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Abstract
We propose two robust fuzzy clustering techniques in the context of preference rank-
ings to group judges into homogeneous clusters even in the case of contamination due 
to outliers or, more generally, noisy data. The two fuzzy C-Medoids clustering meth-
ods, based on the same suitable exponential transformation of the Kemeny distance, 
belong to two different approaches and differ in the way they introduce the fuzziness 
in the membership matrix, the one based on the “m” exponent and the other on the 
Shannon entropy. As far as the Kemeny distance is concerned, it is equivalent to the 
Kendall distance in the case of complete rankings but differs from the latter in the way 
of handling tied rankings. Simulations prove that our methods are able to recover the 
natural structure of the groups neutralizing the effect of possible noises and outliers. 
Two applications to real datasets are also provided.

Keywords  Preference data · Kemeny distance · Fuzzy clustering · Robust method

1  Introduction

In the last decades, many research studies focus their attention on how a group of subjects 
ranks a list of objects according to each personal preference (the rank vector). Hence, a 
rank vector is a permutation of the positive integers 1,…,k. More rigorously, given k items 
to rank, labelled 1,…,k, a ranking π is a mapping function from the set of items 1,…,k to 
the set of ranks 1,…,k, where π(i) is the rank given to item i. If 𝜋(i) < 𝜋(i�) , then item i is 
said to be preferred to item i′ . An alternative format for ranking data is the ordering vector 
that is, more simply, the inverse function of ranking π so that the generic π− 1(j) denotes the 
item ranked in the jth position.

A judge can assign a distinct value to each of the k items defining a complete ranking or 
he can specify only m < k items, defining a partial ranking. This is the case where the judge 
specifies only his most-liked m < k items, leaving the remaining ones undefined. Different 
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is the case of ties, when a judge assigns the same integer value to two or more items (He 
evaluates them equally).

Therefore, we could be interested, for example, to rank candidates in an election or to 
rank shopping items in order to identify the pattern of preferences as well as the most rep-
resentative permutation. More generally, involving the concept of preference, this kind of 
data has a broad field of application: from Marketing, Risk and Credit scoring to Psychol-
ogy, Sociology, Politics, and so on.

Preference analysis literature mainly focuses on modelling the probability for certain 
preference structures under the assumption of a homogeneous population. The relative sta-
tistical models can be classified in four classes (Critchlow et  al., 1991; Marden, 1995): 
order statistics models (Thurstone, 1927), rankings induced by paired comparisons (Brad-
ley, 1984; Bradley & Terry, 1952), distance-based models (Smith, 1950; Mallows, 1957), 
and multistage models (Luce, 1959; Plackett, 1975; Fligner & Verducci, 1988).

In this work, we assume the heterogeneity in the population of judges and, therefore, the 
goal is to identify subgroups of judges that are homogeneous in terms of their preferences 
following a model-free clustering approach in the fuzzy framework.

We use the Kemeny distance (Kemeny & Snell, 1962) to enhance flexibility and model 
applicability. Unlike Kendall distance, it is a metric also in the more general case of tied 
rankings while the Kendall distance satisfies the triangular inequality only with full rank-
ings (Emond & Mason, 2002). However, as pointed out by Heiser and D’Ambrosio (2013), 
in the latter case, the two distances become equivalent being the Kemeny distance twice 
the Kendall distance. But handling preference data under the assumption of a heterogene-
ous population is only one of the main goals of this work; in this sense, our methodology 
has a twofold scope: to adapt the fuzzy C-Medoids (FCMd) method to the case of ranking 
data and to account for noisy data and outliers.

To the best of our knowledge, there is no extensive literature about clustering techniques 
for preference data using a model-free approach; the most similar approach is that pro-
posed, recently, by D’Ambrosio and Heiser (2019) in which a K-Median Cluster Compo-
nent Analysis based on the Kemeny distance is presented. In the work of Müllensiefen et al. 
(2018), there is an application of the Partitioning Around Medoids (PAM) algorithm for 
clustering rankings based on a weighted footrule distance. Other interesting works based 
on the distance between rankings in hierarchical cluster analysis can be found in Brentari 
et  al. (2016) and Bonanomi et  al. (2017, 2019). In contrast, most works concern a mix-
ture model–based approach. In the class of distance-based models, the extension to mix-
ture models for heterogeneous populations is due to Murphy and Martin (2003), Meila and 
Chen (2010), and Lee and Yu (2012). Other mixture model–based clustering algorithms 
to analyse ranking data have been proposed by Biernacki and Jacques (2013), Jacques and 
Biernacki (2014), and Mollica and Tardella (2017).

Franczak et al. (2016) well demonstrated the advantages of a model-based imputation 
procedure that simultaneously accounts for heterogeneity while imputing. They proved that 
their model-based approach is able to recover the group structure and key features of the 
datasets also in presence of a huge amount of outliers.

It is worth noting that, to the best of our knowledge, there is no literature in the field 
of clustering and fuzzy clustering techniques that proposes a robust metric for rankings. 
In order to identify homogeneous groups of judges even when some contamination, due 
to outliers or more generally noises, is present in the data, we propose two robust fuzzy 
clustering techniques both based on the same suitable exponential transformation of the 
Kemeny distance. They differ in the specification of the fuzziness.
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In detail, the first proposal is an extension of the well-known FCMd method, which uses 
the “m” exponent to transform the matrix of the crisp assignment to that of membership 
degree (Krishnapuram et al., 1999; Krishnapuram et al., 2001) while the second one is an 
extension of the fuzzy C-Means clustering technique with entropy regularization (Li and 
Mukaidono 1995, 1999; Miyamoto & Mukaidono 1997), i.e. the Shannon entropy is intro-
duced in the objective function to obtain a fuzzy partition avoiding the use of the exponent 
“m”. Both techniques are extended to deal with rankings (full and tied) and, moreover, 
noisy data; indeed, robustness is achieved by defining a suitable exponential transformation 
of the Kemeny distance. As far as the latter model is concerned, it is worth noticing that 
the extension to the fuzzy medoids–based version is also introduced.

We named, henceforth, the first proposal as the “Exponential Kemeny-based FCMd 
method” while the second one as the ”Exponential Kemeny-based FCMd method with 
entropy regularization”.

