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Abstract Encephalopsin belongs to the family of

extraretinal opsins having a putative role in CNS tissue

photosensitivity. Encephalopsin mRNA has earlier been

localized in rodent brains, but expression and localization of

the protein has not yet been reported. In this study, we

aimed to define encephalopsin protein abundance and

localization in the rodent brain. The distribution and

localization of encephalopsin protein in a mouse brain

and selected peripheral tissues were analysed in ten mice,

using Western blotting and immunohistochemistry. The

specificity of immunoreaction was validated by primary

antibody omitting and immunizing peptide blocking

experiment. We found encephalopsin protein abundant in

the mouse brain, but not in the periphery. Encephalopsin

protein was present in neurons of the mouse cerebral cortex,

paraventricular area, and cerebellar cells. Our results show

that encephalopsin is expressed at the protein level in dif-

ferent brain areas of the mouse. Therefore, the suggested

idea that encephalopsin plays a role in non-visual photic

processes seems to be applicable. Evidently, further inves-

tigations are needed to find out the signalling mechanisms,

and the potential physiological role of encephalopsin in

phototransduction due to the changes in ambient light.

Keywords Cerebellum � Cerebral cortex �
Circadian entrainment � Extraretinal phototransduction �
Hypothalamus

Introduction

Encephalopsin, also called OPN3 or panopsin (Halford

et al. 2001), belongs to one encephalopsin/tmt-opsin sub-

family of the seven subfamilies of the opsins. Opsins are

known to mediate phototransduction in both visual and

non-visual systems by being transmembrane proteins act-

ing as G-protein-coupled receptors (GPCRs) (Terakita

2005). Even though the exact function of encephalopsin

has remained largely unknown, it has been suggested to

play a role in non-visual photic processes, such as the

entrainment of circadian rhythm or the regulation of pineal

melatonin production (Kasper et al. 2002; White et al.

2008).

Visible ambient light is capable of penetrating to the

mammalian brain (Ganong et al. 1963), and several studies

show extravisual opsin genes expressed in mammalian

brain at mRNA-level (Halford et al. 2001; Kasper et al. 2002;
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Tarttelin et al. 2003; White et al. 2008; Allen Institute

for Brain Science 2011). However, the actual distribution

and functional role of extravisual opsins in participat-

ing neural actions and CNS tissue regulation calls for

investigation.

Wide distribution of encephalopsin mRNA was first

shown by Blackshaw and Snyder (1999) in the mouse

brain. Recently, encephalopsin/OPN3 gene expression in

cerebellar compartments was observed in distinct lobules

and Purkinje cells as revealed by three-dimensional

reconstruction of in situ hybridization data (Lein et al.

2007). It was also shown that the expression of the

OPN3 gene in the cerebellum is quite coherent, involv-

ing sagittal bands of expression but also sharply delin-

eated diagonal bands lacking OPN3 mRNA (Lein et al.

2007).

In addition to measurements of mRNA expression,

quantifications of protein expression are also needed in

order to increase our understanding of the role of OPN3 at

tissue and cellular level. The aim of the present study was

to analyse the expression, relative amount, and distribution

of the OPN3 protein in selected brain areas and peripheral

tissues of the adult mouse. To the best of our knowledge,

no previous studies exist on the distribution of OPN3

protein in the mouse brain.

Methods

Sampling and analyses

Ten male Balb/c mice, 8 weeks of age, m = 23.7 ± 1.1 g,

were euthanized by carbon dioxide and sacrificed by

cervical dislocation. The central nervous system tissue

samples collected were cerebral cortex (grey matter),

hypothalamus as localized by recognizing paraventricular

area (PVA), and cerebellum (Fig. 1). Additionally, periph-

eral tissues investigated were liver, kidney, skeletal muscle

(m. rectus femoris), cardiac muscle, adrenal gland, testis,

ovary from three female mice, and plasma.

