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Abstract
We consider a setting in which the alternatives are binary vectors and the preferences
of the agents are determined by the Hamming distance from their most preferred
alternatives. We consider only rules that are unanimous, anonymous, and component-
neutral, and focus on strategy-proofness, weak group strategy-proofness, and strong
group strategy-proofness. We show that component-wise majority rules are strategy-
proof, and for three agents or two components also weakly group strategy-proof, but
not otherwise. These rules are even strongly group strategy-proof if there are two or
three agents. Our main result is an impossibility result: if there are at least four agents
and at least three components, then no rule is strongly group strategy-proof.

1 Introduction

We consider social decision-making problems with n agents, each of whom has an
opinion (yes or no, one or zero) on each of m issues, to be called components. Any
m-vector of zeros and ones is called an alternative, and the goal is to find a social,
compromise alternative.

As an application, think of the agents as the members of a committee that has to
establish the suitability of a number of candidates (the components) for a position or
job: each committee member reports for each candidate whether it finds that candidate
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suited or not, and based on these reports the committee decides on the suitability of
each candidate. Clearly, it is desirable that the committee members report their true
opinions. Aswill bementioned later on, related applications can be found in judgement
aggregation or in classification problems.

The preference of an agent for an alternative is determined by the (Hamming)
distance of that alternative to the agent’s top alternative: the smaller that distance,
the better. Thus, an agent’s preference is completely determined by that agent’s top
alternative, and each agent is asked to report this alternative. A rule assigns to each
profile of reported alternatives a (social) alternative. We assume, almost throughout,
that a rule is unanimous (if all reported alternatives are equal then that common alter-
native should be chosen), anonymous (only the reported alternatives matter and not
who reports what), and component-neutral (components are treated equally: renaming
the components in the preference profile results in renaming the components in the
outcome in the same way). We denote the set of all rules with these three properties
by F .

We will be interested in strategy-proofness (no agent can be better off by not report-
ing the top alternative truthfully), and in particular in weak group strategy-proofness
(no group of agents can make each of its members better off by not reporting truth-
fully), and strong group strategy-proofness (no group of agents can make each of its
members at least as well and at least onemember better off by not reporting truthfully).
This model fits within a large literature. We first describe our main results, and next
relate our model and results to this literature.

Unsurprisingly, due to the strong restriction on the domain of preferences, strategy-
proofness in this context is a fairly weak requirement. For instance, component-wise
majority rules are strategy-proof. A component-wise majority rule simply assigns to
each component a zero if the majority of agents assigns a zero to that component, and
a one if the majority of agents assigns a one, with a tie-breaker in the case that the
number of agents is even. In the appendix of the paper, for the case of two agents and
two components, we describe all (six) strategy-proof rules in F (Proposition A.1);
this is a rather elaborate task, and we learn from it that, without additional conditions,
characterizing all such rules for the general case will be practically infeasible. For
this reason, we limit our study of strategy-proofness to giving some partial results
(Sect. 3.1).

The central question of the paper is how far we can go in strengthening
strategy-proofness to group strategy-proofness.We first consider weak group strategy-
proofness (Sect. 3.2). Somewhat surprisingly, it turns out that for at least four agents
and at least three components, component-wise majority rules are not weakly group
strategy-proof (Proposition 3.10). This, however, does not mean that there are no
weakly group strategy-proof rules in F , and for three components and two or more
agents we exhibit an example of such a rule (Example 3.11). The main result of the
paper is an impossibility result on strong group strategy-proofness: for at least four
agents and at least three components, there exists no strongly group strategy-proof
rule inF (Theorem 4.6). This result is based on Proposition 4.5, which says that in the
case of at least four agents a strongly group strategy-proof rule in F has a so-called
dominant alternative: this is an alternative, necessarily with all components zero or
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all components one due to our conditions on rules in F , which is always chosen if
reported by at least one agent.

Clearly, in the context of this paper the consequences of individual strategy-
proofness, weak group strategy-proofness, and strong group strategy-proofness are
rather different; indeed, the conditions identified by Barberà et al. (2010) for equiva-
lence of these three strategy-proofness conditions are not satisfied here.

Our model is a special case of the classical social choice model. If all preferences
were allowed then the well-known result of Gibbard (1973) and Satterthwaite (1975)
would imply that there is no strategy-proof rule in F . Of course, our domain of
preferences is very small, and for this reason it is not a surprise that there exist strategy-
proof rules inF . Nevertheless, similarmodels in the literature do exhibit non-existence
of such rules. Observe that in our model, alternatives can be seen as the vertices in
a hypercube (a square if there are two components, a cube if there are three, etc.).
Preference is then simply determined by the Euclidian distance between the vertex
corresponding to the top alternative and any other vertex, measured along the edges
of the hypercube. This model closely resembles the model of Schummer and Vohra
(2002) for more general graphs, but there every point of each edge is an alternative
(thus, the number of alternatives is infinite). This difference appears to be essential:
they find that there exists no strategy-proof rule in F , in contrast to our findings. The
model is also a special case of the model of Peters et al. (2021), but they consider
a different class of preferences, namely all preferences that are single-peaked with
respect to a spanning tree of the graph: for instance, in the case of two components,
a preference 11 � 10 � 00 � 01 would be allowed, but in our model, if the top
alternative is 11, then 01 is (always) preferred to 00. Again, this difference appears to
be essential, since also Peters et al. (2021) find that there exists no strategy-proof rule
in F .

Our model of a multidimensional binary domain with preferences determined by
Hamming distance has been studied before in the literature. Amanatidis et al. (2015),
within the same model, consider so-called ordered weighted averaging operators,
ranging from minimizing the maximal Hamming distance to minimizing the sum of
Hamming distances (minisum), but focus on computational complexity issues. They
do show that many of the resulting rules are manipulable (not strategy-proof), but
that the minisum rule is one exception—this was already shown by Brams et al.
(2007) and Legrand et al. (2007). Barrot et al. (2017) provide a more detailed study
of the manipulability of rules in this class. Also Xia and Conitzer (2010) consider
multidimensional but not per se binary domains and derive an impossibility result
concerning strategy-proofness under weaker restrictions on preferences.

Preferences based on Hamming distance, as in our paper, are in particular also
separable: if we fix all alternatives on a subset of the components, for instance to
x1 ∈ {0, 1} on the first component and x2 ∈ {0, 1} on the second component, then a
preference on this restricted set does not depend on how exactly these alternatives are
fixed, in our example on x1 and x2. Therefore, the fact that component-wise majority
rules are strategy-proof also follows fromone of the results (Theorem4.1) of LeBreton
and Sen (1999).

Another strand of literature to which our model is related, is that of judgment
aggregation: a rule aggregates the judgments of the agents over a number of different
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issues to a common judgment over these issues (without there being a conclusion,
as opposed to the classical judgment aggregation problem). Dietrich and List (2007)
introduce strategy-proofness (non-manipulability) in the judgment aggregationmodel,
consider a larger class of preferences, possibly incomplete, and show (their Theorem
1) that a rule is strategy-proof if and only if it is independent (the value assigned to each
component depends only on the agents’ values assigned to that component and not
on the values the agents assign to any other component) and monotonic (in the values
per component). Terzopoulou and Endriss (2019) show that this result still holds if
preferences are, additionally, complete (their Theorem 1). A typical example of such
a rule is component-wise majority. Our class of preferences is smaller and, indeed, we
show that other strategy-proof rules in F exist: see our Example 3.6, which exhibits
such a rule which is not independent. Botan et al. (2016) consider the same preferences
as we do, and show that an unbiased rule (i.e., flipping zeros and ones in a component
leads to a corresponding flip (only) in the same component of the social alternative)
is strategy-proof if and only if it is independent and monotonic (their Theorem 4).
Our rule in Example 3.6 is, indeed, not unbiased.1 In another result, Dietrich and List
(2007) impose additional conditions (compared to Terzopoulou and Endriss (2019),
Theorem 1) on a rule, resulting in a dictatorship (their Theorem 2). Botan et al. (2016)
also considermanipulation by groups, butmainly focus on unbiased rules, as explained
above. Other related work on binary aggregation, but not focusing on manipulation
issues, includes Dokow and Holzman (2009) and Endriss and Grandi (2014).

