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Abstract
Crickets serve as a well-established model organism in biological research spanning various fields, such as behavior, physiol-
ogy, neurobiology, and ecology. Cricket circadian behavior was first reported over a century ago and prompted a wealth of 
studies delving into their chronobiology. Circadian rhythms have been described in relation to fundamental cricket behaviors, 
encompassing stridulation and locomotion, but also in hormonal secretion and gene expression. Here we review how changes 
in illumination patterns and light intensity differentially impact the different cricket behaviors as well as circadian gene 
expression. We further describe the cricket’s circadian pacemaker. Ample anatomical manipulations support the location of 
a major circadian pacemaker in the cricket optic lobes and another in the central brain, possibly interconnected via signaling 
of the neuropeptide PDF. The cricket circadian machinery comprises a molecular cascade based on two major transcrip-
tional/translational negative feedback loops, deviating somewhat from the canonical model of Drosophila and emphasizing 
the significance of exploring alternative models. Finally, the nocturnal nature of crickets has provided a unique avenue for 
investigating the repercussions of artificial light at night on cricket behavior and ecology, underscoring the critical role played 
by natural light cycles in synchronizing cricket behaviors and populations, further supporting the use of the cricket model 
in the study of the effects of light on insects. Some gaps in our knowledge and challenges for future studies are discussed.
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Introduction

In this review we seek to provide a perspective on the con-
tribution of the cricket as a model insect to the study of the 
effects of light on animal physiology, behavior, and ecology. 

We first briefly summarize the general importance of natural 
light cycles and of light as a zeitgeber stimulus. We then 
present crickets as models for studying chronobiology and 
the effects of light, including some historical perspectives. 
This is followed by discussing research into the location of 
the cricket circadian pacemaker, and current updates regard-
ing the circadian clock machinery. Next, we present the topic 
of artificial light at night (ALAN) and review studies of the 
impact of ALAN on crickets and on their circadian behavior. 
We conclude with a short discussion and some future poten-
tial research directions.

Light and the circadian system

In most organisms, the diel cycles of light and darkness con-
stitute crucial cues for the temporal organization of behav-
ior (Pittendrigh 1961; Aschoff 1981). Compared to other 
environmental variables that show diurnal fluctuations (e.g., 
temperature, humidity), the light-dark diel cycle is the most 
reliable cue for entraining an animal’s circadian system, 
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i.e., for synchronizing daily activity patterns, behavior, and 
physiological processes such as hormonal secretion and gene 
expression, to external cues and the surrounding environ-
mental conditions (Helfrich-Förster 2020).

Light effects are manifested via the circadian clock—an 
endogenous cell-autonomous pacemaker that generates 
rhythms with a periodicity close to 24 h (Pittendrigh 1961). 
Through the process of entrainment, light cues are used to 
adjust the circadian period to exactly 24 h. Importantly, upon 
entrainment, the pacemaker assumes a new fixed phase rela-
tive to the light-dark cycle (Mrosovsky 1999; Helm et al. 
2017). This phase represents the activity preference of 
the animal, whether diurnal (day active), nocturnal (night 
active), or crepuscular (active during twilight) (Aschoff and 
von Goetz 1988; Helm et al. 2017). The extent to which the 
circadian clock is entrained depends on the properties of the 
light stimulus (intensity, spectrum) and on the light sensitiv-
ity of the pacemaker, which vary throughout the day (Daan 
and Aschoff 2001).

Entrainment is best studied in the laboratory. The rhyth-
mic behavior of the animal can be tested under constant 
conditions (e.g., continuous darkness) that allow the pace-
maker to ‘free-run’ (Fig. 1). Upon switching to light-dark 
conditions the pacemaker is entrained and runs with a 24 h 
period (Fig. 1a). Light may have an additional, direct effect, 
called masking (Fig. 1b) on certain behaviors. This does not 

involve the circadian clock and overrides its rhythm (Mros-
ovsky 1999). The masking response is instantaneous and 
transient (Fig. 1b).

