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Abstract
Fishburn’s alternating scheme domains occupy a special place in the theory of Con-
dorcet domains. Karpov (2023) generalised these domains and made an interesting
observation proving that all of them are single-peaked on a circle. However, an impor-
tant point that all generalised Fishburn domains are maximal Condorcet domain
remained unproved. We fill this gap and suggest a new combinatorial interpretation
of generalised Fishburn’s domains which provide a constructive proof of single-
peakedness of these domains on a circle.We show that classical single-peaked domains
and single-dipped domains as well as Fishburn’s alternating scheme domains belong
to this family of domains while single-crossing domains do not.

1 Introduction

A Condorcet domain is a set of linear orders on a given set of alternatives such that,
if all voters of a certain society are known to have preferences over those alternatives
represented by linear orders from that set, the pairwise majority relation of this society
is acyclic. Maximal Condorcet domains historically attracted a special attention since
they represent a compromisewhich allows a society to always have transitive collective
decisions and, under this constraint, provide voters with as much individual freedom
as possible. Thus the question: “How large a Condorcet domain can be?” has attracted
even more attention. Kim et al. (1992) identified this problem as a major unsolved
problem in the mathematical social sciences.

Craven (1992) conjectured that the single-peaked domain containing 2n−1 orders
was the largest. Fishburn (1996) was the first to venture beyond this barrier: based on
example by Monjardet (2009) he constructed Condorcet domains which are asymp-
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totically n times larger. He called them alternating scheme domains but now they are
known as Fishburn’s domains.

With the introduction by Karpov (2023) of generalised Fishburn’s domains we
have gained a new insight into the structure of the universe of Condorcet domains. It
appeared that Fishburn’s domains and single-peaked domains are close relatives and
are the two extremes of a certain spectrum of Condorcet domains. In this paper we
investigate the domains from this spectrum and show that they are all single-peaked
on a circle.

Let us briefly touch some of the basics of Condorcet domains. More information
about them can be found in Monjardet (2009); Puppe and Slinko (2024).

One of the best known Condorcet domains is the domain of single-peaked linear
orders on a line spectrum Black (1958). Recently Peters and Lackner (2020) gener-
alised this domain to single-peaked domains on a circle. And, although so generalised
domains are not necessarily Condorcet, as will be demonstrated in this paper, they
have a role to play in the theory of Condorcet domains too.

Intuitively, a domain is single-peaked on a circle if all the alternatives can be placed
on a circle so that, for every order of the domain, we can ‘cut’ the circle once so that
the given order becomes single-peaked on the resulting line spectrum. The location of
the cutting point may differ for different orders of the domain.

By L(A) we will denote all linear orders on the set of alternatives A which will
always be assumed to be finite. For a linear order v ∈ L(A) and two alternatives
x, y ∈ A we write x �v y if v ranks x higher than y. The set of alternatives A is
often taken as [n] = {1, 2, . . . , n}. Up to isomorphisms, for n = 3 there are only three
maximal Condorcet domains:

D1 = {123, 312, 132, 321}, D2 = {123, 231, 132, 321}, D3 = {123, 213, 231, 321}.

The domain D1 on the left contains all the linear orders on [3] in which 2 is never
ranked first, the domainD2 in the middle contains all the linear orders on [3] in which
1 is never ranked second, and domain D3 on the right contains all the linear orders
on [3] in which 2 is never ranked last. Following Monjardet (2009), we denote these
conditions as 2N{1,2,3}1, and 1N{1,2,3}2, and 2N{1,2,3}3, respectively.

Definition 1 Any condition of type xN{a,b,c}i with x ∈ {a, b, c} and i ∈ {1, 2, 3} is
called a never condition since it being applied to a domain D requires that in orders
of the restriction D|{a,b,c} of D to {a, b, c} alternative x never takes i th position. We
say that a subset N of

{xN{a,b,c}i | {a, b, c} ⊆ A, x ∈ {a, b, c} and i ∈ {1, 2, 3}}

is a complete set of never-conditions if N contains exactly one never condition for
every triple a, b, c of elements of A.

The following criterion is a well-known characterisation of Condorcet domains
that goes back to Sen (1966). See also Theorem 1(d) in Puppe and Slinko (2019) and
references therein.
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Criterion 1 A domain of linear orders D ⊆ L(A) is a Condorcet domain if and only
if it satisfies a complete set of never conditions.