Formally, our model also resembles approval voting (Brams and Fishburn 2007).
Components can be interpreted as candidates, and reported alternatives as approval
votes: one means approval, zero means disapproval. The alternative assigned by a rule
then gives the approved candidates. In models considering approval voting sometimes
more detailed preferences (linear orders) of agents over candidates are considered,
which are absent in our model.

The model in this paper is also studied in computer science under the name of (and
with application to) classification: the alternatives correspond to examples described
by binary labels, and a rule corresponds to a classifier, aimed at finding an alternative
that best matches the reported examples. See, e.g., Meir et al. (2010).

The paper is organized as follows. Section2 introduces the model and states a
few preliminary observations. Sections3 consider strategy-proofness and weak group
strategy-proofness, and Sect. 4 considers strong group strategy-proofness. Section5
concludes. A few results are delegated to the Appendix.

2 Model and preliminary results

The set of agents is N = {1, . . . , n}, where n ∈ N with n ≥ 2. A subset S of N is also
called a group.

The set of components is M = {1, . . . ,m}, where m ∈ N with m ≥ 2, and the set
of alternatives is A = {0, 1}M . For a = (a1, a2, . . . , am) ∈ A, a j ∈ {0, 1} is the value

1 As the reader can check later, for this rule f and n = 2, we have f (100, 111) = 100 but f (011, 000) =
000 �= 011.
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of the j th component of a. Instead of (a1, . . . , am) we also use the notation a1 . . . am .
We denote by 0x11y10x21y2 . . . 0xk1yk the alternative containing x1 zeros followed by
y1 ones followed by x2 zeros, and so on. If a subscript x j or y j is equal to 1, we leave
it out: for example, 010m−2 starts with a zero, followed by a one, which is followed
by m − 2 zeros.

For all a, b ∈ A let r(a, b) = ∑m
j=1 |a j −b j |, i.e., r(a, b) is the Hamming distance

between a and b. A preference of an agent i on A is characterized by its unique top
alternative ai ∈ A: then an alternative b is (weakly) preferred by agent i to alternative
c if and only if r(b, ai ) ≤ r(c, ai ). The disutility of agent i with top alternative ai for
alternative b is r(b, ai ). The set of (preference) profiles is denoted by AN . We use the
notation aN for the profile (a1, . . . , an), and for S ⊆ N we denote by aSbN−S the
profile (c1, . . . , cn) ∈ AN with ci = ai for all i ∈ S and ci = bi for all i ∈ N − S.
Similar notations will be clear from the context. In general, we use superscripts for
agents and subscripts for components.

A rule is a map f : AN → A. The alternative assigned by a rule f to a preference
profile will also be called an outcome.

A rule f is unanimous if f (a, . . . , a) = a for all a ∈ A. Two profiles aN and bN

are similar if there is a permutation π of N such that ai = bπ(i) for every i ∈ N . A
rule f is anonymous if f (aN ) = f (bN ) for all similar profiles aN and bN . For a ∈ A
and a permutation π of M we denote by πa ∈ A the alternative with (πa) j = aπ( j)

for every j ∈ M . A rule f is component-neutral if f (πa1, . . . , πan) = π f (aN ) for
every aN ∈ AN and every permutation π of M . Throughout the rest of this paper we
consider only rules that are unanimous, anonymous, and component-neutral. The set
of all such rules is denoted by F .

We say that a profile bN is obtained from aN by swapping the components j and k
if for all i ∈ N we have bi = πai , where π is the permutation of M with π( j) = k,
π(k) = j , and π(�) = � otherwise. A profile aN is symmetric in components j and k
if aN is similar to the profile bN obtained by swapping the components j and k. The
following observation will be used regularly.

Lemma 2.1 Let f ∈ F and let profile aN be symmetric in components j and k. Then
f (aN ) j = f (aN )k .

Proof Profile aN is similar to the profile bN obtained from aN by swapping the compo-
nents j and k. By component-neutrality of f , we have f (aN ) j = f (bN )k . Anonymity
of f implies f (aN ) = f (bN ). Hence, f (aN ) j = f (bN )k = f (aN )k . 	


Another consequence of anonymity is that we can use the notation (a[n1], b[n2], . . .)
for the profile in which n1 agents have preference a, n2 agents have preference b, etc.,
without confusion.

In this paper, the conditions of central interest for a rule f are the following.

Definition 2.2 An agent i can manipulate f at profile aN if there is a bi ∈ A such
that r( f (bi , aN−{i}), ai ) < r( f (aN ), ai ); f is strategy-proof if at every profile there
is no agent who can manipulate f .

Definition 2.3 A group S can strongly manipulate f at profile aN if there are bi ∈ A,
i ∈ S, such that r( f (bS, aN−S), ai ) < r( f (aN ), ai ) for every i ∈ S; f is weakly
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group strategy-proof if at every profile there is no groupwhich can stronglymanipulate
f .

Definition 2.4 A group S can weakly manipulate f at profile aN if there are bi ∈ A,
i ∈ S, such that r( f (bS, aN−S), ai ) ≤ r( f (aN ), ai ) for every i ∈ S, with at least
one inequality strict; f is strongly group strategy-proof if at every profile there is no
group which can weakly manipulate f .

Observe that f is weakly group strategy-proof if no group can strongly manipulate
and strongly group strategy-proof if no group can weakly manipulate: the latter con-
dition is more demanding than the former, therefore resulting in a stronger property.

Other properties of a rule which are of interest in this paper, are the following. A
rule f is weakly Pareto optimal if for every profile aN ∈ AN , there does not exist
an alternative b ∈ A such that r(b, ai ) < r( f (aN ), ai ) for all i ∈ N . A rule f is
strongly Pareto optimal if for every profile aN ∈ AN , there does not exist an alternative
b ∈ A such that r(b, ai ) ≤ r( f (aN ), ai ) for all i ∈ N , with at least one inequality
strict. One can easily see that in the case of two agents, strategy-proofness and weak
(strong) Pareto optimality imply weak (strong) group strategy-proofness. A rule f
is component-wise unanimous if for each j ∈ M and x ∈ {0, 1}, aij = x for each

agent i implies f (aN ) j = x . Clearly, if f is weakly Pareto optimal, then it is also
component-wise unanimous.

3 Strategy-proofness and weak group-strategy proofness

As already mentioned in the Introduction, in the present model with a quite restricted
domain of preferences, strategy-proofness is not very demanding. In Sect. 3.1 we will
collect some results on strategy-proofness.We focus onweak group strategy-proofness
in Sect. 3.2 and strong group strategy-proofness in Sect. 4.

3.1 Strategy-proofness

We just present a few eclectic results—even within F the condition of strategy-
proofness is too weak to obtain very general results.

We first consider the natural concept of a component-wise majority rule: such a
rule assigns to each profile an alternative of which each component is the majority of
the respective components in the preferences of the agents.2 The formal definition is
as follows.