Light pulse experiments in the laboratory provide a 
means by which to characterize the circadian light sensi-
tivity. Natural variation in light sensitivity can take place 
at the species, population, or individual level. When test-
ing the light effects, the specific properties of an animal’s 
visual system e.g., its photoreceptors, spectral sensitivity, 
and visual acuity (Warrant and Nilsson 2006; Land and Nils-
son 2012; Van Der Kooi et al. 2021), as well as its visual 
sensory processing (e.g., Blum and Labhart 2000; Mappes 
and Homberg 2004; Okamoto et al. 2001) should be taken 
into consideration, in addition to the nature of the specific 
stimulus, its duration and intensity.

The cricket as a model organism 
in chronobiology studies

For more than a century, crickets (Order: Orthoptera) 
have served as model organisms for biological research 
(Regen 1913; Fabre et al. 1921), including behavioral and 
neurobiology studies. Crickets have been much utilized in 
studies of song generation (Bentley and Hoy 1974; Huber 
et al. 1989; Jacob and Hedwig 2019), auditory processing 

Fig. 1  A schematic representation of the possible effects of light 
stimuli on the behavioral patterns of animals. a  Entrainment to the 
light stimulus—the effect persists also after return to constant dark-

ness, b  masking—instantaneous and transient—not persisting after 
return to constant darkness. Grey bars represent activity; yellow and 
light grey indicate light and darkness, respectively
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(Zorović and Hedwig 2013; Schöneich 2020), acoustic 
communication (Libersat et al. 1994; Hall and Robinson 
2021), sexual selection (Regen 1913; Simmons 1986; 
Simmons and Richie 1996; Tyler et al. 2015; Benavides-
Lopez et al. 2020), aggression (Stevenson and Rillich 2012; 
Rillich and Stevenson 2019), and escape behavior (Tauber 
and Camhi 1995), as well as studies of learning (Matsumoto 
2022) and the neuronal and behavioral responses to 
polarized light (Labhart et al. 1984; Labhart and Keller 
1992; Labhart 1999). Their much-studied physiology and 
well-characterized behavioral repertoire have enabled 
additional research of crickets as an important model in 
chronobiological research (Horch et al. 2017; Numata and 
Tomioka 2023).

Orthopterans encompass both diurnal and nocturnal spe-
cies and occupy a wide range of habitats. This is reflected 
in a variety of visual properties and visual sensitivity lev-
els, including color vision, which has only been described 
to date in a small number of species (Alaasam et al. 2021; 
Van Der Kooi et al. 2021). The nocturnal, ground-dwelling 

field cricket, Gryllus bimaculatus (Fig. 2a), possesses the 
following types of visual receptors: UV (peak: 332 nm), 
blue (peak: 445 nm), and green (peak: 515 nm) (Zufall et al. 
1989; Henze et al. 2012), while, like many insects, lacking 
a red receptor. The cricket thus may be capable of trichro-
matic color vision. The blue receptor was found to be mostly 
involved in polarized light vision (Labhart et al. 1984; Her-
zmann and Labhart 1989). Polarized light vision, thoroughly 
investigated in several cricket and locust species, is utilized 
by many insects for orientation and spatial navigation, using 
the sky’s compass information (Wehner 1984; Brunner and 
Labhart 1987; Barta and Horváth 2004; Mappes and Homb-
erg 2004; Henze and Labhart 2007).

As further discussed below, the green-sensitive (long 
wavelength) opsin (OpLW) was described in G. bimacula-
tus crickets as the major circadian photoreceptor molecule, 
which initiates the cascade responsible for their circadian 
entrainment (Komada et al. 2015). Hence, the crickets’ com-
pound eye is involved in both the visual and the circadian 
pathways. Overall, the visual system and signal processing 

Fig. 2  Actograms showing the 
rhythmic behavioral patterns of 
G. bimaculatus male crick-
ets (a). b Free-run behavior 
induced by exposure to artificial 
light at night (adapted from 
Levy et al. 2021), and c simul-
taneous record of nocturnal 
stridulation (orange) and diurnal 
locomotion (blue) behaviors. A 
nocturnal light pulse induced 
negative and positive masking 
of stridulation and locomotion, 
respectively (red circle, line 
4). Yellow bars indicate day, 
and black or gray bars indicate 
night, while rows indicate con-
secutive days. The red asterisk 
indicates a switch to a free run 
pattern in both behaviors (day 
8) following constant illumina-
tion



270 Journal of Comparative Physiology A (2024) 210:267–279

of these crickets (Gryllus sp.) are well adapted to life under 
near-dark conditions (Zufall et al. 1989; Sakura et al. 2003; 
Frolov et al. 2014; Frolov and Ignatova 2020). The cricket’s 
high sensitivity to very low light intensities has made it a 
useful model for research into the various effects of light, 
including in chronobiological research.

