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Abstract
Avian long-distance migration requires refined programming to orchestrate the birds’ movements on annual temporal and 
continental spatial scales. Programming is particularly important as long-distance movements typically anticipate future 
environmental conditions. Hence, migration has long been of particular interest in chronobiology. Captivity studies using a 
proxy, the shift to nocturnality during migration seasons (i.e., migratory restlessness), have revealed circannual and circadian 
regulation, as well as an innate sense of direction. Thanks to rapid development of tracking technology, detailed informa-
tion from free-flying birds, including annual-cycle data and actograms, now allows relating this mechanistic background to 
behaviour in the wild. Likewise, genomic approaches begin to unravel the many physiological pathways that contribute to 
migration. Despite these advances, it is still unclear how migration programmes are integrated with specific environmental 
conditions experienced during the journey. Such knowledge is imminently important as temporal environments undergo 
rapid anthropogenic modification. Migratory birds as a group are not dealing well with the changes, yet some species show 
remarkable adjustments at behavioural and genetic levels. Integrated research programmes and interdisciplinary collabora-
tions are needed to understand the range of responses of migratory birds to environmental change, and more broadly, the 
functioning of timing programmes under natural conditions.
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Introduction: migration across timescales

Migration, the periodic arrival of animals at, and disap-
pearance from, a given location, has long fascinated human 
observers. The patterns of temporal regularity were in some 
cases so striking that they were used to time various cultural 
practices, such as sowing seeds upon the migrants’ seasonal 
returns. Today’s observation tools and years of research 
efforts demonstrate an even broader natural phenomenon of 
migration than traditionally assumed. While definitions of 
migration vary (Dingle 1996), we use the term to describe 

coordinated, directed, periodic back-and-forth movements 
between at least two locations, whereby this alternation can 
occur within an individual or within a population (i.e., across 
generations). Thus defined, migration takes place in many 
taxa and on timescales linked to planetary cycles (Fig. 1; for 
an exception, see (Reynolds et al. 2014)).

Migrations are rhythmic on several timescales. On the 
scale of a day, diel vertical migration (DVM) of marine 
zooplankton occurs in massive volume over short distances, 
and may constitute earth’s greatest migration in terms of 
biomass (Berge et al. 2009). DVM is thought to coordinate 
foraging during light hours in surface water where phyto-
plankton photosynthesizes, and retreating during the night to 
lower depths where predation risk is reduced. In the marine 
realm, migrations also frequently occur on moon-linked 
time-scales, i.e., over lunar and tidal cycles (Tessmar-Raible 
et al. 2011). By automated acoustic monitoring, Last and 
colleagues (Last et al. 2016) showed that throughout the 
Arctic, zooplankton displays rhythmic movements during 
the polar night with periodicities of both the lunar day (i.e., 
24.8 h) and the lunar month (29.5 d).
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Perhaps the most evident migrations are annual return 
movements, ultimately due to earth orbiting around sun on 
a tilted axis (Foster and Kreitzman 2009) (Fig. 1). Animals 
migrate annually between areas that are temporarily con-
ducive to reproduction, and areas that sustain them when 
breeding areas become inhospitable. Such annual shifts in 
habitat suitability could be due, for example, to scarcity of 
food or water, or to seasonally harsh climates. Amongst 
the best-known movements may be those of birds that 
migrate in flocks during the day. Yet migrations of other 
taxa are similarly spectacular, such as ungulate mammals 
moving through Serengeti, Monarch butterflies crossing 
between Mexico and Canada, or salmonid fish moving 
from the oceans to inland rivers (Horn and Narum 2023; 
Froy et al. 2003). Improved observation methods allow us 
to discover many further facettes and ecological impacts 
of movements, e.g., mass migrations of hoverflies (Syr-
phidae) that provide key ecosystem services across their 
range (Wotton et al. 2019).

Accurately orchestrated rhythmicity on multiple scales 
can be important for successful migrations. Birds perform 
broadly synchronized movements during pre-breeding 
(“spring”) and post-breeding (“autumn”) migrations. In 
addition, during migration season most species also alter 
their diel activity patterns, carrying out nocturnal flights 
while being predominantly diurnal for the remaining year. 
Thus, avian migration is typically synchronized tightly on 
both annual and diel timescales (Fig. 1).

Many migrations involve predictions over a broad spec-
trum of time and space. Rather than just dispersing or evad-
ing unsuitable environmental conditions, animals direct 
their movement towards locations which can be expected 
to be more suitable in the near future. Movements are thus 
often anticipatory, e.g., when animals leave a still prolific 
location before conditions deteriorate. Successful migra-
tion must master two challenges. The first is keeping track 
of time, sometimes over vast distances where cues to envi-
ronmental conditions in remote target areas are absent or 
misleading (Åkesson and Helm 2020). The second challenge 
is to accurately navigate between distinct, often remote loca-
tions. Navigation can entail seasonal adjustment of direction 
depending on the phase of migration, and time-dependent 
interpretation of reference cues used for compass orientation 
such as the position of sun (i.e., solar azimuth; Kramer 1949; 
Froy et al. 2003)).

It is thus little wonder that research on biological 
rhythms has paid detailed attention to understanding how 
animal migration is coordinated and fine-tuned across dif-
ferent scales (e.g., Aschoff 1955; Froy et al. 2003; Gwin-
ner 1986; Last et al. 2016; Rowan 1926)). Biological clocks 
play indeed central roles for migratory timing and naviga-
tion. For example, for DVM, researchers recently reported 
endogenous circadian migration and corresponding rhythms 
in metabolic activity and clock gene expression (Häfker 
et al. 2017). At the other extreme of the spatio-temporal 
spectrum, avian intercontinental migration is at least in 

Fig. 1  Timing of migration. 
(a) Migration, as a periodic 
process, is linked to highly 
predictable planetary move-
ments on timescales of a year, 
a day, and of variants of lunar 
and tidal rhythms; image: 
Edda Starck. Echos from radar 
investigations show that avian 
migration is highly synchro-
nized in space (b) and time 
(c). Bird flights (echos drawn 
as pictograms in (c)) cluster at 
night (blue background) and 
are strongly directional (blue 
bar showing nocturnal direction 
in (b)). Echos collected by 
dedicated vertical-looking radar 
in Sempach, Switzerland, on 17 
October 2023; for methods, see 
(Shi et al. 2021)
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some species based on endogenous circannual rhythms 
(i.e., rhythms with period lengths of ca. one year; Gwinner 
1996b, 1986)). Given the timescale and distances covered, 
demands on clock mechanisms are particularly high for 
annual long-distance migration, on which we here focus. 
We furthermore base our review mostly on findings from 
long-distance migratory songbirds and in some cases from 
waders (charadriiforms). Partly due to the relative ease of 
study in captivity and in the wild, most available information 
on timing mechanisms comes from these groups. Given the 
few data, and since an in-depth discussion of parallels and 
differences of migration timing of other taxa is beyond the 
scope of this article, we acknowledge that extrapolation of 
our assessment to other taxa is speculative.

Avian migration

Phenomenon

Annual migrations of birds have intrigued chronobiologists 
from early days. Several aspects can hardly be explained 
without invoking clocks. For example, during their non-
breeding season, migrants may experience local summer 
conditions on non-breeding grounds while local resident 
species breed. Still, migrants do not activate their own repro-
ductive system in these areas. Rather, they leave non-breed-
ing areas in time to reach their remote natal areas, where 
they then breed at the locally appropriate time (Hamner 
and Stocking 1970). This seems puzzling as photoperiod 
(i.e., the daylight fraction of a day), which otherwise pro-
vides reliable annual information, can offer little explana-
tion of migratory timing. Photoperiod is drastically altered 
by migration across latitudes, and varies widely in species 
that continue to move in their non-breeding areas (Åkes-
son and Helm 2020; Gwinner 1996b). William Rowan, who 
pioneered photoperiodism, thus concluded that additional 
mechanisms must be involved for remote timing that also 
buffers against untimely daylength cues (Rowan 1926). 
Similarly, Jürgen Aschoff, a pioneer in biological rhythms 
research, speculated that migratory birds should possess 
long-term internal clocks that entrain to relevant timing cues 
(i.e., Zeitgebers; (Aschoff 1955)).

Use of long-term rhythms carries the challenge of requir-
ing precision while remaining responsive to environmen-
tal conditions during the often risky journey (Åkesson and 
Helm 2020). For example, migration must be punctual but 
take place with sufficient energy reserves, and ideally under 
clement conditions with supportive winds (Newton 2008). 
Thus, avian migration requires clocks that simultaneously 
provide rigorous timing and heightened responsiveness to 
various environmental factors. Investigating how this bal-
ance is kept is difficult for a behaviour that takes place in 

midair and often spans continents. It is still thus largely mys-
terious how birds know when to depart, which direction to 
fly, when to stop, and when to return.

Migratory restlessness reveals an inherited migration 
programme for space and time

The habit of most migratory birds to carry out their jour-
neys at night (Fig. 1) has been instrumental for research on 
annual and diel timing. Bird keepers have long observed that 
captive migrants extend their activities into the night once 
the migratory season approaches, by flying, hopping and 
whirring their wings (e.g. (Berthold 2001)) (Fig. 2a). This 
so-called migratory restlessness (or German “Zugunruhe”) 
behaviour is generally coterminous with migration of free-
living conspecifics. With the introduction of video-record-
ing and automatic monitoring cages equipped with perch-
switches and motion sensors, Zugunruhe became a widely, 
but not unanimously (e.g., Farner 1955; Helms 1963)), 
accepted proxy to study migration of wild birds. Its study 
provided the opportunity for experimental approaches that 
manipulate environmental conditions in a controlled man-
ner. Of particular importance for biological rhythms research 
were studies under constant conditions, i.e., when birds were 
kept isolated from environmental cues by unchanging pho-
toperiod, temperature, housing and food availability (Gwin-
ner 1986; Berthold 2001; Newton 2008). Birds expressed 
Zugunruhe under simulated natural light conditions, under 
constant photoperiodic cycles (e.g., of 12 h light and 12 h 
darkness per day, LD 12:12 h), and under continuous dim 
light (e.g., Holberton and Able 1992; Gwinner 1986)).

