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Abstract
In the classical bargaining problem, we propose a very mild axiom of individual
rationality, which we call possibility of utility gain. This requires that for at least
one bargaining problem, there exists at least one player who reaches a higher util-
ity level than their disagreement utility. This paper shows that the Nash solution
(Nash in Econometrica 18(2):155–162, 1950) is characterized by possibility of utility
gain and continuity with respect to feasible sets together with Nash’s axioms except
weak Pareto optimality. We also show that in Nash’s theorem, weak Pareto optimality
can be replaced by conflict-freeness (introduced by Rachmilevitch in Math Soc Sci
76(C):107–109, 2015). This demands that when the agreement most preferred by all
players is feasible, this should be chosen. Furthermore, we provide alternative and
unified proofs for other efficiency-free characterizations of the Nash solution. This
clarifies the role of each axiom in the related results.

1 Introduction

Nash (1950) formulated the bargaining problem and characterized a bargaining solu-
tion satisfying the axioms of scale invariance, symmetry, contraction independence,
and weak Pareto optimality. This solution is called the Nash solution. Since then,
many researchers have investigated the properties of this solution and provided other
characterizations of it.

In the real world, people sometimes reach inefficient agreements. Even when the
resulting outcome is physically efficient, they often spend considerable time resolving
conflicts. When the timing of agreements affects their utility levels, conflicts may be
resolved at inefficient points in the utility space. Thus, it is important to investigate
what class of solutions can be obtained if we do not impose weak Pareto optimality a
priori.
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In this paper, we propose a very mild condition of individual rationality called
possibility of utility gain. This requires that there exists at least one bargaining problem
in which at least one player improves his or her utility at the agreement. Were it
violated, in any bargaining problems, no player could achieve a utility gain over the
disagreement point.

Several researchers have characterized the Nash solution without weak Pareto opti-
mality. Roth (1977) showed that weak Pareto optimality can be replaced by strong
individual rationality. Anbarci and Sun (2011, 2013), Rachmilevitch (2015b), and
Mori (2018) also provided efficiency-free characterizations of the Nash solution using
scale invariance, symmetry and contraction independence. Under the assumption that
for each player, all feasible agreements are weakly better than the disagreement point,
Rachmilevitch (2021) provided efficiency-free characterizations of it using other sets
of axioms. Lensberg and Thomson (1988) and Driesen (2016) examined the role of
weak Pareto optimality in amodel with a variable number of players. Vartiainen (2007)
discussed the limited significance of weak Pareto optimality in bargaining problems
without disagreement points. For a survey of the literature about efficiency-free char-
acterizations, see Thomson (2022).

This paper provides two novel characterizations of the Nash solution with almost
no individual or collective rationality. First, we show that the Nash solution is the only
solution satisfying possibility of utility gain and feasible set continuity in conjunction
with Nash’s axioms except for weak Pareto optimality. Our new axiom is weaker than
the rationality axioms examined in Anbarci and Sun (2011, 2013), Rachmilevitch
(2015b), and Mori (2018). The first result provides an axiomatic foundation of the
Nash solution based on the weakest rationality requirement in the literature.

Second, we show that in Nash’s theorem, weak Pareto optimality can be replaced
by conflict-freeness introduced in Rachmilevitch (2015b). This requires that if there is
a feasible agreement that is most preferred by all players in the feasible set, then this
agreement should be chosen. As a corollary of the theorem in Rachmilevitch (2015b),
we obtain that the Nash solution is the unique solution satisfying scale invariance,
symmetry, contraction independence, conflict-freeness, and feasible set continuity.
Compared with this result, our new characterization implies that feasible set continuity
is redundant. These new resultsmean that theNash solution can be obtained evenwhen
we require very mild efficiency or individual rationality.

Furthermore, we provide unified proofs of other efficiency-free characterizations
by using several lemmas that we show to prove our first result. We clarify the role of
each axiom introduced in the related literature. The second novel characterization is
provided in line with this discussion.

