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1. Introduction

Visual representations of dissimilarities (proximities, distances)
are advantageous for discovery, identification and recognition of struc-
ture in many fields that apply statistical methods. Clustering objects
in multivariate (attribute-value) data is a highly popular data analysis
objective. Distance-based methods define a measure of similarity, e.g.
a composite based on distance derived from each attribute separately.
Let an object i be defined as oi = xi = (xi1, xi2, . . . , xik), where {xik}Pk=1

denotes the measured attributes on each object i. X denotes the data matrix
of size N × P , with N objects and P attributes (or variables). For each
attribute k, we calculate the distance dijk between a pair of objects i and j
as follows:

dijk = |xik − xjk |/sk, (1)

with sk a scale factor, a measure of dispersion. If sk is set as σ√
n
, with σ the

standard deviation of xk, then dijk is the distance between object i and j
in the standardized variable xk. For categorical attributes, we calculate the
dijk of object pair i and j as

dijk = I(xik �= xjk)/sk, (2)

with sk a suitable scale factor for categorical variables. When all attributes
are numeric, and we set sk equal to σ√

n
, then the sum of all attribute distances

for objects i and j defines the L1 distance

Dij =

P∑
k=1

dijk (3)

for standardized variables. The squared Euclidean distance would be ob-
tained by taking

D2
ij =

P∑
k=1

d2ijk. (4)

2. Clustering on Subsets of Attributes

The focus on clustering of objects on subsets of attributes was
motivated by the presence of high-dimensional data, emerging from
fields like genomics (e.g., gene expression micro-array data), and meta-
bolomics (e.g., LC-MS data), where the data consist of a very large
number of attributes/ variables compared to a relatively small number
of objects. Ordinary clustering techniques, based on (3) or (4) use
equal weights for each attribute, and this might cause masking of
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Figure 1. A Monte Carlo data set X with 60 objects (vertical) and 500 attributes
(horizontal, not all of them are shown due to P >> N). There are three groups of
20-objects each (red, green, and blue) clustering on 50 attributes. Note that i and
k are ordered into i′ and k′, respectively, to show cluster blocks.

existing clustering, because with a large number of attributes, it is very
unlikely that objects cluster on all attributes. Instead, objects might
be preferentially close on some attributes and far apart on others. This
situation calls for feature selection, or assigning a different weight to
each attribute; applying a clustering procedure to Euclidean and L1-
distances does not perform well in general when only a few attributes
contain signals and most others contain noise. In such situations,
clustering applied to dissimilarities that incorporate variable weighting
are much more likely to succeed in finding groups in the data. Figure 1
shows a display for a toy-example data set for which it will be unlikely
that clustering of either Euclidean or L1 distances would capture the
signal.

For data as displayed in Figure 1, we can expect the clustering
procedure to be successful when the dissimilarity measure would in-
corporate variable selection/weighting. In partitional clustering the
weighting of attributes has received considerable attention (for exam-
ple, De Sarbo, Carroll, Clarck, and Green, 1984; Steinley and Br-
usco, 2008; Jain, 2010; Andrews and McNicholas, 2014), but not so
for dissimilarity and distance functions. There are studies where at-
tribute weighting is applied, but either these methods are not capable
to capture signal in high-dimensional data settings where P >> N , or
have as sole purpose to fit a tree in hierarchical clustering (Sebestyen,
1962; De Soete, De Sarbo, and Carroll, 1985; De Soete, 1985; Amorim,
2015). Sparse clustering (SPARCL) by Witten and Tibshirani (2010)
can output an attribute weighted dissimilarity measure for the objects.
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Denote the element wk as the weight for attribute dissimilar-
ity dijk, then the composite dissimilarity measure that incorporates
variable weights is given in (5)

Dij [w] =

P∑
k=1

wkdijk. (5)

As we shall see below, restrictions are needed on the w = {wk} to
prevent degenerate solutions (also, see Witten and Tibshirani, 2010).
We will start our discussion with the case were only one subset of at-
tributes is important for all groups of objects, and where the groups
only differ in their means. This particular case was displayed in Fig-
ure 1.

It is important to realize that in this example, all objects are
assumed to be in clusters; there are no objects in the data that do
not belong to one of the clusters. This is a very particular structure,
and is unlikely to be present in many high-dimensional settings. In
many data sets, one can hope to find one or more clusters of objects,
while the remainder of the objects are not close to any of the other
objects. Moreover, it could very well be true that one cluster of ob-
jects is present in one subset of attributes, while another cluster is
present in another subset of attributes. In this case, the subsets of
attributes are different for each cluster of objects. In general, the sub-
sets may be overlapping or partially overlapping, but they may also
be disjoint. An example is shown in Figure 2; the display shows a
typical structure in which the groups of objects cluster on their own
subset of attributes. The first group (with objects 1-15) clusters on
the attributes 1-30, and the second group (with objects 16-30) clus-
ters on attributes 16-45. So the two groups are similar with respect
to attributes 16-30, and different with respect to attributes 1-15 and
31-45, respectively. The two subsets of attributes, 1-30 and 16-45, are
partially overlapping. The remaining 70 objects in the data form an
unclusterable background (noise), and the remaining 955 attributes
do not contain any clusters at all. The data structure displayed in
Figure 2 is a typical example for which COSA was designed. In such
a situation, heuristic, greedy cluster algorithms are very likely to con-
vergence to suboptimal solutions. To avoid such solutions as much as
possible, we would need a clever search strategy, together with a good
starting point. The latter is crucial: when we start the search with
equal weighting of attributes in combination with a usual definition of
‘closeness’ -such as Euclidean or L1 distance- our search will almost
surely end up in a distinctly suboptimal local minimum.
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Figure 2. A Monte Carlo model for 100 objects with 1,000 attributes (not all are
shown due to P >> N). There are two small 15-object groups (red & blue),
clustering each on 30 attributes out of 1000 attributes, with partial overlap, and
nested within an unclustered background of 70 objects (gray).

