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Abstract
Light is the most important Zeitgeber for entraining animal activity rhythms to the 24-h day. In all animals, the eyes are the 
main visual organs that are not only responsible for motion and colour (image) vision, but also transfer light information to 
the circadian clock in the brain. The way in which light entrains the circadian clock appears, however, variable in different 
species. As do vertebrates, insects possess extraretinal photoreceptors in addition to their eyes (and ocelli) that are sometimes 
located close to (underneath) the eyes, but sometimes even in the central brain. These extraretinal photoreceptors contribute 
to entrainment of their circadian clocks to different degrees. The fruit fly Drosophila melanogaster is special, because it 
expresses the blue light-sensitive cryptochrome (CRY) directly in its circadian clock neurons, and CRY is usually regarded 
as the fly’s main circadian photoreceptor. Nevertheless, recent studies show that the retinal and extraretinal eyes transfer light 
information to almost every clock neuron and that the eyes are similarly important for entraining the fly’s activity rhythm 
as in other insects, or more generally spoken in other animals. Here, I compare the light input pathways between selected 
insect species with a focus on Drosophila’s special case.
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Abbreviations
ALA	� Accessory laminae
AME	� Accessory medullae
CRY​	� Cryptochrome
HB eyelet	� Hofbauer–Buchner eyelet
LNd	� Dorsal lateral neurons
LNv	� Ventral lateral neurons
s-LNv	� Small ventral lateral neurons
l-LNv	� Large ventral lateral neurons
PER	� Period protein
PDF	� Pigment-Dispersing Factor
R7	� Receptor cell 7 of the compound eye
R8	� Receptor cell 8 of the compound eye
Rh	� Rhodopsin
SCN	� Suprachiasmatic nucleus
TIM	� Timeless protein

Introduction

Virtual all organisms possess endogenous circadian clocks. 
These enable them to be prepared in advance for the cyclic 
24-h changes in the environment, instead of merely respond-
ing passively to them. Needless to say that the circadian 
clocks themselves have to be synchronized (= entrained) to 
the external 24-h cycles in order to work as proper daily 
clocks. Most organisms use changes in the quantity and 
quality of light around dawn and dusk as their primary Zeit-
geber for ‘photoentrainment’ (Roenneberg and Foster 1997). 
The detection of changes in irradiance and spectral light 
composition is qualitatively different from the fine spatial 
and temporal resolution carried out by the photoreceptors 
in the eyes that are involved in image formation. Therefore, 
most if not all animals possess special ‘circadian’ photopig-
ments in or outside their eyes that fulfil this task (reviewed 
by Doyle and Menaker 2007). Cryptochrome (CRY) is such 
a photopigment that is expressed in every clock cell (even 
in the photoreceptor cells of the eyes) and can entrain the 
circadian clocks in the brain and peripheral organs of trans-
lucent animals such as fruit flies (Emery et al. 2000). CRY 
or other cellular photopigments can also entrain peripheral 
clocks of translucent zebra fish (Whitmore et al. 2000). 
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Other circadian cellular photopigments are the so-called 
deep brain photoreceptors (different nonvisual opsins) of 
non-mammalian vertebrates (Davies et al. 2015; Hang et al. 
2016). In mammals, functional deep brain opsins have so 
far not been identified, but melanopsin in a subset of the 
retinal ganglion cells fulfils the role as circadian cellular 
photopigment (Provencio et al. 1998; Berson et al. 2002; 
Hattar et al. 2002; reviewed in Lazzerini Ospri et al. 2017). 
All these photopigments appear to convey information about 
environmental light conditions to the circadian clock and to 
mediate photoentrainment and/or photoperiodic responses.

Most importantly, however, the circadian cellular pho-
topigments do not work in isolation. The eyes contribute 
to circadian entrainment. For example, mammals are only 
‘circadianly blind’ (do not entrain to external light–dark 
cycles) when melanopsin and the rhodopsins of rods and 
cones are gone (Hattar et al. 2003; Güler et al. 2008). This is 
because the rods and cones signal to the melanopsin-positive 
ganglion cells and the latter then signal via the retino-hypo-
thalamic tract to the circadian master clock in the suprachi-
asmatic nuclei (SCN) of the hypothalamus (McNeill et al. 
2008). Thus, melanopsin-positive ganglion cells integrate 
the light signals coming from the rods and cones with the 
ones coming from melanopsin. Similarly, fruit flies are only 
‘circadianly blind’ when CRY and all six rhodopsins are 
gone (Helfrich-Förster et al. 2001). Here, the photoreceptor 
cells of the eyes signal to the circadian pacemaker neurons 
(Li et al. 2018) of which many contain CRY (Yoshii et al. 
2008; Benito et al. 2008). Thus, the light signals coming 
from the eyes are integrated with the ones coming from CRY 
within the circadian pacemaker neurons themselves. There 
is even evidence for a retrograde signalling from the mel-
anopsin-positive ganglion cells of mice and CRY of flies to 
the photoreceptor cells in the eyes affecting light sensitivity 
and/or adaptation of the latter (Mazzotta et al. 2013; Prigge 
et al. 2016; Schlichting et al. 2018). Furthermore, studies in 
mice indicate that melanopsin contributes to the representa-
tion of images in the early visual system (Allen et al. 2017). 
Hence, cellular photopigments and eyes interact in manifold 
ways. The degree of interaction between eyes and cellular 
photopigments most certainly depends on the specific niche 
occupied by the animal and is, therefore, expected to be dif-
ferent in diverse species.