This paper is organized as follows. Section 2 introduces the bargaining problem.
Section 3 defines several axioms, including our novel axiom, possibility of utility gain.
Section 4 characterizes the Nash solution by using this new axiom. Section 5 provides
unified proofs of related results, and also presents another new axiomatization of the
Nash solution. Finally, Sect. 6 has some concluding comments.
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2 The bargaining problem

This paper considers n-person bargaining problems. Let I = {1, 2, . . . , n} be the set
of players. Let S ⊂ R

n be a set of utility vectors that they can achieve by a unanimous
agreement.1 They stay at the disagreement point, denoted by d ∈ S, if they do not
agree. A (bargaining) problem is a pair (S, d). We assume that S is a compact and
convex set and that there exists s ∈ S such that s � d.2 These assumptions are
standard in the literature. The set of all problems is denoted by B.

A (bargaining) solution is a function f : B → R
n such that f (S, d) ∈ S for all

(S, d) ∈ B. For each (S, d) ∈ B and each i ∈ I , fi (S, d) is player i’s utility level.
Nash (1950) characterized the following solution N . For all (S, d) ∈ B,

N (S, d) = arg max
d≤s∈S

∏

i∈I
(si − di ).

This solution is called the Nash solution. The disagreement solution D is defined as
D(S, d) = d for all (S, d) ∈ B.

We introduce the following notation. For all A ⊂ R
n, ch(A) is the convex hull

of A. Let 0 = (0, 0, . . . , 0) and 1 = (1, 1, . . . , 1). For all s, α, β ∈ R
n, let αs =

(α1s1, α2s2, . . . , αnsn) and αs + β = (α1s1 + β1, α2s2 + β2, . . . , αnsn + βn). Also,
let αS = {αs ∈ R

n | s ∈ S} and αS + β = {αs + β ∈ R
n | s ∈ S} for all α ∈ R

n++
and β ∈ R

n .

3 Axioms for solutions

Natural or reasonable properties of solutions, which we call axioms, have been consid-
ered in the literature. Nash (1950) introduced the following four axioms to characterize
the Nash solution.

Scale invariance. For all (S, d) ∈ B and all α ∈ R
n++, β ∈ R

n, f (αS+β, αd+β) =
α f (S, d) + β.

Weak Pareto optimality. For all (S, d) ∈ B, if there exists y ∈ S such that y � x,
then f (S, d) �= x .

We say that a problem (S, d) is symmetric if for all one-to-one functionsπ : I → I ,
S = {(sπ(1), sπ(2), . . . , sπ(n)) | s ∈ S} and for all i, j ∈ I , di = d j .

Symmetry. If (S, d) ∈ B is symmetric, then fi (S, d) = f j (S, d) for all i, j ∈ I .
Contraction independence. For all (S, d), (T , d) ∈ B, if S ⊂ T and f (T , d) ∈ S,

then f (S, d) = f (T , d).

1 Let R (resp. R+, R++, R−, R−−) denote the set of real numbers (resp. nonnegative numbers, positive
numbers, nonpositive numbers, negative numbers). LetRn (resp.Rn+, Rn++, Rn−, Rn−−) denote the n-fold
Cartesian product of R (resp. R+, R++, R−, R−−).
2 We write a � b if ai > bi for all i ∈ I , and a ≥ b if ai ≥ bi for all i ∈ I . We define 	 and ≤ in the
same way.
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In real-life bargaining, people do not always reach Pareto optimal agreements.
Therefore, it is important to explore bargaining solutions without imposing weak
Pareto optimality a priori. In fact, Roth (1977) showed that in Nash’s theorem, weak
Pareto optimality can be replaced by the axiom which requires that all players receive
utility levels strictly higher than the disagreement point. Formally, this requirement is
defined as follows:

Strong individual rationality. For all (S, d) ∈ B, f (S, d) � d.

Anbarci and Sun (2011), Rachmilevitch (2015b) and Mori (2018) also introduced
weak axioms of rationality and provide efficiency-free characterizations of the Nash
solution using scale invariance, symmetry and contraction independence.