Courtship behavior of male crickets consists species-spe-
cific calling songs produced by rubbing their front wings 
together (stridulation; see supplementary video S1). More 
than a century ago, crickets were already being reported to 
stridulate just after sunset and during the night in order to 
attract females for reproduction, thus presenting a clear diur-
nal behavior (Fabre et al. 1921; see also: Loher et al. 1993; 
Simmons 1988, 1986). The first researcher to introduce the 
use of crickets into modern chronobiology experiments 
was Lutz (1932), who recorded the house cricket’s (Acheta 
domesticus) circadian locomotion activity under daylight 
conditions and in subsequent constant darkness. The cricket 
showed clear diurnal rhythms with a nocturnal activity peak 
in the first half of the night, a pattern that remained consist-
ent even under conditions of constant darkness (Lutz 1932).

Since Lutz’s pioneering study, both stridulation and 
locomotion activities have been widely examined in order 
to assess the effects of changes in illumination patterns on 
cricket behavior. The expression of two or more different 
circadian behaviors (e.g. stridulation and locomotion), can 
be monitored simultaneously (Fig. 2c), thus enabling the 
assessment of differential responses to the same light stim-
ulus (Sokolove 1975; Fergus and Shaw 2013; Levy et al. 
2021, 2023a). Simultaneous monitoring of locomotion and 
stridulation behaviors in male Teleogryllus commodus and 
G. bimaculatus crickets in the laboratory revealed different 
phases of the circadian rhythm for each of these behaviors, 
with stridulation being nocturnal and locomotion either 
occurring at night or during the day (depending on the spe-
cies and the light intensities used; Germ and Tomioka 1998; 
Levy et al. 2021, 2023a; Okamoto et al. 2001; Sokolove 
1975; Tomioka and Chiba 1982a). Moreover, changes in 
illumination patterns were reported to differentially affect 
both these circadian behaviors, inhibiting stridulation while 
increasing locomotion behavior (Levy et al. 2023a). Simi-
larly, light-induced changes in various activity patterns 
(Sokolove 1975; Abe et al. 1997) were monitored parallel 
to changes in circadian gene expression (Moriyama et al. 
2009; Fergus and Shaw 2013; Tokuoka et al. 2017; Levy 
et al. 2022), thus connecting multiple behavioral, physi-
ological, and transcriptional responses in order to obtain a 
better understanding of the multifaceted effects of light on 
the crickets.

Crickets, consequently, offer several specific advantages 
as model organisms in research into chronobiology and the 
effects of light (Horch et al. 2017; Numata and Tomioka 
2023), including: (1) a short lifecycle and ease of rearing 

in the laboratory under various controlled conditions; (2) 
circadian patterns—expressed in a variety of measurable 
traits, such as locomotion, stridulation, and hormonal 
secretion, which can all be monitored either separately or 
simultaneously; (3) sensitivity to changes in illumination 
levels and patterns; and (4), a well-described circadian clock 
machinery, including description of many of the related 
genes.

The location of the crickets’ circadian 
pacemaker

Initial insights into crickets’ circadian mechanisms were pro-
vided by experiments in which the compound eyes and/or 
the ocelli were blacked out. The results of these experiments 
indicated the involvement of the compound eyes or the optic 
lobes in generating behavioral rhythms (Nowosielski and 
Patton 1963). Cyclic oscillations were then described in the 
brain of A. domesticus, including acetylcholinesterase levels 
and RNA synthesis (Cymborowski and Dutkowski 1969), 
as well as in the ultrastructure of the medial neurosecretory 
cells (Dutkowski et al. 1971). An important experiment was 
conducted by Cymborowski and Brady (1972), repeating 
and reconfirming previous, yet somewhat disputed, studies, 
and involving a pair of A. domesticus crickets, each run-
ning on a different circadian phase. The two crickets were 
waxed together with interconnected hemocoels, one serving 
as a “donor” and the other (with its brain removed), serv-
ing as a recipient. The experiment resulted in a locomotion 
activity rhythm in the recipient cricket identical to that of 
the donor. This study unequivocally demonstrated that the 
locomotion circadian rhythm is induced and controlled by 
a humoral factor originating in the cricket’s brain (Cym-
borowski and Brady 1972; Brady 1974). This was further 
confirmed by transplanting the brain of a rhythmically light-
entrained cricket into the abdomen of an arrhythmic one, 
which resulted in the production of a circadian rhythm in 
the recipient cricket, thus again indicating the existence of 
a circadian pacemaker in the brain (Cymborowski 1981).