Migratory restlessness that persisted under constant con-
ditions revealed endogenous timing mechanisms operating 
simultaneously on annual and diel timescales. A key figure, 
Eberhard Gwinner, studied small songbirds (Phylloscopus 
warblers) in captivity under natural and constant daylengths 
in Germany and in their African winter quarters (Gwinner 
1967, 1969). His studies mostly examined hand-raised, naive 
(i.e., inexperienced) birds that had never migrated in the 
wild and had no prior knowledge of non-breeding grounds. 
Patterns of Zugunruhe characterised in captive settings 
were generally timed similarly at both sites and coincided 
with actual migration of wild conspecifics. However, under 
constant conditions, Zugunruhe progressively drifted away 
from the calendar year, indicating a free-running rhythm. 
These studies thus demonstrated that migration is timed by 
an innate circannual clock (Gwinner 1986).

Circannual studies often investigated Zugunruhe as an 
integral part of the complete annual cycle, which in birds 
also includes periodic moult and reproductive activation and 
regression (King 1968; Gwinner 1986; Kumar et al. 2006). 
Research on captive migrants furthermore revealed recur-
ring cycles of other processes linked to migration (King and 
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Farner 1963; Dolnik and Blyumental 1967; Bairlein and 
Gwinner 1994). Many physiological and metabolic adjust-
ments are carried out in step with migration (overview in 
Piersma and Van Gils 2011; McWilliams et al. 2022)). For 
example, to prepare for their formidable journeys, birds 
deposit fuel through temporary hyperphagia preceding 
migration (Piersma and Van Gils 2011). This hyperphagia 
can result in doubling of body mass, which is lost by the end 
of a migration season even in captivity. On a diel timescale, 
studies on Zugunruhe have provided evidence for circadian 
control of migratory restlessness and a range of related pro-
cesses, for example a shift from anabolic physiology during 
the day to catabolic activity at night (Landys et al. 2004; 
McWilliams et al. 2022).

Our understanding of the navigation of migratory birds 
is also largely based on experimental approaches using 
Zugunruhe as a study tool. Gustav Kramer discovered 
that Zugunruhe behaviour is directed, i.e. caged migrat-
ing songbirds move in a direction corresponding to the 
migratory direction of free-flying conspecifics (Kramer 
1949; Emlen and Emlen 1966). This solidified the per-
ceived link between Zugunruhe and real migration and 

established orientation experiments as a tool for investi-
gating the mechanisms and sensory pathways that underlie 
the birds’ navigational abilities.

A successful migration programme must closely integrate 
temporal and spatial aspects, so that appropriate directions 
are taken at the right time. It was therefore proposed that the 
integration of an innate sense of direction with an endoge-
nous (i.e. innate) sense of time could function as a clock and 
compass mechanism, also referred to as “vector navigation”, 
whereby the angle of the vector represents direction, and 
the length represents time (Kramer 1957; Gwinner 1996a). 
Experiments involving naive birds using circular “Emlen” 
funnels indeed demonstrated an innate directional prefer-
ence (Helbig 1996). Moreover, preferred direction changed 
between and within migration seasons also under constant, 
circannual conditions (Gwinner and Wiltschko 1980). A 
clock and compass mechanism could thus guide naive birds 
before learning and experience could inform navigational 
processes (Jenni and Schaub 2003; Perdeck 1958). Jointly, 
captivity experiments thus demonstrated that migration is 
based on a comprehensive, genetically hard-wired spatio-
temporal migration programme.
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Fig. 2  Day–night activity patterns of a caged migratory stonechat 
Saxicola maurus (a) and free-flying Tawny pipit Anthus campestris 
(b) during spring. Data in (a) were analyzed by Van Doren et  al. 
(2017), those in (b) by Briedis et  al. (2020). Double-plotted acto-
grams show activity (dark) and rest (light) prior to, during, and after 
spring migration. In both actograms, every line represents a new 

day of recorded behaviour, shown after the repeated plotting of the 
recording of the preceding 24  h  day. Activity from passive motion 
sensors in (a) is shown in black. Recordings in (b) are based on accel-
erometry, allowing for distinct colour-coding of activity, high activity 
and migration
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Comparative studies revealed finely differentiated migra-
tion programmes between closely related taxa or sometimes 
even different populations of the same species, which fur-
ther supports inheritance (see below). Moreover, these pro-
grammes orchestrate interactions with environmental cues 
(Gwinner 1986, 1996b; Pittendrigh 1993) through reaction 
norms that regulate phenotypic plasticity in response to 
specific environmental factors (van Noordwijk et al. 2006). 
Migrants show additional flexibility, for example by learning 
or social transmission (Madsen et al. 2023; Newton 2008; 
Åkesson and Helm 2020). Differences in relative rigidity 
vs. flexibility of migration, and in the response to specific 
environmental factors, may contribute to differentiation 
of migration behaviour between closely related taxa (van 
Noordwijk et al. 2006).

The persistence of local differences in temporal and 
spatial programming inspired evolutionary biologists to 
use Zugunruhe for investigating the genetic regulation of 
migration. Using the Blackcap (Sylvia atricapilla) as a study 
species, Berthold and colleagues showed strong genetic sig-
nal in key components of Zugunruhe behaviour (Berthold 
1988a; Berthold et al. 1992). These studies involved dec-
ades-long selective and cross-breeding experiments of 
Blackcaps from populations with a variety of migratory 
phenotypes: from resident to long-distance migrant, and 
across migratory divides (i.e. closely neighbouring popula-
tions with different migratory directions). Behavioural phe-
notypes exhibited by F1 hybrid offspring (e.g., Zugunruhe 
propensity, timing, direction, and strength) were intermedi-
ate relative to parental populations (Berthold 1988a; Helbig 
1996). One key finding was substantial microevolution-
ary potential of migration-related behaviour, based on the 
high heritability and strong response to artificial selection 
of Zugunruhe intensity levels (Berthold et al. 1992; Pulido 
and Berthold 2010).

Caveats and insights from field and captivity studies

The use of Zugunruhe as a proxy for migration behav-
iour has also limitations, and consequently, some caution 
is needed when drawing conclusions. In particular, corre-
spondence between laboratory and field behaviour is not 
always clear. For example, bird populations with a seden-
tary phenotype in the wild may exhibit seasonal migratory 
restlessness in a caged setting, even in cases when they have 
been isolated from currently migratory populations for mil-
lions of years (Berthold 1988b; Mewaldt et al. 1968; Helm 
and Gwinner 2006). The timing of restlessness also does 
not always coincide perfectly with that of wild conspecif-
ics. Caged migrants may exhibit Zugunruhe well beyond 
the end of actual migration, especially in the summer when 
bouts of nocturnal activity may continue until the onset of 

post-nuptial moult, despite reproductive activation ((Gwin-
ner and Czeschlik 1978) Fig. S1).

Different explanations for such discrepancies have been 
discussed. Thus, deviant Zugunruhe patterns could be based 
on migration programmes whose expression is modified in 
response to deficient or misleading laboratory conditions 
(Gwinner and Czeschlik 1978). In the wild, avian migrants 
adjust the onset, progress and termination of their actual 
journeys in response to environmental factors (Jenni and 
Schaub 2003). For example, changing geomagnetic cues 
may indicate progress towards a destination (Fransson et al. 
2001; Bulte et al. 2017), and availability of a territory or 
a mate may signal arrival on the breeding grounds (New-
ton 2008). These conditions do not occur in captivity, and 
Zugunruhe could simply reflect a general, flexible time win-
dow during which actual migration can be triggered or inhib-
ited by environmental conditions (Gwinner and Czeschlik 
1978; Helms 1963).

Rapidly advancing tracking technology allows for more 
direct comparisons between behaviour in captivity and the 
wild. Year-round approximations of migration routes and 
phenology (i.e., seasonal timing) by light-logging geoloca-
tors can be obtained even from tiny songbirds such as the 
Phylloscopus warblers referred to above (Gwinner 1969; 
Tøttrup et al. 2018; Sokolovskis et al. 2023). Slightly larger 
birds, such as Northern Wheatear (Oenanthe oenanthe) or 
Tawny Pipit (Anthus campestris), can carry multisensor 
loggers with additional functions (accelerometry, air pres-
sure and temperature sensors) that allow derivation of daily 
movements and even actograms of free-flying birds (Fig. 2b) 
(Bäckman et al. 2017; Rime et al. 2023; Briedis et al. 2020). 
Data so far indicate that within species, phases of Zugun-
ruhe indeed set a window in the annual cycle during which 
wild birds migrate (Jarrett et al. 2021; Akesson et al. 2017). 
However, actograms of free-flying birds also reveal stark 
differences from those of captive birds (Fig. 2). Whereas 
Zugunruhe often persists for weeks or even months, wild 
birds only fly for few selected nights and thereafter rest and 
refuel.