We now introduce a new axiom. It requires that there exists at least one problem
such that at least one player can gain more utility than the disagreement point. This
axiom is logically weaker than strong individual rationality and the axioms introduced
by Anbarci and Sun (2011), Rachmilevitch (2015b) or Mori (2018).

Possibility of utility gain. There exists (S, d) ∈ B such that fi (S, d) > di for some
i ∈ I .

We also introduce an axiom of continuity. This requires that small changes in the
bargaining situation do not lead to large changes in the chosen outcome.3

Feasible set continuity. If a sequence {Sk}∞k=1 converges to S in the Hausdorff topol-
ogy as k → ∞ and {(Sk, d)}∞k=1 ∪ {(S, d)} ⊂ B, then

lim
k→∞ f (Sk, d) = f (S, d).

Note that under appropriate assumptions, this requirement is satisfied by almost all
bargaining solutions examined in the literature, such as the Nash solution, the Kalai–
Smorodinsky solution (Kalai and Smorodinsky 1975), the Raiffa solution (Raiffa
1953), the equal-loss solution (Chun 1988), and others.

4 Main results

Our main result is the following: the Nash solution is the unique solution satisfying
possibility of utility gain and feasible set continuity togetherwithNash’s axioms except
for weak Pareto optimality.

3 Such insensitivity is important from the perspective of uncertainty about bargaining situations. In real
life, we can only approximate what agreements are feasible and how much utility levels can be achieved
through agreements. Continuity demands that even if the actual bargaining problem varies slightly from
our predictions, the outcome of the solution does not alter considerably.
Many researchers have studied axioms related to uncertainty, including Perles and Maschler (1981), Chun
and Thomson (1990a, b), Peters and van Damme (1991), Bossert and Peters (2002, 2022), and others.
Thomson (1994) reviewed the related literature up to the mid-1990s.
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Fig. 1 �(c) in the case where
n = 2

0 s1

s2

(c)

c1

2
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Theorem 1 Asolution satisfies scale invariance, symmetry, contraction independence,
feasible set continuity, and possibility of utility gain if and only if it is the Nash solu-
tion.

In this section, we prove this theorem and check the independence of each axiom.
Furthermore, we discuss whether we can weaken possibility of utility gain or not.

4.1 Preliminary lemmas

We start by proving three lemmas elucidating the implications of scale invariance,
symmetry and contraction independence together.Weuse these lemmas again in Sect. 5
to prove other characterizations in a unified way.

Lemma 1 Let f be a solution satisfying scale invariance and contraction indepen-
dence. If there exists a problem (S, d) ∈ B such that d is an interior point of S and
f (S, d) = d, then f = D.

Proof Let (S, d) be a problem satisfying the hypothesis of the lemma. Let (S′, d ′) ∈ B.

By scale invariance, we can assume that d = 0 and d ′ = 0.Weshow that f (S′, 0) = 0.
Let α ∈ R

n++ such that S′ ⊂ αS. (Note that there exists such an α since d is
an interior point of S.) By scale invariance, f (αS, 0) = 0. Since S′ ⊂ αS and
f (αS, 0) = 0 ∈ S′, contraction independence implies f (S′, 0) = 0. ��
For all c ≤ 0, let �(c) = {s ∈ R

n | s ≥ c1 and s1 + s2 + · · · + sn ≤ n}. (Figure 1
illustrates �(c) in the two-person case.)

For all symmetric problems (S, d), let l(S) = x1 where x = max(y,y,...,y)∈S y and
l(S) = x ′1 where x ′ = min(y,y,...,y)∈S y.