Definition 3.1 A rule f is a component-wise majority rule with tie breaker t ∈ {0m,

1m} if for every profile aN ∈ AN and every j ∈ M , if |{i ∈ N | aij = 1}| > n
2 then

f (aN ) j = 1, if |{i ∈ N | aij = 0}| > n
2 then f (aN ) j = 0, and if |{i ∈ N | aij = 0}|

= |{i ∈ N | aij = 1}|, then f (aN ) j = t j .

2 Nevertheless, the component-wisemajority rule can also be criticized. Suppose there is aminimalmajority
of 1’s for each component, but some agent happens to have a 0 at each component. Then that agent, under
component-wise majority, gets his/her worst outcome, which does not seem quite fair. See also Amanatidis
et al. (2015) for a similar example.
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Clearly, component-wisemajority rules are unanimous, anonymous, and component-
neutral and, thus, inF . The tie breaker t is only relevant when the number of agents is
even. The following proposition shows that, indeed, component-wise majority rules
are examples of strategy-proof rules.3

Proposition 3.2 Each component-wise majority rule is strategy-proof.

Proof Let f be a component-wise majority rule with tie breaker t . Suppose that f
is not strategy-proof. Then there exists a profile aN , an agent i , and a preference
bi for agent i such that r( f (bi , aN−{i}), ai ) < r( f (aN ), ai ). Writing a = f (aN )

and b = f (bi , aN−{i}), this implies that there is a component j ∈ M such that
b j = aij �= a j . Without loss of generality we may assume that aij = b j = 1 and

a j = 0. Since a j = f (aN ) j = 0, either strictly more than n
2 preferences in the

profile aN have 0 at component j or exactly n
2 preferences in the profile aN have

0 at component j and t j = 0. Since aij = 1 and each agent other than i has the

same preference in the profiles aN and (bi , aN−{i}), we have b j = 0, which is a
contradiction. 	


Proposition 3.2 would still hold for general tie breakers t ∈ A, different from 0m
or 1m , but then component-neutrality is violated. It does not necessarily hold if ties
are broken in different ways. We illustrate this by the following example.

Example 3.3 Let m = 3 and n = 4. For any preference profile and any component let
the rule f assign 0 [1] if there is a strict majority for 0 [1]. In case of a tie at some
component, let f assign 1 if the total number of 1 s in the profile strictly exceeds the
total number of 0 s; otherwise, let f assign 0. Then f is unanimous, anonymous, and
component-neutral. By definition it respects component-wise strict majority, without
being a component-wise majority rule in the sense of Definition 3.1. Observe that
f (010, 010, 110, 111) = 110 and f (000, 010, 110, 111) = 010. Since agent 1 with
preference 010 prefers 010 over 110, f is not strategy-proof. �

Another observation is that component-wise majority rules are strongly Pareto
optimal.

Proposition 3.4 Let f be a component-wise majority rule. Then f is strongly Pareto
optimal.

Proof Note that f minimizes total Hamming distance, that is, for every profile aN and
every b ∈ A we have ∑

i∈N
r( f (aN ), ai ) ≤

∑

i∈N
r(b, ai ).

Hence, there is no b ∈ A with r(b, ai ) ≤ r( f (aN ), ai ) for all i ∈ N such that at least
one of these inequalities is strict. Thus, f is strongly Pareto optimal. 	

3 As already mentioned in the Introduction, this proposition can also be derived from Theorem 4.1 of Le
Breton and Sen (1999).
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In fact, Proposition 3.4 would still hold if ties are broken in arbitrary ways.
A simple consequence of Propositions 3.2 and 3.4 is that for two agents any

component-wise majority rule is strongly (and hence also weakly) group strategy-
proof.

In Proposition A.1 in the Appendix we describe all strategy-proof rules inF for the
simple case when there are only two agents and only two components. It turns out that
there are six such rules, including the two component-wise majority rules, and that all
these rules have a so-called dominant alternative. In general, rule f has a dominant
alternative d ∈ A if f (aN ) = d whenever ai = d for some i ∈ N . Clearly, if such a
dominant alternative exists, it is unique. Moreover, there are only two possibilities.

Lemma 3.5 Let f ∈ F have a dominant alternative a. Then a = 0m or a = 1m.

Proof Suppose, contrary to what we wish to prove, that a j �= ak for some j, k ∈ M .
Let a′ ∈ A with a′

j = ak , a′
k = a j , and a′

l = al otherwise. Consider the profiles V =
(a, a′, 0N−{1,2}

m ) and V ′ = (a′, a, 0N−{1,2}
m ). Then f (V ) = f (V ′) = a by anonymity.

On the other hand, component-neutrality of f and f (V ) = a imply f (V ′) = a′. Since
a �= a′, this is a contradiction. 	


Dominant alternatives play an important role in the next section, where we consider
strong group-strategy-proofness. As to component-wise majority rules, if there are
three or more agents then these do not have a dominant alternative, as is easy to see:
if there were a dominant alternative d, then it should be selected even at the profile
(d, d ′, . . . , d ′) where d ′

j = 1 − d j for every component j , which is not the case. It
is also easy to see that in the case of two agents a component-wise majority rule has
dominant alternative 0m if t = 0m and 1m if t = 1m .

We conclude our specific consideration of strategy-proofness with the following
example of a rule inF , for three alternatives and an arbitrary number of agents, which
is strategy-proof and has a dominant alternative.

Example 3.6 The rule f is defined as follows. Let m = 3 and let aN be a preference
profile.

(i) If ai = b for every i ∈ N and some b ∈ A, then f (aN ) = b.
(ii) Otherwise, if ai ∈ {011, 101, 110, 111} for every i ∈ N , then f (aN ) = 111.
(iii) Otherwise, if there are i ∈ N and j ∈ M such that aij = 1, aik = 0 for all k �= j ,

and ahj = 1 for all h �= i , then f (aN ) = ai .

(iv) In all remaining cases, f (aN ) = 000.

By (i), f is unanimous, and it is straightforward to verify that f is also anony-
mous and component-neutral, so that f ∈ F . By going over the cases it can be
checked that f is strategy-proof. Clearly, 000 is a dominant alternative. Also, e.g.
f (011, . . . , 011, 101) = 111, hence if n ≥ 3 then at component 1 there is a strict
majority for 0, whereas f assigns 1. If n = 2, then f (011, 101) = 111 and
f (001, 101) = 001, so that f is not a component-wise majority rule either: this
would imply both t = 111 and t = 000, an impossibility. �
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3.2 Weak group strategy-proofness

We now strengthen strategy-proofness to weak group strategy-proofness. We first
establish some useful results concerning weakly group strategy-proof rules in F .
Next, we consider again component-wise majority rules.

Wefirst observe thatweak group strategy-proofness impliesweakPareto optimality.

Lemma 3.7 Let f ∈ F be a weakly group strategy-proof rule. Then f is weakly Pareto
optimal.

Proof Bywayof contradiction suppose there exist a profileaN and an alternativeb such
that for each agent i ∈ N , r(b, ai ) < r( f (aN ), ai ). By unanimity, f (b, . . . , b) =
b, hence N can strongly manipulate at aN . This contradicts weak group strategy-
proofness of f . 	


Now we turn again to component-wise majority rules.4 We have already seen that
for the case of two agents, both component-wise majority rules are weakly group
strategy-proof—this follows from Propositions 3.2 and 3.4. We next consider the case
of three agents.

Proposition 3.8 Let n = 3. Then the component-wise majority rule is weakly group
strategy-proof.