3. COSA Dissimilarities

The approach that is used in COSA is to modify a cluster crite-
rion, defined on L1 distances (3), by using a very particular distance
instead, for which the equal weights starting point is not detrimen-
tal. During the search, in which the optimal weights are found, this
particular distance transitions into an ordinary weighted L1 distance.
A penalty is used to avoid obtaining subsets that are trivially small
(e.g., consisting of a single attribute). In this section, we will briefly
give the technical details.

Friedman and Meulman (2004) propose an algorithm that uses
the weighted inverse exponential distance, defined as

D
(λ)
ij [w] = −λ log

P∑
k=1

wk e
−dijk/λ, (6)

where λ is a scale parameter, defining “closeness” between objects.
Because the distance

D
(λ)
ij [w] � −λ log

∑
dijk�λ

wk e
−dijk/λ, (7)

basically gives emphasis to all distances smaller than a particular value
for λ for any value of the weights including wk = 1/P . If we define a
parameter η, and define

D
(η)
ij [w] = −η log

P∑
k=1

wk e
−dijk/η, (8)
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then when η increases from λ to ∞, we obtain a transition from the
weighted inverse exponential distance to the weighted L1 distance,
because

lim
η→∞D

(η)
ij [w] =

P∑
k=1

wkdijk = Dij[w]. (9)

By using this so-called homotopy strategy, COSA attemps to avoid
local minima by starting the iterative process with inverse exponential
distances (where equal weighting is not detrimental) that will change
into ordinary L1 distances during the process.

The weight for a pair of objects is then defined as:

Dij [W] =

P∑
k=1

max(wik, wjk)dijk,

subject to 0 ≤ wik ≤ 1 and
P∑

k=1

wik = 1 ∀i. (10)

Object pairs that belong to the same cluster will obtain weights
that are more similar compared to object pairs that don’t belong to
the same cluster. The COSA dissimilarity in (10) can uncover groups
that cluster on their own set of attributes. The larger the difference
between wik and wjk, the larger the dissimilarity Dij [W].

The COSA weights and the associated dissimilarities are found
by minimizing the criterion

Q(W) =

N∑
i=1

⎧⎨
⎩K−1

∑
j∈KNN(i)

Dij [wi] + λ

P∑
k=1

wik log(wik)

⎫⎬
⎭ . (11)

Here, K is a pre-set number of nearest neighbors, by default set to
K = floor(

√
N). The j ∈ KNN(i) denotes the j = 1 . . . K nearest

neighbor objects for object i. The wi vector, is the i
th row of W, and

makes the minimization problem linear since the term max(wik, wjk)
is now absent in (11). Equation (11) is written as a Lagrangian form,
an equivalent way to write the equation is

Q(W) =

N∑
i=1

K−1
∑

j∈KNN(i)

Dij [wi],

subject to
N∑
i=1

P∑
k=1

wik log(wik) ≤ h. (12)
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The term h, also called the penalty regularized by λ, ensures
that subsets of attributes will not be trivially small. The larger λ,
the smaller the penalty h, and the more equal the weights for the
attributes. Vice versa, the smaller λ, the larger the penalty h, and
hence, the stronger a subset of attributes is favored over others.

For known j ∈ KNN(i) and λ, there is a solution for W that
minimizes Q(W) in (11) and (12); to be specific, an element wik is
obtained as

wik = exp

(
−
∑

j∈KNN(i) dijk

Kλ

)/
P∑

k′=1

exp

(
−
∑

j∈KNN(i) dijk′

Kλ

)
. (13)

Since the D
(η)
ij [W], on which we base the j ∈ KNN(i), are not known

beforehand, we have to iteratively minimize the criterion. Summa-
rizing, COSA uses a homotopy strategy by starting with the inverse
exponential distance

D
(η)
ij [W] = −η log

{
P∑

k=1

max(wik, wjk) exp

(
−dijk

η

)}
, (14)

with η the homotopy parameter. During the iteration process, the
inverse exponential distance transitions into the L1 distance by slowly
increasing the value of η. As is mentioned in Friedman and Meulman
(2004), the correlation between the two set of distances is already
.91 for η =1, and .97 for η =2 for distances derived from normally
distributed attribute values wik and equal weights wk = 1/P .

