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Abstract
In unsupervised machine learning, agreement between partitions is commonly assessed with
so-called external validity indices. Researchers tend to use and report indices that quantify
agreement between two partitions for all clusters simultaneously. Commonly used examples
are the Rand index and the adjusted Rand index. Since these overall measures give a general
notion of what is going on, their values are usually hard to interpret. The goal of this study
is to provide a thorough understanding of the adjusted Rand index as well as many other
partition comparison indices based on counting object pairs. It is shown that many overall
indices based on the pair-counting approach can be decomposed into indices that reflect the
degree of agreement on the level of individual clusters. The decompositions (1) show that
the overall indices can be interpreted as summary statistics of the agreement on the cluster
level, (2) specify how these overall indices are related to the indices for individual clus-
ters, and (3) show that the overall indices are affected by cluster size imbalance: if cluster
sizes are unbalanced these overall measures will primarily reflect the degree of agreement
between the partitions on the large clusters, and will provide much less information on the
agreement on smaller clusters. Furthermore, the value of Rand-like indices is determined to
a large extent by the number of pairs of objects that are not joined in either of the partitions.

Keywords Clustering comparison · External validity indices ·
Reference standard partition · Trial partition · Wallace indices · Cluster size imbalance

1 Introduction

The problem of measuring agreement between two different partitions of the same finite
set of objects reappears continually in many scientific disciplines (Hennig et al., 2015;
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Hubert, 1977; Pfitzner et al., 2009; Van der Hoef & Warrens, 2019). For example, in unsu-
pervised machine learning, to evaluate the performance of a clustering method, researchers
typically assess agreement between a reference standard partition that purports to represent
the true cluster structure of the objects (golden standard), and a trial partition produced by
the method that is being evaluated (Halkidi & Batiskis, 2002; Jain, 2010; Wallace, 1983).
High agreement between the two partitions may indicate good recovery of the true cluster
structure.

Agreement between partitions can be assessed with so-called external validity indices
(Albatineh et al., 2006; Brun et al., 2007; Pfitzner et al., 1996; Warrens, 2008b, d). Exter-
nal validity indices can be roughly categorized into three approaches, namely 1) counting
object pairs (Albatineh et al., 2006; Albatineh & Niewiadomska-Bugaj, 2011a; Warrens,
2008c), 2) information theory (Vinh et al., 2009; 2010; Kvalseth, 1987), and 3) match-
ing sets (Fränti et al., 2014; Steinley et al., 2016). Most external validity indices are of the
pair-counting approach, which is based on counting pairs of objects placed in identical and
different clusters. Information theoretic indices are based on concepts like the mutual infor-
mation, Shannon entropy (Shannon, 1948) and joint entropy (Kvalseth, 1987; Pfitzner et al.,
2009). These indices assess the difference in information between two partitions. Finally,
set-matching indices are based on matching entire clusters, usually using the matched parts
of each cluster, while ignoring the unmatched parts (Fränti et al., 2014; Meilă, 2007; 2016).

Commonly used external validity indices are the Rand index (Rand, 1971) and the
Hubert-Arabie adjusted Rand index (Hubert & Arabie, 1985; Steinley, 2004; Steinley et al.,
2016; Steinley et al., 2015; Warrens, 2008c; Chacón, 2019; Chacón & Rastrojo, 2020). Both
these indices are based on counting pairs of objects. The adjusted Rand index corrects the
Rand index for agreement due to chance (Albatineh et al., 2006; Warrens, 2008b). Milli-
gan and Cooper (1986), Milligan (1996), and Steinley (2004) proposed to use the adjusted
Rand index as a standard tool in cluster validation research. However, the Rand index con-
tinues to be a popular validity index, probably because it has a simple, natural interpretation
(Anderson et al., 2010).

Researchers tend to use and report validity indices that quantify agreement between two
partitions for all clusters simultaneously (Albatineh & Niewiadomska-Bugaj, 2011b; Alok
et al., 2014; Kim et al., 2009; Milligan & Cooper, 1986; Yu et al., 2012). Since these overall
measures give a general notion of what is going on, it is usually difficult to pinpoint what
their values, usually between 0 and 1, actually reflect. Values of overall indices are generally
hard to interpret, except for values close to 0 or 1.

The goal of this study is to provide a thorough understanding of the adjusted Rand index
as well as many other indices based on counting object pairs. We analyze three different
families of indices. We focus on indices based on pair-counting because these are most
commonly used (Pfitzner et al., 2009; Van der Hoef & Warrens, 2019). To enhance our
understanding of overall indices, we show that various overall indices can be decomposed
into indices that reflect the degree of agreement on the level of the individual clusters. More
precisely, we show that the overall indices are weighted means (variously defined) of indices
that can be used to assess agreement for individual clusters of the partitions. In many cases
the weights of these means are quadratic functions of the cluster sizes.

The decompositions show that, if the cluster sizes differ, measures like the Jaccard
index (Jaccard, 1912) and the Hubert-Arabie adjusted Rand index tend to mainly reflect the
degree of agreement between the partitions on the large clusters. The indices provide lit-
tle to no information on the smaller clusters. This susceptibility to cluster size imbalance
has been observed previously in the literature for some indices (Pfitzner et al., 2009; Van
der Hoef & Warrens, 2019). The analyses presented in this paper amplify these previous
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studies by providing insight into how this phenomenon actually works and to which indices
it applies. Furthermore, the values of Rand-like indices are determined to a large extent by
the number of pairs of objects that are not joined in either of the partitions.