Lemma 2 Suppose that a solution f satisfies scale invariance, symmetry and contrac-
tion independence. Then, for all symmetric problems (S, d), f (S, d) is either l(S), d
or l(S). In particular, f (�(c), 0) is either c1, 0 or 1 for each c ≤ 0.
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Proof Let (S, d) be a symmetric problem. By scale invariance, we can assume that
d = 0. By symmetry, there exists x ∈ [l1(S), l1(S)] with f (S, 0) = x1. Suppose
to the contrary that x ∈ (l1(S), 0) ∪ (0, l1(S)). Fix ε > 0 small enough such that
x1 ∈ αS where α = (1 − ε)1 ∈ R

n . By scale invariance, f (αS, 0) = αx1. Since
αS ⊂ S and f (S, 0) = x1 ∈ αS. By contraction independence, f (αS, 0) = x1, a
contradiction. ��
Lemma 3 Let f be a solution satisfying scale invariance and contraction indepen-
dence. If f (�(c), 0) = 1 for all c ≤ 0, then f = N .

Proof When f (�(c), 0) = 1 for all c ≤ 0, we prove f = N . Let (S, d) be an
arbitrary problem. By scale invariance, we can assume that d = 0 and N (S, d) = 1.
There exists c < 0 such that S ⊂ �(c). Since f (�(c), 0) = 1 ∈ S, contraction
independence implies f (S, d) = 1 = N (S, d). ��

4.2 Characterization of the Nash solution

Using the lemmas in the previous section, we prove Theorem 1.

Lemma 4 Let f be a solution satisfying scale invariance, symmetry, and contraction
independence. If f (�(c), 0) = c1 for all c ≤ 0, then f (S, d) ≤ d for all (S, d) ∈ B,

i.e., it violates possibility of utility gain.

Proof Step 1. Let (S, d) be a problem such that d is in the interior of S. By scale
invariance, we can assume that

arg max
d≥s∈S

∏

i∈I
|si − di | = −1

and d = 0. There exists a symmetric problem (T 1, 0) satisfying the following condi-
tions:

• S ⊂ T 1 ⊂ {s ∈ R
n | s1 + s2 + · · · + sn ≥ −n}.

• T 1 ∩ R
n+ = x1�(0) for some x ∈ R++.

(See Fig. 2 for (T 1, 0) in the two-person case.) By Lemmas 1 and 2, f (T 1, 0) is either
−1 or x1. If f (T 1, 0) = x1, then scale invariance and contraction independence
imply that f (�(0), 0) = 1, a contradiction. Thus, f (T 1, 0) = −1. By contraction
independence, f (S, 0) = −1 ≤ 0(= d).

Step 2. Let (S, d) be a problem such that d is on the boundary of S and that there
is no s ∈ S\{d} satisfying s ≤ d.

By scale invariance, we can assume thatd = 0 and S ⊂ {s ∈ R
n | s1+s2+· · ·+sn ≥

0}. (We show the existence of such a positive affine transformation τ. Since f satisfies
scale invariance, we can set d = 0.By the supporting hyperplane theorem, there exists
k = (k1, k2, . . . , kn) ∈ R

n++ such that k1s1 + k2s2 + · · · + knsn ≥ 0 for all s ∈ S. Let
τ : Rn → R

n be a function such that for all s′ ∈ R
n, τ (s′) = ks′. We have τ(0) = 0

and for all s ∈ S, τ1(s) + τ2(s) + · · · + τn(s) = k1s1 + k2s2 + · · · + knsn ≥ 0, as
required.)

Let (T 2, 0) be a symmetric problem satisfying the following conditions:
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Fig. 2 (T 1, 0) in the case where
n = 2

0 s1
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T 1

−1

Fig. 3 (T 2, 0) in the case where
n = 2

0 s1

s2

S

T 2

• S ⊂ T 2 ⊂ {s ∈ R
n | s1 + s2 + · · · + sn ≥ 0}.

• T 2 ∩ R
n+ = x1�(0) for some x ∈ R++.

(See Fig. 3 for the two-person case.) By Lemma 2, f (T 2, 0) is either 0 or x1.
If f (T 2, 0) = x1, scale invariance and contraction independence imply that
f (�(0), 0) = 1, a contradiction to f (�(0), 0) = 0. Thus, f (T 2, 0) = 0. By con-
traction independence, it follows that

f (S, 0) = 0.