Having defined the necessary ingredients, we can now summarize
the COSA algorithm in the following six steps:

COSA Algorithm

1 Initialize: η = λ;W = {1/P} ∈ R
N×P

2 Outer Loop {
3 Inner Loop {

Compute distances Dη
ij [W] (14)

Compute weights W (13)
} Until convergence.

4 Increase η : η + 0.1 ∗ λ
5 } Until W stabilizes
6 Output: {Dη

ij [W], and W}
We refer to Friedman and Meulman (2004) for more details and prop-
erties of the algorithm.
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4. Targeting

Until now the clustering in COSA could be on any possible joint
values in the attributes. Alternatively, we could wish to look for clus-
ters that group only on particular values, say tk, which are possibly
different for each attribute k. The {tk} are chosen to be of special
interest; we reduce the search space, and would hope to be more likely
to recover clusters. Examples are groups of consumers (objects) that
spend relatively large amounts on products (attributes), while we wish
to ignore consumers who spend relatively small or average amounts.
(Or the other way around.) If we focus on one particular value, we call
this single targeting. We modify the original distance between objects
oi and oj on attribute k, dijk = dk(xik, xjk), into targeted distances,
and require objects oi and oj to be close to each other and to the
particular target. The so-called single target distance is defined as:

dijk(tk) = max[dk(xik, tk), dk(xjk, tk)], (15)

where tk is the target value, e.g., a high or low or even average value.
This distance is small only if both objects oi and oj are close to the
target value tk on attribute k. In addition to single targeting, we can
also focus on two different targets, being naturally either high or low
values. An example is in micro array data, where we could search
for clusters of samples with either high or low (but not moderate)
expression levels on subsets of genes (attributes). In dual targeting,
we define two targets tk and uk, and we use the dual target distance

dijk(tk, uk) = min[dijk(tk), dijk(uk)] (16)

on selected attributes xk, where dijk(·) is the corresponding single tar-
get distance (15). This dual target distance is small whenever xik and
xjk are either both close to tk or both close to uk. Thus, in gene ex-
pression and consumer spending examples, one might set tk and uk to
values near the maximum and minimum data values of the attributes,
respectively, and we will cause COSA to seek clusters based on extreme
attribute values, ignoring (perhaps dominant) clusters with moderate
attribute values.

5. Installing and Using COSA

In the sequel of this paper, we will present the new version of
COSA implemented as a package for the statistical computing lan-
guage R (R Core Team, 2014). Compared to the old software, the
current installation is much simpler, and it is extended with func-
tions for multidimensional scaling, graphics, and M -groups clustering
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methods. For every function in rCOSA there is a help file with example
code that users can run. The software is available for up-to-date Win-
dows, Mac OSx and Linux platforms. The rCOSA package, the user
manual (vignette) and related links are available for free on the web
at: https://github.com/mkampert/rCOSA.To install rCOSA, run the
following code in R.

install.packages("devtools")

library(devtools) # for loading the function install_github

install_github("mkampert/rCOSA") # install rCOSA

library(rCOSA) # load rCOSA

6. Using COSA

We illustrate the rCOSA package using a data set based on
the simulation model shown in Figure 2. The data set XN×P (with
N = 100 and P = 1000) contains two groups, and background noise.
The two groups share a subset of 15 attributes, of which each xik ∼
N(μ = −1.5, σ = 0.2). Each groups also has its own unique subset
of 15 attributes. These non-overlapping subsets, are xik ∼ N(μ =
+1.5, σ = 0.2) for both groups. All the remaining data in X were
generated from a standard normal distribution. After creating the
groups, the pooled sample was standardized to have zero mean and
unit variance on all attributes. The data set thus contains two small
groups that exhibits clustering on only a few non-overlapping and
perfectly overlapping attributes, together with a large non-clustered
background.

Possible R code for simulating such a data set, and reproducing
our tutorial results is as follows:

set.seed(123); N <- 100; P <- 1000;

X <- matrix(rnorm(N*P), nrow = N, ncol = P)

i <- sample(x = 1:N) # i conform Figure 2

k <- sample(x = 1:P) # k conform Figure 2

X[i[1:15], k[1:15]] <- X[i[1:15], k[1:15]]*0.2 + 1.5

X[i[1:15], k[16:30]] <- X[i[1:15], k[16:30]]*0.2 - 1.5

X[i[16:30], k[16:30]] <- X[i[16:30], k[16:30]]*0.2 - 1.5

X[i[16:30], k[31:45]] <- X[i[16:30], k[31:45]]*0.2 + 1.5

X <- data.frame(scale(X))

We run COSA using its default settings and store it in the object
cosa.rslt in the following way:

cosa.rslt <- cosa2(X)

M.M. Kampert, J.J. Meulman, and J.H. Friedman522

https://github.com/mkampert/rCOSA


In Linux and OS X based operating systems this will start the
console to display the output of the successive COSA iterations; for
Windows platforms a command prompt window opens in which the
following output is shown:

COSA executing (enter ESC or ctrl+c to terminate).

Wchange #iit #oit #it Eta MSD Crit

0.565417 1 1 1 0.2200 0.789181 87.6947

0.1659 2 1 2 0.2200 0.803855 85.5847

....