Proof Let f be the component-wise majority rule. Suppose for contradiction that
S ⊆ N can strongly manipulate f at profile aN . By Proposition 3.2, f is strategy-
proof, so S can not be a singleton set. By Proposition 3.4, f is strongly Pareto optimal.
Hence S �= N . Thus, |S| = 2. Without loss of generality let S = {1, 2}. Since f is the
component-wise majority rule, component j of f (aN ) depends only on component
j of the preferences of the agents. If a1j = a2j , then f (aN ) j = a1j = a2j , so agents

1 and 2 do not misreport at component j . If a1j �= a2j , and if the outcome is changed
by misreporting, then the Hamming distance for one agent is increased by 1 and for
the other agent it is decreased by 1. So, it is not possible to decrease the Hamming
distance of both agents 1 and 2 simultaneously. Hence S cannot strongly manipulate
f at profile aN . This contradiction completes the proof. 	

We also obtain a positive result if there are two components.

Proposition 3.9 Let m = 2. Then each component-wise majority rule is weakly group
strategy-proof.

Proof Let aN be a preference profile and without loss of generality assume that
f (aN ) = 00. Let S ⊆ N and bS ∈ AS . If f (bS, aN−S) = 10, then S strongly manip-
ulates if ai ∈ {10, 11} for all i ∈ S, but then |{i ∈ S | bi1 = 1}| ≤ |{i ∈ S | ai1 = 1}|,
hence

|{i ∈ N | ai1 = 1}| ≥ |{i ∈ S | bi1 = 1}| + |{i ∈ N − S | ai1 = 1}|
4 Recall that, by definition, there are two component-wise majority rules if n is even, and only one if n is
odd.
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so that f1(bS, aN−S) = 0, a contradiction. The case where f (bS, aN−S) = 01 is
similar. If f (bS, aN−S) = 11, then S strongly manipulates if ai = 11 for all i ∈ S,
and then

|{i ∈ N | ai = 11}| ≥ |{i ∈ S | bi = 11}| + |{i ∈ N − S | ai = 11}|

so that f (bS, aN−S) = 00, a contradiction. Hence f is weakly group strategy-proof.
	


In all other cases component-wise majority rules fail to be weakly group strategy-
proof.

Proposition 3.10 Let n ≥ 4 and m ≥ 3. Then no component-wise majority rule is
weakly group strategy-proof.

Proof First, we consider the cases with n odd. Let f be the component-wise majority

rule f . Consider the profile V =
(

0m−3001, 0m−3010, 0m−3100, 0
[ n−5

2 ]
m , 1

[ n−1
2 ]

m

)

.

Then f (V ) = 0m−313. The disutility for the first three agents is 2. If these three

agents form a group and all report 0m , the new profile is V ′ =
(

0
[ n+1

2 ]
m , 1

[ n−1
2 ]

m

)

, and

f (V ′) = 0m . Hence the disutility for the first three agents of the new alternative is 1,
which is strictly less.5 Hence group {1, 2, 3} can strongly manipulate f , and so f is
not weakly group strategy-proof.

Second, let n = 4 and let f be the component-wise majority rule with t = 0m
(the case t = 1m is analogous). Then f (1100m−3, 1010m−3, 0110m−3, 0m) = 0m ,
whereas f (1110[3]

m−3, 0m) = 1110m−3. Hence, the disutility of agents 1, 2, and 3
decreases from 2 to 1, so that group {1, 2, 3} strongly manipulates. Hence also in this
case f is not weakly group strategy-proof.

Finally, we consider the cases where n is even, n ≥ 6. Let f be the component-wise
majority rule with tie breaker t = 0m (again, the case t = 1m is analogous). Consider
the profile

V =
(

1000m−3, 0100m−3, 0010m−3, 0110m−3, 1010m−3, 1100m−3, 0
[ n−6

2 ]
m , 1

[ n−6
2 ]

m

)

.

By tie-breaking, f (V ) = 0m . This alternative has disutility 2 for agents 4, 5, and 6;
if these agents all report 1110m−3, the new outcome is 1110m−3, which has disutility
1 for these agents. Hence group {4, 5, 6} can strongly manipulate f , and so f is not
weakly group strategy-proof. 	


We conclude our consideration of weak group strategy-proofness with an exam-
ple showing that there do exist weakly group strategy-proof rules in F also if the
component-wise majority rule(s) is (are) not weakly group-strategy-proof.6

5 This manipulation by the first three agents can be seen as an example of vote trading, cf. Riker and Brams
(1973).
6 The example is for three components, but we conjecture that an example can also be constructed for more
than three components.
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Example 3.11 Let m = 3. We define a weakly group strategy-proof rule in F .
Say an alternative (or an agent) is of type 0 if it (or its preference) is in the set

{000, 001, 010,100} and type1 if it (or its preference) is in the set {011, 101, 110, 111}.
A preference profile is of type 0 if it contains at least n

2 preferences of type 0, and of
type 1 otherwise. We define a rule f as follows. Consider a profile aN of type 0. If
there is a component j ∈ {1, 2, 3} such that aij = 1 for each i ∈ N , then f (aN ) = a

where a j = 1 and ak = 0 for k �= j . If there is no such j , then f (aN ) = 000. Now
consider a profile aN of type 1. If there is a component j ∈ {1, 2, 3} such that aij = 0

for each i ∈ N , then f (aN ) = a where a j = 0 and ak = 1 for k �= j . If there is no
such j , then f (aN ) = 111. Then f ∈ F .

We show that f is weakly group strategy-proof. Assume the contrary, i.e., there
exists a profile aN , a group S and a profile bN where bi = ai for each agent i /∈ S, such
that each i ∈ S strictly prefers f (bN ) over f (aN ), i.e., r( f (bN ), ai ) < r( f (aN ), ai )
for all i ∈ S.

First consider the case where f (aN ) = 001. Then, aN is of type 0 and for each
i ∈ N , ai3 = 1. So every agent i of type 0 has the preference 001 and hence i /∈ S.
This implies that at the new profile bN at least n

2 agents have preference 001. Hence
also bN is of type 0 and f (bN ) = 000 or f (bN ) = 001, thus f (bN ) = 000. Since for
each i ∈ N , ai3 = 1, they all prefer 001 over 000. This is a contradiction. The cases
where f (aN ) ∈ {010, 100, 011, 101, 110} are analogous.

Now consider the case where f (aN ) = 000. Then, aN is of type 0 and for each
j ∈ {1, 2, 3} there is i ∈ N such that aij = 0. First assume that f (bN ) = 001. Fix an

i ∈ N satisfying ai3 = 0. As f (bN ) = 001, we must have bi3 = 1, and hence i ∈ S.
This is a contradiction since i strictly prefers 000 = f (aN ) over 001 = f (bN ). Thus,
f (bN ) �= 001. Similarly one shows that f (bN ) �= 010 and f (bN ) �= 100. Since the
disutility of any agent of type 0 at f (aN ) = 000 is either 0 or 1, and f (bN ) �= 010 and
f (bN ) �= 100, it follows that none of the agents of type 0 is in S, so profile bN is also
of type 0. Hence, f (bN ) = 000, but this is a contradiction. An analogous argument
works for the case where f (aN ) = 111. �

4 Strong group strategy-proofness

We now further strengthen weak to strong group-strategy-proofness. Thereby, the
following concept will play an important role. A switching point of a rule f ∈ F is
an integer n0 with 1 ≤ n0 ≤ n such that

f
(
0[n′]
m , 1[n−n′]

m

) =
{
0m if n′ ≥ n0
1m if n′ < n0.