We argue that the proposed clustering methods could be very useful in many contexts, 
above all in marketing research; we believe they can be a valid instrument for market seg-
mentation, whose goal is that of producing different strategies for different customer seg-
ments in order to offer them appropriate products and/or services. Moreover, the detection 
of clustered outliers could help to identify niche markets, customer segments with very 
particular needs and tastes.

The outline of the article is as follows. After a brief introduction to the literature about 
the fuzzy clustering techniques in Section 2, our methodological proposals are introduced 
and described in Section 3; simulation results are shown in detail in Section 4 while the 
application to two real datasets is proposed in Section 5. In the last section (Section 6), we 
address some conclusions and open research problems.

2 � Fuzzy Clustering Techniques

Cluster analysis based on fuzzy theory (Zadeh, 1965) allows units to belong to more than 
one cluster simultaneously as opposed to the classic clustering approach whose partitions 
are characterized by non-empty and pairwise disjoint subsets, providing a crisp assignment 
of the units to the clusters.

In more detail, when an object is almost equally distant from two or more clus-
ters, the fuzzy approach relaxes the requirement of a crisp assignment, replaced by the 
notion of degree of membership in a cluster1, particularly useful in case of overlapping or 
when the goal is to group complex objects characterized by an unavoidable and intrinsic 
“imprecision”.

The interest for fuzzy clustering methods quickly grew over time so that many fuzzy 
clustering algorithms were proposed; seminal papers were due to Bellman et al. (1966) and 
Ruspini (1969,  1970,  1973) even if the most representative one was the fuzzy C-Means 
(FCM) clustering method (Dunn 1973; Bezdek 1974, 1981), widely applied to this day. 
The “fuzzification” is obtained by rising each unknown degree of membership to an “m” 
exponent which is named fuzziness coefficient because it controls the extent of fuzziness 
degree of the partition.

1  In general, one assumes that the membership degrees associated to the object and the selected clusters 
sum to one.
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Another variant of the C-Means clustering method in a fuzzy perspective was intro-
duced by Li and Mukaidono (1995,  1999) and Miyamoto and Mukaidono (1997) as an 
alternative to the fuzzy methods based on the “m” exponent; they answer to the criticism 
moved by some researchers towards the role of the fuzziness coefficient often considered 
an artificial device, unnatural and with no physical meaning.

To overcome this limit, in the latter class of methods, fuzziness is controlled by includ-
ing in the objective function2 an entropy regularization term (Miyamoto & Mukaidono, 
1997), i.e. the Shannon entropy which, when applied to the degrees of membership, can be 
called fuzzy entropy (Coppi & D’Urso, 2006).

Following this approach, the total functional is optimized by both maximizing the 
internal cohesion and the given measure of entropy, thus maximizing the total amount of 
information.

Other interesting prototype-based models, which are variants of the FCM, have also 
been proposed in the literature and we refer to the medoids-based clustering technique that, 
in a non-fuzzy framework, was due to Vinod (1969), Church (1978), Mulvey and Crow-
der (1979), Rao (1971), and Kaufman and Rousseeuw (1987)(the latter proposed the well-
known Partitioning Around Medoids method (PAM)) while, staying within a fuzzy con-
text, we can refer to the seminal papers of Krishnapuram et al. (1999, 2001).

The fuzzy C-Medoids (FCMd) clustering techniques group objects around representa-
tive prototypes observed in the dataset, i.e. the medoids, that synthesize the structural infor-
mation of each cluster. Therefore, the medoids are objects whose overall distance from all 
other objects in the same cluster is minimal: this prevents prototypes from being “virtual”, 
as in the case of the centroids in the C-Means algorithm. While a first advantage certainly 
relates to practical applications for which the identification of representative non-fictitious 
prototypes can be very interesting and useful for the interpretation of the clusters, the main 
strength comes from the consideration that the FCMd method is more robust than the FCM 
if noise or outliers occur in the data, the medoid being less influenced by such extreme val-
ues than the mean. Readers interested in a deeper and more detailed dissertation on fuzzy 
clustering may refer to D’Urso (2015) and references therein.

In the next section, we will move on to the description of the proposed methods, which 
are methodological extensions of the fuzzy medoids–based methods previously described; 
the purpose is to adapt them to the case where one is interested in the group’s structure of 
particular data such as preference data, considering the possibility that outliers or noisy 
data may mask the real composition of the groups themselves, both in terms of their num-
ber and in terms of membership of the units to the groups.

3 � Robust FCMd Clustering for Preference Data

Clustering ranking data aims at identifying groups of individuals characterized by similar 
preferences or choices with respect to a set of items.

In clustering preference data, the features of permutations themselves suggest the use of 
a fuzzy approach as a natural way to cope with the uncertainty of assigning a judge (i.e. a 
permutation) to each cluster.

2  with m = 1
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In this context, the FCMd clustering technique seems the most appropriate choice since 
the identification of an observed permutation acting as the cluster prototype could improve 
the interpretation of the selected cluster.

As far as the distance matrix is concerned, we argue that the choice of the appropriate 
metric is one of the most important issues of any fuzzy and non-fuzzy clustering method.

In this context, we propose the use of the Kemeny distance (Kemeny and Snell, 1962) 
that could be seen as a suitable extension of the Kendall distance (Kendall 1938, 1948) for 
the case of two tied rankings � and �* over the set [k] (Li et al., 2017). Therefore, given 
two rankings � and �* and using the representation of each ranking by means of a k × k 
matrix as proposed by Kendall (1938) according to each element

 the Kemeny distance between two rankings � and �* is defined as:

 where the maximum value is equal to k × (k − 1). As previously said, the Kemeny distance 
is equivalent to the Kendall distance for full rankings, i.e. the former is twice the latter 
(Heiser and D’Ambrosio, 2013) but this relation does not hold in the case of tied rankings. 
Moreover, while the Kemeny distance is a metric also with tied rankings, the Kendall one 
does not satisfies the third condition of the triangular inequality.

In this study, we propose a suitable exponential transformation of the above met-
ric to both define a robust version of the standard FCMd and the FCMd with entropy 
regularization.

Both models have a twofold scope: to handle preference data by grouping individuals 
according to their personal choices and to improve the robustness of the standard methods 
when dealing with outlying permutations and noisy data.