0.0000 1 100 13 2.200 0.307085E-01 84.9413

The first column indicates the changes in the weights W after each it-
eration (#it) defined as the sum of the absolute differences between the
weights in W(itrs) and the weights in the previous iteration W(itrs−1).
The #iit column gives the number of inner iterations and the #oit
column the number of outer iterations. The eta column shows the
value of the homotopy parameter η, which starts low and is defined as
η = λ+#oit ∗ 0.1 ∗ λ. Gradually increasing the homotopy parameter
tries to avoid local minima for the criterion (which is of course not
guaranteed). The Mean of the Squared Differences (MSD) is defined
as

MSD =

∑N−1
j=1

∑N
i=j+1

(
Dij [W]−Dη

ij [W]
)2

N · (N − 1)
, (17)

and gives the average of the squared differences between the L1 dis-
tances and the inverse exponential distances. The last column gives
the value of the criterion as displayed in equation (11). The R function
str() shows the contents of the output object cosa.rslt.

> str(cosa.rslt)

List of 4

$ call : language cosa2(X)

$ D :Class �dist� atomic [1:4950] 0.147 0.146 0.125

0.155 0.16 ...

.. ..- attr(*, "Size")= int 100

.. ..- attr(*, "Diag")= logi FALSE

.. ..- attr(*, "Upper")= logi FALSE

$ W : num [1:100, 1:1000] 0.21568 0.08017 0.00277

1.18862 1.72863 ...
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$ tunpar:List of 7

..$ crit : num 84.9

..$ lambda : num 0.2

..$ homotopy: num 2.2

..$ MSD : num 0.0307

..$ Knn : num 10

..$ noit : num 100

..$ totit : num 130

Thus, the function cosa2 gives a list of 4 objects. The first object,
..$ call is an echo of the used cosa2 command. The second and
third objects in cosa.rslt, are the dissimilarities cosa.rslt$D and
the weights cosa.rslt$W, respectively. Last, the ..$ tunpar object
gives the criterion, λ parameter, η parameter, MSD, K, number of
outer iterations, and number of inner iterations.

6.1 Fitting Dendrograms to COSA Dissimilarities

To display the possible clustering structure contained in the
COSA dissimilarities (cosa.rslt$D), we can first plot a dendrogram
using the hierclust function. By default, the dendrogram is built
using average linkage. Other options such as ‘single’, ‘complete’, and
‘ward’ linkage are available; the command for ward clustering would
be hierclust(cosa.rslt$D, method = ‘ward’) (Ward Jr., 1963).
To ensure that this dendrogram has a scale that is comparable with
future dendrograms, the COSA dissimilarities are by default normal-
ized to have sum of squares equal to N . To plot a dendrogram, use

hclst.cosa <- hierclust(cosa.rslt$D)

From the dendrogam given by the hierclust command, we can clearly
see the grouping structure conform to the design that was used. There
are two groups (each with 15 objects) and a large remaining group for
which the objects are not similar to each other. We can select the
observed clusters, and obtain the index numbers of the objects in
each cluster, by using the getclust function:

grps.cosa <- getclust(hclst.cosa)

This function reads the position of the pointer, and with a click we can
cut the tree at the vertical position of the pointer, and draw a colored
rectangle around the cluster. The index numbers of the objects in
the corresponding groups are then stored in the object grps.cosa.
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Figure 3. Selecting two groups out of the dendrogram of the COSA Dissimilarities
using the function getclust

When finished, press ‘Esc’ or choose Stop from the options using
the right-click of the mouse. Figure 3 shows the two groups we se-
lected. The content of grps.cosa can be seen by using the command
str(grps.cosa):

> str(grps.cosa)

List of 2

$ grps : num [1:100] 2 0 0 0 0 0 2 2 0 0 ...

$ index:List of 2

..$ grp1: int [1:15] 21 22 23 38 46 47 52 59 61 62 ...

..$ grp2: int [1:15] 1 7 8 11 16 19 29 41 55 66 ...

The first line indicates whether an object is from a particular group,
and if so, which group label is attached. If an object has not been
allocated to a group, it gets a 0. The subsequent lines give the indices
for the objects in the selected groups.

6.2 Fitting Multidimensional Scaling Solutions to COSA
Dissimilarities

In addition to hierarchical clustering producing a dendrogram,
we can also use the COSA dissimilarity matrix to display the objects
in low-dimensional space by multidimensional scaling (MDS). This is
done preferably by using an algorithm that minimizes a least squares
loss function, usually called STRESS, defined on dissimilarities and
distances. This loss function (in its raw, squared, form) is written as:

STRESS(Z) = ||Δ−D(Z)||2 , (18)
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where ||·||2 denotes the squared Euclidean norm. Here Δ is the N×N
COSA dissimilarity matrix with elementsDij[W] and D(Z) is the Eu-
clidean distance matrix derived from the N×p configuration matrix Z
that contains coordinates for the objects in a p−dimensional represen-
tation space. An example of an algorithm that minimizes such a metric
least squares loss function is the so-called SMACOF algorithm. The
original SMACOF (Scaling by Maximizing a Convex Function) algo-
rithm is described in De Leeuw and Heiser (1982). Later, the meaning
of the acronym was changed to Scaling by Majorizing a Complicated
Function in Heiser (1995).