Insects are especially interesting in this respect, because 
they represent an abundant diverse species group that is 
distributed all over the world and adapted to very differ-
ent habitats. In addition, their photobiology is interesting, 
since besides cellular extraretinal photopigments, most adult 
insects possess several eyes: two large compound eyes, ~ 3 
ocelli at the top of their head and sometimes remnants of 
their larval stemmata that are maintained and even restruc-
tured during development (e.g. Fleissner et al. 1993; Hel-
frich-Förster et al. 2002; Sprecher and Desplan 2008).

Here, I will address the following key questions in 
selected insect species. (1) What is the functional connec-
tion between the eyes and the circadian clock in the brain? 
(2) What is the relative contribution of the eyes to photoen-
trainment of the clock? (3) Which cellular circadian pho-
topigments are present and how do they interact with the 
eyes? I will start with insects that possess a mammalian-like 
molecular clockwork, such as cockroaches, crickets, beetles 
and bees. These insects appear to possess light-insensitive 
forms of CRY that are part of the core clock and do not 
work as photopigments (see Yuan et al. 2007; Sandrelli 
et al. 2008; Tomioka and Matsumoto 2010 for reviews). 
For these insects, the compound eyes are very important for 
entraining the clock and there is so far no evidence for deep 
brain photoreceptors, probably because most of them have 
strongly pigmented head capsules that prevent light from 
coming through. Nevertheless, several of these insects have 
extraretinal photoreceptors close to their eyes or underneath 
translucent windows in their cuticle. The second group of 
insects possesses both forms of CRY, light-sensitive and 
light-insensitive ones. Usually these insects have less pig-
mented head capsules that might be transparent for light 
and appear to possess deep brain photoreceptors (Zhu et al. 
2005; Cortés et al. 2010). To these insects belong aphids, 
moths, butterflies and mosquitoes. I will end my review with 
discussing flies that possess only the light-sensitive form of 
CRY and appear to have directly light-entrainable circadian 
clocks throughout their body and head (e.g. Plautz et al. 
1997; Ivanchenko et al. 2001).

Photoentrainment in cockroaches, crickets, 
beetles, bees and ants

Cockroaches

The cockroaches Leucophaea maderae and Periplan-
eta americana were the first insects, in which a circadian 
master clock was successfully localized to a specific area 
in the optic lobe with the help of lesions (Nishiitsutsuji-
Uwo and Pittendrigh 1968; Roberts 1974; Sokolove 1975). 
This area is situated close to the second optic ganglion, the 
medulla, and many years later, it was characterized in detail 
by immunohistochemical studies in Leucophaea maderae 
(now renamed into Rhyparobia maderae) (Homberg et al. 
1991; Stengl and Homberg 1994; Petri et al. 1995; Reischig 
and Stengl 2003). The cockroach circadian pacemaker centre 
turned out to be located in a small neuropil of ovoid shape—
the accessory medulla (AME) (Fig. 1). The AME is densely 
innervated by ~ 240 peptidergic and GABAergic neurons and 
is organized into a core that receives photic input and a shell, 
from which output neurons enter the central brain (reviewed 
in Stengl et al. 2015; Stengl and Arendt 2016). Thus, from 
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its organization, the AME largely resembles the mamma-
lian SCN. The best-characterized neurons in the AME of 
the Madeira cockroach express the neuropeptide pigment-
dispersing factor (PDF) (Reischig and Stengl 1996, 2003). 
These PDF-positive neurons have an especially prominent 
role in the circadian system. They comprise local neurons, 
output neurons and even light input neurons (Stengl and 
Arendt 2016). Besides its roles as circadian input and output 
factor, PDF is crucial for the synchronization of molecular 
and membrane potential oscillators within and between cir-
cadian clock neurons (Schneider and Stengl 2005; Stengl 
et  al. 2015). Most interestingly, PDF has a mammalian 
functional analogue in the vasoactive intestinal polypeptide 
(VIP) (Hastings et al. 2014; Pauls et al. 2014). PDF is not 
only expressed in the AME of cockroaches but also in their 
accessory laminae (ALA) that lie dorsally and ventrally of 
the lamina as was shown for the Madeira cockroach, the Ger-
man cockroach (Blattella germanica) and the double-striped 
cockroach (Blattella bisignata) (Wen and Lee 2008; Stengl 

and Arendt 2016) (Fig. 1). While PDF neurons in the AME 
are involved in the control of behavioural rhythmicity, the 
PDF neurons of the accessory laminae project to the AME 
and appear to carry light information to the circadian master 
clock (Lee et al. 2009; Stengl and Arendt 2016; Giese et al. 
2018; see below).

Cockroaches possess three ocelli besides their com-
pound eyes, but only lesions of the compound eyes abol-
ished the entrainment of locomotor activity rhythms to 
light–dark cycles, which indicates that the compound eyes 
are the only photoreceptors that synchronize the circadian 
clock (Roberts 1965; Nishiitsutsuji-Uwo and Pittendrigh 
1968; Page et al. 1977; Page and Barrett 1989). The eyes 
are indirectly connected to the AME via not yet completely 
identified pathways, in which several neurotransmitters and 
neuropeptides, including PDF, are involved (Schendzielorz 
and Stengl 2014; Arendt et al. 2017; Giese et al. 2018). As 
many insects, the cockroach compound eye possesses long- 
and short-wavelength sensitive photoreceptor cells that use 