The paper is organized as follows. The notation is introduced in Section 2. In
Sections 3, 4 and 6 we present decompositions of three families of indices. Section 3 focuses
on indices that are functions of the two asymmetric Wallace indices (Wallace, 1983). Proto-
typical examples of this family are the Jaccard index and an index by Fowlkes and Mallows
(1983). Decompositions of indices that are adjusted for agreement for chance (Albatineh
et al., 2006; Warrens, 2008b) are presented in Section 4. A prototypical example of this
family is the Hubert-Arabie adjusted Rand index. In Section 5 we present artificial and a
real-world example to illustrate how the indices associated with the families in Sections 3
and 4 are related. In Section 6 we analyze indices that are functions of both the Wallace
indices and two indices that focus on pairs of objects that are not joined together in the par-
titions. A prototypical example of this family is the Rand index (Rand, 1971). In Section 6.2
we consider particular properties of the Rand-like family defined in Section 6.1. Finally,
Section 7 contains a discussion, our recommendations and some ideas for future research.

2 Notation

In this section we introduce the notation. Suppose the data are scores of n objects on k

variables. Let U = {U1, U2, . . . , UI } and Z = {Z1, Z2, . . . , ZJ } denote two partitions of
the objects, for example, a reference standard partition and a trial partition that was obtained
with a clustering method that is being evaluated. Let N = {

nij

}
be a matching table of size

I × J where nij indicates the number of objects placed in cluster Ui of the first partition
and in cluster Zj of the second partition. The cluster sizes in respective partitions are the
row and column totals of N, that is,

|Ui | = ni+ =
J∑

j=1

nij and |Zj | = n+j =
I∑

i=1

nij . (1)

Table 1 is an example of matching table N. Table 1 is based on a data set that contains infor-
mation on E. coli sequences (Horton & Nakai, 1996; Lichman, 2013). The data set consists
of 336 proteins belonging to 8 classes (reference partition), which are the localization sites:
cytoplasmic (cp), inner membrane without signal sequence (im), inner membrane lipopro-
tein (imL), inner membrane, cleavable signal sequence (imS), inner membrane proteins with
an uncleavable signal sequence (imU), outer membrane (om), outer membrane lipoprotein
(omL), and periplasmic (pp). For all proteins, 7 features were calculated from amino acid
sequences.

Table 1 presents the matching table of the reference partition and a K-means clustering
(Huo et al., 2016; Jain, 2010; Steinley, 2006) of the E. coli sequences. All 7 features were
used in the K-means clustering, and solutions with 3–10 clusters were estimated. The clus-
tering solution with K = 4 clusters had the highest value of the Dunn index (Dunn, 1974).
Thus, the trial partition of Table 1 consists of 4 clusters.

Following Fowlkes and Mallows (1983), the information in the matching table N can
be summarized in a fourfold contingency table (like Table 2) by counting several different
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Table 1 Matching table of a reference partition and a K-means clustering of E. coli sequences

Reference partition Trial partition

Proteins Z1 Z2 Z3 Z4 Totals

cp = U1 5 0 137 1 143

im = U2 8 0 1 68 77

imL = U3 0 1 0 1 2

imS = U4 1 0 0 1 2

imU = U5 0 0 1 34 35

om = U6 2 18 0 0 20

omL = U7 0 5 0 0 5

pp = U8 46 1 4 1 52

Totals 62 25 143 106 336

types of pairs of objects: N := n(n − 1)/2 is the total number of pairs of objects,

T :=
I∑

i=1

J∑

j=1

(
nij

2

)
(2)

is the number of object pairs that were placed in the same cluster in both partitions,

P :=
I∑

i=1

(
ni+
2

)
(3)

is the number of object pairs that were placed in the same cluster in partition U , and

Q :=
J∑

j=1

(
n+j

2

)
(4)

is the number of object pairs that were placed in the same cluster in partition Z. The bottom
panel of Table 2 gives a representation of the matching table in terms of the counts N , T , P

and Q. Furthermore, define a := T , b := P − T , c := Q − T and d := N + T − P − Q.
Quantity b (c) is the number of object pairs that were placed in the same cluster in partition

Table 2 Two 2 × 2 contingency table representations of matching table N

First partition Second partition

Pair in the same cluster Pair in different clusters Totals

Representation 1

Pair in the same cluster a b a + b

Pair in different clusters c d c + d

Totals a + c b + d N

Representation 2

Pair in the same cluster T P − T P

Pair in different clusters Q − T N + T − P − Q N − P

Totals Q N − Q N
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U (Z) but in different clusters in partition Z (U ). The quantity d is the number of object
pairs that are not joined in either of the partitions.

The top panel of Table 2 gives a representation of the matching table using the counts a,
b, c and d . The latter notational system is commonly used for expressing similarity measures
for 2 × 2 tables (Heiser & Warrens 2010; Warrens 2008a, b, d; Warrens 2019).

Several authors have proposed indices specifically for assessing agreement between par-
titions (Fowlkes & Mallows, 1983; Hubert & Arabie, 1985; Rand, 1971; Wallace, 1983).
However, if the agreement between the partitions is summarized as in the top panel of
Table 2, one may use any similarity index from the vast literature on 2× 2 tables (Albatineh
et al. 2006; Baulieu 1989; Hubálek 1982; Pfitzner et al. 2009; Warrens 2008a, d, e; Warrens
2019). Moreover, each index that has been specifically proposed for assessing agreement
between partitions, has a precursor in the literature on 2 × 2 tables (see Tables 4, 5 and 11
for specific examples).

Table 3 is the fourfold table corresponding to Table 1, and is an example of Table 2.
Table 3 summarizes the information in matching Table 1 on E. coli sequences in terms of
the four types of pairs of objects.