Clearly, if a switching point exists then it is unique.
The following lemma shows that strategy-proofness alone already implies the exis-

tence of a switching point. The argument is straightforward: since a rule in F assigns
0m if every agent reports 0m , and 1m if every agent reports 1m , there must be a point
where this outcome switches, and strategy-proofness implies that after the switch the
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outcome stays 1m . This is also a familiar phenomenon in the literature: for instance, it
is analogous to the monotonicity requirement of Dietrich and List (2007), and closely
related to the concept of a phantom voter in Moulin (1980). Besides, the lemma shows
that a strategy-proof rule has a dominant alternative if this switching point is 1 or n.

Lemma 4.1 Let f ∈ F be strategy-proof. Then f has a switching point n0. Further,
if f does not have a dominant alternative, then 2 ≤ n0 ≤ n − 1.

Proof For l ∈ {0, 1, . . . , n}, denote by V l the profile (0[l]
m , 1[n−l]

m ). Observe that V l is
symmetric in any two components. Thus, Lemma 2.1 implies that f (V l) j = f (V l) j ′
for any j, j ′ ∈ M . Hence, for every l ∈ {0, 1, . . . , n}, f (V l) = 0m or f (V l) = 1m .

Let n0 = min{l ∈ {0, 1, . . . , n} | f (V l) = 0m}. By unanimity, f (V 0) = 1m and
f (V n) = 0m . Thus, 1 ≤ n0 ≤ n.
If f (V n0+1) = 1m , an agent with preference 0m in V n0+1 can report 1m so that

the alternative f (V n0) = 0m results, contradicting strategy-proofness of f . Hence,
f (V n0+1) = 0m . Iterating this argument, we obtain f (V l) = 0m for each n0 ≤ l ≤ n.
Hence, f (V l) = 0m if l ≥ n0 and f (V l) = 1m if l < n0. Therefore, n0 is a switching
point.

Suppose, additionally, that f has no dominant alternative. We show that 2 ≤
n0 ≤ n − 1. By way of contradiction, suppose n0 = 1. Hence, f (V 1) = 0m .
Since 0m is not a dominant alternative of f , there exists a profile (0m, a[n−1]) such
that f (0m, a[n−1]) �= 0m . Consider a sequence of profiles R1 = (0m, 1[n−1]

m ) and
Ri = (0m, a2, . . . , ai , 1[n−i]

m ) for i = 2, . . . , n. Since f (R1) = f (V 1) = 0m
and f (Rn) = f (0m, a[n−1]) �= 0m , there exists i such that f (Ri ) = 0m and
f (Ri+1) �= 0m . Then agent i + 1 in profile Ri , who has top alternative 1m , can
strictly benefit from reporting ai+1, thus obtaining f (Ri+1) �= 0m . This contradicts
strategy-proofness of f . Therefore, 2 ≤ n0. By a similar argument it follows that
n0 ≤ n − 1. This completes the proof of the lemma. 	


Our main result will be that, if there are at least four agents and at least three
alternatives, then no rule in F is strongly group strategy-proof. First, we consider the
other cases and show that then we do have existence of a strongly group strategy-proof
rule. The following result strengthens Proposition 3.8.

Proposition 4.2 Let n ∈ {2, 3}. Then each component-wise majority rule is strongly
group strategy-proof.

Proof If n = 2, then this follows from Propositions 3.2 and 3.4. For the case n = 3,
again by Propositions 3.2 and 3.4, we only need to consider two-agent groups, and
by the same argument as used in the proof of Proposition 3.8 it follows that no such
group can deviate so that both members are at least as well off, with one strictly better
off. This concludes the proof. 	


For m = 2 and n ≥ 4 we present the following example.

Example 4.3 Let m = 2 and n ≥ 4. We define f as follows. Let aN be a preference
profile. If ai = a ∈ A for all i ∈ N , then f (aN ) = a. Otherwise, if ai = 00 for some
i ∈ N , then f (aN ) = 00. Otherwise, if ai = 11 for some i ∈ N , then f (aN ) = 11. In
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all other cases, f (aN ) = 00. Then it is not hard to verify that f ∈ F and f is strongly
group strategy-proof. �

Summarizing, we have established that strongly group strategy-proof rules in F
exist if n = 2 or n = 3, or if m = 2. It turns out that this does not hold in all other
cases. To show this, we use Proposition 4.5 below. In order to prove this proposition,
we use the following lemma, which in fact holds for weakly group strategy-proof
rules in F . Note that by Lemma 4.1, every weakly group strategy-proof rule in F has
a switching point.

Lemma 4.4 Let f ∈ F be weakly group strategy-proof. Let n0 be the switching point
of f . Then:

[1] if l < n0, then f
(
0[l]
m , (1k0m−k)

[n−l]) = 1k0m−k for all k ≥ 2;

[2] if l ≥ n0, then f
(
1[n−l]
m , (0k1m−k)

[l]) = 0k1m−k for all k ≥ 2.

Proof We only prove [1], the proof of [2] is analogous. Let l < n0.
Form = 2, the statement reduces to f (0[l]

2 , 1[n−l]
2 ) = 12, which is true since l < n0.

Now assume that m ≥ 3. Denote by V k the profile (0[l]
m , (1k0m−k)

[n−l]). We prove
that f (V k) = 1k0m−k for all k = 2, . . . ,m, by using backward induction on k.

For k = m, the statement follows from the fact that l < n0. Assume it to be true for
k + 1 where k ≥ 2. We prove that it is also true for k. Since V k is symmetric in each
pair of components j, j ′ ∈ {1, . . . , k}, Lemma 2.1 implies f (V k) j = f (V k) j ′ for all
such j and j ′. Since f is weakly group strategy-proof, by Lemma 3.7 it is also weakly
Pareto optimal and therefore component-wise unanimous. Hence, f (V k) j = 0 for
each j ∈ {k + 1, . . . ,m}. Thus, either f (V k) = 1k0m−k or f (V k) = 0m .

If f (V k) = 0m , then the n − l agents with preference 1k0m−k can report
1k+10m−(k+1) and achieve 1k+10m−(k+1) by the induction hypothesis. The disutil-
ity of 1k+10m−(k+1) is equal to 1 for each of these agents, which is strictly better than
the disutility k of 0m . This contradicts weak group strategy-proofness of f . Therefore,
f (V k) = 1k0m−k , which concludes the proof of the induction step and of the lemma.

	

Proposition 4.5 Let n ≥ 4, and let f ∈ F be strongly group strategy-proof. Then f
has a dominant alternative.

Proof Suppose, to the contrary, that f has no dominant alternative. Then by Lemma
4.1 f has a switching point n0 with 2 ≤ n0 ≤ n − 1. For k = 1, . . . , n − 1 denote by
V k the profile (0[k]

m , 1[n−k]
m ). We have f (V 1) = 1m and f (V n−1) = 0m .

Case 1: m = 2.

If n is even then consider the profile V = (00, 01[ n−2
2 ], 10[ n−2

2 ], 11). By Lemma
2.1, f (V ) = 00 or f (V ) = 11. If f (V ) = 00, then group {2, . . . , n} weakly manip-
ulates by each member reporting 11, resulting in f (V 1) = 11. If f (V ) = 11, then
group {1, . . . , n − 1} weakly manipulates by each member reporting 00, resulting in
f (V n−1) = 00.
If n is odd then consider the profile V = (00[2], 01[ n−3

2 ], 10[ n−3
2 ], 11). Again by

Lemma 2.1, f (V ) = 00 or f (V ) = 11. If f (V ) = 11, then group {1, . . . , n − 1}
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weakly manipulates by each member reporting 00, resulting in f (V n−1) = 00, thus
contradicting strong strategy-proofness of f . Suppose f (V ) = 00. If n0 > 2 then,
if each member of group {3, . . . , n} reports 11, the alternative f (V 2) = 11 results,
so that {3, . . . , n} weakly manipulates. Therefore, n0 = 2. Now consider the profile

V ′ = (00, 01[ n−3
2 ], 10[ n−3

2 ], 11[2]) then by a similar argument n0 = n−1, hence n = 3,
contradicting our assumption that n ≥ 4.