Fig. 1   Rough schematic representation of the light input pathways in 
the cockroach. a Scheme of the Rhyparobia madeira brain with the 
principal arborizations from the pigment-dispersing factor (PDF)-
positive clock neurons (green). Only a few PDF neurons are exem-
plary shown. Most of them are close to the accessory medulla (AME) 
and invade it; fewer are close to the accessory laminae (ALA) and 
invade these. Note that PDF-positive fibres connect the AME and 
ALA. Light reaches the circadian clock neurons in the AME through 
the compound eyes (left) and putatively via the lamina organs (LAO) 
(right). Photoreceptor cells in the LAO project to the two ALAs 
(orange small arrows) and from the ALAs to the AME. The PDF 
fibres are omitted for clarity in the right medulla and lamina and only 

shown in the left optic lobe. There, they invade the proximal layer of 
the lamina and layers 1 and 4 of the medulla. Light from the com-
pound eyes may reach the PDF-positive fibres in the lamina via the 
long-wavelength sensitive short photoreceptor cells (lws) that are 
mainly responsive to green light. In addition, light may reach the 
PDF neurons indirectly via the short-wavelength sensitive long pho-
toreceptor cells (swl) that respond to UV and terminate in medulla 
layer 2. This figure is redrawn from Wei et al. (2010) and Stengl and 
Arendt (2016) with information added from Giese et  al. (2018) and 
Fleissner et  al. (2001). b Three dimensional representation of the 
lamina organ (LAO). Modified from Fleissner et al. (2001). Labelling 
as in a
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histamine as neurotransmitter (Loesel and Homberg 1999). 
The first type is mainly sensitive to green light and sends 
short axons into the lamina (Fig. 1). This type might con-
tact PDF fibres that arborize in the proximal layer of the 
lamina and may stem from the PDF neurons of the AME or 
the ALA. The second type is mainly sensitive to UV light 
and sends axons in medulla layer 2, which is devoid of PDF 
fibres (Fig. 2). Nevertheless, there are several interneurons 
that connect the two medulla layers and may confer light 
information to the PDF neurons of the AME.

The above-mentioned ALA appear to play a prominent 
role in the light input pathway to the clock. The ALA are 
assumed to be innervated by extraretinal photoreceptor 
axons of the lamina organ, an elongated structure adjacent 
to the anterior edge of the lamina that expresses CRY (Petri 
et al. 1995; Fleissner et al. 2001) (Fig. 1). The lamina organ 
may serve as extraocular photoreceptor for light entrainment 
of the circadian clock as was suggested before for beetles 
(Fleissner et al. 1993, see below). Thus, even cockroaches 
may possess cellular photopigments in an organ very close 
to the eyes that may contribute to circadian photorecep-
tion. The close vicinity to the eyes might have obscured 
their existence in the older lesion studies, because the lat-
ter might have destructed the extraretinal photoreceptors as 

well. Nevertheless, why the lamina organ expresses CRY 
and how this presumably light-insensitive mammalian-type 
CRY can contribute to circadian photoreception remains 
to be clarified. It is also possible that cockroaches possess 
light-sensitive CRY in addition to light-insensitive CRY. 
So far, the cockroach genome is not completely sequenced 
and the light sensitivity of cockroach CRY was not directly 
tested. Thus, we cannot completely exclude this possibility. 
This is also true for crickets, beetles, bees and ants that are 
treated in the following chapters.

Crickets

The crickets, Gryllus bimaculatus, Teleogryllus commodus, 
Achaeta domesticus, Hemideina thoracica, Modicogryllus 
siamensis, Gryllodes sigillatus and Dianemobius nigrofas-
ciatus, have been extensively studied for their locomotor 
activity and/or singing (stridulatory) rhythms (reviewed by 
Tomioka 2014). Similar to cockroaches, the circadian master 
clock of G. bimaculatus, T. commodus, H. thoracica, G. sig-
illatus and D. nigrofasciatus could be localized to the optic 
lobes, and the compound eyes turned out to be the major 
circadian photoreceptors in most of these species (Sokolove 
and Loher 1975; Tomioka and Chiba 1984, 1986; Tomioka 

Fig. 2   Rough schematic representation of the light input pathways 
from the eyes in Drosophila melanogaster. Light reaches the circa-
dian lateral clock neurons [M cells (= s-LNv), E cells (mainly LNd), 
and the large ventrolateral neurons (l-LNv)] through the compound 
eyes (left) and the Hofbauer–Buchner (HB)-eyelets (right). All recep-
tor cells of the compound eyes use histamine (His) as a neurotrans-
mitter, whereas the HB eyelets utilize histamine and acetylcholine 
(ACh). The HB eyelets project into the accessory medulla (AME) and 
signal via histamine to the l-LNv and via ACh to the M cells. The 
l-LNv and the M cells (s-LNv) express the neuropeptide PDF (pig-
ment-dispersing factor). The PDF fibres are indicated in green and 
red. From the compound eyes, there are three putative input pathways 
to the clock neurons. In the first one (1), receptor cells 1–6 (R1–6) 