3 Functions of theWallace Indices

Wallace (1983) considers the following two asymmetric indices. The first index

W = T

P
= a

a + b
(5)

is the proportion of object pairs in the first partition that are also joined in the second
partition (Severiano et al., 2011). The second index

V = T

Q
= a

a + c
(6)

is the proportion of object pairs in the second partition that are also joined in the first par-
tition. Table 4 presents twelve examples of indices from the literature that are increasing
functions of conditional probabilities (5) and (6). Some of these functions, for example, the
Dice index (Dice, 1945)

D = 2WV

W + V
= 2T

P + Q
, (7)

which is the harmonic mean of (5) and (6), are rather simple functions of the Wallace indices
(e.g., sum, product, geometric mean, arithmetic mean, minimum, maximum), while other
functions, for example, the Jaccard coefficient, are more complicated functions of (5) and
(6). Table 4 is a list of partition comparison indices that are functions of both W and V .

Table 3 The 2 × 2 contingency table corresponding to Table 1

Reference partition Trial partition

Pair in the Pair in different Totals

same cluster cluster

Pair in the same cluster 13398 1804 15202

Pair in different clusters 4511 36567 41078

Totals 17909 38371 56280
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The middle column of Table 4 gives the formulas in terms of the regular 2 × 2 tables.
The last column of Table 4 gives the formula in terms of W and V . All indices in Table 4
are increasing functions of W and V . Hence, to understand all indices in Table 4, it is
instrumental to first understand the values produced by indices (5) and (6).

The Wallace indices can be decomposed into the following indices for the individual
clusters of partitions U and Z. Define for Ui ∈ U the (relative) weights

Pi :=
(

ni+
2

)
and pi := Pi

P
, (8)

which are, respectively, the number and proportion of object pairs in cluster Ui , and the
index

wi :=
J∑

j=1

(
nij

2

)/(
ni+
2

)
, (9)

which is the proportion of object pairs in cluster Ui that are joined in partition Z. For
example, for the first row of Table 1 (cluster U1) we have

P1 =
(

143

2

)
= 10153 and p1 = P1

P
= 10153

15202
= 0.67,

and

w1 =
(5

2

) + (0
2

) + (137
2

) + (1
2

)

(143
2

) = 10 + 9316

10153
= 0.92.

Furthermore, define for Zj ∈ Z the (relative) weights

Qj :=
(

n+j

2

)
and qj := Qj

Q
, (10)

which are, respectively, the number and proportion of object pairs in cluster Zj , and the
quantity

vj :=
I∑

i=1

(
nij

2

)/(
n+j

2

)
, (11)

which is the proportion of object pairs in cluster Zj that are joined in partition U .
Indices (9) and (11) can be used to assess the agreement between partitions U and Z on

the level of the individual clusters. Index (9) (or (11)) has value 1 if all objects in cluster Ui

(Zj ) are in precisely one cluster of partition Z (U ), and value 0 only if no two objects from
cluster Ui (Zj ) are paired together in partition Z (U ). Index (9) is a measure of sensitivity
(recall, classification rate) (Ting, 2011) that does not require any matching between clusters
from partitions U and Z.

We have the following decomposition for the first Wallace index. Index (5) is a weighted
average of the indices in (9) using the Pi’s (or pi’s) as weights:

W =

I∑

i=1
wiPi

I∑

i=1
Pi

=
I∑

i=1

wipi . (12)

Decomposition (12) shows that the overall W value will in large part be determined by the
wi values of the clusters with high Pi values, that is, the large clusters, since each Pi is a
quadratic function of the cluster size. The overall W value will be high if, for each large
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cluster, its corresponding objects are assigned to the same cluster of partition Z, regardless
of the wi values associated with smaller clusters.

Furthermore, we have the following decomposition for the second Wallace index. Index
(6) is a weighted average of the indices in (11) using the Qj ’s (or qj ’s) as weights:

V =

J∑

j=1
vjQj

J∑

j=1
Qj

=
J∑

j=1

vj qj . (13)

Similarly, decomposition (13) shows that the overall V value will in large part be determined
by the vj values of the clusters with high Qj values, that is, the large clusters. The overall
V value will be high if, for each large cluster, its corresponding objects are put in the same
cluster of partition U .

Decompositions (12) and (13) show that the indices in Table 4 are functions of the wi’s
and vj ’s of the individual clusters. Their values are largely determined by the wi values
and vj values associated with the large clusters. For example, the Dice index is simply a
weighted average of the wi’s and vj ’s, using the Pi’s and Qj ’s as weights:

D =

I∑

i=1
wiPi +

J∑

j=1
vjQj

I∑

i=1
Pi +

J∑

j=1
Qj

. (14)

The decompositions in (12), (13), and (14) are further explored with numerical examples in
Section 5.

4 Chance-Corrected Functions

Most indices from the literature have value 1 if there is perfect agreement between the two
partitions. However, for many indices it is unclear under which conditions their theoretical
lower bound, for example 0, is attained. Therefore, when partitions are compared, it is usu-
ally convenient that the index of choice has value 1 if the partitions are completely similar
and value 0 if the partitions are statistically independent. In this study, two partitions are
considered statistically independent if we have, for all i and j ,

(
nij

2

)
= 1

N

(
ni+
2

)(
n+j

2

)
,

that is, the binomial coefficient
(nij

2

)
can be factored into a product of binomial coefficients

with integers from the row and column totals. For example, the Wallace indices in (5) and
(6) have value 1 if the partitions are identical. However, their value is not necessarily 0 under
statistical independence of the partitions.