The following property of Condorcet domains was shown to be very important.

Definition 2 (Slinko 2019) A Condorcet domain D is copious if for any triple of
alternatives a, b, c ∈ A the restriction D|{a,b,c} of this domain to this triple has four
distinct orders, that is, |D|{a,b,c}| = 4.

For n ≥ 5 not all maximal Condorcet domains are copious Slinko (2019). We
note that, if a Condorcet domain is copious, then it satisfies a unique complete set of
never conditions. Copiousness is often an important step in proving maximality of the
domain.

Proposition 1 LetN be a complete set of never conditions and D(N ) is the set of all
linear orders from L(A) that satisfyN . If D(N ) is copious, then D(N ) is a maximal
Condorcet domain.

Proof Suppose D(N ) is copious but not maximal. Then there exists a linear order u
such that D′ = D(N ) ∪ {u} is a larger Condorcet domain. Since u /∈ D(N ) for a
certain triple of alternatives a, b, c the domain D′|{a,b,c} contains an order on a, b, c
which is not in D|{a,b,c}. But then D′|{a,b,c} contains five orders on a, b, c which is
not possible as it would not be a Condorcet domain.

Many Condorcet domains are defined relative to some sort of societal axis, also
called spectrum. In politics it is often referred to as left-right spectrum of political
opinions.

Definition 3 Let A = {a1, . . . , an}. A domain D ⊆ L(A) is said to be (classical)
single-peaked if there exists a societal axis (spectrum)

a1 � a2 � · · · � an

such that for every linear order v ∈ L(A) and a ∈ A the upper contour set U (a, v) =
{b ∈ A | b �v a} is convex relative to the spectrum. By SPn(�) we will denote the
domain of all single-peaked orders on �.

Up to isomorphisms A is often taken as [n] and the societal axis as 1 < 2 < · · · < n.

Never conditions allow us to define useful classes of Condorcet domains as was
pioneered by Peter Fishburn (1996) who introduced the so-called alternating scheme
of never conditions and constructed Condorcet domains of large order. Karpov (2023)
generalised his scheme as follows.

Definition 4 (Karpov 2023) Let A = [n]. A complete set of never conditions is said
to be a generalised alternating scheme, if for some subset K ⊆ [2, . . . , n− 1] and for
all 1 ≤ i < j < k ≤ n we have

j N{i, j,k}3, if j ∈ K , and j N{i, j,k}1, if j /∈ K . (1)

The domain which consists of all linear orders satisfying the generalised alternating
scheme is called the generalised Fishburn’s domain or GF-domain.
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Fishburn’s original alternating scheme has K equal to the set of even numbers in
[2, . . . , n−1]. The GF-domain constructed using a subset K ⊆ [2, . . . , n − 1] will
be denoted as FK . Every GF-domain has orders ē = 12 . . . n and n . . . 21 as they
obviously satisfy conditions (1). Domains with this property are said to have maximal
width (Puppe, 2018).

2 Generalised Fishburn’s domains and their combinatorial
representation

The idea of this representation comes from an example in Danilov et al. (2010).

A set of n vertices on a circle, somewhite and some black, are numbered by integers
1, 2, . . . , n. We will often identify the vertices with the numbers on them.

Definition 5 An arrangement of n black and white vertices on a circle numbered by
integers 1, 2, ..., n (not becessarily in any particular order) will be called a necklace
and the vertices themselves will be called beads.

Definition 6 A set of beads X ⊆ [n] is said to be white convex (or simply w-convex)
if

(a) X does not consist of a single black bead;
(b) There does not exist i < j < k such that i, k ∈ X , j /∈ X and j is white;
(c) X is an arc of the circle.

Definition 7 A flag of w-convex sets is a sequence X1, . . . , Xn of w-convex sets

X1 ⊂ X2 ⊂ · · · ⊂ Xn = [n], (2)

where |Xk | = k.

Any flag (2) of w-convex sets defines a linear order v = x1x2 . . . xn on [n], where
{xi } = Xi \ Xi−1 (for convenience we assume that X0 = ∅).
Definition 8 Given a necklace S the domain D(S) is the set of all linear orders corre-
sponding to flags of w-convex sets.