signal via His to the lamina monopolar cells (L2). L2 cells express 
ACh and signal in the distal medulla to the l-LNv. In the second one 
(2), R1-6 signal to wide-field fibres arborizing in the lamina and 
stemming from two peptidergic interneurons (AstC/CcapR in lilac) 
that are located between lamina and medulla (Li et al. 2018). These 
neurons send axons into the AME, where they contact most clock 
neurons. In the third light-input pathway (3), Rh6-positive R8 cells 
that appear to play an integrative role in the light input from all other 
receptor cells, signal indirectly to the circadian clock neurons (Aleje-
vski et al. 2019). The exact connections are, however, still unknown. 
Putative light input signals from the ocelli are omitted. Modified from 
Senthilan et al. (2019)
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et al. 1990; Waddell et al. 1990; Yukizane and Tomioka 
1995; Abe et al. 1997; Shiga et al. 1999). Nevertheless, the 
role of the AME and the PDF neurons in the circadian sys-
tem is less clear in crickets as compared to cockroaches. In 
G. bimaculatus, the partial destruction of the optic lobes 
led to arrhythmic locomotor activity even when the AME 
and the PDF neurons remained intact, suggesting that the 
PDF neurons in the AME alone are not sufficient for con-
trolling activity rhythms (Okamoto et al. 2001). A knock-
down of PDF by RNA interference shortened this crickets’ 
free-running period, reduced their nocturnal activity and 
affected their photic entrainment, but did not abolish circa-
dian rhythmicity (Saifullah and Tomioka 2003; Abdelsalam 
et al. 2008; Hassaneen et al. 2011). This indicates that PDF 
is involved in photic entrainment and fine-tuning of the free-
running period of the circadian clock, perhaps by coupling 
different clock neurons, but that it appears not essential for 
rhythmic behaviour. It is also not clear whether the AME 
plays a similar important role as master clock in G. bimacu-
latus as it does in cockroaches, although the medulla is the 
target of neurons that connect the bilateral optic lobe master 
clocks (Yukizane et al. 2002) and cockroaches possess a pro-
nounced AME (Homberg et al. 1991). Crickets may possess 
several clock centres that control rhythmicity and determine 
period via parallel clock output pathways. Only one of these 
may locate in the AME and use PDF as output, others close 
to the ALA and/or in the central brain and work without 
PDF (Helfrich-Förster 2005; Tomioka 2014). Although the 
location and organization of the master clock are less clear 
in crickets, the pathway for photic entrainment in crickets 
shows large similarities to cockroaches.

As in cockroaches lesions of the compound eyes but not 
the ocelli impaired photoentrainment of the activity rhythms 
of G. bimaculatus (Tomioka and Chiba 1984; Yukizane and 
Tomioka 1995), suggesting that the compound eyes con-
tain the sole photoreceptors for entraining the circadian 
clock. Recent studies showed that circadian entrainment is 
mediated by green-sensitive opsins in the compound eyes 
(Komada et al. 2015). Their activation leads to an increase 
of the bZip transcription factor c-fos in the optic lobes that 
resets the circadian clock via CRY (Kutaragi et al. 2018). 
The down-regulation of the cry and c-fos genes by RNAi 
strongly disturbs photoentrainment showing that these 
factors are critically involved in circadian photoreception 
(Kutaragi et al. 2018). Most interestingly, CRY and c-fos 
are expressed in an area close to the lamina (Kutaragi et al. 
2018) that resembles the cockroach lamina organ and that 
was supposed to act as extraretinal photoreceptor organ 
(see above). In G. bimaculatus, there is so far no evidence 
that this putative lamina organ can entrain locomotor activ-
ity rhythms in absence of the compound eyes, but some 
indication for extraretinal photoreception comes from the 
band-legged ground cricket, Dianemobius nigrofasciatus 

(Shiga et al. 1999). After removal of both compound eyes 
and all ocelli in this cricket, some animals still entrained to 
light–dark cycles. Histological examination of the operated 
crickets revealed that parts of the lamina remained intact 
after the surgery. Furthermore, Figure 2 B in Shiga et al. 
(1999) shows a small structure anterior to the lamina resem-
bling the putative lamina organ of G. bimaculatus that sur-
vived the surgery. Thus, entrainment might have occurred 
via extraretinal photoreception. Similarly, crickets of the 
species Hemideina thoracica remained entrained after sur-
gical removal of the retinae of both compound eyes, once 
more suggesting that extraretinal photoreception, perhaps 
via lamina organs, contributes to photic entrainment in crick-
ets (Waddell et al. 1990).

Beetles

The so far best anatomical description of the lamina organs 
exists for the carabid beetle, Pachymorpha sexguttata and 
the tenebrionid beetle, Zophobas morio (Fleissner et al. 
1993). In both beetles, these organs have an elongated struc-
ture, and are about 20–40 µm wide and more than 300 µm 
long. They are situated at the fronto-dorsal rim of the lami-
nae beneath window-like thinnings of the cuticle. They are 
highly organized and composed of sheath cells that lack 
shielding pigments and receptor cells that contain rhab-
dom-like structures. The rhabdom-like structures express 
rhodopsin and retinal S-antigen (arrestin), which is typical 
for photoreceptor cells. Axons arising from the receptor 
cells run into adjacent accessory laminae, which connect to 
the AME as already described for cockroaches. The master 
clock of beetles has previously been localized to the optic 
lobe in Blaps gigas (Koehler and Fleissner 1978), Pachy-
morpha sexguttata (Fleissner 1982) and Carabus problem-
aticus (Balkenohl and Weber 1981). Immunocytochemical 
studies in P. sexguttata showed that neurons in the AME 
express the clock protein Period (PER) and the neuropeptide 
PDF (Frisch et al. 1996) making it very likely that the AME 
contains the master clock as demonstrated above for cock-
roaches. The two bilateral master clocks of beetles are only 
weakly coupled with each other, because bilateral neuronal 
connections appear virtually absent. Consequently, the cir-
cadian rhythms generated in each AME can easily be desyn-
chronized from each other by differently illuminating the two 
compound eyes as shown in B. gigas (Koehler and Fleissner 
1978). This strongly indicates that photoentrainment occurs 
via the ipsilateral compound eyes or the adjacent extraretinal 
lamina organs. Beetles have usually no ocelli, but they pos-
sess metamorphosed larval stemmata attached to the poste-
rior sides of the optic lobes that might be still light sensitive 
(Fleissner et al. 1993). Thus, circadian photoreception can 
theoretically occur via the compound eyes, the lamina organs 
and the stemmata, although photoreception via the stemmata 
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appears unlikely, because these lie underneath a thick pre-
sumably light-tight cuticle.