Comparisons of wild and captive behaviour also suggest 
that some Zugunruhe patterns might mirror nocturnal activi-
ties of wild birds not directly linked to migration (Fig. S1). 
Diurnal birds also naturally engage in nocturnal activity 
for other reasons, such as European nightingales (Luscinia 
megarhynchos) carrying out nocturnal courtship and pros-
pecting behaviours (Roth et al. 2009), and Reed warblers 
(Acrocephalus scirpaceus) performing homing flights and 
change of breeding sites at night (Mukhin et al. 2009). Juve-
nile Reed warblers displayed nocturnal flights in the wild 
well in advance of migration, presumably to form memory 
for navigation, and corresponding nocturnal restlessness 
in captivity (Mukhin et al. 2005). In late summer birds 
may undertake post-breeding movements, for example for 
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dispersal or to reach moulting locations (Pillar et al. 2015; 
Vīgants et al. 2023).

In winter or during migratory stopover, birds re-initiate 
nocturnal flights in response to environmental factors such 
as feeding opportunities (Åkesson and Helm 2020). For 
example, visible body fat, a measure of fuel availability, 
predicted the nocturnal departure of wild migratory birds 
from a stopover site (Goymann et al. 2010). Effects of feed-
ing conditions and body fat on nocturnality were confirmed 
by experimental studies. For example, in captive Garden 
warblers (Sylvia borin) food availability and fuel stores 
function as a switch that can initiate or terminate migratory 
restlessness during and outside migration seasons (Gwin-
ner et al. 1988b). Temporary food reduction during autumn 
migration increased Zugunruhe, but upon ad libitum food 
provisioning the birds paused nocturnality until fat stores 
were replenished, and then resumed migratory restlessness. 
Food-related switches to nocturnality, however, did not mod-
ify the annual timing, neither in Garden warblers (Gwinner 
et al. 1988b) nor in Wood thrushes (Hylocichla mustelina) 
(Stanley et al. 2022). Yet, not all switches to nocturnality 
observed in captivity align with behaviour in the field. Cir-
cadian lability could also be due to factors associated with 
captivity such as acclimatization or lack of local cues that 
signal arrival at target locations (Fig. S1).

Nonetheless, studies that tracked birds after quantifying 
Zugunruhe parameters found an increasing probability of 
migration in individuals that exhibited increased levels of 
Zugunruhe (Eikenaar et al. 2014). Furthermore, the direc-
tional preference of birds in orientation cages corresponded 
well with their migratory direction as assessed by subse-
quent tracking (Thorup et al. 2011). Thus, overall, Zugun-
ruhe-based methods continue to reveal important insights on 
timing, navigation and compass systems of birds (e.g. Zapka 
et al. 2009; Kishkinev et al. 2016; Brodbeck et al. 2023)).

Mechanisms

Despite a demonstrated heritable component of migratory 
behaviour, the mechanisms underlying its timing are still 
poorly understood. It is, however, clear that both circadian 
and circannual timing systems are involved. First, migra-
tion timing on diel and annual timescales shows that both 
systems are integrated (Figs. 1, 2). Second, since photoperi-
odism plays a major role in the annual timing of migration, 
the circadian system is involved through time measurement 
and through providing photo-inducible phases (Appenroth 
et al. 2021; Foster and Kreitzman 2009). Third, it is pos-
sible that both timescales are partly linked through shared 
underlying regulatory components, e.g., genes for proteins 
involved in photic or metabolic pathways (Bossu et al. 2022). 
Below we describe main mechanistic features for circadian 

and circannual time-scales on behavioural, physiological and 
molecular levels.

Circadian time‑keeping: behaviour

Circadian rhythms of birds are well characterized on a 
behavioural level (Cassone and Kumar 2022; Helm 2020). 
Diel activity patterns in songbirds are generally robust, with 
the great majority of species being diurnally active (Daan 
and Aschoff 1975). Rhythmicity persists under constant con-
ditions with well-described response features of the free-
running circadian period length (Aschoff 1979; Cassone 
2014; Kumar et al. 2004). Avian circadian rhythms read-
ily entrain to photic Zeitgebers (i.e., synchronizing cues), 
including to changes in spectral composition (Pohl 1999), 
but alternative entrainment e.g., through phased melatonin 
(Heigl and Gwinner 1994), food (Hau and Gwinner 1997) 
or social cues (Menaker and Eskin 1966), is also possible.

Diel rhythmicity is less robust in some other avian groups, 
for example anatids (ducks, geese and swans) that can also 
be active at night, and charadriiforms, whose activity pat-
terns may reflect tidal rhythms and are flexibly adjusted dur-
ing the breeding season (Helm et al. 2012; Bulla et al. 2016). 
Accordingly, some features of the circadian system differ 
starkly between taxa and ecological niches. For example, 
the circadian system of songbirds is generally strongly self-
sustained, as illustrated by weakly resetting (type-1) phase 
responses of European starlings (Sturnus vulgaris; (King 
et al. 1997)). In contrast, Japanese quail (Coturnix japonica) 
had a weakly self-sustained circadian system, as exempli-
fied by their strongly resetting (type-0) phase response curve 
(King et al. 1997). Nonetheless, even in migratory song-
birds, diel behaviour can be labile, as detailed above.

Modified rhythmicity gives clues to the diel architecture 
of the circadian system. In songbirds, circadian rhythms con-
sist of multiple components that can be experimentally dis-
sociated. For example, starlings continued to show rhythmic 
feeding activity even under bright constant light, whereas 
their locomotor activity became arhythmic (Gänshirt et al. 
1984). These findings were interpreted as arising from two 
endogenous circadian oscillators that independently control 
rhythms in locomotor activity and feeding. Similarly, tes-
tosterone in starlings induced splitting of the free-running 
activity rhythm into two components that continued to run 
with different period lengths, again indicative of multiple 
underlying oscillators (Gwinner 1974).

A multiple-oscillator system appears to also underlie 
the seasonal nocturnality of migrants. As illustrated for 
Zugunruhe in Fig. 2, an activity component appears to dis-
sociate from diurnality to become migratory restlessness. 
Under entrained conditions, these two components tend to 
stabilize in antiphase to each other (Bartell and Gwinner 
2005). However, under constant conditions or after weak 
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entrainment, both activity components free-run with dis-
tinct period lengths in several study species. In all cases, the 
period length of migratory restlessness was longer, so that 
rhythms sometimes crossed (Fig. 3) (Bartell and Gwinner 

2005; Kumar et al. 2006). Because of the demonstrated 
food-dependent switch to migratory restlessness, links of 
Zugunruhe to metabolic pathways have been proposed (Bar-
tell and Gwinner 2005).

Circadian time‑keeping: physiology

The core set-up of the avian circadian system is relatively 
well explored (Fig. 4; for overviews, see (Kumar et  al. 
2019; Cassone 2014; Helm 2020)). Briefly, in contrast to 
mammals, light input pathways to the circadian system in 
songbirds do not require ocular input. Based on conclusive 
experiments led by Mike Menaker, light input to the pineal 
gland, which in birds is located on top of the brain (Fig. 4), is 
sufficient to entrain the circadian clock (Menaker and Under-
wood 1976). However, light input can also reach the circa-
dian system via deep-brain photoreceptors or indirectly via 
the retinohypothalamic tract to the SCN (suprachiasmatic 
nucleus). A third main light input pathway via the retina 
is important in columbids (pigeons) and galliforms (quail, 
chicken and landfowl; (Cassone et al. 2017)).

Remarkably and in further contrast to mammals, the avian 
pineal, SCN and retina can all function as pacemakers in 
their own right (Ma et al. 2019; Natesan et al. 2002). For 
example, the avian pineal is a miniature clock system that 
combines light receptors, self-sustained oscillators, and out-
put pathways through production of melatonin (Helm 2020). 
The pacemaker structures communicate with each other 
through endocrine and neural pathways, and jointly function 
as a multiple photoreceptor–pacemaker system (Menaker 
and Underwood 1976). Through interactions, especially via 

M

M
A

M
A

Migratory restlessness

1

10

20

40

30

0 13.75 27.5 1
2

13.75

Time (27.5 h scale)

27.5

D
ay

in
ex

pe
rim

en
t

A Activity (daytime)

Fig. 3  Dissociation of daytime activity (red A) and migratory rest-
lessness (green M) of Garden warblers released from skeleton photo-
periods to constant dim light. The intensely dark activity blocks rep-
resent migratory restlessness, whereas daytime activity is less solid. 
The rhythms of daytime activity and migratory restlessness cross 
due to their different period lengths. For better visibility, activity is 
plotted on a scale close to the periodicity of migratory restlessness 
(27.5  h); for details see (Bartell and Gwinner 2005). (Reproduced 
from Helm 2020 with permission, based on a figure kindly provided 
by Paul Bartell)

Fig. 4  Timekeeping in brain and 
associated structures of a Great 
tit (Parus major). Black ellipses 
show approximated locations of 
structures central to circadian 
and annual timing (sine wave 
indicates pacemakers). Yellow 
arrows show light input path-
ways, red markings show major 
diel (melatonin) and annual 
(LH, Luteinizing Hormone; 
FSH, Follicle Stimulating Hor-
mone) endocrine outputs; blue 
ellipse shows approximate loca-
tion of Cluster N in a songbird 
which unlike Great tits migrates 
long distances. Thionin-stained 
sagittal section kindly provided 
by Davide Dominoni; figure 
slightly modified from (Helm 
2020) and reproduced with 
permission
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melatonin and norepinephrine, they amplify each other and 
increase the circadian amplitude in what has been described 
as internal resonance through a neuroendocrine loop (Cas-
sone et al. 2017). Yet the respective contributions of the 
different components differ between species. The multi-
pacemaker system of birds with its many levels of regulation 
might facilitate the adjustment of diel rhythms, including 
rapid seasonal shifts to nocturnality during migration.