Step 3. Let (S, d) be a problem such that d is on the boundary of S and there is
s ∈ S\{d} satisfying s ≤ d. By scale invariance, we can set d = 0. Suppose to
the contrary that f (S, 0) ≤ 0 does not hold. Let T 3 = ch((S ∩ R

n+) ∪ { f (S, 0)}).
By contraction independence, f (T 3, 0) = f (S, 0). Since (T 3, 0) is in the class of

123



K. Nakamura

problems examined in Step 2, we have f (T 3, 0) = 0 �= f (S, d), a contradiction.
Hence, f (S, d) ≤ d. ��
Lemma 5 Let f be a solution satisfying scale invariance, symmetry, contraction inde-
pendence and feasible set continuity. Then, one of the following statements holds:
(L5-1) f (�(c), 0) = 0 for all c ≤ 0.
(L5-2) f (�(c), 0) = 1 for all c ≤ 0.
(L5-3) f (�(c), 0) = c1 for all c ≤ 0.

Proof ByLemma1, if there exists c < 0 such that f (�(c), 0) = 0, then f (�(c′), 0) =
0 for all c′ ≤ 0, i.e., (L5-1) holds.

Consider the case when there is no c < 0 such that f (�(c), 0) = 0. By Lemma 2,
for all c′ ≤ 0,

f (�(c′), 0) ∈ {1, c′1}. (1)

To prove (L5-2) and (L5-3), suppose to the contrary that for some c1 ≤ 0 and c− ≤ 0,
f (�(c1), 0) = 1 and f (�(c−), 0) = c−1. Let C1 = {e ≤ 0 | f (�(e), 1) = 1} and
C− = {e ≤ 0 | f (�(e), 1) = e1}. By (1), C1 ∪ C− = (−∞, 0]. Since f satisfies
feasible set continuity, both sets are closed. By c1 ∈ C1 and c− ∈ C−, they are
nonempty. Since (−∞, 0] is connected, C1 ∩ C− �= ∅, a contradiction.4 ��
Proof of Theorem 1 It is clear that the Nash solution satisfies the five axioms of the
theorem. Let f be a solution satisfying these axioms. By Lemma 5, either (L5-1), (L5-
2), or (L5-3) holds. By Lemma 1 and Lemma 4, (L5-2) and (L5-3) violate possibility
of utility gain. By Lemma 3, f = N . ��

4.3 The independence of axioms in Theorem 1

In the following, we show the independence of the axioms in Theorem 1.

Example 1 Let NU be the solution defined as follows: for all (S, d) ∈ B,

NU (S, d) = arg max
d≤s∈S

( ∏

i∈N
(si − di ) +

∑

i∈N
(si − di )

)
.

This solution satisfies all of the axioms except for scale invariance.5

4 The present version of the proof is due to an anonymous referee. The author would like to thank the
referee for his/her suggestion.
5 Note that Kalai (1977b)’s egalitarian solution does not work as a counterexample because it violates
feasible set continuity. We verify this in the two-person case. Formally, the egalitarian solution E assigns to
each (S, d) ∈ B the point μ(S, d)1 + d, where μ(S, d) is the real number defined by μ(S, d) = max{λ ∈
R | λ1 + d ∈ S}. Consider the sequence {Sk }k∈N such that Sk = ch({(2, 0), (1 + 1/k, 1), 0}) for all
k ∈ N. This sequence converges to S = ch({(2, 0), 1, 0}) in the Hausdorff topology. By definition of E,

E(Sk , 0) = 0 for all k ∈ N. However, E(S, 0) = 1, which means that E violates feasible set continuity.
If we assume comprehensiveness (for all (S, d) ∈ B, if s ∈ S and d ≤ s′ ≤ s, then s′ ∈ S), then the
egalitarian solution E satisfies feasible set continuity. This property is usually assumed when examining
the egalitarian solution or the Kalai–Smorodinsky solution.
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We briefly verify that NU does not satisfy scale invariance in the two-person case.
Let S = ch({(2, 0), (0, 1), 0}). If NU satisfies scale invariance, then NU (S, 0) =
(2NU1(�(0), 0), NU2(�(0), 0)). However, by the Lagrangian method, we obtain
NU (�(0), 0) = (1/2, 1/2) and NU (S, 0) = (3/2, 1/4).