Bees and ants

Like in cockroaches, crickets and beetles, only the light-
insensitive form of CRY was found in bees and ants. There-
fore, they are supposed to entrain their circadian rhythms 
mainly through the compound eyes. So far, no lamina organ 
has been detected in their brain that could contribute to 
photoentrainment. However, honey bees appear to possess 
a vertebrate-like deep brain opsin, called pteropsin (Velarde 
et al. 2005). Pteropsin is expressed in 12 neurons that are 
located in the same place in the lateral brain in which Period 
and PDF-expressing neurons have been identified (Fuchi-
kawa et al. 2017; Beer et al. 2018), suggesting that the cir-
cadian clock neurons of the bee are light sensitive per se. 
Whether this is true has to be shown in future studies. For 
ants, nothing is known about extraretinal photoreception, 
but the organization of the circadian system of Camponotus 
floridanus appears very similar to that of honey bees (Kay 
et al. 2018).

Photoentrainment in moth, butterflies, 
aphids and mosquitoes

These diverse groups of insects possess for sure two forms 
of CRY, the light-insensitive and light-sensitive one. Fur-
thermore, all these insects own deep brain photoreceptors, 
either for entraining their circadian clock or for measuring 
day length to time photoperiodic annual responses (e.g. 
diapause). Photoperiodic responses appear also to depend 
on circadian photoreception, but they are independent from 
circadian entrainment. For example, circadian entrainment 
is difficult to assess in species that move very little, such 
as aphids (see Beer et al. 2017; Joschinski et al. 2016); 
nonetheless, aphids show strong photoperiodic responses in 
response to changes in day length.

In a legendary series of experiments, Truman and Rid-
diford demonstrated that the circadian master clock control-
ling flight activity and eclosion of the silk moths, Antheraea 
pernyi and Hyalophora cecropia, resides in the central brain 
and is entrained to light–dark cycles by deep brain photore-
ceptors (Truman and Riddiford 1970; Truman 1972, 1974). 
Many years later, Reppert and coworkers characterized the 
molecular components of the A. pernyi clock and found that 
this silk moth possesses mammalian-type and Drosophila-
type clock genes and proteins (Chang et al. 2003). For exam-
ple, A. pernyi owns the Drosophila-like Timeless protein 
(TIM) that can interact with light-activated CRY leading 
to its degradation. Thus, it is likely that the silk moth clock 
neurons are intrinsically light sensitive as it is the case in 

Drosophila. In contrast to the so far discussed insects, the 
silk moth master clock appears to be located in the dorsal 
brain and not in the AME without any direct neuronal con-
nection to the compound eyes (Sauman and Reppert 1996; 
Sehadová et al. 2004). Similarly, the master clock of the 
monarch butterfly, Danaus plexippus, lies in the dorsal brain, 
co-expresses Drosophila-like CRY and TIM and is light-
sensitive (Zhu et al. 2008). A brain-centred photoreceptor 
has also been implicated in the photoperiodically controlled 
termination of diapause in A. pernyi (Williams and Adkisson 
1964) and in diapause induction of Pieris brassicae (Seuge 
and Veith 1976).

In the aphid Megoura viciae, the site of photoreception 
for initiating sexual morphs under decreasing photoperiods 
in late summer has also been localized to the dorsal brain 
(Lees 1964). More recent studies in the pea aphid, Acyrtho-
siphon pisum, identified the clock genes and revealed that A. 
pisum possesses also mammalian-type and Drosophila-type 
clock genes that are expressed in the dorsal brain, but addi-
tionally also in the lateral brain (Cortés et al. 2010; Barberà 
et al. 2017). The location of the master clock in mosquitoes 
is less well studied. There is just one report of Kasai and 
Chiba (1987) showing that Culex pipiens still show light-
entrainable flight rhythmicity after ablation of their optic 
lobes, indicating that circadian photoreceptors are located 
in the central brain. As moth, butterflies and aphids, mos-
quitoes possess mammalian-type and Drosophila-type clock 
genes (Gentile et al. 2009; Meuti et al. 2015).

Photoentrainment in flies

The best-characterized circadian clock is that of the fruit 
fly Drosophila melanogaster (reviewed by Helfrich-Förster 
2017; Top and Young 2018), but other higher fly species 
appear to have a comparable clock organization with some 
differences existing within the Drosophiliids (Codd et al. 
2007; Muguruma et al. 2010; Menegazzi et al. 2017; Beau-
champ et al. 2018; Bertolini et al. 2018; Helfrich-Förster 
et al. 2018). Furthermore, all higher flies appear to possess 
only the light-sensitive form of CRY that may contribute to 
entrainment (An et al. 2004; Fuchikawa et al. 2010; Bertolini 
et al. 2018) and is generally regarded as the main circadian 
photopigment of D. melanogaster (Stanewsky et al. 1998; 
Emery et al. 2000). In addition, some fly species possess 
extraretinal eyelets that are metamorphized larval eyes, and 
like the stemmata of beetles, they are located in a posterior 
position of the optic lobes (Hofbauer and Buchner 1989; 
Malpel et al. 2002; Helfrich-Förster et al. 2002; Sprecher 
and Desplan 2008). In the following, I will describe the cir-
cadian system and photoentrainment for D. melanogaster.