The Classical Scaling approach, also known as Torgerson-Gower
scaling (Young and Householder, 1938; Torgerson, 1952; Gower, 1966),
minimizes a loss function (called STRAIN in Meulman, 1986) defined
on scalar products (ZZ′) and not on distances D(Z), and is written
as

STRAIN(Z) =

∣∣∣∣
∣∣∣∣(−1

2
JΔ2J)− ZZ′

∣∣∣∣
∣∣∣∣
2

(19)

where J = I−N−111′, a centering operator that is applied to squared
dissimilarities in Δ2.

The drawback of minimizing the STRAIN loss function is that
the resulting configuration Z is obtained by a projection of the objects
into a low-dimensional space. Due to this projection, objects having
distances that are large in the data, may be displayed close together
in the representation space, giving a false impression of similarity. By
contrast, a least squares metric MDS approach (such as SMACOF)
gives a nonlinear mapping instead of a linear projection, and will usu-
ally preserve large distances in low-dimensional space. See Meulman
(1986, 1992) for more details. In the following MDS applications, we
will display objects in two-dimensional space, showing both the clas-
sical solution and the least squares solution, in Figure 4 and Figure 5,
respectively.

For the argument groups in the smacof function, we can use
grps.cosa obtained from getclust to give different colors to points
in the two groups.

smacof.rslt <- smacof(cosa.rslt$D,

groupnr = grps.cosa$grps, interc = 0

)

Figure 4 shows the metric least squares MDS solution for the
two groups of objects (in red and blue), while the gray objects show a
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typical representation of a high-dimensional cloud of points with equal
dissimilarities, nonlinearly mapped into two-dimensional space.

The cmds function in the rCOSA package, implementing the Clas-
sical Scaling procedure, is derived from the function cmdscale in the
stats package. By using the commands

xclas <- cmds(cosa.rslt$D, groupnr = grps.cosa$grps)

we obtain Figure 5. We observe that the large cloud of gray points,
representing objects that are not similar to any of the other objects,
seem to form a cluster as well; this is undesirable, since they are noise
objects. Their closeness is due to the linear projection characteristic
for classical MDS. Therefore, the representation given by the smacof

function, given in Figure 6, is to be preferred since it shows that the
noise objects are not closely related.

At this point, we should address the possibility of having an ad-
ditive constant present in the standard dissimilarity output of COSA
in cosa.rslt$D. We can take care of such a constant by fitting an
interval transformation to the COSA dissimilarities Dij [W]:

d̂ij = α+ βDij [W],

taking care that d̂ij does not become negative. We do this by using
the intercept option (by default set to 1) in the smacof function:

> smacof.rslt <- smacof(cosa.rslt$D,

groupnr = grps.cosa$grps,

interc = 1)

When we iteratively minimize the so-called nonmetric least squares
loss function over d̂ij and Z

STRESS(Z) =
N∑
i=1

N∑
j=1

(d̂ij − dij(Z))
2,

we obtain the representation of object points in Figure 6.
We observe that the clusters are much tighter after eliminating

the additive constant. Figure 6 also displays the corresponding den-
drogram; the different coloring in the dendrogram has been obtained
by using the command

hclst.cosa <- hierclust(smacof.rslt$D,

groupnr = grps.cosa$grps

)
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Figure 6. Multidimensional scaling solution and dendrogram, after eliminating an
additive constant.

6.3 Using COSA with Targeting

To demonstrate the power of targeting in COSA, we analyze the
same data set as in the previous section, but now using the commands

cosa.rslt <- cosa2(X, targ = "high/low")

smacof.rslt <- smacof(cosa.rslt$D,

groupnr = grps.cosa$grps, interc = 1

)

hclst.cosa <- hierclust(smacof.rslt$D,

groupnr = grps.cosa$grps

)

Since the design (see Figure 2) created groups with both high (+1.5)
and low(-1.5) values, we use double targeting (”high/low”). The results
are given in Figure 7.

Both representations of the COSA dissimilarities in Figure 7
clearly show that the distinction between the clusters on the one hand
and the noise objects on the other hand have become much sharper.

6.4 Attribute Importance

After having found clusters of objects in the data, we wish to
know which attributes are important for the different clusters. The
importance Ikl of attribute k for cluster l (Cl) is inversely proportional
to the dispersion Skl of the data in attribute k for objects in cluster
Cl of size Nl, and is defined as
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Figure 7. COSA with targeting: Multidimensional scaling solution and dendro-
gram, after eliminating an additive constant.

Skl =
1

N2
l

∑
i,j∈Cl

dijk ∝ I−1
kl . (20)

If the dispersion of the data in an attribute is small for a particular
group of objects, than the attribute is important for that particu-
lar group. Because the importance value is inversely proportional to
within-group dispersion, the importance value is biased towards the
variables with small within-group variability, and not towards large
between-group separation.