Case 2: m ≥ 3 and n is even.

Consider the profile V = (0m, 010
[ n2−1]
m−2 , 100

[ n2−1]
m−2 , 1m). Since V is symmetric in

components 1 and 2, Lemma 2.1 implies f (V )1 = f (V )2. By a similar argument,
f (V ) j = f (V ) j ′ for all j, j ′ ∈ {3, . . . ,m}. Thus, f (V ) is equal to 0m , 021m−2,
120m−2, or 1m .

If f (V ) = 021m−2 or f (V ) = 1m , agents 2, . . . , n − 1 in the profile V have
disutility m − 1. Then f (0m, 0[n−2]

m , 1m) = f (V n−1) = 0m , and this alternative has
disutility 1 for agents 2, . . . , n − 1. Thus, group {2, . . . , n − 1} can weakly (even
strongly) manipulate at V , contradicting strong (even weak) group strategy-proofness
of f .

If f (V ) = 120m−2 then, since f (V n−1) = 0m , group {1, . . . , n − 1} can weakly
manipulate at V by each member reporting 0m : alternative 0m is strictly preferred
by agent 1, and agents 2, . . . , n − 1 are indifferent. Again, this contradicts that f is
strongly group strategy-proof.

If f (V ) = 0m then, since f (0m, 120
[n−1]
m−2 ) = 120m−2 by Lemma 4.4, group

{2, . . . , n} can weakly manipulate at V : 120m−2 is strictly preferred by agent n and
agents 2, . . . , n − 1 are indifferent. This again contradicts that f is strongly group
strategy-proof, and completes the proof for the case that n is even and m ≥ 3.

Case 3: m ≥ 3 and n is odd.

Consider the profile V = (0[2]
m , 010

[ n−3
2 ]

m−2 , 100
[ n−3

2 ]
m−2 , 1m). By Lemma 2.1, f (V )1 =

f (V )2 and f (V ) j = f (V ) j ′ for all j, j ′ ∈ {3, . . . ,m}. Thus, f (V ) is equal to 0m ,
021m−2, 120m−2, or 1m .

If f (V ) = 021m−2, f (V ) = 120m−2, or f (V ) = 1m , then group {1, . . . , n − 1}
can weakly manipulate by each member reporting 0m , resulting in f (V n−1) = 0m ,
which is strictly better for agents 1 and 2 and weakly better for agents {3, . . . , n − 1}.
This contradicts strong group strategy-proofness of f .

If f (V ) = 0m , then consider the group {3, . . . , n}. If every member of this group
reports 120m−2, the new profile is (0[2]

m , 120
[n−2]
m−2 ). If n0 > 2, then by Lemma 4.4,

f (0[2]
m , 120

[n−2]
m−2 ) = 120m−2, implying that {3, . . . , n} can weakly manipulate at V

(in particular, agent n is strictly better off). Since f is strongly group strategy-proof,

this implies n0 = 2. Now consider the profile V ′ = (0m, 011
[ n−3

2 ]
m−2 , 101

[ n−3
2 ]

m−2 , 1[2]
m ).

By a similar same argument as for profile V , we obtain n0 = n − 1, hence n = 3,
contradicting the assumption that n ≥ 4. This completes the proof of the proposition.

	


Proposition A.2 in the Appendix states that, if n = m = 3, then the component-
wise majority rule is the unique strongly group strategy-proof in F that does not have
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a dominant alternative. In particular, this implies that the statement in Proposition 4.5
does not hold for n = m = 3.

Theorem 4.6 Let n ≥ 4 andm ≥ 3. Then no rule inF is strongly group strategy-proof.

Proof Let f ∈ F and for contradiction assume that f is strongly group strategy-
proof. By Proposition 4.5, f has a dominant alternative. By Lemma 3.5, without loss
of generality, this dominant alternative is 0m .

Consider the profile V = (100m−2, 011m−2, 110
[n−2]
m−2 ). Since V is symmetric in

any two components j, j ′ ∈ {3, . . . ,m}, Lemma 2.1 implies f (V ) j = f (V ) j ′ for
any such j and j ′. Therefore, f (V ) is equal to one of the eight alternatives xyzm−2
with x, y, z ∈ {0, 1}.

First we show that z = 0 if m ≥ 4. If z = 1, then f (V ) has disutility at least
m − 2 for agent 1. If that agent reports 0m , then f assigns the dominant alternative
0m , resulting in disutility 1 for agent 1, which is strictly better since m ≥ 4. This
contradicts the assumption that f is strategy-proof. Hence z = 0 if m ≥ 4.

If m = 3 and z �= 0, i.e., z = 1, then f (V ) = f (100, 011, 110[n−2]) = 101 since
otherwise agent 1 can strictly improve by reporting the dominant alternative 000.

Case 1: m ≥ 4 or m = 3 and z = 0.
If f (V ) = 010m−2, then agent 1 can report 0m and is again better off. If f (V ) =

100m−2, then agent 2 can report 0m and is better off. If f (V ) = 0m and all agents
report 110m−2, then f assigns 110m−2: this is weakly preferred by every agent and
strictly preferred by the agents 3, . . . , n. Hence, f (V ) = 110m−2.

Consider the profile V ′ = (10m−1, 01m−1, 1
[n−2]
m ). Since V ′ is symmetric in any

two components j, j ′ ∈ {2, . . . ,m}, Lemma 2.1 implies that f (V ) j = f (V ) j ′ for
any such j and j ′. Therefore, f (V ′) is equal to one of the four alternatives xym−1
with x, y ∈ {0, 1}.

If y = 1, then the disutility of f (V ′) for agent 1 is at least m − 1. If agent 1 reports
the dominant alternative 0m , then f assigns 0m , which agent 1 strictly prefers. Thus,
y = 0. If f (V ′) = 100m−2, then agent 2 can report 0m and be strictly better off.
Hence, f (V ′) = 0m .

At V ′, the disutility for agents 3, . . . , n is m. If each of them reports 110m−2, the
resulting profile is V and f (V ) = 110m−2. At V ′, agents 3, . . . , n strictly prefer
110m−2 over 0m . This contradicts the assumption that f is strongly group strategy-
proof and completes the proof for this case.

Case 2: m = 3 and z = 1.
As inCase 1we consider the profileV ′ = (100, 011, 111[n−2]), and obtain f (V ′) =

000. Then the disutility of agents 3, . . . , n at f (V ′) is equal to 3. If, instead, these
agents report 110, then f (V ) = 101 results, which has disutility 1 for each agent
3, . . . , n, violating strong (even weak) group strategy-proofness of f .

This completes the proof of the theorem. 	


5 Conclusion

We have studied rules on a multidimensional binary domain with preferences deter-
mined by Hamming distance. Under the natural conditions of unanimity, anonymity
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and component-neutrality, we have focused on strategy-proofness conditions: indi-
vidual, weak group, and strong group strategy-proofness, with results ranging from
many possibilities to impossibility. Specifically, we show that component-wise major-
ity rules are strategy-proof, and for three agents or two components also weakly group
strategy-proof, but not otherwise. These rules are even strongly group strategy-proof
if there are two or three agents. Our main result is an impossibility result: if there
are at least four agents and at least three components, then no rule is strongly group
strategy-proof.