SDS-PAGE and Western blotting

The tissue samples were homogenized (Tissue Lyser

Qiagen, Retsch) in 6 vol of homogenization buffer

(62.5 mM Tris–HCl, pH 6.8) including protease inhibitors

(leupeptin 1 lg mL-1; pepstatin 1 lg mL-1; PMSF

1 mM) and heated in a sample buffer as previously

described in Laemmli (1970). SDS-PAGE was performed

using a 12.5 % separating gel (EZ-Run Protein Gel Solu-

tion, Fisher Bioreagents, UK). Each sample contained

2.11 lg of protein determined by the Bradford (1976)

Fig. 1 Representative paraffin (Mayer’s hematoxylin and eosin stain) sections through cerebral cortex (1), paraventricular area (PVA) (2), and

cerebellum (3) along with corresponding anatomical brain atlas. The orientation of the sections is transversal
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method. The proteins were electrophoretically separated at

150 V for 80 min. The separated proteins were electro-

blotted to a nitrocellulose membrane according to the

method of Towbin et al. (1979). Membranes were incu-

bated for 2 h in primary antibody (rabbit polyclonal to

encephalopsin, cat # ab75285, Abcam, UK) and with sec-

ondary antibody (blotting grade affinity purified, AP-con-

jugated goat anti-rabbit, Bio-Rad, USA) for 2 h. Antibody

detection was performed with bromo-4-chloro-3-indolyl

phosphate mono-(–toluidinium) salt/nitro blue tetrazolium

(BCIP/NBT) substrate. The dilution for the primary anti-

body was 1:500. The optical densities of the detected bands

were analysed with FluorS MultiImagerTM program (Bio-

Rad, USA). In order to determine the specificity of the

band observed, control experiments were included where

(1) the primary antibody was omitted (no primary control),

or (2) an immunizing peptide blocking experiment (nega-

tive control) was performed with a fivefold excess of

immunizing peptide (sequence LDVHGLGCTVDWKSKD

ANDSSFVLFLFLGC, United Peptide Co, USA) relative to

primary antibody, i.e., 10 lg ml-1.

Immunohistochemical (IHC) staining

Immunohistochemistry was performed on blocks of frozen

tissues cut into 8 lm sections with a cryostat microtome at

-25 �C. The sections were mounted on APES coated

slides, fixed with pre-cooled ethanol and blocked with

10 % goat normal serum with 1 % BSA in TBS. Enceph-

alopsin antibody (rabbit polyclonal to encephalopsin,

Abcam, UK) was used at a final concentration of

2 lg mL-1. Sections were incubated overnight at 4 �C.

Fluorescent dye labelled secondary antibody (concentration

10 lg mL-1, Alexa Fluor goat anti-rabbit IgG, Invitrogen,

USA) was used with 1 h incubation in RT, and the samples

were cover-slipped with mounting medium (ProLong An-

tifade, Molecular Probes, USA). The images of the sections

were obtained with a confocal laser scanning microscope

(LSM-5 Pascal, Zeiss, Germany) by using excitation at

488 nm. Control sections were incubated in TBS with 1 %

BSA devoid of primary antibody. An immunizing peptide

blocking principal with neutralized primary antibody was

also used for IHC with a fivefold excess of immunizing

peptide.

Results

Western blot was used in order to analyze the abundance

and relative amount of OPN3 in the cerebral cortex, PVA,

and cerebellum (Fig. 2a). Comparison of the relative den-

sities of the encephalopsin bands indicated no significant

differences between the specific brain areas. However, the

amount of OPN3 in PVA was 1.2-fold compared with the

cerebral cortex, and 1.9-fold compared with the cerebellum

(Fig. 2c). Western blots detected a single band of approx-

imately 45 kDa, consistent with predicted protein size for

encephalopsin. No protein bands were detected in the

control samples devoid of primary antibody. Furthermore,

the staining was completely prevented by co-incubation

with the immunizing peptide. Mouse retina was used as a

positive control showing a single band of 45 kDa (Fig. 2b,

see Halford et al. 2001).

In order to indicate the localization of OPN3, immu-

nofluorescence staining was used, revealing punctate or

granular immunoreaction of variable intensity for OPN3.