The hormone melatonin with its typical peak in dark-
ness has a key systemic role in the circadian organization of 
most bird species (Helm et al. 2023), shown for example by 
its ability to synchronize circadian rhythms via phased oral 
intake (Heigl and Gwinner 1994). Yet variation in noctur-
nal melatonin amplitude indicates species-specific tuning. 
For example, whereas songbirds typically have pronounced 
melatonin rhythms, amplitudes are very low in charadrii-
forms (Helm et al. 2012). For migratory songbirds that adopt 
temporary nocturnality, links between melatonin and Zugun-
ruhe have been demonstrated. During migration seasons, 
the melatonin amplitude is temporarily damped, and experi-
mentally applied melatonin in turn reduces spring migratory 
restlessness (Fusani et al. 2013).

Other hormones widely implicated in circadian organi-
zation include glucocorticoids (Helfrich-Förster 2017; Car-
atti et al. 2018). Corticosterone, the main glucocorticoid in 
birds, also fluctuates on diel and annual timescales (Rich 
and Romero 2001), but its circadian functions are not well 
understood. In avian migrants, changes in the diel profile 
and amplitude of circulating corticosterone levels have been 
linked to migration (reviewed in (Bauer and Watts 2021)). 
Relationships between corticosterone and migration were 
not always consistent, but in several species, peaking corti-
costerone levels predicted migratory departure in wild birds 
and migratory restlessness in captive birds (Eikenaar et al. 
2014). Furthermore, corticosterone was elevated when inter-
nal conditions (i.e., fuel stores) and environmental condi-
tions (e.g., wind) were suitable for migration (Eikenaar et al. 
2018). Thus, corticosterone may contribute to the fine-tuning 
of migration timing through mediating departure decisions 
based on external and internal cues (Eikenaar et al. 2018; 
Bauer and Watts 2021; Landys et al. 2004).

Circadian time‑keeping: molecular mechanisms

Molecular mechanisms of circadian timing in birds are only 
partly explored (reviewed in Cassone 2014; Helm 2020; 
Kumar et al. 2019). Given the broadly conserved features of 
the circadian system across taxa, it is common to adopt char-
acterisations of gene function that are heavily biased towards 
mammalian annotation (Bossu et al. 2022). Generally, where 
studied in detail, gene homologies, circadian expression 
dynamics, and structure of resulting proteins indicate that 
avian molecular functions are indeed often similar to those 

in mammals (e.g., core clock loop and photoperiodism; 
Nakane and Yoshimura 2010; Yasuo et al. 2003)).

Briefly, the avian circadian system works through nega-
tive feed-back loops. These include transcription–translation 
feed-back loops of primary clock genes, whose gene prod-
ucts temporarily suppress their own transcription (mostly 
period genes, per; cryptochromes, cry; bmal1 (arntl1), and 
clock / npas2 (mop4) (name followed by aliases). These 
feed-back loops have a positive and a negative (suppress-
ing) arm and are similar in birds and mammals (Fig. 5; for 
abbreviations, see Table S1) (Cassone and Kumar 2022). 
The positive arm (Fig. 5, green) involves the transcription 
factors bmal1 and clock / npas2. These transcription factors 
enter the nucleus and activate several genes whose promot-
ers contain enhancer boxes (Ebox, a DNA response ele-
ment) to which they bind. Period (per2,3) and cryptochrome 
genes (cry1,2,4) are activated by the bmal1-clock complex, 
initiating the negative arm of the core clock loop (Fig. 5, 
red). Their gene products form cry-per heterodimers in the 
cytoplasm which in the nucleus interfere with the bmal1-
clock complex, thus repressing their own transcription. As 
in mammals, casein kinases (ckδ,ε) modulate the posttrans-
lational degradation of per through phosphorylation and 
thereby influence the dynamics of the core loop. Further 
clock genes contribute sometimes alternatively, such as dec 
genes (BHLHE40, BHLHE41), or only in some tissues, such 
as nfil3 (e4bp4)), which represses per activity in the Pars 
tuberalis of the anterior lobe of the pituitary gland (Yasuo 
et al. 2003; Natesan et al. 2002; Laine et al. 2019).

Like mammals, birds have further interlocked feed-back 
loops that integrate the circadian system with other impor-
tant physiological pathways (Fig. 5). One main loop links the 
circadian and metabolic system through metabolic sensors 
ror (rorα,β (NR1F1,2)) and reverb (nr1d1,2 (reverbα,β)), 
whose transcription is activated by the bmal1-clock com-
plex. Rors have been characterized as lipid sensors and 
activate bmal1 expression (Peek et al. 2012). Conversely, 
reverbs, which together with heme regulate gluconeogen-
esis and energy metabolism, suppress bmal1 expression (Yin 
et al. 2007). Both sensors act competitively on bmal1 via 
ror response elements (RORE) (Kumar et al. 2019; Peek 
et al. 2012). Top1 (topo1) is thought to modulate the rela-
tive impact of reverb and ror action (Onishi and Kawano 
2012). Another interlocking loop is thought to link the cir-
cadian system to stress responses, involving ciart (chrono) 
(Hatanaka and Takumi 2017) (Fig. 5). Additionally, interac-
tions of the circadian system with glucocorticoid and min-
eralocorticoid receptors (nr3c1 (gr), nr3c2 (mr)) suggest 
further links to stress response systems (Helfrich-Förster 
2017). Ambient temperature additionally modulates circa-
dian rhythms via transient receptor potential channels (TRP-
channels) which are sensors, typically on the body surface, 
for ambient temperature and pain (Caro et al. 2013). and via 
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heat-shock-factors (transcriptional regulators of genes for 
stress proteins) (Hirota and Fukada 2016; Reimúndez et al. 
2023; Laine et al. 2019). These molecules have been asso-
ciated with migration by changes in clock gene expression 
in central and peripheral tissues (Sur et al. 2020; Sharma 
et al. 2018).

The cycling and phasing of the clock gene variants can 
differ between species, between tissues within individu-
als and also between migratory and non-migratory phases 
within a species (Singh et al. 2015; Mishra et al. 2018; Rent-
hlei et al. 2019; Horton et al. 2019). Epigenetic modifica-
tions might also play a role, as suggested by possible effects 
of methylation of clock on migration timing, but this area is 
poorly explored in studies of avian migration (Singh et al. 
2019; Saino et al. 2017).

How the avian circadian system is entrained to or reset 
by light is also largely unclear (Fig. 5). Avian light input 
pathways use opsins that are expressed in circadian centres 
and widely in the brain and associated structures (OPNs1-5; 
Table S1), as well as the photopigments pinopsin (pineal) 
and vertebrate ancient opsin (VA; pre-optic area). Some of 
these photopigments may be specialized on photoperiodic 
input to annual time-keeping (Rios et al. 2019; Cassone 
2014). It is possible that photic input to the circadian clock 
uses similar molecular pathways as in mammals (Meijer 
and Schwartz 2003). In the mammalian SCN, this involves 
activation of the mediator creb1 through its phosphoryla-
tion along MAPK signalling pathways within minutes after 

light exposure. Creb1 then binds to cAMP response elements 
(CRE) and thereby activates core clock and immediate early 
genes (e.g., per, fos; (Brenna et al. 2021; Mishra et al. 2018; 
Natesan et al. 2002)).

In birds, a further candidate pathway for light entrainment 
of the molecular clock is via melatonin (Cassone and Kumar 
2022). The rhythmicity of melatonin biosynthesis derives 
from the enzyme aa-nat, whose activity is regulated by cry-
per and bmal1-clock complexes and by the sympathetic 
nervous system (Chong et al. 2000; Klein et al. 1997; Nate-
san et al. 2002). Melatonin in turn increases bmal1 transcrip-
tion (Beker et al. 2019). Melatonin can be highly responsive 
to light, with rapid degradation after exposure (Klein et al. 
1997), but also with induction shown in response to light of 
specific wavelengths (Ma et al. 2019). This pathway could 
be particularly relevant in birds, given melatonin’s role for 
internal resonance between avian pacemakers (Kumar et al. 
2004; Cassone et al. 2017). Finally, some cryptochromes are 
(cry4), or may be (cry2), photosensitive in birds, with puta-
tive roles in magnetoreception and possible circadian links 
(Balay et al. 2020; Xu et al. 2021; Langebrake et al. 2023).

Annual time‑keeping: behaviour

A circannual basis to migration programmes is documented 
in various species (Gwinner 1986; Karagicheva et al. 2018). 
However, demonstrating robust endogenous circannual 
rhythms, i.e., those that persist under constant conditions 
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Fig. 5  Schematic overview of molecular mechanisms of avian cir-
cadian timing. The figure shows the core clock loop with its posi-
tive arm indicated in green, and its negative arm in indicated in red. 
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comprising ror and reverb, and a loop linking to stress responses 
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with nearly annual period length, is difficult because it 
requires maintaining birds individually for over a year 
indoors (Gwinner 1986). The permissive conditions, i.e., 
the light regimes under which a given species expresses cir-
cannual rhythms, vary widely among species. Some species 
only show cycles under a narrow range of photoperiods and 
otherwise get locked in one life-cycle stage, e.g., reproduc-
tive activation, others have weakly self-sustained circannual 
rhythms that require an environmental stimulus to complete 
a full cycle. Yet others have robust rhythms under a broad 
range of constant photoperiods including continuous dim 
light (e.g., Holberton and Able 1992; Wingfield 1993; Gwin-
ner 1986). The degree of robustness and specifics of the per-
missive conditions are related to the migratory behaviour of 
a species. Generally, species with long-distance migrations 
express particularly robust circannual rhythms that persist 
under a wider range of photoperiods (Gwinner 1996b).