From our analysis, in particular of special cases, it appears that it is a difficult if not
infeasible task to find all strategy-proof or weakly group strategy-proof rules under
the conditions of unanimity, anonymity and component-neutrality, unless additional
requirements are imposed. For instance, is it possible to extend Example 3.11 to
a characterization of a class of weakly strategy-proof rules? This is left for future
research.
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A Appendix

A.1 Strategy-proofness andm = n = 2

We consider the m = n = 2 case, for which we describe all strategy-proof rules in F .

Proposition A.1 Let n = m = 2. F contains exactly six strategy-proof rules, two
of which are the component-wise majority rules. All these rules have a dominant
alternative.

Proof To completely specify a strategy-proof rule f ∈ F , because of unanimity,
anonymity, and component-neutrality, we only need to fix the alternatives that f
assigns to four profiles: (00, 01), (00, 11), (01, 10), and (01, 11). The profile (00, 11)
is symmetric in the components 1 and 2, so by Lemma 2.1, f (00, 11)1 = f (00, 11)2.
Thus, f (00, 11) = 00 or f (00, 11) = 11.

Consider the case where f (00, 11) = 00. Then f (00, 01) = 00, otherwise the
agent with preference 11 in the profile (00, 11) can report 01 and get a better outcome,
contradicting strategy-proofness. Then also f (00, 10) = 00 due to component-
neutrality and f (00, 00) = 00 due to unanimity. Hence, 00 is a dominant alternative.
The profile (01, 10) is symmetric in components 1 and 2, so f (01, 10) = 00 or
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Table 1 The six strategy-proof
rules in F for m = n = 2.

Profile f 1 f 2 f 3 f 4 f 5 f 6

00 00 00 00 00 00 00 00

00 01 00 00 00 00 00 01

00 10 00 00 00 00 00 10

00 11 00 00 00 11 11 11

01 00 00 00 00 00 00 01

01 01 01 01 01 01 01 01

01 10 00 11 00 00 11 11

01 11 01 11 11 11 11 11

10 00 00 00 00 00 00 10

10 01 00 11 00 00 11 11

10 10 10 10 10 10 10 10

10 11 10 11 11 11 11 11

11 00 00 00 00 11 11 11

11 01 01 11 11 11 11 11

11 10 10 11 11 11 11 11

11 11 11 11 11 11 11 11

Rules f 1, f 2, and f 3 have dominant alternative 00, the other rules
have dominant alternative 11. Rules f 1 and f 6 are the component-
wise majority rules with t = 00 and t = 11, respectively

f (01, 10) = 11. We now consider the profile (01, 11). If f (01, 11) = 10, then the
agent with preference 01 in the profile (01, 11) can report 11 and get a better out-
come. Similarly if f (01, 11) = 00, the agent with preference 11 can misreport to 01.
Hence, f (01, 11) = 01 or f (01, 11) = 11. Moreover, if f (01, 10) = 11 then also
f (01, 11) = 11, otherwise the agent with preference 11 in the profile (01, 11) can
misreport 10 to get the outcome 11. Hence, there are exactly three strategy-proof rules
in F when f (00, 11) = 00. Analogously, there are also three strategy-proof rules in
F when f (00, 11) = 11, and these have 11 as dominant alternative.

Thus, there are exactly six strategy-proof rules in F , and all have a dominant
alternative. Two of these rules are the component-wise majority rules. 	


The rules derived in Proposition A.1 are displayed in Table 1.

A.2 The component-wise majority rule form = n = 3

As mentioned in Sect. 4, Proposition 4.5 does not hold when n = 3 and m = 3. In
particular, the component-wise majority rule is a strongly group strategy-proof rule in
F that does not have a dominant alternative. We show that there is no other strongly
group strategy-proof rule in F that does not have a dominant alternative.

Proposition A.2 Let n = 3 andm = 3. The component-wisemajority rule is the unique
strongly group strategy-proof rule in F that does not have a dominant alternative.

123



A. Aradhye, H. Peters

Proof Let f ∈ F and assume that f does not have a dominant alternative. Hence, f
is also strongly Pareto optimal and therefore component-wise unanimous. The idea is
to enumerate all preference profiles and step by step eliminate, for each profile, the
outcomes which contradict strong group strategy-proofness of f . In the end, we show
that f is the component-wise majority rule.

As f is unanimous, anonymous and component-neutral, we only need to consider
the following profiles. Once the outcomes for these profiles are fixed, the outcomes
of all other profiles are also determined by unanimity, anonymity and component-
neutrality of f .

000,000,001 000,001,001 000,001,100 001,001,100
001,010,100 000,111,111 000,011,111 000,011,011
000,011,110 001,111,111 001,011,111 001,110,111
001,011,011 001,110,110 001,011,110 001,101,011
111,111,110 111,110,110 111,110,011 110,110,011
110,101,011 111,000,000 111,100,000 111,100,100
111,100,001 110,000,000 110,100,000 110,001,000
110,100,100 110,001,001 110,100,001 110,010,100

For every profile, there are 8 possible outcomes from the set {000, 001, 010, 100,
011, 101, 110, 111}. We start by eliminating the outcomes which contradict either
unanimity, anonymity, component-neutrality or the fact that f is strongly group
strategy-proof.

(1) For f (001, 010, 100), we can eliminate all outcomes except 000 and 111
because the other outcomes violate component-neutrality or anonymity.
Moreover, we can also eliminate 111 by strong Pareto optimality. Hence,
f (001, 010, 100) = 000. Analogously, f (110, 101, 011) = 111.

(2) For f (000, 000, 001), we can eliminate all outcomes except 000 because oth-
erwise agents 1 and 2 can misreport to 010 and 100, respectively, and get
the outcome 000 by step (1). Hence, f (000, 000, 001) = 000. Analogously,
f (111, 111, 110) = 111.

(3) For f (000, 001, 001), we can eliminate all outcomes except 000 and 001 by
component-wise unanimity of f , at components 1 and 2.
Analogously for f (111, 110, 110), we can eliminate all outcomes except 111
and 110.

(4) We have f (000, 001, 100) = 000 by strategy-proofness, since otherwise
agent 1 can misreport to 010 and obtain 000 by step (1). Analogously,
f (111, 110, 011) = 111.

(5) For f (001, 001, 100), we can eliminate the outcomes 010, 011, 110 and 111 by
component-wise unanimity at component 2.We can also eliminate the outcome
100, because otherwise agent 2 can misreport to 010 and obtain the strictly
preferred outcome 000 by step (1).
Analogously, for f (110, 110, 011), we can eliminate the outcomes 101, 100,
001, 000 and 011.

(6) For f (000, 111, 111), we can eliminate all outcomes except 000 and 111 by
component-neutrality or anonymity. Moreover, we can eliminate 000, other-

123



Group strategy-proof rules in multidimensional. . .

wise, by strong group strategy-proofness, f has a dominant alternative 000.
Hence, f (000, 111, 111) = 111. Analogously, f (111, 000, 000) = 000.

(7) For f (000, 011, 111), we can eliminate the outcomes 000, 101, 110 and 100
because otherwise agent 2 can misreport to 111 to obtain the strictly preferred
outcome 111, by step (6).
Analogously, for f (111, 100, 000), we can eliminate the outcomes 111, 010,
001 and 011.

(8) f (000, 011, 011) = 000 or f (000, 011, 011) = 011 by component-wise una-
nimity and component-neutrality. Hence, by step (6) and strong group strategy-
proofness, f (000, 011, 011) = 011. Analogously, f (111, 100, 100) = 100.