In the next paragraph, we will provide the mathematical formalization of the exponen-
tial transformation of the Kemeny distance.

3.1 � The Exponential Transformation of the Kemeny Distance

As already mentioned, one of the relevant issues in clustering is to neutralize the negative 
effects of noisy data as well as the outliers, that are, the latter, units that markedly deviate 
from the rest of the data.

Moreover, as well pointed out by García-Escudero et al. (2008), “the precise detection 
of the outliers is an important task due to the serious troubles they introduce in standard 
clustering procedures as well as the appealing interest that outliers could have by them-
selves after explaining why they depart from general behaviour”.

The outliers could be a group of observations, smaller than the natural clusters, that dif-
fer markedly from them (i.e. clustered outliers) or, alternatively, could be represented by 
isolated points, each forming its own group (i.e. radial outliers) (García-Escudero et al., 
2003). In this context, the outlier is identified essentially according to its distance with 
respect to the centers of the clusters, both embedding the radial and clustered types while 

�(i, j) =

⎧
⎪
⎨
⎪
⎩

1 if object i is ranked before the object j

−1 if object i is ranked behind object j

0 if the objects are tied or i=j,

d(�,�∗) =
1

2

k∑

i,j=1

|�(i, j) − �∗(i, j)|,
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noisy datum is intended as the permutation generated by the uniform distribution, given a 
rankings generative scheme.

As pointed out by García-Escudero and Gordaliza (2005), the FCMd method is only a 
“timid” robustification of clustering in presence of outliers and, therefore, we propose two 
“robust” versions of the FCMd method based on a suitable exponential transformation of 
the Kemeny distance.

Therefore, as suggested in literature by Wu and Yang (2002) and D’Urso and De Giovanni 
(2014), the following exponential transformation, which lies in the interval [0,1], has been 
applied to the Kemeny distance:

where d2(�l,�t) is the squared Kemeny distance between the ranking representation given 
by the l-th judge and the ranking representation given by the t-th judge, respectively.

The parameter β is a positive constant usually chosen as the inverse of a measure of 
data variability, as pointed out by Wu and Yang (2002). While the mathematical definition 
of β provided in this work will be described in Section 3.2.1, its effect on the exponential 
transformation (1) is shown in Fig. 1: it reaches more rapidly 1 the higher is the value of β.

When using the exponential transformation in  the fuzzy clustering, the membership 
degrees associated with the outliers are approximately equal to 1/C (where C is the number 
of clusters), thus dealing with outlying units as fuzzy ones.

It is worth noting that, in the case of well separated groups, i.e. in presence of low 
variability, the behaviour of the clustering algorithm based on the exponential transforma-
tion tends to assign approximately equal membership degree values to all units far from 
the medoids. Each unit not close to medoids becomes a candidate outlier.

On the contrary, in case of overlapping clusters or well-separated clusters but with a 
large amount of outlying units, the algorithm tends to assign approximately equal mem-
bership degree values to the units that are only slightly separated from the bulk of data 
(D’Urso et al., 2018).

(1)d2
exp

(�l,�t) = 1 − exp{−β ⋅ d2(�l,�t)}l≠t with l, t = 1…n,

Fig. 1   The Effect of β parameter 
on d2

exp
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3.2 � Exponential Kemeny‑Based FCMd Method

The exponential transformation of the Kemeny distance (1) is used to develop the so-called 
Exponential Kemeny-based fuzzy C-Medoids clustering method (Exp-FCMdK); the goal 
is to find the C prototypes, i.e. the subset of medoids (�1,...,�C), where C is the number of 
clusters, and the Un×C matrix of fuzzy coefficients, by minimizing the following objective 
function:

In detail, 
�

1

2

∑k

i,j=1
��l(i, j) − �̃c(i, j)�

�2

 is the squared Kemeny distance between the l-th unit 
and the medoid of the c-th cluster.

ulc ∈ [0,1] denotes the membership degree of the l-th unit to the c-th cluster while �̃c 
is the permutation medoid for the cluster c. The “m” parameter (with m > 1) controls the 
fuzziness of the partition and therefore usually named as “fuzziness parameter” (for further 
insight on the role of m see D’Urso (2015)).

The solution for each ulc is:

The proofs of the iterative solutions (3) are provided in the Appendix A while the compu-
tational steps of the proposed robust clustering method are described in the Algorithm 1.

In the next paragraph, we describe the beta’s formulation used in the above method.

(2)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

min ∶
∑n

l=1

∑C

c=1
um
lc
d2
exp

(�l, �̃c) =

∑n

l=1

∑C

c=1
um
lc

�
1 − exp

�
−β

�
1

2

∑k

i,j=1
��l(i, j) − �̃c(i, j)�

�2
��

s.t.
∑C

c=1
ulc = 1, ulc ≥ 0.

(3)

ulc =
1

∑C

c�=1

⎡
⎢
⎢
⎣

1−exp

�
−β

�
1

2

∑k

i,j=1
��l(i,j)−�̃c(i,j)�

�2
�

1−exp

�
−β

�
1

2

∑k

i,j=1
��l(i,j)−�̃c� (i,j)�

�2
�

⎤
⎥
⎥
⎦

1

m−1

Algorithm 1   Exponential Kemeny-based FCMd algorithm
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3.2.1 � The Choice of β Parameter

Following Wu and Yang (2002) and D’Urso et al. (2018), we choose β as the inverse of a 
suitable measure of variability. In particular, we propose the following β’s formulation:

where �̃q ∶ q = argMedian1≤l≤n
∑n

l�=1
d2(�l, �̃l� ).

3.3 � Exponential Kemeny‑Based FCMd Method with Entropy Regularization

Here, the Exponential transformation of the Kemeny distance (1) is used to develop the so-
called Exponential Kemeny-based fuzzy C-Medoids clustering method with entropy regu-
larization (Exp-FCMdKent); the goal is to find the C prototypes, i.e. the subset of medoids 
(�1,...,�C), where C is the number of clusters, and the Un×C matrix of fuzzy coefficients, by 
minimizing the following objective function:

where 
�

1

2

∑k

i,j=1
��l(i, j) − �̃c(i, j)�

�2

 is the squared Kemeny distance between the l-th unit 
and the medoid of the c-th cluster.

ulc denotes the membership of the l-th unit to the c-th cluster while �̃c is the permuta-
tion medoid for the cluster c. The second addend in the objective function represents the 
entropy regularization term: the Shannon entropy is weighted by a factor p, called degree 
of fuzzy entropy given that the higher is p the higher is the degree of fuzziness. It controls 
the contribution of the regularization function to the clustering criterion and acts as the 
“m” exponent in the previous fuzzy method so that ulc ∈ [0,1].

