population of place cells was often replayed in a 
time-compressed manner when the rats were sleeping (Wil-
son and McNaughton 1994; Frankland and Bontempi 2005). 
Interestingly, these replays were associated with memory 
formation (Ji and Wilson 2007; Drieu et al. 2018; Huelin 
Gorriz et al. 2023). Similar memory-associated replays have 
been characterized in birds (Shank and Margoliash 2009). In 
birds, sleep induces spontaneous bursting activity of premo-
tor neurons that reflect neural activity about daytime vocal 
learning. More importantly, changes in night-time neural 
activity preceded the onset of practice-associated neural 
activity in vocal learning in zebra finches. While these find-
ings undoubtedly demonstrate the importance of sleep on 
memory consolidation, sleep research must be conducted 
in the field, to fully appreciate its ecological relevance and 
possibly explain species-specific trade-offs (Rößler et al. 
2022). I am convinced that there are methodological tech-
niques available to investigate the neuroethology of sleeping 
behavior and its function in diverse species, and also in more 
naturalistic contexts.

‘Mind‑controlling’ parasites

Parasites and their hosts have coevolved fascinating behav-
iors. After infecting their hosts, some parasites control their 
host behavior to promote their own fitness (Libersat et al. 
2009; Libersat and Gal 2013; Hughes and Libersat 2019). 
This can lead to extreme cases where the host loses its con-
trol over its body, although the motor systems are not para-
lyzed; a situation described as zombification. One zombi-
fication that has gained a lot of attention is the interaction 
between the jewel wasp and its host a cockroach (Williams 
1942; Haspel et al. 2005; Catania Kenneth 2018). The jewel 
wasp’s goal is to oviposit an egg on a cockroach, which will 
serve as a protein-rich source for newly-hatched larvae. To 
manipulate the behavior of a cockroach, the wasp zombifies 
the cockroach. To this end, the wasp stings the cockroach’s 
first thoracic ganglion. This paralyzes the cockroach so that 
the wasp can direct her sting with remarkable precision into 
the cockroach’s motor command center (central complex), 
in the central brain (Haspel et al. 2003). To guide the sting 
into the central complex, the jewel wasp may receive soma-
tosensory feedback from the sting (Gal et al. 2014). After 
injecting the venom into the central brain, the paralysis 
wears off, and occasionally transforms the cockroach into 
a submissive zombie. In this state, the cockroach does not 
attempt to escape, despite not being paralyzed (Emanuel and 
Libersat 2017). Then, the wasp drags the cockroach into a 
nearby burrow where she stings the cockroach another four 

times (Catania Kenneth 2020). This last sequence of stings 
is directed at the second thoracic ganglion and induces an 
extension of the cockroach’s femur to expose the desired 
oviposition site for the jewel wasp (Catania Kenneth 2020). 
To understand the neural mechanisms of this behavior, 
scientists require sophisticated knowledge on the insect’s 
motor system, the jewel wasp’s ability to localize a host, and 
the injection sites. Finally, how the venom physiologically 
affects the cockroaches’ nervous system is another central 
question (Emanuel and Libersat 2017).

Because neural activity can be monitored in freely mov-
ing cockroaches (Martin et al. 2015), it is technically feasible 
to dissect the effects that the venom has on the nervous sys-
tem. Ultimately, this will help us to understand how behavior 
can be pharmacologically manipulated. It is noteworthy that 
this is just one example of zombification. There are many 
more examples where parasites hijack the behavior of their 
hosts at the expense of the host’s fitness. For example, crick-
ets zombified by nematodes commit suicide by leaping into 
bodies of water (Thomas et al. 2002). Fungi can also control 
hosts’ behavior (Hughes et al. 2011; Hughes and Libersat 
2019). The fungus Entomophthora muscae, for example, 
infects flies including Drosophila melanogaster, and induces 
a behavior called ‘summit disease’ which is characterized 
by the host climbing up a substrate (MacLeod et al. 1976; 
Elya et al. 2023), possibly to be more conspicuous to preda-
tors (Martín-Vega et al. 2018). The involvement of Dros-
ophila in this parasite-host interaction allows scientists to 
use genetic tools to dissect the neural circuit responsible 
for zombification (Elya et al. 2023). With this diversity of 
parasite-host interactions, it is only a matter of time before 
more neuroethologists join this interesting field of research 
to investigate the neuroethology of zombification. This trend 
could already be seen at the ICN in 2022 where host-parasite 
interactions had been investigated in almost 3% of the con-
ference contributions, compared to 0.4% at the ICN in 2010 
(Fig. 3, Table S3).

Concluding remarks

Hopefully, this perspective not only gives an overview of the 
recent scientific progress in neuroethology but also insights 
into the field’s philosophy. Neuroethology stands for com-
parative research where scientists working on diverse spe-
cies often find their common ground in the behaviors that 
drives their fascination. For example, I currently study how 
the insect brain represents space and I get inspired from 
both invertebrate and vertebrate research. Personally, I do 
not identify my research with the species I am working with, 
but rather the behavior that triggers my enthusiasm as a sci-
entist. It is therefore essential for me to discuss research with 
scientists working with diverse animal models and sensory 
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systems. I strongly encourage comparative approaches to 
assess the fundamentality of the findings. At the same time, 
investigating adaptations in ‘champion’ species is crucial 
to find neural correlates of behavior and how slight modifi-
cations of a neural circuit affect behavior. Since its launch 
100 years ago, the Journal of Comparative Physiology-A 
captures the enormous diversity of neuroethology. The 
future of neuroethology strongly depends on the scientific 
exchange across disciplines—which is granted by this jour-
nal—and the development of techniques. Diverse techniques 
are necessary to investigate animal behavior at different lev-
els, from hormones and neural activity to a detailed analysis 
of the behavior. Current tools enable precise monitoring of 
neural activity and behavior allowing scientists to pursue the 
neuroethological dreams of conducting experiments in the 
field where it can be best related to natural behavior. I am 
convinced that more neuroethologists will fulfill this dream 
in the coming years, and that the Journal of Comparative 
Physiology-A will accompany their scientific journey.
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