The role of the compound eyes was again demonstrated 
by various anatomical manipulations, such as severing the 
pathways between the ocelli and the brain, between the 
compound eyes and the optic lobes, and between the optic 
lobes and the brain, leading Sokolove and Loher (1975) 
to the conclusion that the photic circadian signal is deliv-
ered through the compound eyes, rather than the ocelli 
(Sokolove and Loher 1975). Further investigations into 
the role of the eyes and optic lobes in the cricket’s circa-
dian clock were carried out by Tomioka and colleagues in 
the cricket G. bimaculatus. A circadian electroretinogram 
(ERG) rhythm recorded from the cricket’s compound eyes 
was found to persist even after severing the optic tract and 
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isolating it from the central nervous system (Tomioka 
and Chiba 1982b, 1985). Additionally, circadian neuronal 
activity and daily oscillations in serotonin levels were 
observed in the lamina-medulla complex of the cricket’s 
optic lobe and were found to increase towards and dur-
ing the nighttime (Tomioka and Chiba 1986; Tomioka 
et al. 1993), indicating the optic lobes as the location 
of the main circadian pacemaker (Tomioka and Chiba 
1982b, 1985, 1989, 1992). This finding was in agree-
ment with multiple studies in different cricket species that 
had shown an arrhythmic pattern of stridulation behavior 
following optic tract severance (Nowosielski and Patton 
1963; Loher 1972; Rence and Loher 1975; Sokolove and 
Loher 1975; Tomioka and Chiba 1986; Okada et al. 1991; 
Abe et al. 1997; Okamoto et al. 2001; Tomioka and Mat-
sumoto 2015; Kutaragi et al. 2018), thus indicating the 
essential role of the optic lobe in light entrainment. Sev-
eral studies, however, reported retained rhythmic activity 
even following optic tract severance (Rence and Loher 
1975; Tomioka 1985; Stengl 1995), supporting the notion 
of an additional oscillatory center, presumably located in 
the central brain (responsible for releasing the humoral 
factors synchronizing the circadian rhythms).

The crickets’ circadian clock machinery

The circadian pacemaker consists in an intricate network 
of so-called “clock genes” and their corresponding protein 
products. This network, which was first identified in the fruit 
fly Drosophila, is evolutionarily conserved, although studies 
in crickets and other insects have revealed different varia-
tions (Fig. 3). The fundamental constituents of the core cir-
cuit comprise period (per), timeless (tim), Clock (Clk), and 
cycle (cyc) genes (see a recent detailed review in Numata 
and Tomioka 2023). Within this system, Clk and cyc encode 
the transcription factors CLOCK (CLK) and CYCLE (CYC), 
which form a heterodimer. This heterodimer subsequently 
activates transcription of the per and tim genes (Allada et al. 
1998; Rutila et al. 1998). The transcripts of per and tim are 
then translated into the corresponding protein entities (PER, 
TIM). These proteins engage in heterodimerization, trans-
locate back to the cell nucleus, and effectively inhibit their 
own transcription by blocking the transcriptional activity of 
CLK/CYC (Sehgal et al. 1994). With the gradual reduction 
of PER and TIM, inhibition is removed and a new cycle 
commences. This intricate interplay establishes a negative 
feedback loop, giving rise to the characteristic 24-h oscil-
lation (Fig. 3).