Since the aim is to both maximize the Shannon entropy and the internal cohesion, the 
total function is optimized by subtracting the regularization term to the clustering criterion 
leading to (5).

The solution for each ulc is:

The proofs of the iterative solutions (6) are provided in the Appendix B while the compu-
tational steps of the proposed robust clustering method are described in the Algorithm 2.

By substituting in the objective function (5) d2
exp

(�l, �̃c) with its square root, that is:

(4)β ≡ β1 =

�∑n

l=1
d2(�l, �̃q)

n

�−1

(5)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

min ∶
∑n

l=1

∑C

c=1
ulcd

2
exp

(�l, �̃c) + p
∑n

l=1

∑C

c=1
ulclog(ulc) =

∑n

l=1

∑C

c=1
ulc

�
1 − exp

�
−β

�
1

2

∑k

i,j=1
��l(i, j) − �̃c(i, j)�

�2
��

+ p
∑n

l=1

∑C

c=1
ulclog(ulc)

s.t.
∑C

c=1
ulc = 1, ulc ≥ 0,

(6)
ulc =

1

∑C

c�=1

⎡
⎢
⎢
⎣

exp

�
1

p

�
1−exp

�
−β

�
1

2

∑k

i,j=1
��l(i,j)−�̃c(i,j)�

�2
���

exp

�
1

p

�
1−exp

�
−β

�
1

2

∑k

i,j=1
��l(i,j)−�̃c� (i,j)�

�2
���

⎤
⎥
⎥
⎦
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 we also define the model henceforth called Exp-FCMdKentroot
.

For these entropy-based methods, β is defined as D’Urso et al. (2018):

where �̃q ∶ q = argmin1≤l≤n
∑n

l�=1
d2(�l, �̃l� ).

Remark 1  By replacing d2
exp

(�l, �̃c) with d2(�l, �̃c) in the objective functions (2) and (5), 
the methods reduce to the FCMd methods based on the squared Kemeny distance, i.e. 
to their non-robust versions; henceforth, we denote them with FCMdK and FCMdKent, 
respectively.

3.4 � The Choice of Number of Clusters

In general, the partitional clustering algorithms require the researcher to set the number of 
clusters C to be generated.

In this study, to select the optimal number of clusters C we adopt the Fuzzy Silhouette 
index (Campello and Hruschka, 2006), one of the most known cluster internal validity crite-
ria, the mathematical definition of which is given below.

 Consider a data object j ∈ {1, 2,… , n} belonging to cluster p ∈ {1,… ,C} . Let apj be 
the average distance of object j to all other objects belonging to the same cluster p and let 
dqj be the average distance of j to all objects belonging to another cluster q, different than p. 
Denote with bpj the minimum dqj over q = 1,…,C, (q≠p), that is the dissimilarity of object 

dexp(�l, �̃c) =

�����1 − exp

⎡
⎢
⎢
⎣
−β

�
1

2

k�

i,j=1

��l(i, j) − �̃c(i, j)�

�2⎤
⎥
⎥
⎦
,

(7)β ≡ β2 =

�∑n

l=1
d2(�l, �̃q)

n

�−1

Algorithm 2   Exponential Kemeny-based FCMd algorithm with entropy regularization
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j with respect to its closest cluster. Campello and Hruschka (2006) defined the silhouette of 
object j as:

The Fuzzy Silhouette (FS) is, then, defined as:

μpj and μqj correspond to the first and second largest element of the j-th column of the fuzzy 
partition matrix, respectively, while α ≥ 0 is a weighting coefficient.

Therefore, it is a weighted average of the individual silhouettes sj. A higher value of FS 
means a better assignment of the units to the clusters which implies that, simultaneously, 
the intra-cluster distance is minimized while the inter-cluster distance is maximized.

3.5 � Advantages of the Proposed Clustering Methods

The proposed clustering approaches inherit all the theoretical advantages related to the 
fuzzy framework, the Partitioning Around Medoids (PAM) technique, the robustness 
of clustering procedures and the Kemeny distance as briefly described in the following 
paragraphs.

3.5.1 � Advantages Connected to Fuzzy Clustering

Fuzzy clustering is particularly suitable in many real applications since identifying unam-
biguous boundaries between clusters is, often, very difficult (McBratney & Moore, 1985; 
Wedel & Kamakura, 1998). Moreover, compared with hard clustering, the membership 
degrees matrix arising from fuzzy methods also provides a useful indication of the exist-
ence of a second best cluster to consider (Everitt & Landau, 2001). In addition, fuzzy clus-
tering is computationally efficient and works well with distribution-free methods (Hwang 
et al., 2007).

3.5.2 � Advantages Connected to Fuzzy Partioning Around Medoids (FPAM) Procedure

The FCMd clustering is the extension of the PAM technique in a fuzzy context. Unlike 
fuzzy C-Means, it is able to identify an observed prototype rather than a virtual one that is 
particularly suitable in the case of permutations. It also reduces computational complexity 
compared to the fuzzy C-Means algorithm because the distance matrix is computed once 
during the iterative clustering procedure (D’Urso et al., 2018).

3.5.3 � Advantages Connected to Robustness of Clustering Process

The robustness against outliers is achieved by using the exponential transformation (Wu 
& Yang, 2002) of the Kemeny distance. It guarantees that clustering procedure is able to 
neutralize the disruptive effect of the outliers, by recovering the structure of natural groups.

(8)sj =
(bpj − apj)

max(bpj − apj)
.

(9)FS =

∑N

j=1
(�pj − �qj)

�sj
∑N

j=1
(�pj − �qj)

�
.

609



Journal of Classification (2022) 39:600-647

3.5.4 � Advantages Connected to Kemeny Distance

The Kemeny distance is one of the most common chosen distances, especially for rankings 
with ties; it is equivalent to the Kendall distance in the case of complete rankings but dif-
fers from the latter in the way of handling tied rankings. It allows great flexibility since tied 
rankings are widely used in most applications.