Studies of robust circannual rhythms give important cues 
to the underlying rhythmic organization. Rhythms can per-
sist for over 10 years with period lengths that are mostly 
shorter than 1 year in songbirds (ca. 10 months), but longer 
than 1 year in waders (ca. 14 months (Karagicheva et al. 
2018)). Circannual rhythms can be expressed from hatch-
ing, as shown for birds that hatched under constant pho-
toperiod and developed full rhythmicity (Gwinner 1996b). 
Intriguingly, circannual studies showed that avian annual 
cycles are composed of modular processes that sometimes 
dissociate. For example, in some studies, moult continued 
to be rhythmic even if reproductive condition got locked in 
one state. Studies also showed that such distinct processes 
can cycle with different period lengths so that phase rela-
tionships progressively change (Karagicheva et al. 2016). In 
some songbirds, for example, postbreeding moult came to 
fully overlap with, or even precede, reproductive activation 
(Gwinner 1986).

Circannual rhythms of birds entrain readily to photoperi-
odic cycles. For example, starlings can be entrained to up to 
12 cycles per year (Gwinner 1986). In some species, entrain-
ment is possible even to low-amplitude photoperiodic cycles 
or to other photic cues, such as cycles in sunrise time or in 
light intensity under otherwise constant 12 h days (Gwin-
ner and Scheuerlein 1998; Goymann et al. 2012). However, 
responses to the Zeitgeber are phase-specific, so that for 
example long-day stimuli in subjective autumn of high-
latitude species delay the cycle, whereas the same stimuli 
in subjective spring advance it (Gwinner 1996b; Helm et al. 
2009). Phase-specific responses, including unresponsive 
phases during the subjective winter, had been postulated on 
theoretical grounds to prevent migratory birds from initiat-
ing breeding on winter grounds during the austral summer 
(Gwinner 1996b; Hamner and Stocking 1970), and were 
subsequently experimentally demonstrated (Gwinner et al. 
1988a).

While studies under constant conditions laid out the 
principles underlying migration programmes, studies under 
annually changing photoperiods are more directly appli-
cable to natural behaviour. Common garden experiments 
under controlled conditions allow for some disentangling of 
genetic programmes and behavioural flexibility (van Noord-
wijk et al. 2006; Ketterson et al. 2015). In several species, 
differences in migration between closely related taxa that 
are observed in the field persisted in captivity. Figure 6 illus-
trates such differences for Stonechats from a long-distance 
Siberian population (Saxicola maurus) and a short distances 
population in Europe (Saxicola torquata) (Van Doren et al. 
2017). Both taxa showed clear migratory restlessness across 
the annual cycle, but levels were much higher in Siberian 
than European stonechats. Both populations also differed 
in timing, whereby the Siberian stonechats initiated post-
breeding migration earlier, and pre-breeding migration later 
in the year, compared to European stonechats. These differ-
ences closely mirror the behaviour of the two taxa in the 
field. Moreover, F1 hybrids of the populations that were bred 
in captivity showed intermediate patterns (Van Doren et al. 
2017).

Assessment of tracking data generally converged with 
captivity results in concluding that migration timing is partly 
genetically determined. Migration phenology within popula-
tions and even within individuals is often highly repeatable 
across years, whereas different populations often exhibit 
distinct timing patterns (Kürten et al. 2022; Franklin et al. 
2022; Ketterson et al. 2015). Population-specific patterns 
are illustrated in Fig. 7 covering the full annual cycle for 
two populations of Collared flycatchers (Ficedula albicollis) 
(Briedis et al. 2016). The populations breed ca. 6° of latitude 
(ca. 800 km) apart, in Sweden and the Czech Republic, but 
their trans-equatorial wintering areas fully overlap. Nonethe-
less, seasonal timing of both populations differs year-around. 
As expected for their more northerly breeding sites, the 

Time of year

ytivitcathgi
N

Fig. 6  Migratory restlessness across the annual cycle of Siberian 
and European stonechats, as well as their F1-hybrids. Population dif-
ferences observed in their natural habitat persisted in captivity, and 
cross-bred hybrids showed intermediate patterns. Activity levels are 
quantified as the number of nocturnally active ten-minute intervals of 
each individual; curves are medians with interquartile ranges; figure 
based on data from Van Doren et al. (2017)
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Swedish birds arrived later in spring than the Czech birds, 
and this phase advance persisted throughout the year, albeit 
to varying magnitude. Since birds from both populations 
experienced identical daylengths during most of the winter, 
it is likely that they reset their annual cycle during migration 
or breeding.

Alternatively, or in addition, distinctly timed popula-
tions may have evolved specific photoperiodic responses 
(Singh et al. 2021; Helm et al. 2009). Experimental studies 
on stonechats detailed phase-specific use of photoperiodic 
information under naturally changing photoperiods (Fig. 8). 
Specifically, captive European stonechats were highly sensi-
tive to subtle changes in daylength during the spring migra-
tion phase (Helm and Gwinner 2005). When the increase 
of spring daylength was temporarily slowed down during 
this sensitive window (simulating a slower route), the birds 
rapidly extended migratory restlessness. Although daylength 
of both groups was identical from the early breeding season 
onwards, the slow-route birds maintained a persistent delay 
of their annual cycle events. These “spring delayed” birds 
also delayed regression of the reproductive system, as well 
as initiation and completion of moult. The stonechats thus 
used spring photoperiod to entrain their circannual rhythm 
at a time when their reproductive system was already well 
developed (Fig. 8; (Helm and Gwinner 2005)). Comparative 

studies of Siberian and European stonechats furthermore 
showed that the populations differed in their response to 
simultaneously applied photoperiodic cues, presumably 
because they were in different phases of their annual cycles 
(Helm et al. 2009; Singh et al. 2021).

Annual time‑keeping: physiological and molecular 
mechanisms

The anatomical structures that generate and orchestrate cir-
cannual rhythms are still poorly understood. In mammals, 
the Pars tuberalis has been described by Lincoln and col-
leagues as a circannual pacemaker that regulates rhythms 
of secretion of prolactin, and thereby cycles of pelage moult 
(Lincoln et al. 2006). This pacemaker involves interactions 
between local prolactin-secreting cells and timer cells that 
receive and convey the systemic, melatonin-based daylength 
signal. Based on these findings, Lincoln proposed more gen-
erally that circannual rhythms are generated through interac-
tions of tissue-based, epigenetically modulated, pacemakers 
with coordinating systemic signals that integrate and con-
vey timing cues (Lincoln 2019). In birds, the pituitary and 
nearby regions of the hypothalamus are also implicated in 
annual timing (Fig. 4). However, within-tissue circannual 
time-keeping has not been shown in birds, and unlike in 

Fig. 7  Migration programmes 
can differ between populations 
of the same species. Two popu-
lations of Collared flycatcher 
winter in the same area but their 
breeding sites differ in latitude; 
tracks are shown for northern, 
Swedish (red), and south-
ern, Czech (blue) populations 
(numbers and letters indicate 
life-cycle events as indicated 
in the legend). Throughout 
the annual cycle, phenology 
of the southern population is 
advanced, roughly correspond-
ing to earlier bud burst at the 
breeding sites. (Figure repro-
duced with permission from 
Briedis et al. (2016); see there 
for details)
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mammals, melatonin plays no central role in avian annual 
organization (Cassone and Yoshimura 2022). Circannual 
rhythms in various physiological processes continued also 
in pineal-ectomized birds, even when diel rhythmicity was 
abolished (Kumar et al. 2019). Since circannual processes 
can dissociate within individuals, e.g., between reproductive 
and moult cycles, it seems plausible that Lincoln’s principal 
model also applies to birds (Lincoln 2019).

In birds, photoperiodic information is received directly 
by hypothalamic deep-brain photoreceptors (Fig. 4). Avian 
and mammalian photoperiodic pathways converge in thy-
roid activation. Stimulating photoperiods trigger cascading 
effects, involving a population of ependymal cells, tanycytes, 
that line the 3rd ventricle and synthesize compounds of the 
thyroid hormone and retinoic acid pathways (Yoshimura 
et al. 2003; Nakane and Yoshimura 2010; Kuenzel et al. 
2015; Helfer et al. 2019). Thyroid signalling activates repro-
ductive pathways via the hypothalamic–pituitary–gonadal 
(HPG)-axis, whereas for avian migration, evidence for a 
regulatory role of thyroid pathways is so far weak (Ramenof-
sky 2011; Pérez et al. 2016). Along the HPG-axis, hypo-
thalamic neurons release gonadotropin-releasing hormone 
(GnRH) that stimulates the secretion of LH and FSH from 
the pituitary gland (Fig. 4), leading to production of gonadal 
hormones (Visser et al. 2010; Cassone and Yoshimura 2022; 
Chmura et al. 2022). In migratory garden warblers, however, 
changes in GnRH and downstream processes did not require 
photoperiodic stimulation. Instead, these processes occurred 
spontaneously under constant photoperiod at approximately 
the right time of year, revealing underlying circannual mech-
anisms (Bluhm et al. 1991).

