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Abstract
This paper introduces a novel supervised classification method based on dynamic clustering
(DC) and K-nearest neighbor (KNN) learning algorithms, denoted DC-KNN. The aim is to
improve the accuracy of a classifier by using a DC method to discover the hidden patterns of
the apriori groups of the training set. It provides a partitioning of each group into a predeter-
mined number of subgroups. A new objective function is designed for the DC variant, based
on a trade-off between the compactness and separation of all subgroups in the original groups.
Moreover, the proposed DC method uses adaptive distances which assign a set of weights
to the variables of each cluster, which depend on both their intra-cluster and inter-cluster
structure. DC-KNN performs the minimization of a suitable objective function. Next, the
KNN algorithm takes into account objects by assigning them to the label of subgroups. Fur-
thermore, the classification step is performed according to two KNN competing algorithms.
The proposed strategies have been evaluated using both synthetic data and widely used real
datasets from public repositories. The achieved results have confirmed the effectiveness and
robustness of the strategy in improving classification accuracy in comparison to alternative
approaches.

Keywords K-nearest neighbors · Dynamic clustering · Combinatorial classification ·
Adaptive distances

1 Introduction

Classification is a fundamental task in machine learning, involving assigning data objects to
apriori classes based on the values they assume for a set of features. It has received significant
interest and has been extensively utilized in fields such as healthcare and medical diagnosis
(Sivasankari et al., 2022; Malakouti, 2023), as well as image and video recognition (Wang
et al., 2023; Chen et al., 2021).

The accuracy of a classifier depends on the availability of relevant and informative features,
aswell as on the choice of the classification algorithm.However, inmany real-world scenarios,
the data is complex, and the available featuresmay not provide enough information to achieve
high accuracy.

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00357-024-09471-5&domain=pdf
http://orcid.org/0000-0001-8370-6006


Journal of Classification

The statistical literature on supervised classification is growing rapidly. The use of a
single algorithm often produces unsatisfactory results, often due to the complex structure
of the groups to be classified (e.g., unbalanced distributions, non-linear relationships from
predictors, presence of anomalous values). In recent years, techniques integrating or merging
multiple algorithms from both supervised and unsupervised learning have been developed to
enhance the decision rules provided by the model (Soheily-Khah et al., 2018; Sarker, 2021).

The K-nearest neighbor (KNN) algorithm has gained recognition as a powerful tool in the
field ofmachine learning, providing an effective and straightforwardmethod for classification
in various pattern recognition scenarios (Zhang, 2016; Taunk et al., 2019). The primary
approach employed by KNN involves determining the class of query samples by measuring
the distance to the objects in the training set. The label of the query sample is then set by
majority voting on the membership of the k-nearest objects in the training set. Recently,
several novel adaptations of the KNN algorithm have been developed (Zhang et al., 2017b;
Luo et al., 2020; Rastin et al., 2021a).

The Euclidean distance is often used with KNN algorithm to measure the dissimilar-
ity between training and testing data. This procedure involves computing the dissimilarity,
determining the nearest k neighbors based on these dissimilarities, and subsequently clas-
sifying the test sample based on the dominant class among the k neighbors. Although the
Euclidean distance is easy to understand, it assigns equal importance to all sample features by
considering them equally when calculating the distance. The use of equal weighting might
be a limitation, particularly in situations where distinct features have differing degrees of
importance to the categorization objective. To tackle this problem, various research has sug-
gested alternative distance metrics that provide a more sophisticated method for calculating
distances in KNN-based classification. These metrics have the potential to improve the per-
formance of KNN-based classification (Chomboon et al., 2015; Ruan et al., 2021; Zhao &
Yang, 2023).

This work explores the apriori classes and suggests the presence of subclasses or hidden
patterns within them. This concept forms the core motivation of our research. The lack
of exploration of such hidden patterns in existing literature strengthens our investigation.
Although there have been numerous advancements in KNN recently (Gou et al., 2019a, b, c,
2022), none of them particularly address these hidden patterns.

The objective of ourwork is to bridge this gap byproviding a comprehensive understanding
of the complexities of apriori classes, with a specific emphasis on the unknown subclasses
and hidden patterns that may exist within them.

In reality, many phenomena are often characterized by multiple sub-structures or sub-
patterns. This implies that instances belonging to the same class can be distinguished by
specific characteristics with varying relevance in the classification process.

The objective of this research is to improve the accuracy of the supervised classification
(KNN) on high-dimensional data by integrating an unsupervised classification phase. The
main idea is to extract relevant information from the original data by discovering sub-patterns
that can aid in the classification task. However, integrating this information with a supervised
classification algorithm in an efficient way poses a significant challenge.

This paper proposes a strategy based on three key points: (1) An algorithm based on the
dynamic clustering (DC) algorithm (Diday, 1971) obtains subgroups from the initial labeled
data which are combined with the original patterns to form a new cluster space. (2) An
appropriate weight system is sought, aiming to find optimal weights for the features of each
subgroup, using adaptive distances. (3) A KNN classification method that assigns the labels
to data according to the cluster space carried out from the DC partition.
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The traditional objective function used in the most well-known DC based method, the
K-means, relies solely on the sum of the within-cluster deviance (Sinaga & Yang, 2020).
This means that the objective function is related to the quadratic distances between each
object in a cluster and the cluster representative. Despite awareness of Huygens’ theorem,
which states that minimizing the deviance within clusters is equivalent to maximizing the
deviance between clusters, the optimized criterion is not designed to handle the constraints
imposed by the presence of apriori groups, due to the labels in the training set.

To address these challenges, a new objective function is proposed for the DC method that
relies on both inter-cluster and intra-cluster variability to improve the algorithm’s perfor-
mance and robustness. It is optimized to provide the identification of more homogeneous
patterns (subgroups) and better separation between subgroups.

We also propose the integration of adaptive distances into the clustering procedure to
measure the importance of features in the classification process, especially for complex,
high-dimensional data (Diday et al., 1981). Weights are assigned to the features for each
cluster. This results in the selection of features, according to the values of the associated
weights, that significantly influence the achieved clusters (Li & Wei, 2020).

Finally, two supervisedKNNclassifier variants are proposed to label new elements accord-
ing to the clusters of the achieved partitions of the initial classes. Specifically, the first proposal
assigns a new instance to an apriori class based on the minimum (adaptive) distance to the
elements of the clusters, while the second proposal considers the proximity to centroids (or
representative elements) of the clusters rather than to the single elements, to improve signif-
icantly the computational cost, especially when dealing with a large number of elements.

The search for clusters (new patterns in a priori classes) through a DC algorithm improves
the performance and accuracy of the classifier results.

This work has the ambition to advance our understanding of the dynamic clustering algo-
rithm and provide an original approach in the field of classification. Especially, the proposal
is denoted by two noteworthy innovations. Firstly, the paper highlights the benefits of using
unsupervised classification techniques to identify new patterns in the original groups. This
approach has a direct impact on the supervised classification’s performance, and the com-
bination of these techniques leads to more definitive predictive results. Secondly, the paper
proposes an alternative objective function to be utilized during the clustering stage. The adop-
tion of this approach is expected to yield richer results than minimizing only the between
clustering.