4 � Simulation Study

4.1 � Simulation Plan

To assess the performance of the proposed clustering methods Exp-FCMdK, Exp-FCMd-
Kent and Exp-FCMdKentroot

 , a simulation plan was defined following the scheme below.

4.1.1 � Generative Models for Rankings

As the first ranking generator process, we chose the well-known Mallows model (Mallows, 
1957), which is an exponential model defined by a central permutation �0 and a spread 
parameter 𝜃. For positive values of 𝜃, �0 is the mode of the distribution, the most likely per-
mutation. The probability associated with any other permutation decreases exponentially 
as a function of its distance from the central permutation and it is defined as

 where ψ(𝜃) is a normalization constant. When 𝜃 = 0, all rankings have a uniform prob-
ability to be sampled. The rmm() function of the R package PerMallows (Irurozki et al., 
2016) was used.

As the second ranking generator process, we used the Insertion Sorting Rank (ISR) 
model for which a ranking is a result of a sorting process of the k objects, based on paired 
comparisons and proposed by Biernacki and Jacques (2013) according to, given a ranking 
�, a central ranking �0 and a parameter υ ∈ [0.5,1]:

 where the sum over � ∈ Pk corresponds to all the possible initial presentation orders of the 
objects to rank while G(�,�,�0) is equal to the number of good paired comparisons during 
the sorting process leading to return � when the presentation order is �. With A(�,�), they 
denote the total number of paired comparisons. The closer υ is to one, the more the dis-
tribution of rankings is tightened around �0 while when υ = 0.5 a uniform distribution is 
assumed. The simulISR() function of the R package Rankcluster (Jacques et al., 2014) 
was used.

4.1.2 � Number of Clusters, Items, and Outliers

For each ranking generative model, we simulated six scenarios with increasing complexity 
due to the contamination of the natural groups with clustered and radial outliers and then 
noisy data as summarized in Table 1.

p(�) =
exp(−�d(�,�0))

�(�))
,

p(�,�
0
, �) =

1

k!

∑

�∈Pk

�(�|�,�
0
, �) =

1

k!

∑

�∈Pk

pG(�,�,�0)(1 − �)A(�,�)−G(�,�,�0),
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We considered 2 and 3 groups, equally sized so that, in the former case, the group size is 
30 while in the latter 20 and generated by the following central permutations:

–	 2 groups: 1�0 = {1,2,3,4,5} and 2�0 = {3,1,2,5,4}
–	 3 groups: 1�0 = {1,2,3,4,5,6,7}, 2�0 = {1,2,4,7,6,5,3} and 3�0 = {1,5,2,6,3,4,7}.

When the generative model is the Mallows model with Kendall distance, 𝜃 = 1.5 
while, when it is the ISR model, υ = 0.9. Outliers have been generated by the following 
central permutations:

–	 2 groups: Out�0 = {5,4,3,2,1}
–	 3 groups: Out�0 = {7,6,5,4,3,2,1}

but with different spread parameters to simulate the different types of outliers. Therefore, 
clustered outliers were generated by the above central permutations setting 𝜃 = 2 for the 
Mallows model with two groups and 𝜃 = 1.5 with three groups while we set υ = 0.9 for the 
ISR model for both two and three groups.

To simulate radial outliers, we generated 100 permutations fixing 𝜃 = 0 and υ = 0.5 
respectively, i.e. we considered a uniform distribution for rankings in the universe of pos-
sible permutations, and then we sampled only 12 among them for which the probability of 
being generated by the centers of the clusters was very low. For noisy data, we considered 
the first 20 permutations simulated by the same uniform distribution as above.

In Fig. 2, examples of clustered outliers with three well-separated natural groups, radial 
outliers with two less-separated natural groups and noisy data with three well-separated 
natural groups are shown using the Sammon projection in a two dimensional space.

For each combination of generative model and number of groups, we simulated 30 arti-
ficial dataset leading to 120 baseline datasets but considering all six scenarios for which a 
certain amount of outliers was added, the number of different datasets evaluated increases 
to 720. The simulated natural groups must be the same for comparative purposes in terms 
of robustness against outliers and noisy data.

We argue that all modal permutations used to generate outliers were chosen so that their 
Kemeny distance from each modal permutation has been equal or close to the maximum 
value of the Kemeny distance (e.g. for two permutations of length 5 the maximum distance 
is equal to 20 while it is 42 for two permutations of length 7). Moreover, we simulated only 
full rankings since the R functions used to simulate rankings do not allow to generate from 
central permutations with ties.

The proposed robust methods were compared with the corresponding non robust base-
line methods FCMdK and FCMdKent and the mixture model–based approach proposed by 

Table 1   The six considered 
simulated scenarios

Scenario Type of noise Objects Number of 
noisy\outlying 
objects

I (Baseline) None 60                 0
II Clustered outliers 63                 3
III Clustered outliers 66                 6
IV Radial outliers 66                 6
V Radial outliers 72                 12
VI Noisy data 80                  20
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Fig. 2   An example of clustered 
and radial outliers and noisy data
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Jacques and Biernacki (2014) which is the extension of the Insertion Sorting Rank (ISR) 
model. The heterogeneity of the rank population is modelled by a mixture of ISR. Maxi-
mum likelihood estimation is performed through a SEM-Gibbs algorithm, allowing par-
tial rankings too. For the Mixture ISR model (henceforth, M-ISR), the membership degree 
matrix is represented by the conditional probabilities estimates for the observed ranks 
to belong to each cluster. The model is implemented in the R package Rankcluster 
(Jacques et al., 2014).

The additional model used for comparison purposes is the K-Median Cluster Compo-
nent Analysis (henceforth, CCA​) proposed by D’Ambrosio and Heiser (2019), the most 
similar to our models in that it is a probabilistic-distance clustering model based on the 
same Kemeny distance. As pointed out by D’Ambrosio and Heiser (2019), the method 
allows each ranking to be assigned to all C clusters by a membership probability, thus 
mimicking a fuzzy clustering with exponent m = 2. The model is implemented in the R 
package ConsRankClass (D’Ambrosio, 2021).