Example 1 Consider now the necklace S presented on the picture on the left:

1 1 1 1 4 4 4 4
2 2 4 4 1 1 3 3
3 4 2 3 2 3 1 2
4 3 3 2 3 2 2 1
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This is a single-dipped domain relative to the spectrum 1 � 2 � 3 � 4 or 4 � 3 � 2 � 1.

Example 2 Consider now the necklace S presented on the picture on the left:

1 1 2 2 2 2 4 4 4
2 2 1 1 4 4 2 2 3
3 4 3 4 1 3 1 3 2
4 3 4 3 3 1 3 1 1

Then domain D(S) is given by the array on the right. This is the Fishburn domain
relative to the spectrum 1 � 2 � 3 � 4.

Our example shows that the construction is promising and generating maximal
GF-domains. Let us generalise these examples and offer a new combinatorial repre-
sentation of GF-domains from which we will deduce their maximality.

Let K ⊆ [2, . . . , n−1] and L = [2, . . . , n − 1] \ K be two complementary subsets
of [2, . . . , n − 1]. Let k1 < . . . < ks and �1 < . . . < �t be ordered elements of K and
L , respectively, where s + t = n − 2. Consider the following spectrum on the circle

1 � k1 � . . . � ks � n � �t � . . . � �1 � 1. (3)

Mark beads 1, k1, . . . , ks, n white and �1, . . . , �t black to obtain a necklace SK .

Example 3 For n = 3 we have two options: one with K1 = ∅ and another with
K2 = {2}. Respectively we have two necklaces SK1 and SK2 :
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Then D(SK1) = {123, 213, 231, 321} and D(SK2) = {123, 132, 312, 321} which are
FK1 and FK2 , respectively. These are single-peaked and single-dipped domains.

Proposition 2 If K = [2, . . . , n−1], thenD(SK ) = FK is the classical single-peaked
domain.

Proof Since L = ∅ in SK there are no black beads and beads 1 and n are neighbours
on the circle. The only w-convex set containing both of them is the longer arc Z with
endbeads 1 and n, that is, {1, 2, . . . , n}. Any arc X ⊆ Z is w-convex. So w-convex
sets coincide with the upper contour sets of the classical single-peaked domain with
the spectrum 1 � 2 � . . . � n − 1 � n.

Lemma 1 In domain D(SK ):

(i) A black bead a satisfies the never-top condition in any triple {a, b, c} such that
b < a < c, that is aN{a,b,c}1.

(ii) A white bead a satisfies the never-bottom condition in any triple {a, b, c} such that
b < a < c, that is aN{a,b,c}3.

Proof (i) Suppose a ∈ L ⊆ [2, . . . , n] is black and there is a linear order v in D(SK )

whose restriction to subset {a, b, c} is abcwith b < a < c. Let X be the firstw-convex
set from the flag corresponding to v that contains a. Then we need to consider two
cases: 1) a = �i and X = {�i , . . . , �1, 1, k1, . . . , k j } does not contain b and c (here
it is possible that j = 0). We note that b /∈ L as b < �i and not in X , thus b = ks
with s > j . But then 1 < ks < �i and X is not w-convex. The case 2) a = �i and
X = {�i , . . . , �t , n, ks, . . . , k j } does not contain b and c is similar.

(ii) Suppose a ∈ K ⊆ [2, . . . , n] white and a certain linear order v in D(SK ) has
restriction bca to subset {a, b, c} is with b < a < c. Let X be the largest w-convex
set in the flag corresponding to v that still does not contain a. Then it contains b and
c which contradicts to w-convexity of X .

Theorem 1 D(SK ) = FK .

Proof By Lemma 1 we know that D(SK ) ⊆ FK . Let us prove the converse. Let
v = a1 . . . an ∈ FK . We define the k-th ideal of v as Idk(v) = {a1, . . . , ak}. It is
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enough to show that for any k ∈ [n] the set Idk(v) is w-convex. We need to check
conditions (a)–(c) of Definition 6.

We note that, due to (1) a1 ∈ K and must be white. Hence condition (a) of Defini-
tion 6 is satisfied.

Next, we have to prove (b). Suppose the contrary. Then there exist a, b, c ∈ [n]
with a, c ∈ Idk(v) and b /∈ Idk(v) satisfying a < b < c and b ∈ K is white. Then the
restriction of v onto {a, b, c} is acb or cab in violation of bN{a,b,c}3.