The structure of this paper is as follows. Section 2 provides a review of the main contribu-
tions in the current literature. Section 3 presents the proposed classification approach and the
combination between DC and KNN, as well as a new objective function to ensure homogene-
ity within subgroups of the original dataset. Furthermore, Sect. 4 provides an application of
the suggested approach on real datasets, along with a simulation study that covers six distinct
scenarios. Section 5 offers concluding remarks and discusses future directions for further
investigation.

2 Literature Review

Classification techniques, now increasingly developed in the field of machine learning,
address the problem of assigning entities to predefined classes. Most classification meth-
ods construct models based on features that represent the characteristics of prior classes.
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Many of them have been proposed with the aim of selecting the most discriminating
features of groups of individuals and carrying out stable classification rules to predict the
behavior of new entities. The most traditional algorithms of classification as KNN (Fix &
Hodges, 1989), Naive Bayes classifier (Duda et al., 2006), C4.5 (Quinlan et al., 1996), logis-
tic regression, classification and regression tree (Breiman, 2017), and the stochastic gradient
boosting decision tree (Friedman, 2002) are recognized as having high accuracy. Due to the
increasing volume of data associated with many real-world problems and their inherent com-
plexity, novel learning classifiers have been proposed. These include variants ofKNN, such as
k-most similar neighbor (k-MSN), linear scan, and locality-sensitive hashing (LSH). Other
classification algorithms designed for high-dimensional data encompass extreme learning
machine, sparse representation-based classification (Abavisani & Patel, 2019), and certainly,
all deep learning algorithms.

Numerous studies have been carried out to compare different classification methods in
order to select the most appropriate classifier for specific problems, among the various papers
with this aim, see Zhang et al. (2017a). One of the main considerations in comparing classi-
fication methods is that performance depends on the data analyzed and not on the particular
algorithm. Likewise, accuracy should not be understood as the only measure of algorithm
performance. Strong attentionmust be paid to feature selection as it deals with dimensionality
reduction.

One of the main challenges of classification methods regards feature selection. Classes
are typically not distinguished by explicit features. Despite the use of advanced feature
selection algorithms, the number of dimensions in these characteristics can still be very large,
making it challenging to accurately capture the similarity of classes. TheKNN technique, like
other classical methods, has inherent limitations that restrict its classification capacity. The
limitations cover the curse of dimensionality, the computational cost, sensitivity to outliers,
the challenge of determining the optimal value for k, and its non-parametric nature, which
affects the interpretation and generalization of results with new data. Although KNN is both
simple and powerful, it is crucial to take into account these constraints when deciding if it is
a suitable method for a certain task.

Numerous approaches have been proposed to overcome the limitations of traditional KNN
by proposing new variants. To address the problem of the KNN algorithm’s sensitivity to
the choice of k, researchers have proposed different methods to dynamically determine the
optimal k. One such approach, suggested by Gou et al. (2019b), involves two variations of the
KNN rule: weighted representation-based KNN rule (WRKNN) and weighted local mean
representation-based KNN rule (WLMRKNN). The experimental results indicate that the
suggested methods demonstrate a lower sensitivity to the number of cluster k. The research
conductedbyGouet al. (2019a) introduces the generalizedmeandistance-basedKNN(GMD-
KNN) classifier as a method to enhance the choice of the neighbor’s number k. They asserted
that the proposed technique shows lower sensitivity to the parameter k compared to the KNN-
based classifiers. In Pan et al. (2020) propose a locally adaptive KNN algorithm based on
discrimination class (AD-LAKNCN). This approach optimizes the values of k by taking into
account the discrimination classes from the majority and second majority classes within the
k neighborhood.

Furthermore, the KNN algorithm lacks a mechanism to assign varying weights to sur-
rounding data points. To address this, Gou et al. (2012) introduced a new classification
algorithm called distance-weighted KNN rule (DWKNN). This algorithm aims to overcome
the sensitivity problem of selecting the neighborhood size and enhance classification per-
formance. DWKNN utilizes a distance-weighted dual function and proves to be relatively
robust to different choices of K , demonstrating good performance with a larger optimal K ,
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as evidenced by experimental results on twelve real datasets. The performance of DWKNN
surpasses other KNN-based methods currently considered state-of-the-art. Afterward, Rastin
et al. (2021b) introduced a KNN stacking technique that employs a feature-weighted distance
metric tomitigate the impact of irrelevant classes during stacking. Both of the aforementioned
approaches take into account the weight of each adjacent point. However, it is important to
note that when selecting weights, considering merely the distance information is inadequate.

In order to address the issue of the KNN algorithm’s sensitivity to noise points, Gou et al.
(2019c) introduced a KNN approach called LMRKNN, which utilizes the multi-local mean
vectors of the KNN belonging to the same class to linearly represent the testing sample.
The referenced method employs local mean vectors effectively to reduce outlier influence,
achieving notable classification accuracy. However, its performance is still sensitive to the
selection of the k parameter.

Cherif (2018) proposed a K-means-based-KNN algorithm that utilizes the K-means algo-
rithm to partition the training dataset into a predetermined number of clusters. Subsequently,
the centroids of each cluster are determined, resulting in a new training dataset consisting
solely of these centroids. The 1-nearest neighbor algorithm is then applied to this new training
dataset; therefore, the classification is achieved by selecting the closest neighbor in terms of
distance. Uddin et al. (2022) provides a critical evaluation of different KNN variants, includ-
ing the 1NN approach, in scenarios characterized by high levels of noise and outliers. The
study’s findings suggest that newer variants of KNN, potentially including those streamlined
for efficiency like the K-means-based KNN, may not perform as effectively as the traditional
KNN algorithm in complex, noisy environments. This underlines the importance of a careful
selection of KNN variants depending on the specific characteristics of the dataset at hand,
particularly when dealing with noise and outliers.

Maturo and Verde (2022) proposed a functional supervised classifier that combines func-
tional data analysis with functional K-means and the functional KNN methods, improving
the supervised classifier’s accuracy in classifying ECG signals. In an application on medical
data, the authors showed that a clustering of labeled data was able to detect false positives
and false negatives in the classification of healthy and sick patients not so well identified by
other classification methods even by ensemble ones.

It is important to note that while approaches that combineK-means andKNNexist, they do
not specifically focus on the theoretical aspect to emphasize the distances between subgroups
of partition inside the apriori classes. To take this into account, this research proposes a new
objective function that maximizes the inter-cluster separation between the subclasses of an
apriori cluster and all subclasses of the other apriori classes.

Inter-cluster separation is a crucial factor in ensuring that resulting clusters are meaningful
and easily interpretable. The aim is to take into consideration the pattern structure of the
data. This approach also revealed the presence of subsets of anomalous patterns within the
classes, which are labeled in the same way even though they present different characteristics.
Furthermore, various studies have investigated the application of weighting techniques to
improve the performance of clustering algorithms.