For each simulated setup, the 30 fuzzy partitions related to the 60 permutations (only 
those belonging to the natural groups excluding the outliers and the noisy data) are com-
pared with the reference crisp partition using the Adjusted Concordance Index (ACI) pro-
posed by D’Ambrosio et al. (2021); this is an external validation criterion that corrects the 
normalized degree of concordance (NDC) introduced by Hullermeier et al. (2011) for the 
agreement that may be due to chance. Lying in the range [− 1,1], it is equal to 1 in the case 
of perfect correspondence between the two partitions; thus, the higher the value, the better 
the agreement between the two partitions.

4.2 � Simulation Results

In this section, simulation results are provided for each scenario of interest. We set C 
according to the number of simulated groups in each configuration; then, we applied the 
clustering methods varying m ∈{1.3,1.5,2} for the FCMdK and Exp-FCMdK methods 
while p ∈{0.05,0.1,0.2} for the Exp-FCMdKent and Exp-FCMdKentroot

 ones. For the FCMd-
Kent we considered p ∈{0.01,0.02,0.04}3.

We ran all algorithms considering 100 random restarts with an execution time of a few 
seconds. The associated code has been implemented in R.

For the CCA​ method, we used the branch-and-bound algorithm to find the median rank-
ing fixing the number of replications to 10 (as suggested by the authors) while for the M-
ISR mixture model, we set the maxTry to 10 and the run to 2. Simulation results for both 
ranking generative models and all six scenarios are shown in Figs.  C.1–C.8, in Appen-
dix C, in which we plotted the violin plots of the Adjusted Concordance index for each 
method. The subscript in the label provides the value of the corresponding m and p param-
eters depending on the model specification.

As a first piece of evidence, simulation results are very promising and confirm what is 
already known in the literature: the FCMd method is only a “timid robustification” of clus-
tering against outliers (García-Escudero and Gordaliza, 2005). It is worth specifying that 
the methods are not directly comparable in terms of performance as fuzziness increases 
since there is no direct correspondence between the value of the “p” parameter in the 
entropy-based method and that of the “m” exponent in the other fuzzy-type method.

3  The value of p depends on the scaling of the d(.) matrix so it must be set accordingly. Therefore, we used 
the normalized Kemeny distance so that the distance lies in [0, 1] as for the exponential transformation.
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Direct comparability in terms of performance as the fuzziness increases is possi-
ble within the methods based on “m” and between them and the CCA model as well as 
between the 2 robust entropy-based methods.

In general, as expected, the performances of all methods, in terms of ACI values, tend 
to decrease as the fuzziness increases because we compared a crisp partition with a fuzzy 
one.

We argue that the choice of the best value of the fuzziness parameter strictly depends on 
the scaling of the distance used as well as on the degree of separation among groups; thus, 
in the practical applications, we recommend setting it taking into account all these issues.

From the simulation results based on the ISR scheme for 2 and 3 groups, one can arise 
the following considerations. If it was reasonable to expect that, assuming the ISR genera-
tive scheme, the mixture ISR clustering model based on the same generative process would 
perform well, even in the presence of outliers, we cannot fail to emphasize the good perfor-
mance of our robust clustering methods.

In particular, the Exp-FCMdKentroot
 entropy-based robust method has the best perfor-

mance; in the case of two simulated natural groups (see Figs. C.1 and C.2), its good behav-
iour, when p <= 0.10 becomes evident especially when the amount of radial outliers is 
consistent or noisy data are present. Compared with the Exp-FCMdKent robust method, the 
Exp-FCMdKentroot

 is indeed more stable especially when radial outliers contaminates the 
natural clusters showing a ACI distribution that is tighter.

As far as the M-ISR model is concerned, it seems however less robust against radial out-
liers and noisy permutations when these increase in number (see Fig. C.2).

The contribution of our clustering methods is particularly evident when we go to com-
pare their performance with that of the CCA model. Even when we consider the Exp-
FCMdK with m = 2, our fuzzy method always outperforms CCA​. Looking at the results in 
more detail, since CCA is a median-based model, it seems, on the one hand, to be able to 
identify outliers by assigning them equal membership degrees (1/C), like the Exp-FCMdK 
methods, but on the other hand, it produces, in general, too blurred partitions. This leads to 
a low performance in terms of values of the ACI, especially when outliers and noisy data 
occur. Then, it is fairly evident how the possibility to tune the level of fuzziness adds con-
siderable flexibility to this class of methods.

When we consider the same sampling scheme but with three natural groups (see Figs. C.3 
and C.4), the M − ISR performs quite well again but in the case of clustered outliers.

We argue that, however, looking at its violin plots, its levels of performance decrease in 
general as the amount of outliers or noisy data increases.

Regarding our robust methods, the best performance is associated with the Exp-
FCMdKentroot

 if we compare the ACI distributions when a large number of radial outliers or 
noisy data are present (and p is low).

Looking at the violin plots of the CCA​ method, although they have more or less the 
same shape regardless of the type of contamination, they show very low performance due 
to the tendency of the method to provide partitions that are too blurred.

When a Mallows scheme and two groups are considered (see Figs. C.5 and C.6), the 
Exp-FCMdKentroot

 outperforms the other methods especially if we look at the ACI distribu-
tion in the case of radial outliers and noisy data. We point out that a good performance is 
also associated with the Exp-FCMdK method.

If we consider the Mallows scheme with three groups (see Figs. C.7 and C.8), the very 
good performances of our robust methods (except for high values of the p and m param-
eters) are more evident. Moreover, we notice that, in this simulated setup, the M-ISR model 
has lower performances, followed by CCA​.
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Summing up, this simulation plan proved the excellent behaviour of the Exp-
FCMdKentroot

 method in particular, which becomes evident especially in the case of radial 
outliers and noisy data. It is less sensitive to the value of the fuzziness parameter showing 
higher values of the Adjusted Concordance index as well as tightened distributions of the 
same index.

The M-ISR is, however, a good competitor while the CCA​ method produces too blurred 
partitions thus drastically reducing its performance especially when the Mallows sample 
scheme is assumed.