Photoperiod affects annual cycles also via parallel sig-
nalling of the retinoic acid (vitamin A) pathway that links 
to nutrient-sensing, energy balance and immune pathways 
(Helfer et al. 2019). Recently, an important role of reti-
noids has been elaborated also in the brain, including for 
circadian light responses (Natesan et al. 2002), and for 
neurogenesis and neuroplasticity in the eyes, hippocam-
pus and hypothalamus (Ransom et al. 2014). The avail-
ability of fuel, an important component of the decision 
of birds to initiate migratory flights, or, conversely, to 
build further energy reserves for example during stopo-
ver (Goymann et al. 2010), appears to be assessed in the 
hypothalamus (arcuate nucleus, or infundibular region) 
(Stevenson and Kumar 2017; Watts et al. 2018). Several 
hormones are involved in the regulation of fuel storage, 
for example through hyperphagia, in particular Neuro-
peptide Y (NPY). Annual-cycle timing is also sensitive 
to ambient temperature cues, which likely are transduced 
via TRP channels (McKechnie 2022; Caro et al. 2013). 
Temperature information is processed in the preoptic area 
of the hypothalamus, which is photoreceptive, and can also 
trigger thyroid action (Fig. 4). Temperature-sensitivity has 

Fig. 8  Sensitivity of European stonechats to spring daylength. (a) 
Two groups of males were kept under daylengths with varying 
speeds of spring daylength increase during a distinct time interval but 
were otherwise kept under identical conditions. The delayed spring 
increase, termed “slow” route, is shown by gray symbols, whereas 
the natural, “fast” route is indicated by black symbols. The slow-route 
birds delayed (b) the end of migratory restlessness, moult, and (c) 
reproductive regression, under a subsequently shared photoperiod. 
Moult is shown in the upper right corner within (b) by gray bars 
(upper pair: primary, lower pair: body moult); reproductive cycles in 
(c) show median testis size (main figure) and cloacal protuberance 
(inlay). (Reproduced with permission from Helm and Gwinner 2005)
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been widely documented for avian migration, based on 
evidence from field and captivity studies (Sur et al. 2020; 
Chmura et al. 2022). Stress responses, regulated through 
the hypothalamus, can also modify annual timing (Wing-
field 2012). Corticosterone levels of birds change over the 
annual cycle and have been implicated in the control of 
migration (Bauer and Watts 2021; Eikenaar et al. 2018; 
Landys et al. 2004). All these pathways are also modulated 
by, and interact with, the circadian system.

Still, the anatomical substrates that underlie and integrate 
the contributing pathways are far from clear. A key inte-
gration site appears to be the hypothalamus (Cassone and 
Yoshimura 2022; Chmura et al. 2022; Mishra et al. 2018; 
Watts et al. 2018). Stevenson and Kumar (Stevenson and 
Kumar 2017) speculated that the anatomical organization 
of migratory timing involves the circadian pacemakers, the 
medio-basal hypothalamus, the dorsomedial hypothalamic 
nucleus (DMH) and the adjacent infundibular region (IR, 
arcuate nucleus). In this model, the DMH, IR, and pre-optic 
area are central for integrating energy balance. The anatomi-
cal organization also includes a forebrain area involved in 
magnetic compass orientation whose activation correlates 
with Zugunruhe, Cluster N (Fig. 4) (Brodbeck et al. 2023). 
Jointly, these structures might form the substrate for the 
integrated spatio-temporal programme of migratory birds 
(Stevenson and Kumar 2017).

Molecular details of annual timing mechanisms in 
birds remain largely unclear but are inferred through two 
approaches. First, knowledge of involved pathways is used 
to generate lists of candidates that have been functionally 
described or tested mainly in mammals. Variation in these 
candidate molecules is studied correlatively by comparing 
taxa that differ in migration or annual-cycle timing. They 
are also sometimes experimentally tested, e.g., by quanti-
fying expression levels at contrasting time-points, such as 
during or outside migration seasons (Mishra et al. 2018; 
Singh et al. 2015). A second, untargeted, approach aims to 
identify genes or regulatory pathways de novo by comparing 
genetic variation (Single-Nucleotide Polymorphisms, SNPs) 
between populations exhibiting different migratory strate-
gies (e.g., migrants versus residents, different phenologies 
or routes (Delmore Kira et al. 2016; Bossu et al. 2022; de 
Greef et al. 2023; Lundberg et al. 2017)). Interpreting results 
from untargeted approaches in a functional context can be 
facilitated by charactersing differential expression patterns 
in focal tissues at contrasting phases of the annual cycle 
(Boss et al. 2016; Johnston et al. 2016; Horton et al. 2019; 
Frias-Soler et al. 2020; Franchini et al. 2017). Genes that 
are differentially expressed form a rapidly growing list of 
candidates for deciphering the regulatory machinery under-
lying migration. These genes point to key signalling path-
ways, involving the metabolic, circadian and stress systems 
(overview in Fig. 9), as well as neurodevelopment, immune 

pathways, and memory and learning. A recent list has been 
compiled by (Bossu et al. 2022; Lugo Ramos et al. 2017).

Perhaps unsurprisingly given the many knobs and bolts 
of time-keeping systems, results from various bird systems 
were mostly mixed and identified different targets of selec-
tion. However, there was some convergence in molecules 
identified by candidate and untargeted approaches, involving 
the key pathways described above. Main examples include 
the core clock loop (clock and npas2), genes related to photic 
input pathways (e.g., creb1, adcyap1, phlpp1), and genes 
associated with nutritional sensors (e.g., top1) ( (Bossu et al. 
2022; Le Clercq et al. 2023; Lugo Ramos et al. 2017) and 
review therein).

Challenges and responses in a changing world

Global environments are changing at ever faster rates, and 
many changes have a strong temporal component. Avian 
migrants are particularly susceptible to such changes, 
because they depend on the conditions at multiple places 
that are separated by time and space. Successful migra-
tion requires integrated interaction with environments over 
several spatio-temporal stages. Each stage is sensitive to 
changes that may be poorly correlated over space and time, 
so that simple adjustments of migration may often not suffice 
(Vickery et al. 2023; Newton 2008). Migratory species are 
thus facing major threats and are broadly declining (Wilcove 
2008; Bairlein 2016). For example, long-distance migrants 
show limited scope for advancing phenology and suffer par-
ticularly negative population trends (Howard et al. 2020; 
Usui et al. 2017; Vickery et al. 2023; Youngflesh et al. 2021). 
In a demographic analysis of long-distance migrants, a close 
association between warmer springs on the Czech breeding 
grounds and reduced breeding productivity explained a large 
proportion of inter-annual demographic variation (Telenský 
et al. 2020). An association between phenology and popula-
tion trends was shown in detail for one species, the Pied fly-
catcher (Ficedula hypoleuca) (see below, (Both et al. 2006)).

Above, we have shown that findings from studies in the 
wild, captive experiments and molecular analyses all con-
verged on identifying an inherited basis to migration. Migra-
tory traits that strongly rely on innate genetic programmes 
may thus be limited in flexibility, requiring evolutionary 
adjustments for tracking environmental change. Such change 
can initially occur rapidly through adaptive evolution (Bon-
net et al. 2022), whereby standing genetic variation provides 
a basis for adjustment through natural selection (Helm et al. 
2019; Van Doren et al. 2021; Delmore et al. 2020). Con-
versely, evolutionary adjustments that require de novo muta-
tions might be much slower. We also showed ample pheno-
typic plasticity that is partly regulated through migration 
programmes, for example in response to food availability or 
geomagnetic cues (Åkesson and Helm 2020). Such plasticity 
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may facilitate direct responses to changing environments, 
up to a point when underlying reaction norms themselves 
need to change (van Noordwijk et al. 2006; Nussey et al. 
2005). Additional behavioural flexibility, for example via 
social transmission, can also modify speed of adjustment 
(e.g., (Madsen et al. 2023)).

Overall, migration strategies display an astounding spec-
trum of variation. At one extreme is high conservatism, for 
example in migratory populations that have fixed schedules 
(Both and Visser 2001) or adhere to evolved routes, even 
when they imply enormous detours (Kürten et al. 2022; Bair-
lein et al. 2012). A striking example are Northern wheatear 
populations that breed in Alaska and migrate more than 
14,000 km each way to sub-Saharan winter quarters in 
Africa, rather than overwintering in the neotropics (Bair-
lein et al. 2012). At the other extreme are fast and sometimes 
fundamental adjustments of migration, for example by swal-
lows and geese (Areta et al. 2021; Madsen et al. 2023). This 
diversity may be partly due to different behavioural contexts 
and environmental sensitivities (Newton 2008; Youngflesh 
et al. 2021; Hardesty-Moore et al. 2018), and partly due to 
evolutionary constraints and genomic architecture (Taylor 
and Friesen 2017; Lundberg et al. 2023).

Historically, migrations have shown major evolution-
ary changes, for example in step with glaciation cycles 

that starkly altered spatio-temporal conditions (Thorup 
et al. 2021). Thus, whereas the machinery underlying main 
migration features, such as timing and navigation, is prob-
ably ancient, many current forms of migration have appeared 
since the last glacial maximum (Liedvogel et al. 2011; Rap-
pole et al. 2003). Over evolutionary time, adjustments of 
ancient features have thereby facilitated a wide diversity of 
bird migrations, but the current rate of environmental change 
may push the dynamic features of migration programmes to 
the limit (Radchuk et al. 2019). Below, we summarize fac-
tors that contribute to altered or disrupted timing, either on 
their own or in interaction.