As proposed by Diday and Govaert (1977), the concept of dynamic clustering with adap-
tive distances is to assign a distance to each cluster based on its intra-cluster structure. Recent
developments in this area have focused on the use of adaptive distance metrics for symbolic
data, such as multivariate aggregated data in the form of intervals, histograms, and other data
types. Incorporating an adaptive distance metric in clustering algorithms can improve their
performance in various aspects. For example, outliers or anomalous data can have a signif-
icant impact on the determination of the centroids, but by assigning lower weights to such
points, their influence can be reduced, making the clustering process more robust to outliers.
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Adaptive distances for classical data have been mainly defined as Euclidean-weighted dis-
tances. Recent advancements in symbolic data analysis have led to the development of a range
of adaptive distance metrics customized for DC on aggregated data. Notably, De Carvalho
and Lechevallier (2009) introduced the adaptive City-Block and Hausdorff distances for the
partition-based clustering of symbolic interval data. Furthermore, the squared Wasserstein
distance, which is specifically designed for histogram data, has been described in detail in
Irpino et al. (2014); Balzanella and Verde (2020). Moreover, Rodríguez and de Carvalho
(2022) have contributed to this field by developing adaptive Euclidean and City-Block dis-
tances for interval-valued data.

Bao et al. (2018) presented a new approach for addressing interval-valued data clustering,
wherein they proposed an adaptive fuzzy c-means algorithm that incorporates the consider-
ation of interval membership across various clusters within the partition. de Carvalho et al.
(2022) presented a batch self-organizing map (SOM) algorithm for distributional-valued
data based on a weighted Wasserstein distance, where the weights are computed through the
optimization of the clustering loss function.

3 Methodology

This section presents two novel approaches to supervised classification using clustering.
The first step involves developing a new DC variant to cluster apriori classes. The approach
incorporates a new objective function that employs intra-cluster compactness, which uses an
adaptive distance metric to compute dispersion information between subgroups of a given
class, as well as inter-cluster separation, which measures the distance between a subgroup of
a specific class and the subgroups of other apriori classes. Finally, the results obtained from
DC are used for classificationwith the newKNNalgorithm. In this process, subgroupweights
are utilized with the adaptive distance to measure the similarity between the testing sample
and their neighboring subgroup centroid points. Subsequently, the k nearest neighbors are
determined based on the calculated similarities. The allocation of the new instances to a class
is based on the majority vote among the neighbors of the k subgroup centroids.

3.1 Dynamic Clustering Algorithm

Clustering is a widely utilized technique in various applications, including image processing
(Chang et al., 2017), video processing (Alayrac et al., 2016), gene analysis (Dapas et al.,
2020), healthcare (Liao et al., 2016), and community detection (Li et al., 2022), among
others. It involves dividing a dataset into groups, or clusters, based on similarity criteria,
where objects within the same cluster are more alike than those in different clusters.

In this paper, our focus is on DC, an unsupervised learning algorithm that aims to partition
data into clusters while simultaneously finding cluster representatives consistent with the
distance function used for allocating units. Typically, the representatives are obtained as the
minimizers of the sum of distances. The classic K-means algorithm can be seen as a specific
case of DC where the distance metric is the Euclidean distance, and the representatives
(centroids) are calculated as cluster averages.

The original concept of dynamic clustering was introduced by Diday (1971) and involves
a two-step process of constructing clusters and selecting the best prototype for each cluster
based on an adequacy criterion (Diday & Simon, 1976). The advantages of this scheme
are mainly its flexibility with respect to the nature of the analyzed data and the choice of
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the distance function and the focus on providing cluster representatives, named prototypes.
For instance, DC methods exist for datasets described by interval variables (De Carvalho &
Lechevallier, 2009) and histogram variables (Balzanella & Verde, 2020; de Carvalho et al.,
2022).

Let X = {X1, . . . , Xi , . . . , Xn} be a set of n objects, where each object Xi =
{xi1, . . . , xim} is described by a set of m features. The general DC looks for the partition
G = {C1, . . . ,CK } in K clusters and the set Z = {Z1, . . . , ZK } of K prototypes representing
the clusters in G, such that the following � fitting criterion between the set Z of prototypes
and the partition G is minimized:

�(G, Z) =
K∑

k=1

∑

Xi∈Ck

d(Xi , Zk) (1)

The fitting criterion is defined as the sum of dissimilarities or distance measures between
each object Xi belonging to a class Ck ∈ G and the class representation Zk ∈ Z .

In this context, the DC algorithm iteratively implements the following representation and
allocation steps:

1. The representation step describes the K clusters (C1, . . . ,CK ) of the partitionG through
a vector Z = (Z1, . . . , ZK ) of prototypes. Keeping the partition G = Ĝ fixed for the
current iteration of the algorithm, Z is obtained from theminimization of�(Ĝ, Z), which
is equivalent to finding the Zk (k = 1, . . . , K ) that minimize

∑
i∈Ck

d(Xi , Zk).
2. The allocation step assigns each element Xi to a cluster Ck according to the proximity to

the prototype Zk ∈ Z . Keeping Z = Ẑ fixed for the current iteration of the algorithm, it
finds the partition of G that minimizes �(G, Ẑ), by finding the cluster Ck = {Xi ∈ X |
d(Xi , Zk) ≤ d(Xi , Zl),∀l = 1, . . . , K ; l �= k}.

3.1.1 DC as a Generalization of K-Means Algorithm

The K-means clustering methodology is broadly utilized as a partitioning strategy. The pro-
posed dynamic clustering method is a generalization of the K-means algorithm, which puts
forth a compelling notion that cluster centers do not essentially have to be the centroids of
clusters in Rm . Rather, it suggests substituting them with centers that can take various forms,
based on the problem that needs to be addressed.

The K-means algorithm starts by selecting K initial cluster centers and then assigns each
object to the closest cluster through the optimization of an objective function. As mentioned
previously, the classical K-means algorithm only considers the intracluster compactness and
the distances between the cluster centroids and individual data points. The membership
matrix U , a n × K binary matrix, indicates which objects are assigned to which clusters,
and Z = {Z1, . . . , Zk, . . . , ZK } represents the centroids of the K clusters, with elements
Zk = {zk1, . . . , zk j , . . . , zkm} for each feature j = 1, . . . ,m.

The objective function of the classic K-means without considering the inter-cluster sepa-
ration is the following:

�(U , Z) =
K∑

k=1

n∑

i=1

uip

m∑

j=1

(xi j − zk j )
2, (2)
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such that
K∑

k=1

uik = 1, (with uik ∈ {0, 1}), and Xi = {xi1, . . . , xi j , . . . , xim} is an object of

X described by m features.
DC algorithm optimizes the objective function by alternating the representation and allo-

cation steps:

1. Representation step (the matrix of membership Û is fixed)
The solution for the optimization problem �(Û , Z) is provided by the minimizer Z

zk j =
∑n

i=1 uik xi j∑n
i=1 uik

, (3)

where 1 ≤ k ≤ K
2. Allocation step (the vector of centroids Ẑ is fixed)

According to Chan et al. (2004), the minimizer U of the optimization problem �(U , Ẑ)

is given by

uik =

⎧
⎪⎨

⎪⎩
1 if

m∑

j=1

(xi j − zk j )
2 ≤

m∑

j=1

(xi j − zl j )
2,

0 otherwise.