Besides CRY that is located in the circadian clock neu-
rons themselves, fruit flies use the rhodopsins in their 
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photoreceptive organs (compound eyes and ocelli) and their 
extra retinal eyelets, the Hofbauer–Buchner (HB) eyelets, 
for photoentrainment (reviewed in Senthilan et al. 2019). 
As light is able to penetrate the fly cuticle, the clock can 
directly be entrained by the HB eyelets and CRY even in the 
absence of all eye structures (Rieger et al. 2003). Only after 
elimination of CRY and all eye structures, entrainment to 
light–dark cycles is abolished (Helfrich-Förster et al. 2001). 
Nevertheless, such “circadian blind” flies still respond to 
light, indicating that additional photopigment(s) influence 
their activity. The search for these led to the detection of 
a seventh rhodopsin, Rh7, that mediates light responses, 
although there are diverging results and hypothesis con-
cerning this finding (Senthilan and Helfrich-Förster 2016; 
Kistenpfennig et al. 2017; Ni et al. 2017; Baik et al. 2017; 
Grebler et al. 2017). Since the putative role of Rh7 in pho-
toreception was recently reviewed in detail (Senthilan et al. 
2019), I will largely skip Rh7 here, but instead focus on 
the light input pathways from the compound eyes and the 
HB eyelets to the circadian clock neurons and their putative 
interaction with CRY.

Input pathways from the eyes and the HB eyelets 
to the clock neurons

Each fly compound eye consists of ~ 800 ommatidia, each of 
which contains eight receptor cells, six outer and two inner 
ones. The outer six receptor cells (R1–6) project into the 
lamina, where they connect to lamina monopolar neurons 
that run into the medulla, while the inner receptor cells (R7 
and R8) project directly into the medulla (Fig. 2; Behnia 
and Desplan 2015). In contrast to this complex organization, 
each HB eyelet consists of only four receptor cells, located at 
the posterior edge between lamina and compound eye, that 
all project along the anterior surface of the medulla directly 
into the AME (Fig. 2). The somata of the clock neurons 
are located in the lateral and dorsal brain and their neurites 
are extensively connected with each other (Helfrich-Förster 
2017; Top and Young 2018). Most of the clock neurons send 
dendrites into the AME, where they get direct light input 
from the HB eyelets and indirect light input via interneurons 
from the compound eyes (Fig. 2; Schlichting et al. 2016; 
Li et al. 2018). All photoreceptor cells use histamine as 
neurotransmitter, but the HB eyelets contain additionally 
acetylcholine and there is first evidence that they signal via 
acetylcholine to the s-LNv and via histamine to the l-LNv 
(Fig. 2; Schlichting et al. 2016). By patch-clamp recordings 
of the clock neurons, Li et al. (2018) could show that light 
from the eyes excites the great majority of clock neurons 
and that laser ablation of the AME abolishes the responses 
of the clock neurons to light. This clearly indicates that the 
AME serves as a kind of hub for light input from the eyes to 

most clock neurons, although this does not mean that all the 
clock neurons that get this light input contribute equally to 
behavioural entrainment.

Organization of the circadian clock network 
with a special reference to the PDF neurons