To see whether the value of a particular attribute importance is
higher than could be expected by chance, a simple resampling method
can be used. First, to determine how many attributes are important
for a particular cluster, e.g., cluster l of size Nl, we execute the com-
mands

attimp1.cosa <- attimp(X,

group = grps.cosa$index$grp1, range = 1:1000

)

str(attimp1.cosa)

The indices of the ordered attributes are given in attimp1.cosa$att,
and the corresponding descending attribute importance values in
attimp1.cosa$imp. To get a complete overview of the attribute im-
portances, use the attimp function for the other groups as well.

par(mfrow = c(3, 1))

attimp1.cosa <- attimp(X,
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group = grps.cosa$index$grp1, range = 1:1000

)

attimp2.cosa <- attimp(X,

group = grps.cosa$index$grp2, range = 1:1000

)

indx0 <- (1:N)[-c(grps.cosa$index$grp1,

grps.cosa$index$grp2)

]

attimp0.cosa <- attimp(X,

group = indx0, range=1:1000

)

par(mfrow = c(1,1))

Note the differences in scale on the vertical axes for the groups
in Figure 8. Having a good overview of the number of important
attributes per group, we can obtain the maximum of the importance
values and select the number of attributes that should be inspected
according to their importance. Based on the above overview, we would
select the first 50 attributes. Next, execute attimp again, now with

attimp1.cosa <- attimp(X,

ylim = c(0,7), group = grps.cosa$index$grp1,

range = 1:50, times = 10, main = "Group 1 (Red)"

)

By using these options, attimp will plot the 50 highest attribute im-
portance values for cluster l, and will also take a random sample of
size Nl from the data for the first 50 ordered attributes, and compute
the attribute importance values on the basis of this random group.
This is repeated 10 times. Also, note that we know the maximum of
the importance values at this point, so we can set the limits of the
vertical axes equal to each other for each group.

# limits for the vertical axis:

lmts <- range(cosa.rslt$W[, k[1:50]])

# the boxplots:

par(mfrow = c(3,1))

boxw(W = cosa.rslt$W, grpnr = grps.cosa$index$grp1,

attr = k[1:50], pch = ".", col = �red�,

ylim = lmts, outline = F, xlab = "attributes",

main = �Group 1�, ylab = �weight value�

)
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boxw(W = cosa.rslt$W, grpnr = grps.cosa$index$grp2,

attr = k[1:50], pch = ".", col = �red�,

ylim = lmts, outline = F, xlab = "attributes",

main = �Group 2�, ylab = �weight value�

)

boxw(W = cosa.rslt$W, grpnr = indx0, attr = k[1:50],

pch = ".", col = �gray�, ylim = lmts, outline = F,

xlab = "attributes", main = "Remaining objects",

ylab = �weight value�

)

par(mfrow = c(1,1))

In Figure 9 the black line indicates the attribute importance
of the attributes for each cluster. The green lines are the attribute
importance lines for groups of the same size, randomly sampled from
the data. The red line is the average of the green lines. Thus, the
larger the difference between the black line and the red line, the more
evidence that the attribute importance values are not just based on
chance. Note the sudden drop of the black attribute importance line
after 30 attributes. This is in line with the simulated data, in which
each group is clustered on 30 attributes only. There are no attributes
that can be considered important for the remaining objects.

In addition to the attribute importance values, we can also look
at the attribute weight matrix, cosa.rslt$W, and plot the values of
the weights. For each group we use the first k’=1:50 weights to draw
boxplots. The first 45 of these 50 weights are the important weights
according to the design from Figure 2. The code to draw the boxplots:

par(mfrow = c(3,1))

boxw(W = cosa.rslt$W, grpnr = grps.cosa$index$grp1,

attr = k[1:50], pch = ".", col = �red�,

ylim = lmts, outline = F

)

boxw(W = cosa.rslt$W, grpnr = grps.cosa$index$grp2,

attr = k[1:50], pch= ".", col = �blue�,

ylim = lmts, outline = F

)

boxw(W = cosa.rslt$W, grpnr = indx0, attr = k[1:50],

pch = ".", col = �gray�, ylim = lmts, outline = F

)

par(mfrow = c(1,1))
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Figure 8. Display of the attribute importances of group 1, group 2 and the remain-
ing objects in barplots.

It is clear that the COSA weights display the same structure as
was found for the attribute importances: Group 1 has large weights for
attributes 1:30, group 2 has large weights for attributes 15:45, group
1 and 2 have large weights on the overlapping attributes 15:30, and all
weights for the remaining objects are small. COSA clearly separates
the signal from the noise in our data.

Although the structure in the data was especially designed to
demonstrate COSA, it is not particularly complicated. However, very
common approaches in cluster analysis, such as hierarchical clustering
of either squared Euclidean distances or L1 distances, are not able to
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Figure 9. Display of the attribute importances of group 1, group 2 and the remain-
ing objects.
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Figure 10. Boxplots of the weights of attributes k′ = {1, . . . 50} for group 1, group
2 and the remaining objects.
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Figure 11. Average linkage dendrograms obtained from hierarchical clustering for
six different dissimilarity matrices derived from the simulated data in Figure 2. L1

distances in the first row (a, b, c), squared Euclidean distances in the second row (d,
e, f). Unweighted dissimilarities in the first column (a, d), SPARCL dissimilarities
in the second column (b, e), COSA dissimilarities in the third column (c, f).

cope with it. This is also true for the more sophisticated SPARCL
approach. Results are shown in Figure 11, where we give the den-
drograms obtained for the COSA dissimilarities, the L1 distances, the
squared Euclidean distances, and the SPARCL dissimilarities, as de-
fined in Equations (10), (3), (4), and (5), respectively. To obtain
the COSA and the SPARCL dissimilarities, we used the default set-
tings, which amounts to weighted L1 distances in COSA and weighted
squared Euclidean dissimilarities in SPARCL.