Fig. 3  The circadian transcription-translation negative feedback loop 
in fruit-flies and crickets (simplified schematic).  a  In Drosophila, 
CLK:CYC drive the expression of TIM and PER, which translocate 
to the nucleus and inhibit their own transcription. CRY1 serves as a 
blue-light photoreceptor that drives the light-dependent degradation 

of TIM. Photoreceptor opsins in the retina (OPN) also contribute to 
the light input. b In crickets, CRY1 and CRY2 serve as transcription 
repressors. Light entrainment is driven by a green sensitive opsin. See 
text for more details. The cricket schematic is adapted from Tokuoka 
et al. (2017)
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In Drosophila, cryptochrome (cry) encodes a blue-light 
photoreceptor that contributes to light resetting the clock 
through its interaction with TIM (Ceriani et al. 1999). In 
contrast, in crickets, two paralogous genes are present: cry1 
(or Drosophila-type cry) and cry2 (or mammalian-type cry). 
RNAi-mediated knocking down of cry1 or cry2 did not pre-
vent photic entrainment, indicating that neither CRY1 nor 
CRY2 are circadian photoreceptors (Tokuoka et al. 2017). 
However, dual RNAi of cry1 and cry2 repressed CLK/CYC 
transcriptional activity.

In crickets, the molecular pathway involves two major 
transcriptional/translational negative feedback loops: 
namely, the per/tim loop and the cry1/cry2 loop (Fig. 3b; 
Tokuoka et al. 2017). The two loops can oscillate indepen-
dently of one another, and control for circadian rhythm gen-
eration and rhythmic expression of the other clock-related 
genes. The cry1/cry2 loop plays a role in fine-tuning and 
even resetting the clock to the day/night cycle. The two 
negative feedback loops are coupled in that both play a role 
in suppressing the transcription mediated by the clk/cyc 
complex (Moriyama et al. 2012; Uryu et al. 2013; Tokuoka 
et al. 2017).

Light-induced resetting of the clock is mediated by the 
green-sensitive opsin (OpLW) (Komada et al. 2015). In addi-
tion, the proteins encoded by par domain protein 1 (pdp1) 
and c-fosB are upregulated by light-induced neurotransmitter 
release. These two proteins affect the above feedback loops 
through modulation of cry and degradation of tim, followed 
by resetting the phase of the per/tim loop (Fig. 3; Kutaragi 
et al. 2016, 2018; Tokuoka et al. 2017; Tomioka and Mat-
sumoto 2019; Narasaki-Funo et al. 2020).

In several insect species, including Drosophila, Rhyp-
arobia, and Rhodnius, specific neurons within the acces-
sory medulla have been identified as circadian pacemakers 
(Helfrich-Förster 2003; Schneider and Stengl 2005; Vafo-
poulou et al. 2007; Shafer and Yao 2014; Hamanaka et al. 
2022). However, the evidence for such pacemaker cells in 
crickets is less clear. In Drosophila, the neuropeptide Pig-
ment Dispersing Factor (PDF) is the main neuromodulator 
of the circadian clock network (Renn et al. 1999; Helfrich-
Förster et al. 2000; Yoshii et al. 2012) and is expressed in 
the clock neurons in the brain. In crickets, PDF has been 
found in the central brain, in the optic lobe, and in the cer-
ebral lobe, presenting a daily cycle that peaks nocturnally 
(Homberg et al. 1991; Abdelsalam et al. 2008). PDF was 
suggested to be involved in phase regulation of the daily 
rhythm (Singaravel et al. 2003) and, importantly, to increase 
the light responsiveness in the neurons that couple the two 
optic lobes (medulla bilateral neurons, MBNs) (Saifullah 
and Tomioka 2003). Serotonin was also found to phase-shift 
the circadian clock in the optic lobe (Tomioka 1999) and to 
suppress the MBN response to light during daytime (Saiful-
lah and Tomioka 2002).

The current knowledge of the cricket’s circadian clock 
machinery is expected to further promote the use of crickets 
as model insects in chronobiology and other studies. One 
important aspect of such (already ongoing) work relates to 
the anthropogenic effects, specifically to light pollution.