If a similarity measure S does not have value 0 under statistical independence, it can be
corrected for agreement due to chance using the formula

AS = S − E(S)

1 − E(S)
, (15)
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where expectation E(S) is conditional upon fixed row and column totals of matching table
N, and 1 is the maximum value of S regardless of the marginal numbers (Albatineh &
Niewiadomska-Bugaj, 2011a; Albatineh et al., 2006; Warrens, 2008b).

Assuming a generalized hypergeometric model for matching table N, we have the
expectation (Fowlkes & Mallows, 1983; Hubert & Arabie, 1985)

E

(
nij

2

)
= 1

N

(
ni+
2

)(
n+j

2

)
. (16)

Summing identity (16) over all cells of N we obtain

E (T ) = PQ

N
. (17)

Using Wallace index (5) in (15), together with identity (17), yields the adjusted index
(Severiano et al., 2011)

AW = NT − PQ

P(N − Q)
= ad − bc

(a + b)(b + d)
. (18)

Furthermore, inserting Wallace index (6) into (15) yields

AV = NT − PQ

Q(N − P)
= ad − bc

(a + c)(c + d)
. (19)

Table 5 presents five examples of indices from the literature that are increasing functions of
adjusted indices (18) and (19). A well-known example is the adjusted Rand index (Cohen,
1960; Hubert & Arabie, 1985; Steinley, 2004; Steinley et al., 2015; Steinley et al., 2016;
Warrens, 2008c)

AR = 2(NT − PQ)

N(P + Q) − 2PQ
= 2(ad − bc)

(a + b)(b + d) + (a + c)(c + d)
. (20)

The adjusted Rand index in (20) is the harmonic mean of (18) and (19)(19). If NT �= PQ,
we have AW > AR > AV if P < Q and AW < AR < AV if P > Q. The adjusted
Rand index is what we get if we use the Rand index (defined below) in (28) in correction
for chance formula (15). Moreover, the adjusted Rand index is also obtained if we use the
Dice index in (7) in (15), that is, AR = AD (Albatineh et al., 2006).

Indices (18) and (19) can be decomposed into the following indices for the individual
clusters of partitions U and Z. Using (9) in (15) we obtain

Awi =
N

J∑

j=1

(
nij

2

)
−

(
ni+
2

)
Q

(
ni+
2

)
(N − Q)

. (21)

Furthermore, inserting (11) into (15) yields

Avj =
N

I∑

i=1

(
nij

2

)
−

(
n+j

2

)
P

(
n+j

2

)
(N − P)

. (22)

Similar to indices (9) and (11), indices (21) and (22) can be used to assess the agreement
between partitions U and Z on the level of the individual clusters. Index (21) (or (22)) has
value 1 if all objects in cluster Ui (Zj ) are in precisely one cluster of Z (U ), and value 0
under statistical independence. Index (21) is a measure of sensitivity (recall, classification
rate) that does not require any matching between clusters from partitions U and Z.
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Index (18) is a weighted average of the indices in (21) using the Pi’s (or pi’s) as weights:

AW =

I∑

i=1
AwiPi

I∑

i=1
Pi

=
I∑

i=1

Awipi . (23)

Decomposition (23) shows that the overall AW value will in large part be determined by the
Awi values of the clusters with high Pi values, that is, the large clusters, since each Pi is a
quadratic function of the cluster size. The overall AW value will be high if, for each large
cluster, its corresponding objects are assigned to the same cluster of the second partition,
regardless of the Awi values associated with smaller clusters.

Furthermore, index (19) is a weighted average of the indices in (22) using the Qj ’s (or
qj ’s) as weights:

AV =

J∑

j=1
AvjQj

J∑

j=1
Qj

=
J∑

j=1

Avjqj . (24)

Similarly, decomposition (24) shows that the overall AV value will in large part be deter-
mined by the Avj values of the large clusters (that is, clusters with high Qj values). The
overall AV value will be high if objects that are together in a large cluster are also put
together in the first partition.

Decompositions (23) and (24) show that the adjusted Rand index is simply a weighted
average of the Awi’s and Avj ’s, using the Pi’s and Qj ’s as weights:

AR =

I∑

i=1
AwiPi +

J∑

j=1
AvjQj

I∑

i=1
Pi +

J∑

j=1
Qj

. (25)

Hence, the value of the adjusted Rand index will in large part be determined by the Awi

values and Avj values corresponding to large clusters.

5 Numerical Examples

In this section, we present examples to illustrate how the building blocks in (9) and (11)
are related to the Wallace indices in (12) and (13), and how the building blocks in (21) and
(22) are related to the adjusted Wallace indices in (18) and (19). We first consider two toy
examples. In addition, we consider the data on E. coli sequences in Table 1.

5.1 Toy Example 1

Table 6 is a matching table of two partitions of four clusters each. The two partitions both
consist of two relatively large clusters (n1+ = n2+ = n+1 = n+2 = 20) and two small
clusters (n3+ = n4+ = n+3 = n+4 = 8). Table 7 presents various row, column and overall
statistics corresponding to Table 6. Since Table 6 is symmetric, the row and column statistics
are identical. First of all, there is perfect agreement between the partitions on the two large
clusters, which is reflected in the corresponding (adjusted) cluster indices: w1, w2, v1, v2,
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Table 6 Matching table of two partitions with four clusters each, and perfect agreement on the large clusters

Reference partition Trial partition

Z1 Z2 Z3 Z4 Totals

U1 20 0 0 0 20

U2 0 20 0 0 20

U3 0 0 4 4 8

U4 0 0 4 4 8

Totals 20 20 8 8 56

Aw1, Aw2, Av1 and Av2 are all equal to 1.00. Furthermore, the two small clusters are
completely (uniformly) mixed up, which is reflected in the corresponding cluster indices:
w3, w4, v3, v4, Aw3, Aw4, Av3 and Av4 are all substantially lower than unity.