7. Analysis of the Leiden ApoE3 Data

The data in the following example are from an experiment with
two types of mice: normal mice (called ‘wildtype’) and transgenic
mice. The latter type contains the Human Leiden ApoE3 variety.
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Figure 12. Hierarchical cluster analysis and smacof of the COSA dissimilarities of
the ApoE3 Leiden data. Wildtype mice are in red, and transgenic mice are in blue.
Average linkage was used in the clustering.

The biological background is briefly summarized as follows. ApoE3
stands for Apolipoprotein E3; it is one of many apolipoproteins that,
together with lipids, form lipoproteins (cholesterol particles), for ex-
ample, LDL, VLDL, and HDL. The E3 “Leiden” is a human vari-
ant of ApoE3. When the lipoprotein is no longer recognized by spe-
cial receptors in the liver, it prevents uptake of LDL cholesterol by
the liver, and this results in strongly increased lipoprotein levels in
the plasma. Eventually the latter condition results in atherosclerosis,
which is hardening of the arteries. This may lead to blocked blood ves-
sels and a stroke or a heart attack. The experiment has two important
features. Mice would usually develop severe atherosclerosis when on
a high fat diet. However, in the current experiment, the mice were on
a low fat diet. Also atherosclerosis would be manifest after 20 weeks,
but the samples were collected when the mice were only 9 weeks of age.

7.1 Description of the ApoE3 Data

The 1550 attributes in the study are LC-MS (liquid chromato-
graphy-mass spectrometry) measurements of plasma lipids. The ob-
jects consist of 38 cases, with two observations for each mouse. The
original experiment was performed with 10 wildtype and 10 transgenic
mice, but only 9 transgenic mice survived the experiment (Damian et
al., 2007).

7.2 COSA Analysis of the ApooE3 Data

The COSA analysis consists of first computing the dissimilarity
matrix based on the COSA weights, and then subjecting this matrix to
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hierarchical clustering (using hierclust) and multidimensional scal-
ing (using smacof), resulting in a dendrogram and a two-dimensional
space, respectively (shown in Figure 12).

data(ApoE3)# load ApoE3 data from rCOSA package

par(mfrow = c(1,2))

cosa.AE3 <- cosa2(ApoE3)

hc.AE3 <- hierclust(cosa.AE3$D)

grps.AE3 <- getclust(hc.AE3) # select clusters

smacof_AE3 <- smacof(cosa.AE3$D,

groupnr = grps.AE3$grps, niter = 100, interc = 1

)

We have used the average link option (the default) for the hi-
erarchical cluster analysis, but this choice was not essential for the
separation between the transgenic and the wild type mice, which is
perfect.

Again, we use the attimp() function to inspect the importance
values for the variables in each of the two clusters.

par(mfrow = c(2,1))
attWild <- attimp(ApoE3, group = grps.AE3$index$grp1,

times = 10, main = "Wildtype Mice", range = 1:250,
xlab = �ordered attributes

(the first 80 out of 1550)�

)
attTrans <- attimp(ApoE3, group = grps.AE3$index$grp2,

times = 10,main = "Transgenic Mice", range = 1:250,
xlab = �ordered attributes

(the first 80 out of 1550)�

)

In the ApoE3 data, only a small number (40-60) of the original
1550 attributes turn out the be important. Ten random groups of
the size of group of the wild type cluster (which is 20) are sampled
from the data, and for each of these random samples the importance
values are computed. Then the actual importance values found are
compared to those from the test, and in this way we can determine
which variables are more important than can be attributed to chance.
We also perform this test for the transgenic cluster.

Here the values for the 85 most important variables (out of 1550)
are displayed. The black curve gives the observed importance values,
the ten green curves are for the randomly generated samples, and
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Figure 13. The two black curves in the upper and lower graph display the 85
largest (out of 1550) importance values for the group of transgenic mice 1-18 in
the ApoE3 Leiden data (at the top) and for the wildtype mice (at the bottom). In
each graph the ten green curves indicate the 85 largest importance values for ten
random groups of size 18 and 20, respectively. The two red curves are the averages
of each set of ten green curves.
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Figure 14. Boxplots for the weights of the median ordered attributes for the wild-
type mice (top) and the weights of the median ordered attributes for the transgenic
mice (bottom) separately.
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the red curve is again the average of the ten green curves. The dif-
ference between the importance values for the wildtype cluster and
those for the 10 random groups is large; about 60 attributes appear
to be important for the clustering of the wildtype group. The impor-
tance values for the transgenic cluster are somewhat less distinct. It is
clear, however, that note more than 100 variables are truly important
for the clustering of the transgenic mice. We obtain boxplots (Figure
14) for the weights of the first 85 attributes, ordered from most to
least important within each group, by:

lmts <- range(cosa.AE3$W) # set the limits of the y-axis

par(mfrow = c(2,1))

boxw(W = cosa.AE3$W,

grpnr = 19:38, attr = attWild$att[1:85],

pch = ".", col = �blue�, ylim = lmts,

main = �Wildtype Mice�

)

boxw(W = cosa.AE3$W,

grpnr = 1:18, attr = attTrans$att[1:85],

pch = ".", col = �red�, ylim = lmts,

main = �Transgenic Mice�

)

par(mfrow = c(1,1))

When we take a look at the boxplots of the attribute weights
within each group, we can conclude that the medians of the weights of
the ordered attributes in the wild type group are much more distinct
compared to the the transgenic group.