(4)

The partitioning criterion (2) decreases at each iteration, converging to a stationary value.

3.1.2 The Need for Adaptive Distances in DC

The central concept of dynamic clustering with adaptive distances is to assign a specific
distance measure, denoted as dk , to each cluster Ck and to minimize the sum of distances
dk(Xi , Zk) between objects Xi belonging to cluster Ck and the centroid Zk . Importantly, the
distances employed in the DC algorithm are not fixed in advance but rather are tailored to
each cluster.

In this clustering algorithm, a weighting step is introduced. It assigns a weight to each
variable for each cluster, reflecting the relevance of the variable in a cluster. The use of
adaptive distance can also be viewed as a means of automatically scaling variables, as scaling
can greatly impact the dissimilarity values and clustering outcomes in clustering analysis.

The DC criterion, which incorporates adaptive distances, is expressed as follows:

�(U ,W , Z) =
K∑

k=1

∑

Xi∈Ck

uikdk(Xi , Zk), (5)

such that uik ∈ {0, 1},
K∑

k=1

uik = 1

In this context, distance dk is a weighted sum of distances dwk j

dk(Xi , Zk) =
m∑

j=1

dwk j (xi j , zk j ) =
m∑

j=1

wk j d(xi j , zk j ) (6)

The adaptivity of the distance dwk j is expressed by the vector of weights Wk .
When using adaptive distances, the representation step is divided in two stages so that the

global optimization scheme is
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1. Representation step

(a) Stage 1: fix the matrix Û of membership and the vector of weights Ŵ
Find the solution Zk = {zk1, . . . , zkm} of the optimization problem �(Û , Ŵ , Z).

(b) Stage 2: fix the matrix Û of membership and the vector of centroids Ẑ
Find the vector of weights Wk = {wk1, . . . , wkm} that minimizes the criterion
�(Û ,W , Ẑ).

2. Allocation step
Fix the set of vectors of weights Ŵ and the set of vectors of centroids Ẑ . Find the
membership matrix U that minimizes the criterion �(U , Ŵ , Ẑ)

Thepaper employs an adaptive distancemetric, specifically aweightedEuclidean distance,
to calculate the distance between subgroups within a given cluster. Explicit formulas for the
optimum cluster centroids, as well as for the weights of the adaptive distances, are found
based on a new objective function criterion. By integrating the procedures of data partitioning
and centroids selection with adaptive distances, DC algorithm provides a comprehensive and
flexible approach to clustering analysis for apriori classes.

3.2 Dynamic Clustering Algorithm to Partition Apriori Groups

In this section, a new objective function is proposed to discover new information on the
original data by combining both intra-cluster compactness of the subgroups of the same
apriori group and inter-cluster separation between one subgroup and the subgroups of other
apriori classes, as illustrated in Fig. 1. Therefore, it may be ineffectual to evaluate the weights

Fig. 1 Scatter plot illustrating subgroups within two apriori groups
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of the variables of a subgroup using only the variation within the groups of a data set.
Under these conditions, inter-cluster separation can play a significant role in differentiating
the significance of various patterns and taking into account the heterogeneity among the
subgroups of each original group.

We apply inter-cluster separation by introducing the global subgroups centroids of a data
set. In contrast to the conventional DC, our proposed DC algorithm maximizes the distances
between the subgroup’s centroid of an apriori group and the global subgroups centroid of
the other apriori groups partition, while minimizing the distances between objects and their
subgroups centroid.

Let N be the total number of apriori classes, andU = {U1, . . . ,Ug, . . . ,UN } the set of N
matrices. Let ng be the number of elements of class g and cg be the number of subgroups in
the class g. EachUg is an ng×cg indicatormatrix containing themembership of each element
i of the apriori class g to the subgroup p; such that where ugip = 1 denotes that the i-th
object belonging to group g is assigned to subgroup p; otherwise, ugip = 0, indicating that
the object is not assigned to subgroup p. Let Z = {Z1, . . . , Zg, . . . , ZN } be a set of vectors
representing the centroids of each original group. For group g, let Zg = {Zg1, . . . , Zgcg } be a
set of cg vectors that represent the subgroups’ centroids and letWg = {Wg1,Wg2, . . . ,Wgcg }
be a set of weight vectors associated with the subgroups, where wgpj represents the weight
of the j-th variable related to the p-th subgroup for class g. Let β represent a parameter used
for adjusting the weights.

With the aim of achieving both intra-cluster compactness and inter-cluster separation, the
optimization process is performed using a DC algorithm in which the objective function is
modified to emphasize the separation between clusters belonging to different apriori classes:

P(U ,W , Z) =
N∑

g=1

cg∑

p=1

∑ng
i=1 ugipd

2
g (Xi , Zgp)

ngd2(Zgp, ZgG)

=
m∑

j=1

(

N∑

g=1

cg∑

p=1

w
β
gpj

∑ng
i=1 ugip(xi j − zgpj )2

ng(zgpj − zgGj )2
),

(7)

such that ugip ∈ {0, 1},
ck∑

p=1

ugip = 1, and
m∑

j=1

wgpj = 1.

In the context of our study, the distancemetric dg is defined as a weighted sum of distances
dwgpj , where dwgpj represents the distance metric for the p-th subgroup of the g-th apriori
class. The vector of weights Wgp demonstrates the adaptivity of the distance metric dwgpj :

dg(Xi , Zgp) =
m∑

j=1

dwgpj (xi j , zgpj ) =
m∑

j=1

wgpj (xi j , zgpj )
2. (8)

Let us assume that the present group is the gth group. zgGj represents the j th feature of
the global subgroups centroid of all other apriori groups, excluding the current group g.

We calculate zgGj as

zgGj =

∑

h∈{1,...,N }\{g}
ch

ch∑

q=1

zhq j

c1 + · · · + cg−1 + cg+1 + · · · + cN
. (9)
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To initiate the solution process of the objective function, it is necessary to initialize the
parameters Û , Ŵ , and Ẑ of all groups (for g = 1, . . . , N ). Subsequently, the partition of the
group g is evaluated, thus reducing the minimization issue as

P(U ,W , Z) =
cg∑

p=1

ng∑

i=1

ugip

m∑

j=1

w
β
gpj

(xi j − zgpj )2

ng(zgpj − zgGj )2
, (10)

such that uip ∈ {0, 1},
cg∑

p=1

ugip = 1, and
m∑

j=1

wgpj = 1, 1 ≤ p ≤ ng .

To minimize (10), it is necessary to solve the problems P1, P2, and P3 iteratively.