The overall indices W , V and D are weighted averages of the wi’s and vj ’s (see decom-
positions (12), (13) and (14)), and overall indices AW , AV and AR are weighted averages
of the Awi’s and Avj ’s (see decompositions (23), (24) and (25)). The weights used in these
weighted averages are the pi’s and qi’s. The weights associated with the two large clusters
(0.44) are 7.33 times as high as the weights associated with the two small clusters (0.06).
Larger clusters simply have larger weights (see Equations (8) and (10)). The values of the
overall indices are therefore much closer to the values of the cluster indices associated with
the large clusters (1.00) than the values of the indices corresponding to the small clusters
(0.43 or 0.20).

For example, using the values of the wi’s and pi’s in Table 7, decomposition (12) is equal
to

W =
4∑

i=1

wipi = (1.00)(0.44) + (1.00)(0.44) + (0.43)(0.06) + (0.43)(0.06) = 0.93.

Thus, due to the high weights of the cluster indices associated with the large clusters, the
values of the overall indices primarily reflect the degree of agreement on the two large clus-
ters, which happens to be perfect agreement. The values of the overall indices are therefore
quite close to unity.

5.2 Toy Example 2

Similar to Table 6, Table 8 is a matching table of two partitions of four clusters each. Again,
the two partitions both consist of two relatively large clusters

Table 7 Row, column and overall statistics for the data in Table 6

Row statistics Column statistics Overall indices

i wi Awi pi j vj Avj qj

1 1.00 1.00 0.44 1 1.00 1.00 0.44 W 0.93 AW 0.90

2 1.00 1.00 0.44 2 1.00 1.00 0.44 V 0.93 AV 0.90

3 0.43 0.20 0.06 3 0.43 0.20 0.06 D 0.93 AR 0.90

4 0.43 0.20 0.06 4 0.43 0.20 0.06
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Table 8 Matching table of two partitions with four clusters each, and perfect agreement on the small clusters

Reference partition Trial partition

Z1 Z2 Z3 Z4 Totals

U1 10 10 0 0 20

U2 10 10 0 0 20

U3 0 0 8 0 8

U4 0 0 0 8 8

Totals 20 20 8 8 56

(n1+ = n2+ = n+1 = n+2 = 20) and two small clusters (n3+ = n4+ = n+3 = n+4 =
8). Table 9 presents various row, column and overall statistics corresponding to Table 8.
Unlike Table 6, there is perfect agreement between the partitions on the two small clusters
in Table 8, which is reflected in the corresponding (adjusted) cluster indices: w3, w4, v3,
v4, Aw3, Aw4, Av3 and Av4 are all equal to 1.00. Furthermore, the two large clusters are
completely (uniformly) mixed up, which is reflected in the corresponding cluster indices:
w1, w2, v1, v2, Aw1, Aw2, Av1 and Av2 are all substantially lower than unity.

The overall indices W , V and D are weighted averages of the wi’s and vj ’s, and overall
indices AW , AV and AR are weighted averages of the Awi’s and Avj ’s. As was the case
in toy example 1, the weights associated with the two large clusters (0.44) are 7.33 times as
high as the weights associated with the two small clusters (0.06). The values of the overall
indices are therefore much closer to the values of the cluster indices associated with the
large cluster (0.47 or 0.27) than the values of the indices associated with the small clusters
(1.00). Thus, the values of the overall indices primarily reflect the degree of agreement on
the two large clusters, which happens to be substantially lower than unity.

5.3 E. coli Sequences Example

Table 10 presents various row, column and overall statistics corresponding to Table 1, which
is the matching table associated with the E. coli sequences data. Consider the row indices
first. Most of the cp proteins are grouped together (w1 = 0.92 and Aw1 = 0.88). Many
of the im proteins are grouped together (w2 = 0.79 and Aw2 = 0.69). None of the imL
and imS proteins are grouped together (w3 = w4 = 0.00 and Aw3 = Aw4 = −0.47).
Most of the imU proteins are grouped together (w5 = 0.94 and Aw5 = 0.92). Many of the
om proteins are grouped together (w6 = 0.81 and Aw6 = 0.72). All of the omL proteins

Table 9 Row, column and overall statistics for the data in Table 8

Row statistics Column statistics Overall indices

i wi Awi pi j vj Avj qj

1 0.47 0.27 0.44 1 0.47 0.27 0.44 W 0.54 AW 0.36

2 0.47 0.27 0.44 2 0.47 0.27 0.44 V 0.54 AV 0.36

3 1.00 1.00 0.06 3 1.00 1.00 0.06 D 0.54 AR 0.36

4 1.00 1.00 0.06 4 1.00 1.00 0.06
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Table 10 Row, column and overall statistics for the data in Table 1

Row statistics Column statistics Overall indices

i wi Awi pi j vj Avj qj

1 0.92 0.88 0.67 1 0.57 0.41 0.11 W 0.88

2 0.79 0.69 0.19 2 0.54 0.37 0.02 V 0.75

3 0.00 − 0.47 < .001 3 0.92 0.89 0.57 D 0.81

4 0.00 − 0.47 < .001 4 0.51 0.33 0.31 AW 0.83

5 0.94 0.92 0.04 AV 0.65

6 0.81 0.72 0.01 AR 0.73

7 1.00 1.00 0.001

8 0.79 0.68 0.09

are grouped together (w7 = Aw7 = 1.00). Finally, many of the pp proteins are grouped
together (w8 = 0.79 and Aw8 = 0.68).