Example 2 Let θ ∈ R
n++\{(1/n, 1/n, . . . , 1/n)} with

∑
i∈I θi = 1. The weighted

Nash solution N θ is the maximizer of the product
∏

i∈I (s1 − d1)θi in s ∈ {s′ ∈
S | s′ ≥ d} for each (S, d) ∈ B. (See Kalai 1977a.) This solution does not satisfy
symmetry, but satisfies the other axioms.

Example 3 Given λ ∈ (0, 1), let f be a solution defined as follows: for all (S, d) ∈ B,

f (S, d) = λ

(
arg max
d≤s∈S

∏

i∈I
(si − di )

)
+ (1 − λ)d.

This solution satisfies all of the axioms in Theorem 1 other than contraction indepen-
dence.6

Example 4 Let N P+(S, d) = maxd≤s∈S
∏

i∈I (si − di ) and N P−(S, d) = maxd≥s∈S∏
i∈I |si − di |. Let f be a solution defined as follows: for all (S, d) ∈ B,

f (S, d) =
{
N (S, d) (N P+(S, d) ≥ N P−(S, d))

arg max
d≥s∈S

∏
i∈I |si − di | (N P+(S, d) < N P−(S, d)).

This solution does not satisfy feasible set continuity, but satisfies the other axioms.

Example 5 The disagreement solution D satisfies all of the axioms except for possi-
bility of utility gain.

4.4 Weakening possibility of utility gain

We examine whether it is possible to weaken possibility of utility gain in Theorem 1.
Consider the following weaker axiom:7

Non-triviality. f �= D.

Mathematically, possibility of utility gain can be replaced by this axiom.

Proposition 1 A solution satisfies scale invariance, symmetry, contraction
independence, feasible set continuity, and non-triviality if and only if it is the Nash
solution.

Proof It is clear that the Nash solution satisfies the five axioms of the theorem. Let
f be a solution satisfying these axioms. In the proof of Theorem 1, possibility of
utility gain is only used to exclude the cases (i) f (�(c), 0) = 0 for all c ≤ 0 and (ii)

6 Mariotti (1996) introduced this class of solutions and provided an axiomatization.
7 This axiom is also examined in Rachmilevitch (2014, 2021).
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f (�(c), 0) = c1 for all c ≤ 0. Since the case (i) can be excluded by non-triviality,
it is sufficient to show that the case (ii) does not hold. Suppose to the contrary that
f (�(c), 0) = c1 for all c ≤ 0.
Step 1. Let (S, d) be a problem such that d is on the boundary of S and there is

no point s ∈ S\{d} with s ≤ d. As in Step 2 of the proof of Lemma 4, we can show
f (S, d) = d.

Step 2. For all a ∈ R
n−, let tr(a) = {s ∈ R

n | s ≥ a and s1 + s2 + · · · + sn ≤ n}.
Note that for all c ≤ 0, �(c) = tr(c1). We show that for all a ∈ R

n−, f (tr(a), 0) = a.

For each a ∈ R
n−−, scale invariance and contraction independence imply

f (tr(a), 0) = a.8 For each b ∈ R
n−, consider a sequence {bk}∞k=1 ⊂ R

n−− such
that {bk}∞k=1 converges to b. Since f satisfies feasible set continuity, it follows that
f (tr(b), 0) = limk→∞ f (tr(bk), 0) = limk→∞ bk = b.
Step 3. Consider the sequence {ak}∞k=1 ⊂ R

n defined by ak = (1/k,−1,−1, . . . ,
−1) for all k ∈ N. Let a∗ = (0,−1,−1, . . . ,−1)(= limk→∞ ak). Let Sk =
ch(�(0) ∪ {ak}) for each k ∈ N. The sequence {Sk}k∈N converges to S∗ =
ch(�(0) ∪ {a∗}).