1. Specifically, the representation step requires solving two distinct problems P1 and P2:
Problem P1: fix U = Û , W = Ŵ and solve the reduced problem P(Û , Z , Ŵ )

Problem P2: fix U = Û , Z = Ẑ and solve the reduced problem P(Û , Ẑ ,W )

2. To address the allocation problem, it is necessary to solve the problem denoted as P3:
Problem P3: fix Z = Ẑ , W = Ŵ and solve the reduced problem P(U , Ẑ , Ŵ )

To solve the problem P1, we calculate the gradient of P with respect to zgpj as

∂P(Û , Ŵ , Z)

∂zgpj
=−2wβ

gpj

ng∑

i=1

ugip
(xi j − zgpj )(zgpj − zgGj )

2+ (zgpj − zgGj )(xi j −zgpj )2

nk(zgpj − zgGj )4
;

(11)
by setting (11) to zero, we have:

zgpj =
∑nk

i=1 ugipxi j (xi j − zgGj )
∑ng

i=1 ugip(xi j − zgGj )
. (12)

The initial section of the supplementary material contains the proof and the necessary and
sufficient conditions required for the realization of this finding.

It is worth noticing that zgpj , the representative (e.g., centroid) of Cgp , can be interpreted
as a weighted average of the elements of the pth subgroup, with weights being the difference
between xi j and the global centroid zgG j computed as in Eq. 9 on all other apriori groups,
excluding the current group.

The higher the difference, the more the subgroup element contributes to the determina-
tion of the subgroup’s centroid. This result is due to the optimization of the discriminant
component of the criterion which emphasizes the separation between classes.

The internality condition of the centroid zgpj of the subgroup Cgp (for each variable j)
is guaranteed under the conditions demonstrated in the Appendix, whereas it can become
external to the cluster interval of values (for each j) the closer zgGj is to the mean of the
elements of the cluster Cgp .

The problem P2 will be solved by setting up a Lagrangian equation to P(Û , Ẑ ,W ) with
multiplier λ. Let L(W , λ) be the Lagrangian

L(W , λ) =
cg∑

p=1

m∑

j=1

w
β
gpj Dgpj − λ(

m∑

j=1

wgpj − 1), (13)
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where Dgpj = ∑nk
i=1 ugip

(xi j−zgpj )2

ng(zgpj−zgGj )
2 . Setting the gradient of Eq.13 with respect to wgpj

and λ to zero, we obtain

∂L(W , λ)

∂wgpj
= βw

β−1
gpj Dgpj − λ = 0; (14)

from Eq.14, we obtain

wgpj =
(

λ

βDgpj

) 1
β−1

. (15)

The gradient with respect to λ

∂L(W , λ)

∂λ
= −(

m∑

j=1

wgpj − 1) = 0; (16)

substituting (15) into (16), we obtain

λ
1

β−1 = β
1

β−1

m∑

j=1

D
− 1

β−1
gpj

; (17)

substituting (17) into (15), we have

wgpj = 1

(Dgpj )
1

β−1

m∑

l=1

D
− 1

β−1
gpl

, (18)

The minimizer Wk of the optimization problem P2 is given by

wgpj =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if (zgpj − zgGj )
2 = 0,

0 if Dgpj �= 0, but Dgpl = 0, for some l,
1

(Dgpj )
1

β−1

m∑

l=1

D
− 1

β−1
gpl

otherwise. (19)

The problem P3 is solved by

ugip =

⎧
⎪⎨

⎪⎩
1 if

m∑

j=1

w
β
gpj

(xi j − zgpj )2

ng(zgpj − zgGj )2
≤

m∑

j=1

w
β
gpj

(xi j − zgr j )2

ng(zgr j − zgGj )2
,

0 otherwise,

(20)

where 1 ≤ r ≤ g, r �= p.
The same process is provided to the partition of the other groups q �= g for q = 1, . . . , N

of the primary datasets, by optimally computing ulip , zlpj , and wlpj .

3.3 New DCVariant Algorithm

In this section, we provide a comprehensive explanation of the algorithm used in the novel
DC variant clustering method. The aim of this algorithm is to create new subgroups from the
available labeled data by detecting hidden patterns.
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The algorithm is designed to associate a unique distance metric with each cluster, which
is used to compare clusters and their representatives. This distance measure is not fixed
and varies from subgroup to subgroup, changing with each iteration until convergence. The
adaptive nature of this distance measure offers the advantage of assigning weights to the
variables that are more representative or informative of a particular cluster, resulting in a
more accurate clustering algorithm.

This adaptive approach aims to identify a partition of each original class, denoted as
G1, . . . ,GN , respectively into nc1 , . . . , ncN subgroups. Here, Gg = {Cg1, . . . ,Cgncg }
specifies the partitions for group g, and the corresponding centroids, denoted as Zg =
{Zg1, . . . , Zgncg }, for each group are computed using the formula for centroids (12). Addi-
tionally, for each subgroup, a set of weights is assigned from the setWg = {Wg1, . . . ,Wgncg }.

The algorithm we propose looks for a local minimum of the objective function in Eq. 7.
It requires, as an input, the training dataset, with N apriori classes, and the number of

subgroups for each apriori class. It starts from an initial random partitioning of the apriori
classes into subgroups, then initializes the weights of variables for each subgroup to 1/m
(where m is the number of variables). An initial set of centroids Z is computed according to
Eq. 12, based on the initial random partition and on the weights in W .

The iterative part of the algorithm alternates, at each iteration t , the representation and
allocation step introduced in Sect. 3.2, in order to provide the partition of the N apriori classes
G1, . . . ,GN , into nc1 , . . . , ncN subgroups; the set of centroids Z ; the weights W .

At each iteration t , a check of the convergence of the algorithm is performed by evaluating
the criterion Pt :

Pt =
N∑

g=1

cg∑

p=1

∑ng
i=1 ugipd

2
g (Xi , Zgp)

ngd2(Zgp, ZgG)
, (21)

where Xi , Zgp , and ugip are defined as before.
The algorithm will run when ‖Pt+1 − Pt‖ > 0, which means that a further iteration

improves the criterion. In other words, the algorithm continues as long as there is a decrease
in the intra-cluster distances between subgroups of an original group and/or an increment in
the inter-cluster distances.

Algorithm 1 displays the pseudocode of the suggested DC clustering algorithm.