The cricket as a model for artificial light 
at night (ALAN) research

Light pollution, or artificial light at night (ALAN), is a 
constantly growing anthropogenic phenomenon (Hölker 
et  al. 2010). ALAN disrupts various aspects of natural 
light, including its timing, duration, intensity, and spectrum 
(“color”) (Warrant and Johnsen 2013; Tamir et al. 2017), 
as well as the delicate balance of light and darkness (Aube 
2015; Falchi et al. 2019; Garrett et al. 2020; Jechow et al. 
2020), thus becoming a major environmental concern. 
Sources of ALAN include skyglow—with low light inten-
sities of 0.07–1.1 lx and a very large area coverage (Kyba 
et al. 2011, 2012; Jechow et al. 2017, 2020; Hänel et al. 
2018); streetlight illumination—with an intensity of ca. 2–10 
lx and a large area coverage (Rich and Longcore 2006); and 
highly illuminated industrial areas and sports fields—with 
1500 lx and above, constituting an intensity comparable to 
shaded daylight.

ALAN-induced obstruction of the natural light-dark cycle 
impacts the natural behavior of many animal and plant spe-
cies, including humans, as well as whole ecosystems (Sand-
ers and Gaston 2018; Garrett et al. 2020; Svechkina et al. 
2020). In insects, ALAN results in temporal and spatial diso-
rientation of ground-dwelling insects such as the dung bee-
tle, and of flying insects such as moths and mayflies (Owens 
and Lewis 2018; Foster et al. 2021). Moreover, street lights 
that attract flying insects significantly increase insect mortal-
ity (Eisenbeis 2006; Perkin et al. 2014; Manfrin et al. 2017; 
Bolliger et al. 2020). ALAN can also affect the behavior of 
both predators and prey, leading to changes in food webs and 
ecosystem dynamics (Manfrin et al. 2017; Sanders and Gas-
ton 2018; Baxter-Gilbert et al. 2021). Furthermore, ALAN 
induces a decrease in insect pollination (Knop et al. 2017; 
Borges 2018; Giavi et al. 2020), and changes in commu-
nity structure and biodiversity (Sanders and Gaston 2018; 
Owens et al. 2020; Sanders et al. 2021). Further harmful 
consequences of ALAN include reduced immune reaction 
and impaired juvenile development in crickets (e.g., Dur-
rant et al. 2020), and altered gene expression in glow-worms 
(Chen et al. 2021).

Crickets constitute a powerful model for studies of the 
effects of ALAN, and especially ecologically-relevant (dim) 
ALAN, as many crickets are nocturnal, presenting increased 
sensitivity to dim light, and their circadian behavior has been 
well-studied. Crickets in urban habitats are assumed to be 
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exposed to lifelong ALAN. Consequently, Levy et al. (2021) 
experimentally exposed field crickets (G. bimaculatus) to 
different lifelong illumination conditions. Simultaneous 
monitoring of stridulation and locomotion in individual 
males was utilized to assess the possible effect of lifelong 
dim-ALAN on each of these behaviors independently, as 
well as in comparison to one another. In undisturbed (con-
trol) crickets, stridulation was predominantly nocturnal and 
locomotion behavior was diurnal. However, the temporal 
differences between nocturnal and diurnal behavior dimin-
ished with increasing ALAN intensity. Moreover, the per-
centage of individuals showing free-run behavior (Fig. 2b) 
increased with increasing lifelong ALAN intensity, leading 
to behavioral desynchronization of the population. Lastly, 
changes in the medians of the daily activity periods were 
found to differ for both stridulation and locomotion (Fig. 4). 
This may have been the result of a masking response in the 
diurnal locomotion, or it may indicate differential suscep-
tibility of the different behaviors to the same light stimulus 
(Levy et al. 2021).

In a follow-up study by Levy et al. (2022) the molecular 
correlates of ALAN were recorded. Crickets were subjected 
to a short, dim ALAN pulse during their early subjective 
night. The relative expression of five circadian clock-associ-
ated genes was compared in four tissues, including the brain 
and optic lobe. An analysis of their relative transcriptional 
responses revealed two clearly separate responses in these 
two tissues. In the brain, the expression of cry2, per, and 
opLW increased with increasing light intensity; while in the 
optic lobe an overall decrease in expression was observed 
(with the exception of an increase in opLW). These tissue, 

gene, and light-intensity related effects reconfirm the rela-
tion between immediate transcriptional response and circa-
dian behavior.