Environmental changes affect timing

A primary challenge for organisms is global warming, 
which progresses at ever faster rate and affects timing of 
wild organisms (IPCC 2023). Direct temporal effects include 
altered environmental seasonality and phenology (e.g., mod-
ified temperature and precipitation patterns). These effects 
can be amplified by different phenological responses among 
species and trophic levels, and can be complex due to spatial 
heterogeneity (e.g., different regions warm at different rates) 
and temporal heterogeneity (e.g., warming is stronger in 
some parts of the year) (Thackeray et al. 2010; IPCC 2023). 
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Fig. 9  Pathways acting on annual timing of birds. Bird migration is 
shaped by complex interactions between the endogenous circadian 
and circannual clocks, light input, further environmental factors like 
stress, food and ambient temperature, and internal factors like nutri-
ent supplies and metabolic state. Clock components are shown in 
blue, light input pathways in yellow, and metabolic pathways in red 
(retinoic acid signalling is in orange as it contributes to light input 

and metabolic pathways); further pathways are shown in black. For 
simplicity, only exemplary compounds of pathways, and interac-
tions between pathways, are indicated, and some systems (espe-
cially immune pathways) are omitted. Genes are indicated by italics; 
for abbreviations, see Table S1 and text. Modified after (Helm et al. 
2023). Inlay shows a Blackcap, drawn by Corinna Langebrake
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The increasing variation in climate, such as intensity and 
frequency of temperature and precipitation extremes, adds 
further risks (Ummenhofer and Meehl 2017). For example, 
organisms that steadily advance spring phenology may fall 
victim to sporadic severe cold weather events (Brown and 
Bomberger Brown 2000; Shipley et al. 2020); for a tree 
example, see Fig. S2). These challenges are exacerbated for 
migratory birds that need to time their journeys to predicted 
conditions at multiple places across the annual cycle (Zurell 
et al. 2018). However, global warming currently also opens 
new opportunities, such as milder winters that allow birds to 
remain closer to the breeding grounds. Shortened migration 
routes in turn enable earlier spring return and greater pre-
dictability of conditions on the breeding grounds (Van Doren 
et al. 2021; Youngflesh et al. 2021; Visser et al. 2009).

A second temporal challenge to migratory birds aris-
ing through environmental change is artificial light at night 
(ALAN). Light pollution increases globally at ever faster 
rates (Kyba et al. 2017). It can have severe consequences for 
timing, orientation and navigation capabilities, of nocturnal 
migrant species. ALAN can affect migrants during breed-
ing, at non-breeding sites and en route (Cabrera-Cruz et al. 
2018). While the greatest immediate risk to birds may be 
disrupted orientation, the exquisite light sensitivity of their 
circadian and circannual systems also provides pathways for 
mistiming and disruption of migration programmes (Kumar 
et al. 2021). ALAN-induced migration phenology changes 
have recently been reported also in wild birds (Bani Assadi 
et al. 2022; Smith et al. 2021).

Land-use changes can also have temporal dimensions 
and may thereby alter the fitness consequences of inherited 
migration programmes. Examples are landfills which offer 
food year-round and thereby counteract characteristics of 
migration of White storks (Ciconia ciconia) (Flack et al. 
2016) and increased breeding opportunities which were 
suspected to invert the annual cycle of swallows (see below 
(Helm and Muheim 2021)). Similarly, extending the size of 
barriers crossed on migration such as the Sahara desert is 
likely to slow migration due to the need for additional stop-
overs (Goymann et al. 2010). Land-use change can, however, 
also open new opportunities, e.g., by creating novel breed-
ing range for migratory species (Winkler et al. 2017; Areta 
et al. 2021).

Finally, various other forms of pollution (e.g. chemical, 
noise) may have implications for timing of migratory birds, 
but we currently lack detailed mechanistic knowledge for 
proper assessment. Delayed timing of migrants has been 
reported to result from neonicotinoid exposure, which in 
turn caused reduced fuelling and possibly disorientation 
(Eng et al. 2019). Impairment of migration programmes 
is also possible as neonicotinoids can disrupt circadian 
rhythms by interfering with nicotinic acetylcholine receptor 
signalling (Tasman et al. 2021). Birds are also exposed to 

particulate matter (PM2.5), which in mice causes circadian 
disruption, but no corresponding data exist for migratory 
birds (Palanivel et al. 2020).

Below, we review some of the observed responses 
in greater detail, with a focus on global warming. This 
overview is necessarily biased towards species that show 
responses that can be plausibly linked to environmental 
change, such as adjustment of migration route or timing 
(Radchuk et al. 2019). Species with limited response poten-
tial may only show negative population trends, while being 
most vulnerable to environmental change (Telenský et al. 
2020).

Phenology changes due to global warming

Global warming, and associated changing environmen-
tal seasonality, have reportedly modified the timing of all 
avian life-cycle stages, including breeding, moult and migra-
tion (Hanmer et al. 2022; Lameris et al. 2018; Visser et al. 
2004; Horton et al. 2020; Bussière et al. 2015; Jenni and 
Kéry 2003). These responses have been best documented 
for reproductive timing, where the rapidly advancing envi-
ronmental phenology was nonetheless difficult for birds to 
match. Birds bred earlier, but their advancement was insuf-
ficient for tracking plant and invertebrate phenology, lead-
ing to mismatches with potentially detrimental consequences 
such as reduced breeding productivity (Visser et al. 2004; 
Samplonius et al. 2021; Radchuk et al. 2019).

While such mismatches affected even resident species, 
avian migrants were hypothesized to suffer greater mis-
matches given their strong programming. Support for this 
idea came from data on Pied flycatchers whose lay dates 
were constrained by arrival date (Both and Visser 2001). 
Since birds hardly advanced arrival date, they advanced lay 
date only by reducing the interval between arrival and lay-
ing, a short phase that migratory birds usually use to build 
breeding resources. Both and Visser showed that compared 
to ecologically similar resident species, Pied flycatchers 
progressively fell behind schedule. They also demonstrated 
that in areas where spring had advanced the most, flycatcher 
population trends were particularly negative (Both et al. 
2006). Extrapolating these findings from a single species 
is speculative since various factors can affect vulnerability 
of a species (Hardesty-Moore et al. 2018). However, sev-
eral lines of argument support a broader pattern. Thus, most 
long-distance migrants show limited advancement of spring 
activities and heightened population declines (Vickery et al. 
2023; Howard et al. 2020; Usui et al. 2017; Youngflesh et al. 
2021). Furthermore, warmer springs have been reported to 
correlate with low breeding productivity of long-distance 
migrants (Telenský et al. 2020), and in several avian spe-
cies, a strong selection gradient favouring early breeding 
has been shown (Radchuk et al. 2019). Still, several studies 
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suggest that in some species migration programmes have 
recently evolved (Able and Belthoff 1998; Delmore et al. 
2020), including in aspects of timing (Bearhop et al. 2005; 
Moiron et al. 2023; Brown and Bomberger Brown 2000). 
These changes support the captivity evidence of high micro-
evolutionary potential of migration-related behaviour.

A recent study on Pied flycatchers has linked captivity 
evidence of a migration programme with the birds’ phenol-
ogy in the wild (Helm et al. 2019). Migration programmes of 
flycatchers in full annual-cycle context had been studied in 
captivity by Gwinner and colleagues in the 1980s (Gwinner 
1989, 1996b). Since then, lay dates of free-living flycatchers 
had advanced considerably, including in southern Germany 
from where the captive birds originated, and where citizen 
scientists have continuously monitored flycatchers since the 
1970s (Fig. 10; Both and Visser 2001; Helm et al. 2019)). 
Hence, a replication of the original captive study offered 
a unique opportunity to test whether changes in the wild 
were driven by modifications in the migration programme as 
studied in captivity. In a common garden experiment through 

time, nestlings from the same natal sites as in 1981 were col-
lected in 2002, hand-raised, and their annual cycles studied 
under conditions that closely mimicked the original experi-
ment (Helm et al. 2019).

The study showed that over 21 years, the flycatchers 
had indeed modified annual-cycle timing in captivity, but 
selectively so. Autumn and early winter activities were 
slightly delayed or unchanged, in line with evidence for far 
less systematic changes of migration phenology in autumn 
compared to spring (Jenni and Kéry 2003). In contrast, the 
flycatchers’ activities in late winter and spring were substan-
tially advanced, as predicted based on field evidence for ear-
lier laying. Spring activities in captive birds were advanced 
by ca. 9 days, whereas free-living conspecifics had advanced 
laying over the same interval by ca. 11 days (Fig. 10 (Helm 
et al. 2019)). The data suggest that a large part of the fly-
catchers’ spring advance was due to changes in the migra-
tion programme. The study also indicates that the birds can 
separately modify specific phases of the annual cycle, as 
opposed to phase-shifting the entire cycle (Tomotani et al. 
2018). Such an ability, which fits findings of modular organi-
zation of avian annual cycles, could facilitate adjustments 
to space- and time-specific changes in climate (IPCC 2023).

The magnitude of inferred evolutionary change in fly-
catchers (9 days over 21 years) is high, also compared to 
data from some other species (Moiron et al. 2023). A pos-
sible explanation is the potential of timing to function as a 
“magic trait” (i.e., a trait that also causes assortative mating 
Taylor and Friesen 2017; Ketterson et al. 2015)), and thereby 
accelerate evolutionary change (Bearhop et al. 2005). Such 
rapid change would require substantial standing genetic 
variation for timing. High standing variation has recently 
been demonstrated in at least two species, American kes-
trel (Falco sparverius (Bossu et al. 2022) and Purple mar-
tin (Progne subis; (de Greef et al. 2023)), where variation 
in genes explained 33% and 74% of phenotypic variation, 
respectively. Figure 10 shows that focal genes in kestrels 
predicted phenological differences of similar magnitude as 
the spring advancement of flycatchers. Populations with 
such high levels of variation in timing are expected to be 
relatively robust in face of environmental changes (Bossu 
et al. 2022).

Altered spatio‑temporal migration features

Alternatively, or in addition to, phenological adjustment, 
migratory birds respond to changes in seasonality and other 
environmental factors at breeding and non-breeding sites by 
spatial adjustments. Thus, poleward shifts of breeding and 
wintering ranges, as well as altered routes, have all been 
reported. Such spatial arrangements can have pronounced 
effects on timing. For example, shortened routes enabled 
by milder winters require less time for migration and may 
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thereby advance subsequent life-cycle stages (Bearhop et al. 
2005). Conversely, poleward shifts of breeding ranges but 
static wintering ranges are extending migration routes, with 
expected costs in time and energy (Gómez et al. 2021; Zurell 
et al. 2018). From a perspective of chronobiology, spatial 
re-arrangements are also expected to interact with timing 
mechanisms (Huffeldt 2020). Latitudinal shifts of breeding 
and non-breeding ranges can increase or decrease daylength 
experienced by birds at a given time of year depending on 
their location (Sockman and Hurlbert 2020). How birds will 
respond to such changes will depend on their phase-specific 
sensitivity to photoperiod, and is thus difficult to generalize 
(Fig. 8; Helm et al. 2009; Gwinner 1996b)).