3.4 KNN Classifier Based on Adaptive Distances and Novel Patterns

The K-nearest neighbor is a supervised learning technique that uses training data and a pre-
determined k value to find the k nearest data based on the idea of using distance computation
to discover the nearby points of the query from the training set and assign a class label to
the query through the majority voting rule. However, its efficacy is comparable to the most
complex classifiers in the literature. This classifier relies heavily on measuring the distance
or similarity between the tested examples and the training examples. This raises an essential
question about which distance or similarity measures should be used for the KNN classifier
out of the numerous options available. Therefore, we propose an adaptive distance parame-
terized by weight vectors. The weights are estimated during the first clustering step on apriori
classes so that each subgroup is associated with its weight vector. The main idea of the KNN
classifier with adaptive distances is that there is a distance to compare the test objects and their
nearest points from the training dataset, which changes with each training point. However,
the objects belonging to the same subgroup have the same vector weights.
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Algorithm 1Weighted dynamic clustering algorithm with adaptive euclidean distance.
1: Input :
2: X = {X1, X2, . . . , Xn}: training dataset with N class
3: c1, . . . , cN : optimal number of subclasses within each initial class
4: Output : G = {G1, . . . ,GN } wherein each element Gg constitutes a set of subclasses consisting of cg

elements, denoted as Gg = {Cg1, . . . ,Cgcg }
5: Assign xi ∈ G j ( j = 1, . . . , N ) with random cluster labels;
6: Initialize Z and W ;
7: Calculate Pt according to Eq. 21;
8: while ‖Pt+1 − Pt‖ > 0 do
9: for each xi ∈ Gg do
10: Move xi from the current cluster to Cl such that

l = argmin
k

dw(xi , Zgk ) = argmin
k

m∑

j=1

wgk j (xi j − zgk j )
2.

11: Update Zgl using the Eq. 12;
12: Update Wgl using the Eq. 19;
13: end for
14: Calculate Pt+1 according to Eq. 21;
15: Repeat the steps 9 to 13 to recalculate G f , Z f , and W f for f �= g (g = 1, . . . , N )

16: t ←− t + 1
17: end while

Let T = (Xi , y′
i p)

n
i=1

represent a training set consisting of n training instances, with
each instance belonging to one of N classes. Each training instance Xi is an element of a
m-dimensional space Rm , and its corresponding class label y′

i p is obtained from the initial
clustering step, with p represents the subgroup of Xi in the original apriori class yi . When a
new query Sh is given, we first compute the adaptive distances between Sh and each training
instance in T . The adaptive distance for a given data point Xi and query Sh is defined as
follows:

dy′
i p
(Xi , Sh) = dWyi p

(Xi , Sh) =
m∑

j=1

wyi pj (xi j − shj )
2. (22)

Here, Wyi p is a vector of weights corresponding to the p-th subgroup of the apriori class yi .
The n distances are then arranged ascendingly. NK (Sh) = {(X j , y′

j p)}Kj=1 denotes the K -
nearest neighbors of Sh , which are the K training instances with the top K smallest distances.
Ultimately, the majority voting rule is used to assign the query Sh to subgroup Cgp:

Cgp = argmax
Cip′

∑

(x,y)∈Nk (Sh)

1Cip′ (y), i = 1, . . . , N and p′ = 1, . . . , ci (23)

where 1C (.) is the indicator function:

1C (y) =
{
1 if y ∈ C,

0 otherwise.
(24)

3.5 The DC-KNN Combined Algorithm

DC-KNN (dynamic clustering and K-nearest neighbors) is an algorithm that combines the
efficiency of the DC algorithm with the classification by KNN. The basic idea behind DC-
KNN is to use DC with adaptive distances to re-cluster the classes of the training dataset
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into different subgroups and then use KNN to classify the test set based on the new labels
obtained from the clustering step.

The algorithm starts by using DC to cluster each original group into a specific number
of clusters; the optimal number of subgroups can be determined by the Silhouette or Elbow
method. The resulting clusters will be used as preprocessing for the KNN algorithm, allowing
it to work on more homogeneous subsets of data. This combination improves the accuracy
and efficiency of the KNN algorithm, as it enables the algorithm to learn all the patterns of
the dataset necessary for its learning process.

After the clustering step, KNN is used to classify new data points based on the newly
discovered patterns. The KNN algorithm finds the K nearest neighbors of a given data
point and determines the class of the majority of those neighbors. In this way, the DC-KNN
algorithm is able to effectively combine the strengths of both DC and KNN, making it a
powerful tool for data classification.

It is worth noting that the DC-KNN algorithm can be sensitive to the initial partitions.
Hence, choosing the appropriate number of clusters and setting the parameters for the DC
algorithm is essential.

The execution of the DC-KNN classification algorithm follows the steps outlined in
Algorithm 2.

Algorithm 2 DC-KNN combining algorithm.
1: Input:
2: X = {X1, . . . , Xi , . . . , Xn}: training dataset with N class
3: c1, . . . , cN : optimal number of subclasses within each initial class
4: k: number of nearest number for the KNN algorithm
5: Sl : new instance
6: Output: ySl the label of Sl
7: Step 1-Dynamic clustering algorithm: partition of the N classes of X respectively into c1, . . . , cN subgroup

using Algorithm 1
8: return: W , Y ′
9: Step 2- KNN classifier
10: Calculate the distance between Sl and Xi (i = 1, . . . , n) using Eq. 22
11: Select the subset Nk from the dataset X , which contains the k nearest neighbors of the sample Sl

Nk (Sl ) = {(Xi , y
′
i p)}ki=1. (25)

12: Calculate the subgroup Cgp of Sl according to Eq. 23
13: Assign the label of the new element to its original class

yg ← y′
gp

3.6 The DC-KNN Using the Centroids as the Nearest Neighbors

A new variant of the KNN algorithm is introduced in this study for more accurate predictions
of new data points based on the new subgroups. The proposed classification approach focuses
on classifying instances to their nearest neighbor class by computing the distance between
new instances and subgroups centroids. The allocation is then determined using the label of
the apriori class to which the subgroups belong.

The DC-KNN classifier algorithm utilizes the centroids and weights of DC to determine
the nearest neighbor of a new element. Here, K denotes the number of neighborhoods of
centroids that are closest to the new query. The optimum value of K is chosen from the range
of 1 to ( min

1≤i≤N
(ci ) + 1). The algorithm follows the sequential steps outlined in Algorithm 3.
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Algorithm 3 DC-KNN combining algorithm using centroids as NN.
1: Input:
2: X = {X1, . . . , Xi , . . . , Xn}: training dataset with N class
3: c1, . . . , cN : optimal number of subclasses within each initial class
4: K : number of nearest number for the KNN algorithm
5: Sl : new instance
6: Output : Gl the original class in which Sl belongs
7: Step 1- DC algorithm: partition of the N classes of X into c1, . . . , cN using Algorithm 1
8: return: Z , W
9: Step 2- KNN classifier using the centroids as NN
10: Calculate the distance between Sl and Zgp (g = 1, . . . , N and p = 1, . . . , cg)

d2(Sl , Zgp) =
m∑

j=1

wgpj (si j − Zgpj )
2

11: Select the subset Nk , which contains the K nearest neighbors centroid of the new sample Sl

NK (Sl ) = {Zi / Zi ∈ Zg, g = 1, . . . , N }Ki=1

12: Calculate the belonging to the original class Gl for Sl such that

l = argmax
g

∑

Zg′ p′ ∈NK (Sl )

1Cgp (Zg′ p′ ), f or all g = 1, . . . , N and p′ = 1, . . . , cg (26)

4 Experiments

This section conducts extensive experiments ondifferent real and synthetic datasets to validate
the classification performance of the proposed DC-KNN classifiers. The DC-KNN approach
is compared to the KNN and Kmeans-KNN methods, in terms of classification accuracy.