According to the results, OPN3 was present in most neu-

rons of the cerebral cortex (Fig. 3a), paraventricular area

(PVA, Fig. 3b), and in the cerebellum (Figs. 3c, d), espe-

cially in cerebellar cells (Fig. 4). No expression of OPN3

was seen in neuronal nuclei, glial cells, or neuropil. Mus-

culus rectus femoris of only two mice out of ten showed

OPN3 at the periphery of muscle fibres (Fig. 3e). Other

peripheral tissues studied, such as cardiac muscle, liver

(Fig. 3f), testis (Fig. 3g), kidney (Fig. 3h), and adrenal

gland, were immunonegative. Ovary and uterus were also

tested as negative in three females (data not shown). Mouse

retina was used as a positive control (Fig 3i). Negative

control sections of retina with antibody preincubated with

the immunizing peptide or devoid of primary antibody (no

primary control) showed no staining (Fig. 3j, k).

Discussion

To the best of our knowledge, this was the first study to

report the expression and localization of OPN3 protein in

the adult mouse brain. Earlier, OPN3 has been observed

only at an mRNA detection level in the mouse brain

(Blackshaw and Snyder 1999). However, mRNA-level

expression of genes does not inherently mean there is

existing protein (Greenbaum et al. 2003). Our results are in

agreement with the findings of Blackshaw and Snyder

(1999) showing a strong specific binding of the OPN3

antibody on wide areas of the mouse cerebral cortex, PVA,

and cerebellum.

The role of OPN3 in mammalian brain functions has

until now remained elusive. The role of OPN3 is most

likely related into its phylogenetic background as an ext-

raretinal ciliary phototransductive membrane protein

(Shichida and Matsuyama 2009). Indeed, the capability of

opsin proteins to adopt their functional phototransductive

role when expressed on extra-visual neurons is shown in

studies, where foreign species’ opsin genes are added to

neurons via viral vectors (Boyden et al. 2005; Warren et al.

2006). In these studies, opsin-mediated phototransduction
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has been confirmed by electrical intracellular recordings

during illumination. From that point of view, it is reason-

able to hypothesize that endogenous opsins will also carry

their functional role as a part of extravisual phototrans-

duction. In general, all known vertebrate photoreceptors

use an opsin protein bound to a vitamin A-chromophore as

photopigment. Over species and opsins, the form of used

vitamin-A (retinal) varies, but the principle is always the

same: when the photon is absorbed by the retinal chro-

mophore, this molecule isomerizes from 11-cis-retinal

form to the all-trans-retinal form. This conformational

change allows the intracellular terminus of opsin to trigger

a G-protein cascade leading into a change in receptor

membrane potential. The cascade converting photic energy

into neural responses is called phototransduction

(Yamashita et al. 2008; Peirson et al. 2009; Shichida and

Matsuyama 2009).

The phototransductive role of cerebellar encephalopsin

would comply with the current opinion of cerebellar

actions. Based on the immunohistochemical analyses,

those cells with the highest fluorescence intensity between

the granular and molecular layers of the cerebellar cortex

sagittal section resemble Purkinje cell bodies. If it is true

that GABA-ergic Purkinje cells are activated by illumina-

tion, the cascade would eventually lead up-state of the

cerebral cortex, for example at the sensomotoric cortex,

given that Purkinje cells have an inhibiting role between

deep cerebellar nuclei and the cerebral cortex (Rowland

et al. 2010). Furthermore, electrophysiological findings

concerning light-triggered GABA-ergic inhibition of action

potentials might also confirm this idea (Wade et al. 1988).

Also of note is that cerebellum is known to cover a wide

variety of responsibilities, ranging from motor functions

to attention, executive control, language (human), visuo-

spatial function and working memory (Stoodley and

Schmahmann 2010), functions which are all emphasized

during the waking state of the circadian rhythm.