As in cockroaches, crickets, beetles and bees, PDF neurons 
play a prominent role in the fly circadian system. In each 
brain hemisphere, four PDF neurons with small somata 
(called small ventrolateral neurons, s-LNv) and four PDF 
neurons with large somata (called large ventrolateral neu-
rons, l-LNv) can be distinguished (Fig. 2). These two sets 
of PDF neurons have different projections and functions in 
the circadian clock of the fly (reviewed in Helfrich-Förster 
2014, 2017; Top and Young 2018). The s-LNv have den-
drites in the AME and project into the dorsal brain. They 
communicate with the other clock neurons, especially with 
those located in the dorsal brain (dorsal clock neurons, DN), 
but also with more dorsally located lateral neurons (dor-
solateral neurons, LNd). In addition, the s-LNv appear to 
signal to neurons downstream of the clock (see Nagy et al. 
2019 for a most recent report). Regarding locomotor activ-
ity rhythms, the s-LNv are essential for circadian rhythms 
under constant darkness and, under light–dark cycles, they 
control the morning activity of the flies (fruit flies exhibit 
activity in the morning and evening with a siesta during 
midday; reviewed by Yoshii et al. (2012)). Therefore, they 
are also called morning cells (M cells, Fig. 2). Nonetheless, 
the s-LNv do not work in isolation but cooperate with the 
DN and LNd (see Fujiwara et al. 2018 and Chatterjee et al. 
2018 for recent examples). The l-LNv have also excessive 
dendrites in the ipsilateral AME that extend ventrally into 
the so-called ventral elongation of the AME. All four l-LNv 
project via the posterior optic commissure to the contralat-
eral optic lobe (Fig. 2). Three of them have net-like varicose 
arborizations in the entire distal left and right medulla, while 
one l-LNv restricts its arborizations to the proximal part of 
both medullae (Schubert et al. 2018). Although the vari-
cose network of PDF fibres is close to the terminals of the 
inner photoreceptor cells (e.g. R8 in Fig. 2), there appears 
no direct innervation from these receptor cells to the l-LNv 
(Alejevski et al. 2019). Nevertheless, l-LNv get light input 
from the L2 lamina monopolar cells that are downstream of 
the outer photoreceptor cells (R1-6) in the retina in addition 
to getting direct light input from the HB eyelets (Muraro 
and Ceriani 2015; Schlichting et al. 2016). In addition, they 
and several other clock neurons get light input from two 
peptidergic interneurons that are located between lamina 
and medulla, arborize in the lamina and send their axons 
directly into the AME (Li et al. 2018; Fig. 2). Among the 
clock neurons, the l-LNv are thought to be especially devoted 
to transfer light information to the circadian system, because 
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they mediate light-dependent arousal and wakefulness of 
the flies (Sheeba et al. 2008a, b; Parisky et al. 2008; Shang 
et al. 2008). Not only the eyes, but also CRY and perhaps 
even Rh7 that seem both present in the l-LNv confer light 
sensitivity to these neurons (Fogle et al. 2011, 2015; Ni 
et al. 2017; Baik et al. 2017, 2019). CRY and Rh7 influence 
the excitability of the membrane and enhance action poten-
tial firing of the l-LNv in response to blue and UV light. In 
spite of the high responsiveness of the l-LNv to light, flies 
with silenced l-LNv and mutated CRY can still entrain to 
light–dark cycles, clearly indicating that light input from the 
eyes to the clock neurons works via parallel pathways (Li 
et al. 2018). The l-LNv and PDF may rather have a coordi-
nating function in photoentrainment. Indeed, PDF from the 
l-LNv (and s-LNv) strongly affects the other clock neurons 
(Seluzicki et al. 2014; Yoshii et al. 2009; Guo et al. 2014, 
2016). It accelerates the molecular clock in the s-LNv and 
slows it down in the LNd and other clock neurons. Further-
more, PDF delays Ca2+ rhythms in the majority of clock 
neurons (Liang et al. 2016, 2017). In this respect, the action 
of PDF on the LNd is especially interesting because the LNd 
control the evening activity of the flies and are, therefore, 
also called evening neurons (E cells, Fig. 2). PDF is neces-
sary to delay the Ca2+ rhythms in the LNd from the morn-
ing to the afternoon so that the LNd can control the activity 
increase in the evening (Liang et al. 2017). Under long sum-
mer days, the siesta extends and evening activity occurs later 
than under short days or at equinox, and this delay is caused 
by secretion of PDF from the l-LNv (Menegazzi et al. 2017; 
Schlichting et al. 2019b; see also below). Although the l-LNv 
have no projection toward the dorsal brain, they appear to 
affect the other clock neurons via PDF secretion into the 
AME (Choi et al. 2012; Helfrich-Förster 2014).

Role of the different rhodopsins in circadian 
entrainment

The six outer receptor cells of the compound eyes express 
rhodopsin 1 (Rh1), which has a broad sensitivity to blue-
green light, whereas the inner receptor cells can be divided 
into two subtypes. Either receptor cell 7 (R7) expresses the 
ultraviolet (UV)-sensitive rhodopsin 3 (Rh3) and receptor 
cell 8 (R8) the blue-sensitive rhodopsin 5 (Rh5), or R7 con-
tains rhodopsin 4 (Rh4) that is sensitive to longer UV wave-
lengths and R8 the green-sensitive rhodopsin 6 (Rh6) (see 
Sancer et al. this issue). The four HB-eyelet cells express 
Rh6 and the ocelli express rhodopsin 2 (Rh2), which is pre-
sent neither in the compound eyes nor in the HB eyelets.

Saint-Charles et  al. (2016) tested the re-entrainment 
of different rhodopsin mutants to 8 h phase-advances and 
-delays of low-intensity light–dark cycles and found that 
four of the six rhodopsins can mediate re-entrainment: Rh1, 
Rh3, Rh4 and Rh6. No re-entrainment was found when all 

rhodopsins except Rh2 were eliminated, suggesting that the 
ocelli alone are not able to entrain the clock, at least not to 
dim light. Similarly, the Rh5-positive R8 cells alone were 
not able to entrain the flies to dim light. Most interestingly, 
Rh5, Rh6 and Rh1 can employ alternative phototransduction 
that is independent of the common phospholipase C and 
that works at medium and high light intensity (Szular et al. 
2012; Ogueta et al. 2018). Thus, Rh5 might work exclu-
sively via this alternative phototransduction. This pathway 
appears important because it finally targets the clock neu-
rons that control morning and evening activity of the flies. 
Alejevski et al. (2019) demonstrated a prominent role of the 
Rh6-positive R8 cells in entrainment: all inputs from outer 
and inner receptor cells appear to converge to these Rh6 cells 
to contribute to circadian entrainment. This finding fits to 
the results of Schlichting et al. (2014), who found a promi-
nent role of the Rh6-expressing inner receptor cells 8, in 
addition to the Rh1-expressing outer photoreceptor cells, in 
moonlight detection. It is also consistent with Ogueta et al. 
(2018), who found that the inner receptor cells 8 synchro-
nize the s-LNv to light dark cycles even in absence of CRY 
and without a functional phototransduction cascade in the 
other photoreceptor cells. While the anatomical connection 
between Rh6-positive receptor cells and the clock neurons 
is still unknown, there appear to exist two pathways con-
necting the outer photoreceptor cells with the clock neurons 
(see above). (1) The pathway via the L2 lamina monopolar 
cells to the l-LNv (Muraro and Ceriani 2015) and (2) the 
pathway via the two peptidergic interneurons that arborize 
in the lamina and project into the AME (Li et al. 2018).