4.1 Experimental Results on Real Datasets

To thoroughly assess the performance and robustness of the proposed DC-KNN algorithms,
experiments are conducted comparing themwith classicalKNNandKmeans-KNN.The latter
uses the K-means clustering algorithm as a first step and then applies KNN using the results
of the clustering. The comprehensive experiments are conducted on real datasets sourced
from the UCI Machine Learning Repository Bache and Lichman (2013), KEEL attribute
noise datasets Alcala-Fdez et al. (2011), and UCR Time Series Classification Repository
Dau et al. (2018). The classification accuracy was used to measure the performance of all the
approaches in each experiment. Note that DC-KNN1 represents Algorithm 2 that employs
data points as nearest neighbors. It is important to note that in the KNN algorithm, the
selection of the k nearest neighbors involves an aggregation from all available classes of data
points. Similarly, in the KNN algorithm with classical K-means and DC-KNN1 algorithms,
the nearest neighbors are selected from the data points of all the subgroups of the apriori
classes. However, in the DC-KNN2 algorithm, the nearest neighbors are the centroids of the
subgroups obtained from DC.

The objective of the experiments is to demonstrate the powerful classification capabilities
of the proposed techniques on different kinds of datasets that represent real datasets, noisy
numerical datasets obtained from the KEEL machine learning repository, and time series
datasets from the UCR database. The utilized datasets mentioned here are clearly outlined
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Table 1 Experimental datasets from UCR, UCI, and KEEL repositories used in the study

datasets Total samples Features Classes Testing samples

Breast 569 30 2 171

ILPD 583 10 2 175

Computers 250 720 2 250

ScreenType 375 720 3 375

StarLightCurves 1000 1024 3 8236

ItalyPowerDemand 67 24 2 1029

Yeast-n 1212 8 2 606

Sonar-n 208 60 2 66

Iono-n 351 34 2 71

Heart-n 270 13 2 54

Pima-n 768 8 2 154

Spambase-n 4597 57 2 920

Iris-n 150 4 3 60

in Table 1. Their information shows variations in the quantities of total samples, features,
classes, and test samples.

We utilize the Wisconsin Breast Cancer Wisconsin (Diagnostic) dataset, abbreviated as
“Breast,” “ILPD,” and the noise “Yeast” datasets from the UCI database. Additionally, we
perform tests on the“’Computers,” “ScreenType,” and “StarLightCurves” datasets from the
UCR repository for our time series analysis. Following the approach employed in Maturo
and Verde (2022), we utilize functional data analysis to describe the time series datasets
and extract the coefficients of the b-spline decomposition as features. The six noise datasets
from the KEEL repository are “Sonar,” “Iono,” “Heart,” “Pima,” “Spambase,” and “Iris.” The
experiments employ the abbreviations Yeast-n, Sonar-n, Iono-n, Heart-n, Pima-n, Spambase-
n, and Iris-n to distinguish the noisy data. The six noise datasets consist of samples that are
exposed to a noise intensity of 10%. To clarify, around 10% of the samples in each dataset
are chosen at random, and around one-third of the total samples from each dataset are chosen
as test samples, while the rest of the samples are designated as training samples. The values
of a particular attribute for these samples are then assigned using random values that are
within the minimum and maximum range of the attribute’s domain. This assignment follows
a uniform distribution. Each noise dataset within the KEEL repository has been divided into
five unique subsets for training and testing purposes. The quantity of testing samples for each
set is presented in Table 1. The ultimate classification evaluation of each competing method
is determined by calculating the average of the classification results from five divisions on
each noise dataset. In addition, the majority of the datasets have a small number of samples.
However, these datasets can effectively be utilized to validate the classification performance
in scenarios with a small sample size.

The classical KNN algorithm is recognized for its effectiveness in scenarios with a clear
separation between classes. However, accurate classification of datasets containing noise
poses a greater challenge. To address this, we evaluated the proposed DC-KNN methods on
selected noisy datasets from theKEEL repository. The evaluation is based on the classification
accuracy as shown in Table 2.
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Table 2 Classification accuracy (%) of different methods on various datasets: Values of K with the number
of subgroups are presented in parenthesis

Data KNN Kmeans-KNN DC-KNN1 DC-KNN2

Breast 97.66(11) 97.07(11) 97.66(11) 98.24 (6, (7,5))

ILPD 69.71(2) 69.71(2) 68.57(7) 70.86 (3, (3,5))

Computers 54.80(5) 57.20(1) 57.20(1) 62.00(1, (3,4))

ScreenType 43.73(18) 40.26(5) 43.2(7) 44.26 (5, (5, 2, 3))

StarLightCurves 86.20(1) 88.2(1) 90.40(5) 91.10 (1, (3,2,3))

Yeast-n 56.27(1) 56.27(1) 56.27(1) 62.04(2,(8, 4))

Sonar-n 78.57(2) 80.95(1) 80.95(1) 83.33 (2, (6,3))

Iono-n 77.30(2) 84.39(2) 85.10(2) 86.52 (1, (3,7))

Heart-n 74.07(11) 87.03(15) 87.03(8) 88.88 (2, (4,2))

Pima-n 75.32(11) 75.64(9) 75.64(13) 77.27 (5,(6,4))

Spambase-n 81.91(1) 78.21(14) 89.19(14) 90.16 (1,(2,3))

Iris-n 91.66(5) 98.33(3) 100(7) 98.33 (1, (2, 2, 2))

The best performing method is highlighted in boldface

In the experiments, we assess the classification performance of the proposed DC-
KNN methods by varying the neighborhood size (K ) on each dataset. The parameters
(nc1 , . . . , ncN ) of the DC step, which represents the number of subgroups determined by
the Silhouette method, are also taken into consideration. The values of K range from 1
to 20, and for DC-KNN2, range from 1 to 7, incrementing by 1, for all the datasets. The
classification results of the suggested techniques, with different values of K , are shown in
Fig. 2.

The DC-KNN2Algorithm 3, utilizing centroids of DC for detecting the nearest neighbors,
outperforms other algorithms with lower numbers of neighbors and achieves the highest level
of accuracy across the majority of datasets in comparison to other algorithms.

Moreover, on most of the real data sets, the classification accuracy remains consistently
constantwhen the value of K increases. This is because theDC-KNN2 algorithm requires that
the number of neighbors be smaller than ( min

1≤i≤N
(ci ) + 1). On the other hand, the DC-KNN1

Algorithm 2 consistently achieves satisfactory classification results when varying the value
of K in comparison to the classical methods, particularly at higher values of K . It implies
that the suggested DC-KNN1 and DC-KNN2 algorithms exhibit more robustness when the
values of K are changed, while still achieving accurate classification. The explanation for
this advantage may be attributed to the utilization of DC and a novel objective function in
the initial phase of both approaches, which allows for the good performance of the classifier.
The classification results depicted in Fig. 2 clearly show the good classification performance
of the two proposed approaches. In most instances, the proposed method outperforms the
other comparison methods.