The overall indices W = 0.88 and AW = 0.83 reflect that many of the proteins from the
same class are grouped together in the K-means clustering. The overall values are weighted
averages of the cluster indices associated with the rows of Table 1. The W value and AW

value are almost completely determined by the values of the cluster indices associated with
the two large classes, the cp and im proteins (p1 = 0.67 and p2 = 0.19). The values of
the indices associated with the five smallest classes (imL, imS, imU, om, and omL) are
basically immaterial for the calculation of the values of W and AW .

Next, consider the column indices. Since there are 8 classes of proteins and the K-means
clustering consists of only 4 clusters, the recovery of the cluster structure as represented in
the reference partition cannot be perfect. That is, some of the protein classes will be lumped
together in the same cluster. The indices associated with clusters Z1, Z2 and Z4 reflect that
the clusters contain more than one type of protein (v1 = 0.57, v2 = 0.54, v4 = 0.51, and
Av1 = 0.41, Av2 = 0.37 and Av4 = 0.33). Furthermore, the indices associated with cluster
Z3 tell us that at least one of the protein classes was recovered rather well by the K-means
clustering (v3 = 0.92 and Av3 = 0.89).

The overall indices V = 0.75 and AV = 0.65 reflect that some proteins from different
classes have been grouped together in the K-means clustering. Recall that these overall
statistics are weighted averages of coefficients of individual clusters associated with the
columns of Table 1. The V value and AV value are completely determined by the values
of the cluster indices associated with the three large clusters Z1, Z3 and Z4 (q1 = 0.11,
q3 = 0.57 and q4 = 0.31). The value of the index associated with the smallest cluster (Z2)
is not relevant for the calculation of the values of V and AV .

Finally, the Dice index D = 0.81 and the adjusted Rand index AR = 0.73 are harmonic
means of, respectively, W = 0.88 and V = 0.75, and AW = 0.83 and AV = 0.65.
Compared to the ordinary arithmetic mean of two numbers, the harmonic mean puts a bit
more emphasis on the smallest of the two numbers. Therefore, the values of D and AR lie
between, respectively, the values of W and V , and AW and AV , and just a little bit closer
to the overall indices V and AV .

In summary, the three data examples show that the overall indices that belong to the
families of indices based on the Wallace indices in (5) and (6) and the adjusted Wallace
indices in (18) and (19) are quite susceptible to cluster size imbalance. The overall indices

500



Journal of Classification (2022) 39:487-509

tend to mainly reflect the degree of agreement between the partitions on the large clusters.
They provide little to no information on the degree of agreement on the smaller clusters.

6 Rand-Like Indices

6.1 Definitions

In addition to Wallace indices (5) and (6), we may consider the following two asymmetric
indices. The first index

W ∗ = N + T − P − Q

N − P
= d

c + d
(26)

is the proportion of object pairs not placed together in partition Z that are also not joined in
partition U . The second index

V ∗ = N + T − P − Q

N − Q
= d

b + d
(27)

is the proportion of object pairs not placed together in partition U that are also not joined in
partition Z. The quantity N + T − P − Q in the numerator of (26) and (27) is the number
of pairs that are not joined in either of the partitions. As an indication of agreement between
the partitions, this quantity is rather neutral, counting pairs that are not clearly indicative of
agreement (Wallace, 1983).

Table 11 presents eight examples of indices that are increasing functions of the four
conditional probabilities (5), (6), (26), and (27). For example, the well-known Rand index
(Rand, 1971) is given by

R = N + 2T − P − Q

N
= a + d

a + b + c + d
. (28)

The Rand index is a weighted average of indices (5), (6), (26), and (27), using the
denominators of the indices as weights:

R = WP + V Q + W ∗(N − P) + V ∗(N − Q)

P + Q + N − P + N − Q
. (29)

Furthermore, combining (29) with (12) and (13) we have the decomposition

R =

I∑

i=1
wiPi +

J∑

j=1
vjQj + W ∗(N − P) + V ∗(N − Q)

I∑

i=1
Pi +

J∑

j=1
Qj + 2N − P − Q

. (30)

The decomposition in (30) shows that the Rand index can also been seen as a weighted
average of the wi’s, vj ’s and W ∗ and V ∗, using the Pi’s, Qj ’s and (N − P) and (N − Q)

as weights.

6.2 Numerical Examples for Rand-Like Indices

Indices that belong to the families of indices based on the Wallace indices in (5) and (6)
and the adjusted Wallace indices in (23) and (24) can be understood in terms of indices for
individual clusters (see Sections 3 and 4, respectively). However, this is quite different for
the family of indices from Subsection 6.1. These Rand-like indices are increasing functions
of the Wallace indices in (5) and (6) as well as the asymmetric indices in (26) and (27). The
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Rand index, which is the prototypical example of this family, may be interpreted as the ratio
of the number of object pairs placed together in a cluster in each of the two partitions and
the number of object pairs assigned to different clusters in both partitions, relative to the
total number of object pairs. Rand-like indices combine two sources of information, object
pairs put together in both partitions, which is reflected in Wallace indices (5) and (6), and
object pairs assigned to different clusters in both partitions, which is reflected in indices
(26) and (27).