Revisiting the differential effects of light on the cricket’s 
stridulation and locomotion behaviors, Levy et al. (2023a) 
exposed male crickets to a nocturnal light pulse, similar in 
intensity to their previously utilized experimental daylight 
(40 lx). Their findings revealed a simultaneous negative 
masking of stridulation (transiently reducing the behavior), 
and a positive masking of locomotion (an increase towards 
daytime levels; Fig. 2c). Thus, both a transient and a life-
long exposure to ALAN may affect the timing and pattern of 
both these behaviors. Notably, stridulation serves for attract-
ing potential mates, while locomotion is used for foraging. 
Consequently, the ALAN-induced behavioral changes may 
negatively impact the crickets’ reproductive success and fit-
ness and thereby increase the vulnerability of the population.

The crickets’ immune responses are also affected by 
ALAN. A reduced cellular immune response (haemocyte 
concentration) in the black field cricket, T. commodus, was 
described following exposure to ALAN (Durrant et al. 2015, 
2020). Moreover, the effect of lifelong exposure of these 
crickets to dim-ALAN as low as 1 lx was similar to the 
effects induced by 10 and 100 lx. Hence, even dim ALAN 
presents malign conditions, impacting the cricket’s immune 
response (Durrant et al. 2020) and potentially perceived as 
constant light by the nocturnal, light-sensitive crickets.

In most of the animals studied to date (e.g., Haim et al. 
2015; Raap et al. 2015; Vivien-Roels et al. 1984), the level 
of melatonin was reported to follow the day-night rhyth-
micity and to strongly decrease following exposure to light 
(also reported to be reflected in the compound eyes and brain 
of crickets; Itoh et al. 1995). Melatonin is an antioxidant 
thought to be related to the immune system (Carrillo-Vico 
et al. 2013; Melendez-Fernandez et al. 2023). Accordingly, 
the crickets’ light-induced degraded immune response 
has been suggested to be melatonin-related (Durrant et al. 
2015; Jones et al. 2015). The possible role of melatonin in 
light-induced effects in the cricket awaits, however, further 
research.

Crickets have also constituted a valuable model for out-
door experiments and field studies such as studies of popula-
tion dynamics in natural settings (Tregenza 2003; Bretman 
et al. 2008; Fisher et al. 2019), as well as studies of the 
impact of anthropogenic noise pollution on intraspecific 
communication (Costello and Symes 2014; Duarte et al. 
2019; Tanner and Simmons 2022). Recently, the effect of 
ALAN on stridulation behavior of G. bimaculatus crick-
ets was studied under semi-natural conditions (Levy et al. 
2023b). Adult male crickets were individually housed in 
shaded enclosures in their natural habitat and their behavior 
was acoustically monitored for two consecutive weeks, while 
exposing them to different ALAN regimes. The findings 

Fig. 4  ALAN differentially affects the length of diurnal activity peri-
ods of stridulation (pink; n = 67) and locomotion (purple; n = 64) 
behaviors. Treatments: 12 h:12 h light: dark (LD), light:2  lx ALAN 
(LA2), light:5 lx ALAN (LA5), and 24 h constant light (LL). Tukey’s 
boxplot: Outliers (1.5 times the inter-quartile distance) are shown. 
Asterisks depict statistical significance from LD.  Adapted from Levy 
et al. 2021, see details within
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revealed an ALAN-intensity-dependent increase in the 
percentage of individuals that exhibited free-run behavior, 
along with a corresponding increase in the activity periods. 
These findings support the conclusion that ALAN may ulti-
mately lead to a desynchronizing effect on the population. 
Notably, the threshold at which 80% of individuals exhibited 
free-run behavior was considerably higher in the semi-natu-
ral settings, compared to laboratory conditions. This discrep-
ancy may however primarily relate to the overall differences 
between the indoor and outdoor conditions, specifically to 
the more intense natural diurnal light as well as the natural 
temperature rhythms (Levy et al. 2023b, and see below).

Further comments and challenges

In contrast to the extensively studied circadian clock of 
crickets, our comprehension of the ecologically-relevant 
light effects on these insects remains incomplete. Specifi-
cally, it is important to fill in the existing knowledge gaps 
between sensory perception, circadian gene expression, and 
behavioral processes. Currently, there is a dearth of knowl-
edge regarding the distinct light thresholds required to elicit 
a response in the compound eye; the functioning of the circa-
dian clock mechanism; and the influence of light on specific, 
and perhaps all, behaviors examined to date. Furthermore, 
these thresholds and responses may vary both among indi-
viduals of the same species and between different species. 
As noted previously, a comprehensive understanding of the 
effects of specific physical properties of the light stimulus is 
still lacking and warranted. Beyond the above-noted behav-
ioral patterns, it is conceivable that light may also play a 
role in modulating other critical behaviors, such as hatching, 
molting, navigation, and more.