4.2 Experimental Simulation Results

In order to show the effectiveness of the proposed DC-KNN classifiers, we generate and
adapt different models in this subsection. In this experiment, we performed simulations using
various data generating processes (DGPs) with distinct characteristics. The specifications of
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Fig. 2 The classification accuracy of each approach is evaluated on different datasets, with varying values of
K
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Fig. 3 Two-dimensional representation using principal component analysis (PCA) simulation

the DGPs are detailed in the second section of the Supplementary Material and illustrated in
Fig. 3. Specifically, we generated datasets based on different DGPs and examined scenarios
where the number of clusters remained fixed at the true value, as well as scenarios where the
number of clusters was estimated.

In order to determine the number of subgroups inside each apriori class, we can employ
either the Silhouette or Elbow approach. Nevertheless, the traditional approaches do not
ensure the enhancement of the approach’s performance. Consequently, our forthcomingwork
will concentrate on ameliorating this aspect.

The results of the simulations performed on the data generating processes (DGPs) are
displayed in Table 3. The table presents a detailed analysis of the effectiveness of the new
techniques developedutilizingDC-KNN1andDC-KNN2,whichutilize the clustering results,
as stated inAlgorithms 2 and 3. The comparison ismade over the classical KNN andKmeans-
KNN methods. As expected, utilizing the DC-KNN algorithms leads to increased accuracy
values. The unsatisfactory results of classical KNN can be due to the complexity and the
overlapping of data. However, a more effective approach is to first use clustering to discover
hidden patterns within the classes before doing classification.

A detailed analysis of the classification effectiveness of DC-KNN techniques with varying
K values can be found in Section 3 of the Supplementary Material.

The effectiveness of the proposed DC-KNN approaches in classifying diverse dataset
types, including real data sets, time series data sets, noisy data sets, and simulated datasets,
has been thoroughly shown through extensive experiments. Based on the results of these
classification studies, it is essential to highlight important observations that emphasize the
significant contributions of our research:
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Table 3 Classification accuracy (%) of different methods on simulated datasets: Values of K with the number
of subgroups are presented in parenthesis

Data KNN Kmeans-KNN DC-KNN1 DC-KNN2

DGP1 67.27(2) 66.36(3) 67.27(4) 68.18 (4, (5,3))

DGP2 61.5(2) 61.50(2) 62(3) 64.00 (1, (7,3))

DGP3 76.11(2) 76.11(2) 76.11(2) 77.22 (4, (2,5,3))

DGP4 74.66(2) 74.66(2) 74.66(2) 85.00 (1,(2, 6, 4))

DGP5 66.11(11) 76.31(1) 76.86(3) 78.23 (1,(4, 2, 2, 5))

DGP6 79.54(1) 82.27(2) 80.45(2) 84.09 (3, (5, 4, 3, 3, 2))

The best performing method is highlighted in boldface

1. The DC-KNN techniques demonstrate robustness to changes in the neighborhood
size K, as compared to its competitors. The experimental results consistently show
that the proposed DC-KNN1 and DC-KNN2 algorithms consistently outperform other
approaches and achieve good classification performance. In particular, the DC-KNN2
algorithmdemonstrates strong and consistent performancewhen the value of K is smaller
than ( min

1≤i≤N
(ci )+1); this indicates a sensitivity of theDC-KNN2 algorithm to the number

of centroid neighbors.
2. The process of learning clustering with adaptive distances aims to uncover concealed

patterns within training groups. This is achieved by optimizing a newly proposed objec-
tive function and utilizing the outcomes of the clustering step in conjunction with the
KNN classifier. This approach effectively enhances the performance of KNN-based clas-
sification.

3. DC-KNN exhibits strong performance in scenarios with limited training data. The per-
formance of KNN-based classification can be significantly influenced by the selection
of neighbors, particularly when working with various data sets and small sample sizes.
Nevertheless, the experimental results in these situations demonstrate that our DC-KNN
outperforms the competing methods.

4. The DC-KNN algorithms exhibit greater resilience to noisy data. Our DC-KNN algo-
rithms outperform existing algorithms when applied to data containing noise.

The excellent performance of our methods can be attributed to several factors. Firstly, we
utilize DC to uncover hidden patterns by adjusting the distances between data points. This
allows us to effectively weigh the features of different subclasses. Secondly, we introduce
a novel objective function that considers both the compactness within each apriori group
and the separation between apriori classes. This enables us to accurately cluster the training
predefined groups. Lastly, we adapt the KNN classifier to incorporate the augmented labels
obtained from the clustering step, enhancing the accuracy of classification tasks. Therefore,
our DC-KNN algorithms exhibit strong potential as a KNN-based classifier due to their
robustness and efficacy in pattern classification.

5 Conclusions and FutureWorks

This research presents the DC-KNN algorithm, a novel supervised approach that combines
dynamic clustering and the K-nearest neighbor classifier. The unsupervised clustering phase
is used to discover new information from the original datasets that can help to improve super-
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vised classification accuracy. DC in the unsupervised phase uses a new objective function
that takes into account both intra-cluster and inter-cluster similarity, with cluster weights for
variables being computed automatically and optimized as the algorithm converges. These
weights can be used to identify important variables for clustering and eliminate variables that
could introduce noise in the classification process. In the supervised phase, the new weights
are employed to determine the nearest neighbor of new data points. Overall, the DC-KNN
algorithm provides a unique and effective classification technique by combining DC and
KNN.

Based on the results of the application on the real dataset test using the usual K-means and
dynamical clustering algorithm to enhance the KNN supervised classification, better results
were obtained than using dynamical clustering before training the supervised classifier. The
reason is that the proposed method can provide more precise information and homogeneous
clusters using clustering in the first step as a preprocessing step to discover the hidden patterns.
As a result, the classification results obtained by the proposed method provide better results
and increase the classifier’s accuracy.

The focus of this study is to discover hidden information that can be comprehended
through novel patterns, leading to the identification of subgroups of instances classified
by these new sub-patterns within the previously established classes. The objective is to
ascertain whether the implementation of the DC-KNN methodology enhances the accuracy
of classification. Initially, a DC algorithm is employed to identify novel patterns within the
original classes. This research demonstrates the utilization of this algorithm across a range
of datasets unaffected by data points that deviate from the norm. It is worth noting that
alternative metrics can be chosen to handle outliers and determine the adaptive distances
between the data points and centroids.

The primary aim of this investigation is to examine the theoretical aspect of integrat-
ing unsupervised and supervised classification and to evaluate whether this novel approach
enhances classification performance compared to traditional classifiers. Additionally, several
techniques can be employed to ascertain the optimal number of subgroups for each original
class.

In this two-stage study, the unsupervised method utilized is DC, while the supervised
strategy employed is KNN. Future research aims may concentrate on the combination of
different clustering techniques with alternative classifiers to investigate the performance of
combining unsupervised and supervised classification using various strategies, as well as
determining how such combinations can impact the final outcome. Moreover, attempts could
be made to formulate an objective function that condenses the process into a single-step
strategy.
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