To understand what the values of Rand-like indices may reflect requires knowledge of
how the two sources of information on object pairs contribute to the overall values of the
indices. The above interpretation suggests that both sources may contribute equally. Results
presented in Warrens and Van der Hoef (2020) show that this is not the case. In this paper
it is shown how the Rand index (Rand, 1971) is related to the four asymmetric indices (5),
(6), (26) and (27). Warrens and Van der Hoef (2020) systematically varied artificial data
examples. The results of their study can be summarized as follows. In many situations,
including cases of high, medium and low agreement between the partitions, and statistical
independence of the partitions, the number of object pairs assigned to different clusters in
both partitions is (much) higher than the number of object pairs that are combined in both
partitions.

Decomposition (29) shows that the Rand index is a weighted average of the indices W ,
V , W ∗ and V ∗ using, respectively, the quantities P , Q, (N − P) and (N − Q) as weights.
The results of Warrens and Van der Hoef (2020) have two consequences: 1) the values of
W and V are usually (much) smaller than the values of W ∗ and V ∗; 2) the values of P

and Q are usually (much) smaller than the values of (N − P) and (N − Q). The second
consequence implies that the value of the Rand index will in many cases in large part be
determined by the values of W ∗ and V ∗. Furthermore, together the two consequences imply
that the Rand index will usually produce a high value, say between 0.70 and 1.00, because
(N −P) and (N −Q), the weights associated with W ∗ and V ∗, will in general also be high.
Since all Rand-like indices presented in Table 11 are increasing functions of W , V , W ∗ and
V ∗, these indices will generally produce high values as well.

The results in Warrens and Van der Hoef (2020) can be illustrated with the data examples
from the previous section. Table 12 gives the values of indices W , V , W ∗, V ∗ and R and
relative weights P/N , Q/N , (N −P)/N and (N −Q)/N for the three data examples from

Table 12 Values of indices and weights for the three data examples from Section 5

Data examples

Statistic Toy 1 Toy 2 E. coli

W 0.93 0.54 0.88

V 0.93 0.54 0.75

W ∗ 0.97 0.82 0.89

V ∗ 0.97 0.82 0.95

R 0.96 0.74 0.89

P/N 0.28 0.28 0.27

Q/N 0.28 0.28 0.32

(N − P)/N 0.72 0.72 0.73

(N − Q)/N 0.72 0.72 0.68
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Section 5. In all three examples the relative weights P/N and Q/N are much smaller than
the relative weights (N − P)/N and (N − Q)/N . Thus, in each example the value of the
Rand index will be influenced more by the values of W ∗ and V ∗ than by the values of the
Wallace indices W and V . Furthermore, in each example the values of W ∗ and V ∗ are quite
high.

In summary, the Rand-like indices tend to reflect how much object pairs have been
assigned to different clusters in both partitions. A first consequence is that they will gener-
ally produce high values (say between 0.70 and 1.00). A second consequence is that cluster
size imbalance is less of an issue for these indices.

7 Discussion

7.1 Conclusions

For assessing agreement between two partitions researchers usually use and report overall
measures that quantify agreement for all clusters simultaneously. Since overall indices only
give a general notion of what is going on, their values are often hard to interpret. The goal
of this study was to provide a more thorough understanding of the adjusted Rand index as
well as many other indices based on counting object pairs. We analyzed three families of
indices in this paper. We presented decompositions of the overall indices into indices that
reflect the degree of agreement on the level of the individual clusters. The decompositions
make explicit what the building blocks of the overall indices are and how they are weighted,
and thus provide insight into what information the values of overall indices may reflect.

Indices that are based on the Wallace indices, for example, the Jaccard index and an index
by Fowlkes and Mallows, or the adjusted Wallace indices, for example, the adjusted Rand
index, are quite susceptible to cluster size imbalance. The importance of an (adjusted) clus-
ter index in the computation of these overall indices is a (roughly) quadratic function of the
size of the corresponding cluster. For example, an (adjusted) cluster index corresponding to
a cluster that is twice as big as a second cluster will receive four times the weight of the
cluster index corresponding to the second cluster. Thus, if cluster sizes differ, overall mea-
sures based on the (adjusted) Wallace indices will primarily reflect the degree of agreement
between the partitions on the large clusters, and will provide much less information on the
agreement on smaller clusters. The contribution of small clusters to the overall agreement
will in many cases be small or even negligible, depending on how their size compares to the
larger clusters.

Susceptibility to cluster size imbalance of various indices has previously been observed
in the classification literature (De Souto et al., 2012; Fränti et al., 2014; Van der Hoef &
Warrens, 2019). The analyses presented in this paper add some details to these studies by
providing insight into how this phenomenon actually works, and to which indices it applies.
The various indices are weighted means of cluster indices, and it is this weighting that
introduces the susceptibility to cluster size imbalance.

In addition to the Wallace indices and adjusted Wallace indices, a third family of indices
consists of Rand-like indices. These indices can be decomposed into a row and a column
index that reflect how many object pairs are put together in both partitions, and into a row
and a column index that reflect how many object pairs are put in different clusters in both
partitions. They tend to reflect how much object pairs have been assigned to different clus-
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ters in both partitions. They will generally produce high values (say, between 0.70 and 1.00).
Moreover, cluster size imbalance is less of an issue for these indices.

A negative property of the Rand index that has been noted in the classification literature
is that its value concentrates in a small interval near the value 1 (Fowlkes & Mallows, 1983;
Meilă, 2007). The analyses presented in Warrens and Van der Hoef (2020) and in this paper
provide insight into how this property works. Furthermore, the analyses in this paper show
that the property also applies to other Rand-like indices, that is, indices that are increasing
functions of the same building blocks as the Rand index.