Among the most extreme spatio-temporal shifts of migra-
tion were trans-hemispheric inversions. Apparently facili-
tated by landuse change and novel anthropogenic nesting 
opportunities, some individuals of the North American-
breeding swallow species started breeding in their South 
American non-breeding range (Winkler et al. 2017; Areta 
et al. 2021). Remarkably, the birds kept their annual cycle 
intact and appeared to achieve the complete reversal in time 
and direction solely via re-entrainment (Helm and Muheim 
2021). Rather than becoming resident, they continued their 
migrations, but with reversed direction, to now travel north-
ward after breeding (Winkler et al. 2017; Areta et al. 2021). 
Modelling indicated that the migration programme can fully 
explain the birds’ spatial behaviour without need for genetic 
change (Fig. S3). On their North–South migratory route, 
with a magnetic inclination compass that is blind to polar-
ity, hemisphere-switching swallows following the migration 
programme would continue to navigate between breeding 
and non-breeding grounds. All that is required is for the 
swallows to stay long enough at the non-breeding grounds 
to entrain their migration programme to the southern hemi-
sphere (Helm and Muheim 2021). Being gregarious birds, 
it is possible that social transmission from conspecifics and 
closely related species aided the process. Social transmission 
was recently proposed to be the key driver of novel migra-
tion behaviour in another gregarious species, the Pink-footed 
goose (Anser brachyrhynchus) (Madsen et al. 2023).

Large-scale shifts in migration behaviour have also been 
observed across longitudes. In several central Asian-breeding 
species, some individuals are newly spending the non-breeding 
phase in central Europe, rather than at their traditional winter-
ing grounds in Southeast Asia (Dufour et al. 2022, 2021). For 
example, the formerly vagrant Richard’s pipit (Anthus rich-
ardi) is now a regular winter visitor to France, as evidenced 
by inter-annual return of marked individuals, and by tracks 
of birds that bred in Siberia between winter visits to Europe 
(Dufour et al. 2021). For Richard’s pipit, this new migration 
route, putatively enabled by mild winters, almost doubles the 
migration distance and shifts migration direction from south to 
west. Pipits using the new route thus experience photoperiods 

similar to those of the breeding grounds around the year. 
Compared to the original southeast Asian winter grounds, 
they experience shorter daylength in winter, but longer, and 
potentially stimulating daylength during the pre-breeding 
phase after the equinox (Fig. 8; (Dufour et al. 2021)). Similar 
trends are observed in another Asian-breeding songbird, the 
Yellow-browed warbler (Phylloscopus inornatus; (Dufour 
et al. 2022)). However, for both species there is insufficient 
information to assess whether genetic change is involved in 
altered migration, and whether the birds’ phenology has also 
shifted.

Many species have shifted spatio-temporal migration fea-
tures at smaller scales (Zurell et al. 2018). A textbook example 
that involved genetic change comes from Blackcaps, a species 
with a well-described migration programme (Berthold et al. 
1992; Pulido and Berthold 2010). Central European-breeding 
populations used to spend the non-breeding season in the Ibe-
rian region, southwesterly of their breeding grounds. Since 
the 1960s, these birds increasingly spend their winters on the 
British Isles, westerly of the breeding grounds, probably due 
to combined effects of a milder climate and human food provi-
sioning (Delmore et al. 2020; Van Doren et al. 2021; Bearhop 
et al. 2005). To test whether this new migratory divide had a 
genetic basis, Iberian and British-wintering Blackcaps were 
kept under common-garden conditions and tested in Emlen 
funnels for autumnal directional preference (Fig. 11). Those 
wintering in Spain showed southwesterly preferences, whereas 
those wintering in Britain oriented westerly. Remarkably, their 
naive, captivity-bred offspring mirrored the parental prefer-
ences (Berthold et al. 1992; Helbig 1996). A follow-up study 
suggested that British-wintering Blackcaps returned earlier 
to the breeding grounds and mated assortatively (Bearhop 
et al. 2005). Since earlier breeding birds usually have higher 
reproductive success, behavioural mechanisms have appar-
ently accelerated genetic change in migration. At present, the 
genetic basis underlying a broad range of migratory pheno-
types in Blackcaps is being unravelled (Fig. 11). First results 
indicate that several migration features map to a few genomic 
regions, which differ from those described in other species. 
However, possibly associated candidate genes that may be 
major regulators of migration include metabolic and circadian 
transcription factors, such as NPY (Watts et al. 2018)) and sev-
eral clock genes (Table S1; Delmore et al. 2020; Mishra et al. 
2018)). These data add to the emerging picture that variation in 
migration features can be achieved in multiple ways but often 
on converging physiological pathways.

Conclusions and outlook

For over a century, the daunting ability of avian migrants to 
navigate across time and space has fascinated chronobiol-
ogists, ecologists and behavioural biologists alike. Research 
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on captive and free-living birds so far has provided intrigu-
ing answers, but how long-distance migrants know when and 
where to travel is still only partly resolved. Key questions 
include several the enigmas. It is still unclear how long-
term rhythms underlying migration, on the scale of a year, 
are generated, and how they interact with circadian time-
keeping. It is also unclear how the many processes revolving 
around migration and the remaining activities of the annual 
cycle are integrated, so that they all occur at suitable times 
and locations. During their migrations and over the time-
scale of a year, birds are faced with a wide range of environ-
mental uncertainty. Migration programmes must offer flex-
ibility for birds to accommodate environmental fluctuations, 
while canalizing behaviour so that target areas are reliably 
reached at the right time. Furthermore, migrations are often 
tailored to the specific ecologies of a population, implying 
that genetic, epigenetic and experiential processes must be in 
place that finely adjust migration programmes. Many adjust-
ments will be achieved through molecular processes along 
the intertwined pathways that orchestrate avian migration. 
At present, we are only beginning to perceive the scope of 
physiological processes involved in successful migration.

A better understanding of migration at physiological, 
behavioural and evolutionary levels is urgently needed. 
Migrants do not only perform some of the most fascinating 
behaviours, they are also under particular pressure in our 
rapidly changing world. Without a deeper understanding of 
underlying mechanisms, we have no explanations for widely 
disparate responses of birds to environmental change. We 
cannot explain why some species, such as Northern wheat-
ears, choose conservative routes at the cost of enormous 
detours, and others, such as Richard’s pipits, rapidly develop 
completely novel migration programmes. Thus, we have 
no understanding of which species can succeed in the face 
of environmental change, and which species may decline 
towards extinction. Improving the knowledge basis will 
require integration on several levels (Fig. 11).

First, researchers with detailed physiological and 
molecular knowledge and those that study behaviour and 
ecology of free-living birds must reconnect. Genomic 
analyses of birds with known migratory phenotype, for 
example, produce lists of candidate genes, whose interpre-
tation is beyond the capacity of most researchers that work 
in the wild. All too often, analyses focus on individual 

Fig. 11  Overview of an integra-
tive approach to studying avian 
seasonal migration. Behavioural 
(green), genetic (blue), and 
molecular (brown) methods can 
jointly reveal the mechanisms 
underlying the spatio-temporal 
migration program. Behavioural 
research is exemplified by 
comparing migration tracks in 
the wild and directional prefer-
ence in Emlen cages between 
populations of Blackcaps that 
migrate southwesterly (SW) or 
southeasterly (SE). Genetics 
approaches compare genomes 
to identify ancestral states and 
candidate genes using broad 
phylogenetic scales and detailed 
comparisons, here between 
migratory or resident Blackcap 
populations. Molecular methods 
detail regulatory processes by 
seasonal contrasts for example 
in gene expression or epige-
netic modulation. (Figure from 
Langebrake et al. 2021 under 
creative commons license)
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candidate genes, whose effects may be small and some-
times redundant within extensive functional networks. 
Moving towards network-based approaches will require 
substantial expertise. Furthermore, epigenetic modifica-
tion has so far hardly been considered in migration studies, 
presumably due to missing expertise and tools. Chronobi-
ologists, who by definition work on cross-cutting themes, 
are well-positioned to provide relevant expertise and facili-
tate future break-throughs in migration biology.

Second, new technologies, such as advanced tracking 
methods that yield actograms, or radar observations, allow 
for more detailed knowledge of timing and environmental 
responsiveness in the wild. Ideally, these methods should 
be paired with collection of genetic information and pro-
gressively also apply experimental approaches. Experi-
mental approaches will be necessary to move from cor-
relative to causal evidence. Next to experimentation in the 
field, captivity studies under controlled conditions remain 
crucial for a mechanistic understanding.

Third, long-term studies of free-living birds are key 
for deeper insights, given large-scale environmental fluc-
tuations encountered by migratory birds. For example, 
changes in timing become evident only over long time 
spans and in standardised data series. If unified approaches 
comprising field and molecular aspects are applied, indi-
vidual variation within well-described systems can give 
important cues to physiological, ecological and evolution-
ary mechanisms that shape avian migration. A growing, 
comparative basis of such systems, if thoroughly reviewed 
and integrated, will shed light on regulatory mechanisms 
that enable, or conversely constrain, appropriate adjust-
ment of migration programmes in a changing world.
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