In summary, all photoreceptors and most rhodopsins of 
the compound eyes and the HB eyelets appear to contribute 
to entrainment, while the Rh6-positive receptor cells might 
play a prominent role in this process. It will be most interest-
ing to reveal the precise input pathway from these photore-
ceptor cells to the clock neurons.

Integration of the light inputs from rhodopsins 
and CRY in the clock neurons

So far, we have seen that multiple photoreceptors contribute 
to photoentrainment of D. melanogaster and the question 
arises how the clock neurons integrate these light inputs. 
Recent studies suggest that the diverse light-input pathways 
possess different light sensitivity and, therefore, may con-
tribute with different weight to entrainment, just depending 
on the environmental conditions (Schlichting et al. 2019a). 
CRY is extremely sensitive and mediates entrainment at 
very dim light conditions obviously by temporal integra-
tion of photons (Vinayak et al. 2012). This is reminiscent of 
the large and extraordinary prolonged electrophysiological 
responses of mammalian melanopsin that integrates pho-
tons over a time course of at least minutes (Do et al. 2009). 
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Nevertheless, the intrinsically photosensitive retinal gan-
glion cells require 104–106 fold more photons than cones 
or rods, respectively, to obtain half-saturating responses, 
most probably due to the low pigment density of melanop-
sin resulting in a low probability of photon capture. Conse-
quently, melanopsin may mainly work at high light intensi-
ties, which is different from CRY that mediates entrainment 
at very low light intensity and is furthermore responsible for 
phase shifting the fly’s activity after the administration of 
short light pulses (Emery et al. 1998; Stanewsky et al. 1998; 
Kistenpfennig et al. 2012). In Drosophila, the HB eyelets 
are the extraretinal photoreceptors that contribute predomi-
nantly to entrainment at high-intensity light (Schlichting 
et al. 2019a), while the compound eyes are mainly mediating 
circadian entrainment under low- to middle-intensity light 
conditions (Ogueta et al. 2018).

Light of different intensity does not only recruit different 
photoreceptors for clock photoentrainment; light does also 
change the dominance of the clock neurons in controlling 
rhythmic activity (Chatterjee et al. 2018; Schlichting et al. 
2019b). As mentioned above, flies are mainly active in the 
morning and evening and exhibit a siesta during midday. 
Chatterjee et al. (2018) found that the morning activity-
controlling s-LNv cooperate with a group of dorsal neurons 
in the absence of light and swap their partner oscillator 
to the evening activity-controlling LNd in the presence of 
light. When exposure to light further increases, the light-
activated LNd neurons finally become independent from the 
s-LNv (but dependent on the l-LNv as exemplified below). A 
main driver for these switches in coupling and clock neuron 
dominance is a light-driven increase in PDF expression and 
secretion from the s-LNv. Schlichting et al. (2019b) found a 
further light-mediated circuit switching depending on PDF 
when flies adapt their activity to long summer days. With 
increasing photoperiods, flies extend their siesta by advanc-
ing morning activity and delaying evening activity (in other 
words, keeping morning activity close to dawn and evening 
activity close to dusk). PDF is necessary to provoke this 
behaviour (Yoshii et al. 2009; Liang et al. 2016; Menegazzi 
et al. 2017), but obviously this PDF does not come from the 
same neurons under short and long days. Under 12-h photo-
periods, HB eyelet and R8 photoreceptor cells signal specifi-
cally to the s-LNv and the s-LNv signal then via PDF to the 
LNd (see above). Under long photoperiods, a light-mediated 
circuit switch happens making the R8 photoreceptor cells 
signal predominantly to the l-LNv and the latter to overtake 
the signalling to the LNd (Schlichting et al. 2019b). The 
situation is even more complicated because CRY appears 
to buffer the eye-mediated phase-delaying effect of light on 
evening activity under long days (Kistenpfennig et al. 2018). 
Flies without CRY delay their evening activity even more 
than wildtype flies, showing that CRY keeps evening activ-
ity in the day and prevents it to shift toward or even into the 

night. Vice versa, flies without eyes or without PDF have an 
early evening activity, because they lack the phase-delaying 
effect of the eyes and PDF and, therefore, the phase advanc-
ing effect of CRY dominates. Thus, the interaction between 
the eyes and CRY balances the phase of their evening activ-
ity. At the same time, the complex and plastic control of 
evening activity timing by different photoreceptors and clock 
neurons enables the flies adapting in a flexible manner to 
diverse light conditions.

Conclusions

Synchronization of circadian clocks with the external envi-
ronment (also called circadian entrainment) is essential for 
their adaptive function and provides a critical link between 
the environment and the clocks. Circadian entrainment is a 
complex task, which is reflected in the number of involved 
photoreceptor pigments and organs. Most if not all animals 
involve their eyes, but in addition they use specialized photo-
receptors that convey information about environmental light 
conditions to the circadian system. A very recent paper sug-
gests that the situation is even more complicated (Lazopulo 
et al. 2019). This paper shows that photoreceptors in the 
eyes and the body wall of Drosophila melanogaster cooper-
ate in mediating time-dependent colour preference and light 
avoidance. As we have seen in the fruit fly, the different 
photoreceptors may have slightly different tasks and may 
contribute differently to entrainment, just depending on the 
light conditions (low- or high-intensity light, short or long 
photoperiods). This enables the circadian clock of these 
insects to respond in a very plastic manner to the environ-
mental light conditions. The fruit fly may be no exception 
in this flexibility and it will worth studying other insects in 
this respect.
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