Since S∗ ⊂ tr(a∗), the result of Step 2 and contraction independence imply
f (S∗, 0) = a∗. Since (Sk, 0) is in the class of problems considered in Step 1,
f (Sk, 0) = 0 holds for each k ∈ N. Feasible set continuity implies f (S∗, 0) = 0, a
contradiction. Thus, there is no f such that f (�(c), 0) = c1 for all c ≤ 0. ��

However, Proposition 1 highly depends on the domain assumption. To see this,
consider the slightly different domain of problems. Let B0 be the subset of B such
that for all (S, d) ∈ B0, d is an interior point of S. Solutions and axioms on B0 are
defined in the same way as B. When considering this domain B0, the counterpart
of Proposition 1 does not hold. Indeed, then the following solution N− on B0 also
satisfies all the axioms in Proposition 1: for all (S, d) ∈ B0,

N−(S, d) = arg max
d≥s∈S

∏

i∈I
|si − di |.

5 Unified proofs of other characterizations

In this section, we use the lemmas in Sect. 4.1 to provide unified proofs of other
efficiency-free characterizations. This clarifies the technical role of each axiom intro-
duced in the literature. We also provide one new characterization of the Nash solution.

5.1 Rachmilevitch (2015b)

Rachmilevitch (2015b) proposed the requirement that if there is a feasible outcome
which is most preferred by each player, then this outcome should be chosen. To intro-

8 Consider the positive affine transformation τ : Rn → R
n such that τ(a) = c1 for some c < 0 and

τ(0) = 0. Also, consider a problem (e1�(γ ), 0) with eγ = c and τ(tr(a))(= {τ(s) | s ∈ tr(a)}) ⊂
e1�(γ ). By scale invariance, f (e1�(γ ), 0) = (eγ, eγ, . . . , eγ ) = c1. By contraction independence,
f (τ (tr(a)), τ (0)) = c1. By scale invariance, it now follows that f (tr(a), 0) = a.
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duce this formally, let idi (S) = maxs∈S si and id(S) = (id1(S), id2(S), . . . , idn(S)).

His axiom is defined as follows.

Conflict-freeness. For all (S, d) ∈ B, if id(S) ∈ S, then f (S, d) = id(S).

This axiom is stronger than possibility of utility gain. In Rachmilevitch (2015b),
the class of weighted Nash solutions is characterized by scale invariance, contrac-
tion independence, feasible set continuity, and conflict-freeness. As a corollary, if we
impose symmetry in addition to these axioms, then the Nash solution is obtained.

Using the lemmas in Sect. 4.1, we can easily derive this corollary. Moreover, even if
we do not impose feasible set continuity, the Nash solution is the only solution satisfy-
ing all the axioms. The following result is also a new efficiency-free characterization
of the Nash solution.

Theorem 2 Asolution satisfies scale invariance, symmetry, contraction independence,
and conflict-freeness if and only if it is the Nash solution.

Proof Let f be a solution satisfying the axioms of the theorem. For all c ≤ 0, let Tc =
{s ∈ R

n | c1 ≤ s ≤ 1}. If f (�(c), 0) = 0 or c1, then by contraction independence,
f (Tc, 0) is either 0 or c1.This violates conflict-freeness. By Lemma 2, f (�(c), 0) = 1
for all c ≤ 0. Lemma 3 implies f = N . ��

5.2 Two characterizations by Roth (1977, 1979a)

Now, we derive two characterizations shown by Roth (1977, 1979a).

Proposition 2 (Roth 1977) A solution satisfies scale invariance, symmetry, contrac-
tion independence,and strong individual rationality if andonly if it is theNash solution.