The differing responses to environmental illumination 
cues underline the complexity of the circadian system, 
specifically when comparing entrainment and masking. 
Under light-dark conditions the exposure of crickets to a 
nocturnal 3-h light pulse evoked an immediate masking 
response (Germ and Tomioka 1998; Levy et al. 2023a), 
inducing a simultaneous decrease and even cessation of 
stridulation (negative masking), while increasing loco-
motion (positive masking) (Levy et al. 2023a). However, 
under constant darkness a 3-h light pulse was reported to 
phase shift the circadian clock (Okada et al. 1991; Kuta-
ragi et al. 2016). Moreover, repetitive 15-min light pulses 
under constant darkness were reported to induce rhythm 
synchronization, depending on the interval between the 
pulses (Germ and Tomioka 1998). Hence, the type and 
extent of the response to light stimuli depend on the sur-
rounding illumination context, intensity, timing, duration, 
repetitivity, and intervals of the stimuli. Further research 
on this remarkable complexity of the circadian clock may 

be of importance in assessing the possible short- or long-
term effects of various outdoor illumination, such as car 
headlights or streetlights, on nocturnal insects. Reducing 
the duration of outdoor illumination may be helpful in 
protecting nocturnal insects.

Current research also aims at understanding the impact of 
environmental temperature. Many organisms in their natu-
ral habitat are exposed to a wide range of thermoperiods 
and temperature fluctuations. However, their period of daily 
activity rhythm has been reported to remain stable, demon-
strating the remarkable property of temperature compensa-
tion (Aschoff 1981; Saunders et al. 2002). This was recently 
confirmed in crickets, which also demonstrated stable activ-
ity periods despite temperature fluctuations and seasonal 
changes (Levy et al. 2023b).

Temperature cycles, acting as entraining agents (zeit-
gebers) in insects, including crickets, have been reported 
under constant darkness (Loher and Wiedenmann 1981; 
Saunders et al. 2002; Beer and Helfrich-Förster 2020). For 
instance, crickets rendered arrhythmic following optic lobe 
removal regained rhythmic stridulatory activity under con-
stant light when exposed to a daily cycle of 12 h hot and 
12 h cold temperature, stridulating during the cold phase 
(Rence and Loher 1975). In T. commodus, a coupled light- 
and thermoperiod system showed distinctive patterns, with 
thermoperiod entrainment displaying higher percentages 
of entrainment with larger temperature oscillations (Rence 
1984). Temperature cycles also influenced locomotor behav-
ior and clock gene transcriptional rhythms in G. bimaculatus 
(Kannan et al. 2019).

Despite these findings, light appears to be the primary 
zeitgeber (Rence and Loher 1975; Kannan et al. 2019; Beer 
and Helfrich-Förster 2020). A 14-day outdoor experiment 
by  Levy et al. (2023b) revealed a strong ALAN-induced 
free-run pattern, despite near-natural thermoperiods. The 
absence of temperature entrainment could be attributed, as 
suggested by Rence (1984), to initially introducing crickets 
to LD conditions and later to almost natural thermoperiods. 
Rence emphasized the importance of temperature signals 
and the order of zeitgebers (light and temperature). Addi-
tionally, temperature entrainment may require more cycles 
than light entrainment (Rence 1984; Kannan et al. 2019). 
The interplay of light and temperature as zeitgebers in crick-
ets, highlighting the complex nature of the circadian system, 
warrants further investigation.

In summary, exploring the full impact of light on the 
circadian behavior of the cricket (including the significant 
negative ecological impact of ALAN) requires an interdis-
ciplinary, multi-modal approach, incorporating the insect’s 
visual system, its relevant illumination thresholds, and its 
sensitivity to physical light properties, the circadian clock 
mechanism, and behavior. Such an approach will deepen our 
understanding of the major role of light on natural habitats 



275Journal of Comparative Physiology A (2024) 210:267–279 

and its effect on various aspects of animals’ fitness, repro-
duction, and dispersal.
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