To prove (c) suppose, first, that both 1 and n are not in Idk(v). Then no black
bead can be in Idk(v). Indeed, if � ∈ Idk(v) is black, then either �1n or �n1 is in the
restriction of v onto {1, �, n} which contradicts �N{1,�,n}1. Then, due to (b), Idk(v)

is an arc. Without loss of generality we assume now that 1 ∈ Idk(v). Then for some
k j ∈ Idk(v) the white beads in Idk(v) form an arc {1, . . . , k j }. Let k j be maximal
with this property. The white arc {k j+1, . . . , n} has no intersection with Idk(v) which
implies that the black arc {�p | k j < �p < n} is also has empty intersection with
Idk(v).

If Idk(v) is not arc, then we must have �k ∈ Idk(v) for some �i /∈ Idk(v) with
1 < �i < �k . But such a case would contradict to �k N{�i ,�k ,n}1.

This contradiction proves the theorem.

Lemma 2 For any K ⊆ [2, . . . , n − 1] the domain FK is copious.

Proof. We will use Theorem 1 and consider D(SK ) instead. Let a, b, c ∈ [n] with
a < b < c. We need to consider several cases.

1. a, b, c are all white. Then a = kp, b = ks , c = kr with p < s < r . The following
sets are w-convex:

{kp}, {ks}, {kr }, {kp, . . . , ks}, {ks, . . . , kr }, {kp, . . . , ks, . . . , kr }.

Thus, abc, cba, bac, bca all belong to the restriction of D(SK ) onto {a, b, c}.
2. a, b, c are all black.Note that every arc containing K isw-convex. Supposea = �p,

b = �q , c = �r with p < q < r . Let

K ′ = K ∪ {1} ∪ {n} ∪ {�1, . . . , �p−1} ∪ {�t , . . . , �r−1}.

Then the sequence of K ′ ∪ {�r } ⊂ K ′ ∪ {�r , �p} ⊂ [n] gives us cab and the
sequence K ′ ∪ {�p} ⊂ K ′ ∪ {�r , �p} ⊂ [n] gives us acb. Also, the sequence
K ′ ∪ {�r } ⊂ K ′ ∪ {�r , . . . , �q} ⊂ [n] gives cba and the sequence K ′ ∪ {�p} ⊂
K ′∪{�p, . . . , �q} ⊂ [n] gives abc. Hencewe have four suborders inD(SK )|{a,b,c}.

3. a is white; b, c are black. Then obviously, abc and acb belong to the restriction of
D(SK ) onto {a, b, c}. But also in the restriction ofD(SK ) onto {n, a, b, c}we have
ncba and ncab, hence cba and cab belong toD(SK )|{a,b,c}, so this restriction has
four suborders.

4. b is white; a, c are black. Then bac and bca are in D(SK )|{a,b,c} as well as ncba
and 1abc (or 1cba and nabc belong to the restrictions of D(SK ) onto {n, a, b, c}
and {1, a, b, c}, respectively. Hence cba and abc are in D(SK )|{a,b,c} and this
restriction has four suborders as well.
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5. a is black; b, c are white. Then bca, cba, bac and 1abc belong to respective
restrictions, so four suborders.

6. a and b are black and c is white. Then cba and cab belong toD(SK )|{a,b,c} together
with 1abc and 1acb. These are all possible cases.

Combining Proposition 1 with Lemma 2 we get

Theorem 2 For any K ⊆ [2, . . . , n − 1] the domain FK is a maximal Condorcet
domain.

The universal domain L(A) has many representations. One of the most useful ones
is by the permutohedron of order n (Monjardet, 2009), whose vertices are labeled by
the permutations of [n] from the symmetric group Sn . Two vertices are connected by
an edge if their permutations differ in only two neighbouring places. Domains can be
considered as a subgraphs of the permutohedron.

Definition 9 A domain D of maximal width is called semi-connected if the two com-
pletely reversed orders e and ē from D can be connected by a shortest path (geodesic
path) in the permutohedron so that all vertices of this path belong to D. It is directly
connected, if any two orders of a domain are connected by a shortest path in the
permutohedron that stays within the domain.

Maximality of GF-domains has a number of profound consequences.

Theorem 3 Every GF-domain D is a directly connected domain of maximal width.