5 � Application to Real Data

In this section, we applied the above methods to two real datasets: the Gaming Platforms 
dataset due to Fok et al. (2012) and available in the R package PLMIX (Mollica and Tar-
della, 2017) and the University rankings dataset, including tied rankings and available in 
the R package ConsRankClass (D’Ambrosio, 2021).

5.1 � The Gaming Platforms Dataset

The Gaming Platforms dataset contains the results of a survey conducted on a sample of 91 
Dutch students who rank, from the most-liked (Rank 1) to the least-liked (Rank 6), 6 gam-
ing platforms : 1 = X-Box, 2 = PlayStation, 3 = PSPortable, 4 = GameCube, 5 = Game-
Boy and 6 = Personal Computer (PC). The best solution for each robust method has been 
chosen based on the combination of C and the fuzziness parameter (m or p depending on 
the method) that maximizes the Fuzzy Silhouette index4.

In particular, we varied C ∈ {2, 3, 4, 5, 6, 7, 8} , m ∈ {1.3, 1.5, 1.7, 2} and 
p ∈ {0.05, 0.10, 0.15}

For the M-ISR model, the best solution has been chosen according to the BIC criterion 
while for the CCA​ model according to the Fuzzy Silhouette.

All clustering methods identified two groups but for the Exp-FCMdKentroot
 and CCA​ 

which identified three groups. The centers are shown in Table  2 while the membership 
degrees matrices are shown in Table D.4.

As first evidence, it can be seen that, within each method, the centers of the groups dif-
fer mainly in the podium, assigned to the Personal Computer or the PlayStation depending 
on the case; the X-Box is almost always ranked as the second best gaming platform while 
the GameBoy and GameCube are the least preferred ones.

In detail, the Exp-FCMdK and Exp-FCMdKent methods differ only in the second 
medoid: their Kemeny distance is equal to 2, so they are very similar; indeed the prefer-
ences are the same except for the inversion of the ranking between the PSPortable and the 
Personal Computer. We also argue that the medoid 2 of the Exp-FCMdK is also equal both 
to the medoid 3 of the Exp-FCMdKentroot

 and the third median ranking of the CCA​. The M-ISR 
model has in common with the latter the second center while the center 1 identifies the group 
of subjects for which the best platform is the X-Box followed by the PlayStation and Personal 
Computer.

4  We point that the best method is also chosen according to the trade-off between maximizing the FS index 
and avoiding partitions that are too blurred.
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The main interesting evidence is that the Exp-FCMdKentroot
 and the CCA​ share the sec-

ond and third center, but differ in the first one. Looking at the medoid 1 identified by the 
Exp-FCMdKentroot

 algorithm, it can be seen that the preferred platform is again the Per-
sonal Computer, but with a rather different ranking of the other gaming platforms. The 
CCA​ model does not identify this group, while it identifies the group of subjects whose 
median ranking has an opposite liking to that of the other two groups, assigning to  the 
PlayStation and Personal Computer the last positions. We argue that students belonging 
to this small group are the same as those to which the Exp-FCMdKentroot

 method assigns 
equal membership degrees in all three clusters, thus those identified by the robust method 
as outliers (see Table D.4). The presence of the third natural group detected by the Exp-
FCMdKentroot

 but not by the others could be due to the ability of this method to neutralize 
the disruptive effect of outliers and discover an additional cluster.

The M-ISR model seems to be the most affected by the presence of noisy data since all 
scattered permutations have been included in one group.

5.2 � The University Rankings Dataset

The dataset on university rankings concerns a survey of 303 students attending the 
Vienna University of Economics. They were asked to indicate preferences for the fol-
lowing 6 universities: London, Paris, Milan, St. Gallen, Barcelona, and Stockholm. This 
dataset is interesting because it contains tied rankings. We applied the Exp-FCMdKentroot

 
robust method and, for comparison purposes, the CCA​ method based on the same dis-
tance. The Fuzzy Silhouette index suggested 2 groups for both methods and, as far as 
the Exp-FCMdKentroot

 is concerned, we chose the value of p equal to 0.10. Table 3 shows 
the two centers for each method while their membership degrees matrices are reported 
in Table D.5 Looking at the centers, one can notice that the two clustering methods lead 
to the same centers but for the first one which only differs in assigning, in the case of the 
Exp-FCMdKentroot

 , rank 2 to Paris and rank 3 to St. Gallen while the CCA​ model assigns 
to them the same second best position.

Looking at the membership degree matrices in Table D.5, as expected by simulations, 
the main difference between the two methods is that the CCA​ method provides a partition 
fuzzier than the Exp-FCMdKentroot

 . Based on the latter method and the crisp assignment of 
the units to the clusters using a cut-off value of 0.7, the number of students per group is 71 
and 78 respectively, while the fuzzy units are 635.

The medoids associated with the Exp-FCMdKentroot
 are representative of one group for 

which, after London and Paris, the best choice is St. Gallen followed by the remaining 
ones in last position and another group according to which, keeping the first two places 
unchanged, the third best study location is Barcelona and then Milan while St. Gallen is 
ranked last here together with Stockholm.

This dataset contains eight background binary covariates concerning the following 
aspects: Stud (main discipline of study with categories commerce-other), Eng (knowledge 
of English with categories good-poor), French (knowledge of French with categories good-
poor), Spanish (knowledge of Spanish with categories good-poor), Italian (knowledge of 

5  We argue that the number of fuzzy units can be reduced by setting p = 0.05 obtaining the same partition 
but with a reduced number of fuzzy units.
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Italian with categories good-poor), Work (full-time employment while studying with cat-
egories no-yes), Degree (intention to take an international degree with categories no-yes) 
and Gender (sex with categories female-male).

Figure  3 shows the relative frequency distribution of these variables in the groups 
(considering only the non-fuzzy units) compared with the same frequency distribution 
in the whole sample of students. The group of those preferring Barcelona to St. Gallen 
is characterized by a percentage of students studying commerce lower than that of the 
second group and the whole sample but with a better knowledge of Spanish and Ital-
ian. This group is also characterized by a higher share of worker-students and a lower 
percentage of students who are intentioned to take an international degree. As far as the 
gender is concerned, the first group seems characterized by a slightly higher percentage 
of female students.

Summing up, the language knowledge and the international profile of the degree are the 
main drivers conditioning the preference among St. Gallen and Barcelona (and Milan).