In this paper we focused on indices that are based on counting pairs of objects. This type
of index, especially the adjusted Rand, is most commonly used. Some of the ideas presented
in this paper can be applied to other types of partition comparison indices. For example,
decompositions of various normalizations of the mutual information (Pfitzner et al., 2009)
are presented in Van der Hoef and Warrens (2019) and Van der Hoef and Warrens (2020).
It turns out that these information theoretic indices are also susceptible to cluster size imba-
lance, but in a more complicated way than the indices based on counting pairs of objects.

7.2 Practical Recommendations

Based on the findings in the literature and the results of this study, we have the follow-
ing recommendations for studying agreement between two partitions. Since they provide
much more detailed information than a single overall number, we generally recommend
researchers to examine and report the adjusted indices for the individual clusters presented
in (21) and (22). When there is a large number of clusters, reporting all cluster indices is
perhaps not feasible. One solution here is to report the distribution of the values of the
cluster indices for each partition. Another solution for this case is to summarize the cluster
indices by counting how many cluster indices have a value above a certain threshold that
reflects high agreement (say, 0.95) and all values below a certain number that indicates poor
agreement (say, 0.50).

However, if a single number provides sufficient granularity to answer the research ques-
tion(s), researchers can resort to an overall measure for quantifying agreement. When one
uses indices that are based on the (adjusted) Wallace indices, for example, the adjusted Rand
index, one should keep it mind that these indices are susceptible to cluster size imbalance.
These overall indices will only reflect the ‘average’ agreement on all clusters of the parti-
tions if the sizes of all clusters are approximately the same. However, if the cluster sizes
differ, these indices will primarily reflect the degree of agreement between the partitions on
the large clusters, and will provide much less information on the agreement on smaller clus-
ters. The latter may not be desirable in all situations, for example, when the small clusters
are the more interesting clusters.

Since cluster size imbalance is quite common in practice, it may be worthwhile to con-
sider overall measures that are not susceptible to unbalanced cluster sizes (see, for example,
Pfitzner et al. (2009) and Fränti et al. (2014)). Furthermore, the (adjusted) Wallace indices
are susceptible to cluster size imbalance because their building blocks (cluster indices) are
weighted in the computation. We obtain robust overall measures if we consider ordinary
averages of cluster indices instead of weighted averages. For example, robust variants of the
Wallace indices that are not susceptible to cluster size imbalance can be defined as

W † := 1

I

I∑

i=1

wi (31)
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and

V † := 1

J

J∑

j=1

vj . (32)

The variants of the Wallace indices in (31) and (32) are, respectively, ordinary averages of
the I cluster indices corresponding to the clusters of the reference partition (the wi’s) and the
J cluster indices corresponding to the clusters of the trial partition (the vj ’s). Furthermore,
analogous robust variants of the adjusted Wallace indices are given by

AW † := 1

I

I∑

i=1

Awi (33)

and

AV † := 1

J

J∑

j=1

Avj . (34)

Using the quantities in (31) and (32), and following the format of (7), a robust variant of the
Dice index that is not susceptible to cluster size imbalance is given by

D† := 2W †V †

W † + V † , (35)

which is the harmonic mean of (31) and (32). Moreover, using the quantities in (33) and
(34), a robust variant of the adjusted Rand index can be defined as

AR† := 2AW †AV †

AW † + AV † . (36)

The variant of the adjusted Rand index in (36) is the harmonic mean of (33) and (34).
Finally, we generally recommend against the use of the Rand index and the Rand-like

indices considered in Section 6. The values of these indices are determined to a large extent
by the number of pairs of objects that are not joined in either of the partitions, which is not
clearly indicative of agreement (Wallace, 1983).

7.3 Future Research

The indices by Pfitzner et al. (2009) and Fränti et al. (2014), and the indices in (35) and
(36), may potentially be better indices than the overall indices that are susceptible to cluster
size imbalance. However, it should be noted that, compared to the adjusted Rand index, the
indices by Pfitzner et al. (2009) and Fränti et al. (2014), and the indices in (35) and (36),
have not been studied comprehensively and may have hidden limitations. A topic for future
research could be an extensive study of the properties of these indices.

Whenever cluster sizes differ, the overall indices based on the (adjusted) Wallace indices
will give more weight to the degree of agreement on the larger clusters, and less weight to
the agreement on the smaller clusters. If the cluster sizes differ not too much the values pro-
duced by these overall measures may to some extent still reflect the ‘average’ agreement
on all clusters of the partitions. In other words, there may be cases in which these overall
indices, including the adjusted Rand index, are not too bad at reflecting the degree of agree-
ment on small clusters. Identifying these cases could be another topic for future research.
Such a study should consider different forms of cluster size imbalance, varying both the
number of clusters and the relative sizes of the clusters.
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Fränti, P., Rezaei, M., & Zhao, Q. (2014). Centroid index: Cluster level similarity measure. Pattern

Recognition, 47, 3034–3045.

507

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1907.11505
http://arxiv.org/abs/2002.03677


Journal of Classification (2022) 39:487-509

Gleason, H. A. (1920). Some applications of the quadrat method. Bulletin of the Torrey Botanical Club, 47,
21–33.

Halkidi, M., & Batiskis, Y. (2002). Cluster validity methods: Part I. SIGMOD Record, 31, 40–45.
Hamann, U. (1961). Merkmalsbestand und Verwandtschaftsbeziehungen der Farinose. Ein Betrag zum

System der Monokotyledonen. Willdenowia, 2, 639–768.
Heiser, W. J., & Warrens, M. J. (2010). Families of relational statistics for 2×2 tables. In H. Kaul, & H.

Mulder (Eds.) Advances in interdisciplinary applied discrete mathematics (pp. 25–52). Singapore: World
Scientific.
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