Proof We have already noticed that GF-domains have maximal width containing
12 . . . n and n . . . 21. By their definition, they are also the so-called peak-pit domains
whichmeans that they satisfy a complete set of never-top and never-bottom conditions.
By Theorem 2 of Danilov et al. (2012) maximality of D implies that this is a tiling
domain and, in particular, it is semi-connected. It has been observed in Puppe (2016)
(Proposition A.1) that maximal semi-connected domains are directly connected.

Let us now give a formal definition of a domain single-peaked on a circle.

Definition 10 (Peters and Lackner 2020) A linear order v ∈ L(A) is said to be single-
peaked on a circle, if alternatives from A can be placed on a circle

a1 � a2 � · · · � an � a1

in anticlockwise order so that for every alternative a ∈ A the upper counter set
U (a, v) = {b ∈ A | b �v a} is a contiguous arc of the circle.

A domain D ⊆ L(A) is said to be single-peaked on a circle if there exists an
arrangement of alternatives on that circle such that each order of D is single-peaked
on a circle relative to their common arrangement of alternatives.

OurTheorem1as a corollary provides a constructive proof of the following theorem.

Corollary 1 (Karpov 2023) Every GF-domain FK is single-peaked on a circle.
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Proof By Theorem 1 FK is isomorphic to D(SK ). The statement now follows from
the fact that any upper contour set of this domain is a contiguous arc of the necklace.

Karpov’s original proof was based on the characterisation of single-peaked on a
circle domains by means of forbidden configurations given in Peters and Lackner
(2020).

As we have seen two prominent members of the class of peak-pit maximal Con-
dorcet domains of maximal width, namely, single-peaked on a line and Fishburn’s
domains, are single-peaked on a circle. The question may be asked: Are all peak-pit
maximal Condorcet domains of maximal width are single-peaked on a circle? The
answer, however, is negative.

Theorem 4 For any n ≥ 4 single-crossingmaximal Condorcet domains are not single-
peaked on a circle.

Proof Slinko et al. (2021) characterised all single-crossing maximal Condorcet
domains in terms of the relay structure. They showed that there are, up to relabel-
ing the alternatives, exactly two single-crossing maximal Condorcet domains, one
represented by a top-down relay and the other by a bottom-up relay which are flip-
isomorphic (one obtained from the other by reversing all orders). In the top-down
relay linear orders are arranged in a sequence v1, v2, v3, . . ., so that moving from left
to right 1 initially moves from top to bottom being swapped with 2, 3, . . . , n. Then n
starts to move up being swapped sequentially with n − 1, n − 2, . . . , 2. We will thus
have Id2(v1) = {1, 2}, Id2(v3) = {2, 3}, Id2(v2n−3) = {2, n}. But it is impossible to
have such three arcs {1, 2}, {2, 3}, {2, n} on a circle as 2 can have only two neighbours.

Here is an example of a top-down relay for n = 4

1 2 2 2 2 4 4
2 1 3 3 4 2 3
3 3 1 4 3 3 2
4 4 4 1 1 1 1

In this proof effectively we spotted in any single-crossing maximal Condorcet
domain one of the forbidden configurations described in Peters and Lackner (2020).

3 Conclusion and future work

Nowweknow that the single-peaked domain, Fishburn’s domain and the single-dipped
domain are members of the same family with single-peaked and single-dipped being
the two extremes. It would be interesting to investigate how the size of domain FK

depends on K . It is well-known that when K = [2, . . . , n − 1] or K = ∅ (the case
of classical single-peaked and single-dipped domains) we have |FK | = 2n−1 and
when K is the set of even numbers in [2, . . . , n − 1] (the case of classical Fishburn’s
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domain). Galambos and Reiner (2008) gave the exact formula for the cardinality of
FK :

|FK | = (n + 3)2n−3 −
{

(n − 3
2 )

(n−2
n
2−1

)
for even n;

( n−1
2 )

(n−1
n−1
2

)
for odd n.

It is reasonable to conjecture that these are the most extreme cases and the car-
dinality of |FK | for various K must be somewhere in between 2n−1 and the
cardinality of Fishburn’s domain. However, since Fishburn’s domain is not the
largest peak-pit domain of maximal width for at least n ≥ 34 (Karpov and Slinko,
2023), we do not even know if Fishburn’s domains are the largest among all GF-
domains.
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