6 � Concluding Remarks

This work focuses on the definition of two robust fuzzy clustering techniques with the two-
fold aim of detecting homogeneous groups of judges, according to their preferences on a 
set of items, and neutralizing the effects of possible outliers or noisy data during the clus-
tering procedure. The use of the FCMd method according to the two different approaches 
to deal with fuzziness and based on the exponential transformation of the Kemeny distance 
accomplishes all these goals simultaneously.

Moreover, the use of the Kemeny distance has the added value of making the method 
more flexible, extending its field of application thanks to its ability to handle tied rankings 
too.

Simulation results are very promising and show the good performance of our pro-
posals, especially that of the Exp-FCMdKentroot

 , which is robust against the most insid-
ious type of outliers, the radial ones, and against noisy permutations that often occur 
when handling real data. It seems less sensitive to the value of the fuzziness param-
eter showing higher values of the Adjusted Concordance index as well as a more 
tightened distribution of the same index.

Our proposals could be seen as valid alternatives to the M-ISR model and, in particu-
lar, to the CCA​ one. As already said, our models have the further advantage of tuning the 
fuzziness parameter allowing us to obtain the right centers of the clusters and at the same 
time a much less fuzzy partition, ensuring robustness against noisy data and anomalous 
permutations.

Furthermore, we also showed that our model-free approach works well under different 
ranking generative schemes.

As a further development of this work, to increase the flexibility of this class of meth-
ods, we will focus on defining a weighted distance-based fuzzy clustering method that 
allows to use different weights for different ranks, believing that the weights can signifi-
cantly improve the performance of these methods (Lee & Yu, 2012).
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Fig. 3   Gaming Platforms dataset: the associated covariates
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Appendix A

Proof  We consider the Lagrangian function:

where �l = (ul1,… , ulc,… , ulC)
� and λ is the Lagrange multiplier. Therefore, we set the 

first derivatives of (10) with respect to ulc and λ equal to zero, yielding:

From (11), we obtain:

and, by considering (12):

Finally, substituting (14) in (13), we obtain ulc as
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Appendix B

Proof  We consider the Lagrangian function:

where �l = (ul1,… , ulc,… , ulC)
� and λ is the Lagrange multiplier. Therefore, we set the 

first derivatives of (16) with respect to ulc and λ equal to zero, yielding:

From (17), we obtain:

and, then:

By considering (18):

and by replacing Equation (21) in (20), we have:
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Appendix C

Figures C.1, C.2, C.3, C.4, C.5, C.6, C.7, C.8.

Fig. C.1   ISR generative model with two groups: boxplots of ACI indexes for scenarios (I) 2 natural groups 
and no outliers, (II) 2 natural groups and 3 clustered outliers and (III) 2 natural groups and 6 clustered 
outliers. The subscript in the label provides the value of the corresponding m parameter for the FCMdK 
and Exp-FCMdK methods and of the p parameter for the Exp-FCMdKent, Exp-FCMdKentroot

 and FCMdKent 
methods
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Fig. C.2   ISR generative model with two groups: boxplots of ACI indexes for scenarios (IV) 2 natural 
groups and 6 radial outliers, (V) 2 natural groups and 12 radial outliers and (VI) 2 natural groups and 20 
noisy data. The subscript in the label provides the value of the corresponding m parameter for the FCMdK 
and Exp-FCMdK methods and of the p parameter for the Exp-FCMdKent, Exp-FCMdKentroot

 and FCMdKent 
methods
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Fig. C.3   ISR generative model with three groups: boxplots of ACI indexes for scenarios (I) 3 natural groups 
and no outliers, (II) 3 natural groups and 3 clustered outliers and (III) 3 natural groups and 6 clustered 
outliers. The subscript in the label provides the value of the corresponding m parameter for the FCMdK 
and Exp-FCMdK methods and of the p parameter for the Exp-FCMdKent, Exp-FCMdKentroot

 and FCMdKent 
methods
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Fig. C.4   ISR generative model with three groups: boxplots of ACI indexes for scenarios (IV) 3 natural 
groups and 6 radial outliers, (V) 3 natural groups and 12 radial outliers and (VI) 3 natural groups and 20 
noisy data. The subscript in the label provides the value of the corresponding m parameter for the FCMdK 
and Exp-FCMdK methods and of the p parameter for the Exp-FCMdKent, Exp-FCMdKentroot

 and FCMdKent 
methods
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Fig. C.5   Mallows generative model with two groups: boxplots of ACI indexes for scenarios (I) 2 natu-
ral groups and no outliers, (II) 2 natural groups and 3 clustered outliers and (III) 2 natural groups and 6 
clustered outliers. The subscript in the label provides the value of the corresponding m parameter for the 
FCMdK and Exp-FCMdK methods and of the p parameter for the Exp-FCMdKent, Exp-FCMdKentroot

 and 
FCMdKent methods
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Fig. C.6   Mallows generative model with two groups: boxplots of ACI indexes for scenarios (IV) 2 natural 
groups and 6 radial outliers, (V) 2 natural groups and 12 radial outliers and (VI) 2 natural groups and 20 
noisy data. The subscript in the label provides the value of the corresponding m parameter for the FCMdK 
and Exp-FCMdK methods and of the p parameter for the Exp-FCMdKent, Exp-FCMdKentroot

 and FCMdKent 
methods
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Fig. C.7   Mallows generative model with three groups: boxplots of ACI indexes for scenarios (I) 3 natu-
ral groups and no outliers, (II) 3 natural groups and 3 clustered outliers and (III) 3 natural groups and 6 
clustered outliers. The subscript in the label provides the value of the corresponding m parameter for the 
FCMdK and Exp-FCMdK methods and of the p parameter for the Exp-FCMdKent, Exp-FCMdKentroot

 and 
FCMdKent methods
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Fig. C.8   Mallows generative model with three groups: boxplots of ACI indexes for scenarios (IV) 3 natural 
groups and 6 radial outliers, (V) 3 natural groups and 12 radial outliers and (VI) 3 natural groups and 20 
noisy data. The subscript in the label provides the value of the corresponding m parameter for the FCMdK 
and Exp-FCMdK methods and of the p parameter for the Exp-FCMdKent, Exp-FCMdKentroot

 and FCMdKent 
methods
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