(9) For f (000, 011, 110), by component-neutrality and unanimity, components 1
and 3 have equal value, so that we can eliminate the outcomes 001, 100, 011,
and 110.We can also eliminate 000 and 101 by strong group strategy-proofness
and step (6). Finally, f (000, 011, 110) �= 111 by strong Pareto optimality,
since agent 1 strictly prefers 010 and agents 2 and 3 are indifferent. Hence,
f (000, 011, 110) = 010. Analogously, f (111, 100, 001) = 101.

(10) For f (001, 111, 111), we can eliminate the outcomes 010, 011, 100, and 101 by
component-neutrality, and we can eliminate 000 and 110 by component-wise
unanimity at component 3. Also, f (001, 111, 111) �= 001, otherwise agent 1
can manipulate at (000, 111, 111) by misreporting 001, using step (6). Hence,
f (001, 111, 111) = 111. Analogously, f (110, 000, 000) = 000.

(11) For f (001, 011, 111), we can eliminate the outcomes 000, 010, 100 and 110 by
component-wise unanimity at component 3.We can also eliminate 101, because
otherwise agent 2 can misreport to 111 to obtain the strictly preferred outcome
111 by step (10).
Analogously, for f (110, 100, 000), we can eliminate the outcomes 111, 101,
011, 001, and 010.

(12) For f (001, 110, 111), we can eliminate the outcomes 010, 100, 011 and 101
by component-neutrality at components 1 and 2. We can also eliminate the
outcomes 000 and 001 because otherwise agent 2 can misreport to 111 to
obtain the strictly preferred outcome 111 by step (10). Finally, we can elim-
inate the outcome 110, because otherwise agent 1 can misreport to 111 to
obtain the strictly preferred outcome 111 by step (2) and anonymity. Hence,
f (001, 110, 111) = 111. Analogously, f (110, 001, 000) = 000.

(13) For f (001, 011, 011), we can eliminate all outcomes except 001 and 011 by
component-wise unanimity at components 1 and 3. Also, f (001, 011, 011) �=
001, since otherwise in the profile (000, 011, 011) agent 1 can misreport
to 001 to obtain the outcome 001, which is strictly preferred to 011, and
f (000, 011, 011) = 011 by step (8). Hence, f (001, 011, 011) = 011. Analo-
gously, f (110, 100, 100) = 100.

(14) For f (001, 110, 110), we can eliminate the outcomes 010, 100, 011 and 101
by component-neutrality at components 1 and 2. We can also eliminate the
outcomes 000 and 001 because otherwise agent 2 and 3 can misreport to 111
to obtain the strictly preferred outcome 111 by step (10).
Analogously, for f (110, 001, 001), we can eliminate the all the outcomes
except 001 and 000.
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(15) For f (001, 011, 110), we can eliminate the outcomes 000 and 101 because
otherwise agents 2 and 3 can misreport to 111 to obtain the strictly preferred
outcome 111 by step (10). We can eliminate 110, because otherwise agent 1
can misreport to 101 to obtain the strictly preferred outcome 111 by step (1)
and anonymity. We can eliminate 100, because otherwise agent 2 can misreport
to 111 to obtain the strictly preferred outcome 111 by step (12) and anonymity.
We can also eliminate 001, because otherwise agent 3 can misreport to 011 to
obtain the strictly preferred outcome 011 by step (13).
Analogously, for f (110, 100, 001), we can eliminate the outcomes 111, 010,
001, 011 and 110.

(16) For f (001, 101, 011), we can eliminate the outcomes 010, 100, 110 and 000
by component-wise unanimity at component 3. The outcomes 101 and 011 are
excluded by component-neutrality at components 1 and 2, and anonymity.

Analogously, for f (110, 010, 100), we can eliminate the all outcomes except 110 and
000.

By the above eliminations we are left with following possible outcomes for the
given profiles.

000, 000, 001 000 111, 111, 110 111
000, 001, 001 000, 001 111, 110, 110 111, 110
000, 001, 100 000 111, 110, 011 111
001, 001, 100 000, 001, 101 110, 110, 011 111, 110, 010
001, 010, 100 000 110, 101, 011 111
000, 111, 111 111 111, 000, 000 000
000, 011, 111 001, 010, 011, 111 111, 100, 000 110, 101, 100, 000
000, 011, 011 011 111, 100, 100 100
000, 011, 110 010 111, 100, 001 101
001, 111, 111 111 110, 000, 000 000
001, 011, 111 001, 011, 111 110, 100, 000 110, 100, 000
001, 110, 111 111 110, 001, 000 000
001, 011, 011 011 110, 100, 100 100
001, 110, 110 110, 111 110, 001, 001 001, 000
001, 011, 110 010, 011, 111 110, 100, 001 101, 100, 000
001, 101, 011 001, 111 110, 010, 100 110, 000

Further eliminations are as follows:

(17) By step (9), f (000, 011, 110) = 010. By component-neutrality, we have
f (000, 011, 101) = 001. So for f (000, 001, 001), we can eliminate 000,
because otherwise agents 2 and 3 can misreport to 011 and 101, respectively, to
obtain 001.Hence, f (000, 001, 001) = 001.Analogously, f (111, 110, 110) =
110.

(18) For f (000, 011, 111), we can eliminate the outcome 111 because other-
wise agent 1 can misreport to 011 to obtain 011 by step (17), anonymity,
and component-neutrality. We can also eliminate the outcomes 001 and 010
because otherwise agent 3 can misreport to 011 to obtain the strictly pre-
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ferred outcome 011 by step (8). Hence, f (000, 011, 111) = 011. Analogously,
f (111, 100, 000) = 100.

(19) For f (001, 011, 111), we can eliminate the outcome 111 because otherwise
agent 1 can misreport to 011 to obtain the strictly preferred outcome 011 by
step (17), anonymity, and component-neutrality. We can also eliminate the
outcome 001, because otherwise agent 3 can misreport to 011 to obtain the
strictly preferred outcome 011 by step (8). Hence, f (001, 011, 111) = 011.
Analogously, f (110, 100, 000) = 100.

(20) If f (001, 110, 110) = 111, then in the profile (111, 110, 110)with f (111, 110,
110) = 110 by step (17), agent 1 can misreport to 001 to obtain the
strictly better outcome 111. Hence, f (001, 110, 110) = 110. Analogously,
f (110, 001, 001) = 001.

(21) If f (001, 001, 100) = 000, then in the profile (000, 001, 001)with f (000, 001,
001) = 001 by step (17), agent 1 can misreport to 100 and obtain 000, which
is strictly better than 001. Hence, f (001, 001, 100) �= 000. Suppose that
f (001, 001, 100) = 101. Then by component-neutrality f (010, 010, 100) =
110, and again by component-neutrality f (100, 100, 010) = 110. In the pro-
file (110, 100, 100) agent 1 can misreport to 010 and obtain a strictly better
outcome by step (13) and anonymity. Hence, f (001, 001, 100) �= 101, and
therefore f (001, 001, 100) = 001. Analogously, f (110, 110, 011) = 110.

(22) For f (001, 011, 110), we can eliminate the outcomes 010 and 111 because
otherwise agent 1 can misreport to 011 to obtain the strictly preferred
outcome 011 by step (21), anonymity, and component-neutrality. Hence,
f (001, 011, 110) = 011. Analogously, f (110, 100, 001) = 100.

(23) For f (001, 101, 011), we can eliminate the outcome 111 because otherwise
agent 1 canmisreport to 101 to obtain the strictly preferred outcome 101 by step
(21), anonymity, and component-neutrality. Hence, f (001, 101, 011) = 001.
Analogously, f (110, 010, 100) = 110.

We conclude that f is the component-wise majority rule. 	
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