In Figures 15 and 16, we inspect the attribute values for the 100
most and least important attributes. Values for the wildtype group
are ordered according to attribute importance, and are contrasted with
their corresponding attribute median values for the transgenic group
and vice versa.

The R code to generate the plots in Figure 15 is:

par(mfrow = c(2,1))

boxatt(data = ApoE3, imps = attWild$att[1:100],

grps = list(1:18, 19:38),

main = "Wildtype (red) vs Transgenic (blue)",

ylab = �Scaled attribute values�,

xlab = �100 most important attributes�,

colors = c(�red�,�white�,�blue�)

)
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Figure 15. In the top panel the values of the 100 most important attributes for
the wildtype group are shown in red boxplots. In blue the median values of the
transgenic group are added for these attributes. In the bottom panel the values
of the 100 most important attributes for the transgenic group are shown in blue
boxplots. In red the median values of the wildtype group are added for these
attributes.
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Figure 16. In the top panel the values of the 100 least important attributes for
the wildtype group are shown in red boxplots. In blue the median values of the
transgenic group are added for these attributes. In the bottom panel the values
of the 100 least important attributes for the transgenic group are shown in blue
boxplots. In red the median values of the wildtype group are added for these
attributes.
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boxatt(data = ApoE3, imps = attTrans$att[1:100],

grps = list(19:38,1:18),

main = "Transgenic (blue) vs Wildtype (red)",

ylab = �Scaled attribute values�,

xlab = �100 most important attributes�,

colors = c(�blue�,�white�,�red�)

)

par(mfrow = c(1,1))

and for Figure 16, we simply replace the indices 1:100 by 1451:1550.
Finally, Figure 17 displays six dendrograms obtained from hi-

erarchical clustering of dissimilarities derived from the ApoE3 Mice
data. As in Figure 11 for the simulated data, we have used both ordi-
nary L1 and squared Euclidean distances, and weighted SPARCL and
COSA distances. The object structure in the ApoE3 Mice data is very
different from the simulated data, because the latter contain two small
groups of 15 objects and 70 noise objects. The ApoE3 Mice data do
not contain noise objects; the 38 objects come from two experimental
conditions, with two groups of 20 and 18 objects, respectively. As we
see in Figure 17, the dendrograms for ordinary clustering based on
L1 and squared Euclidean distances (left panels) are far from perfect,
although the first is better than the second. Based on inspection of
the dendrograms, COSA with squared Euclidean distances performs
somewhat better than COSA with L1 distances (right panels). Sur-
prisingly, neither variant of SPARCL does perform well for these data.
Even more unexpected, is the performance of SPARCL compared to
the ordinary clustering dendrograms in the left panels, where all at-
tributes equally contribute to the dissimilarities.

8. Discussion

We demonstrated with two examples the use of the new software
package rCOSA; the first was a simulated data set, and the second a
complex metabolomics data set. Compared to other commonly used
distance methods, COSA was shown to be very powerful in retriev-
ing and revealing cluster structures. When using the current default
settings, only very few R command line skills are needed to use the
rCOSA package.

Those with some extended R programming skills, can use the
output from the cosa2 for further use. Analysis of the COSA dis-
similarity matrix is not limited to hierarchical clustering or multidi-
mensional scaling, as was presented in this tutorial. Other linear or
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Figure 17. Dendrograms obtained from hierarchical clustering for six different dis-
similarity matrices derived from the ApoE3 mice data. L1 distances in the first row,
squared Euclidean distances in the second row. Unweighted dissimilarities in the
first column, SPARCL dissimilarities in the second column, COSA dissimilarities
in the third column.

non-linear projection methods that use dissimilarity matrices, such as
self organizing maps (Kohonen, 2001), Sammon’s mapping (Sammon,
1969) or curvilinear distance analysis (Lee, Lendasse, and Verleysen,
2004), may also be considered. Compositional data analysis (Aitchi-
son, 1986) of the COSA weight matrix may also lead to additional
insights in the cluster structure of the objects.

To date, we are not aware of any other software interfaced to R

that outputs dissimilarities for clustered objects on (different) subsets
of attributes. Packages that we found all assume the number of clus-
ters to be set beforehand. Examples of these are ORCLUS (Szepannek,
2013), wksm (Williams et al., 2014), and FisherEM (Bouveyron and
Brunet, 2012). COSA’s strength is foremost derived from its capacity
to find an unknown number of clusters, possibly among a large num-
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ber of unclustered objects, where each cluster is associated with its
own subset of important attributes.
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