Proof Let f be a solution satisfying the axioms of the proposition. By Lemma 2 and
strong individual rationality, f (�(c), 0) = 1 for each c ≤ 0. By Lemma 3, f = N
holds. ��

Roth (1979a) used a weaker version of individual rationality.

Weak individual rationality. For all (S, d) ∈ B, f (S, d) ≥ d.

If we impose weak individual rationality on a solution along with Nash’s axioms
other than weak Pareto optimality, then the solution is either the Nash solution or the
disagreement solution.

Proposition 3 (Roth 1979a) A solution satisfies scale invariance, symmetry, contrac-
tion independence, and weak individual rationality if and only if it is the Nash solution
or the disagreement solution.

Proof Let f be a solution satisfying all axioms. By Lemma 2 and weak individual
rationality, f (�(c), 0) is either 0 or 1 for each c ≤ 0. By Lemma 1, if there exists
c < 0 such that f (�(c), 0) = 0, then f = D. If f (�(c), 0) = 1 for all c < 0, then
contraction independence implies f (�(0), 0) = 1. By Lemma 3, f = N . ��
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5.3 Anbarci and Sun (2011)

Anbarci and Sun (2011) used the following axiom to characterize the Nash solution.

Weakest collective rationality. For all (S, d) ∈ B and for all s ∈ S, if there is no
t ∈ S\{s} such that s ≥ t, then f (S, d) �= s.9

Proposition 4 (Anbarci andSun2011)Asolution satisfies scale invariance, symmetry,
contraction independence, andweakest collective rationality if and only if it is theNash
solution.

Proof Let f be a solution satisfying the axioms of the proposition. By Lemma 3, it
is sufficient to show that for all c ≤ 0, f (�(c), 0) = 1. By Lemma 2, f (�(c), 0)
is c1, 0 or 1 for each c ≤ 0. If there exists c < 0 such that f (�(c′), 0) = 0, then
by Lemma 1, f (�(0), 0) = 0. This violates weakest collective rationality. Also,
by weakest collective rationality, there is no c′′ ≤ 0 satisfying f (�(c′′), 0) = c′′1.
Therefore, for all c ≤ 0, f (�(c), 0) = 1. ��

5.4 Mori (2018)

Mori (2018) also characterized the Nash solution. He used an axiom that requires that
the solution outcome should not be weakly dominated by the disagreement point. He
argued that this axiom is more natural and intuitive thanweakest collective rationality.

Strong undominatedness. For all (S, d) ∈ B, f (S, d) ≤ d does not hold.

His result is as follow:

Proposition 5 (Mori 2018)A solution f satisfies scale invariance, symmetry, contrac-
tion independence, and strong undominatedness if and only if it is the Nash solution.

Proof Let f be a solution satisfying the axioms of the proposition. By Lemma 2,
f (�(c), 0) is c1, 0 or 1 for each c < 0. By strong undominatedness, f (�(c), 0) = 1
for all c ≤ 0. Lemma 3 implies that f = N . ��

6 Conclusion

This paper has provided novel characterizations of the Nash solution without weak
Pareto optimality. Our new axiom, possibility of utility gain, requires less rationality
than the axioms imposed to characterize the Nash solution in the literature. Also, we
characterized this solution using conflict-freeness, which is a mild axiom of efficiency.
Furthermore,wehaveprovidedunifiedproofs of other efficiency-free characterizations
of the Nash solution. These proofs clarify the role of each axiom in the literature.

Motivated by the fact that people do not always reach efficient agreements, we
have provided new axiomatic foundations of the Nash solution without depending on

9 A similar axiom is examined in Rachmilevitch (2015a).
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efficiency a priori. Our results are important in the sense that the Nash solution can be
obtained even when we require very weak individual or collective rationality instead
of weak Pareto optimality. It is also interesting to examine not weakly Pareto optimal
solutions. To the best of our knowledge, only Roth (1979b) and Mariotti (1996) have
examined such solutions in the standard setting of bargaining problems. We leave the
investigation of this issue for future work.
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