Mouse PVA, containing hypothalamic nuclei, is the

main part of the central area for neurosecretory regulation,

thus being the main part of the homeostatic control

Fig. 2 Expression of OPN3 in

different tissues of mouse. a A

representative from Western

blot membrane showing

expression of OPN3. std:

precision plus protein standard

mass ladder; b method controls:

retina as positive control, PVA

as negative control with

antibody preincubated with the

immunizing peptide, PVA as no

primary control; c A bar graph

summarizing results from

Western blot analysis showing

mean optical density

(ODu) ± SE of OPN3 in tissue

homogenates processed for

immunoblotting (N = 10)
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mechanisms in vertebrates. Like actions in the human

hypothalamus, mouse PVA neurons synthetizing trophic

hormones release them via the capillaries of the portal

system in the median eminence into the anterior pituitary

(adenohypophysis), which secretes six physiologically

significant hormones. The posterior pituitary (neurohy-

pophysis) is the storage and release site for two neuro-

hormones, oxytocin and vasopressin (known also

antidiuretic hormone, ADH). The secretory neurons of the

hypothalamus are innervated by monoaminergic neurons

using serotonin (5-HT), dopamine (DA), and noradrenaline

(NA) as neurotransmitters. Based on our results on the

abundance of OPN3 in mouse PVA, there arises an inter-

esting question of whether phototransduction via OPN3

directly modulates the neurosecretion of trophic hormones,

and consequently, supports the adjustment of hormonal

circadian rhythms.

The cerebral cortex in mice, as in all mammals, has a key

role in cognitive functions, like memory, attention, per-

ceptual awareness, thought, and consciousness. The putative

role of OPN3-mediated phototransduction in these areas is

impossible to cover here in detail, due to the enormous

complexity and diversity of higher brain functions. Some

preliminary ideas of enhanced cortical functions are still

allowed, since G-protein mediated responses might include

both spikes, or even more preferably, enhanced membrane

potentials of targeted neurons, which might potentiate

neural activity to maintain circadian rhythms.

Even though the exact role of the endogenous opsin-

mediated phototransduction cascade in the mouse brain still

remains elusive, literature describes direct extraretinal

photosensitive responses to light in the rodent brain. Firstly,

as a response to direct cortical illumination by ambi-

ent visible light, a release of inhibitory neurotransmitter

Fig. 3 OPN3 expression in different brain areas and peripheral tissues

of mouse. Representative results of immunofluorescence staining.

a cerebral cortex, b paraventricular area (PVA), c cerebellum, d neuron

in cerebellar tissue, e rectus femoris muscle, f liver, g testis, h kidney.

Controls: i retina (positive control) where ganglion cell layer

(indicated with arrow) is seen immuno-positive, j negative control

of retina with antibody preincubated with the immunizing peptide k no

primary control of retina. Bar 50 lm (a–c; e–k), 10 lm (d)
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gamma-aminobutyric acid (GABA), as well as electro-

physiological changes in GABA-ergic currents, has been

shown (Wade et al. 1988; Leszkiewicz and Aizenman

2003). In addition, Leszkiewicz et al. (2000) found in their

patch-clamp study an enhanced N-methyl-D-aspartate

(NMDA) receptor-mediated response in cortical neurons.

Moreover, a wide variety of evidence exists for at least

monochromatic light’s capability to trigger, for example,

serotonin, dopamine, noradrenaline, and cytokines release

(Shen-Zeng et al. 1982; Cassone et al. 1993). Finally, an

excretion of corticosterone, as well as its clock gene acti-

vation, has been shown to be a response to monochromatic

light (Rahman et al. 2011). Consequently, light seems to

modulate neurotransmission through additional means other

than opsin and G-protein mediated pathways alone. For

example, the studies of Leszkiewicz and co-workers suggest

that light regulates neuronal activity by direct allosteric mod-

ulation of GABA- and NMDA-receptor protein (Leszkiewicz

et al. 2000; Leszkiewicz and Aizenman 2003).

In conclusion, the present study shows for the first time

that OPN3 is expressed at the protein level in different

brain areas of mice. The finding of extraocular OPN3

photoreceptor protein in the mammalian brain may support

the idea of these proteins’ putative roles in phototrans-

ductive functions. Given that opsins are known to mediate

phototransduction (cf. Terakita 2005), and that OPN3 is

suggested to play a role in non-visual photic processes (cf.

Kasper et al. 2002; White et al. 2008), further investiga-

tions are needed to show the potential physiological

regulation of OPN3 protein expression due to the changes

in the ambient light. Also, to explore the exact cellular

location of OPN3, an immuno-EM study is appropriate for

further investigation.
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