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Abstract
Proportional ranking rules aggregate approval-style preferences of agents into a col-
lective ranking such that groups of agents with similar preferences are adequately 
represented. Motivated by the application of live Q&A platforms, where submit-
ted questions need to be ranked based on the interests of the audience, we study a 
dynamic extension of the proportional rankings setting. In our setting, the goal is 
to maintain the proportionality of a ranking when alternatives (i.e., questions)—not 
necessarily from the top of the ranking—get selected sequentially. We propose gen-
eralizations of well-known ranking rules to this setting and study their monotonic-
ity and proportionality properties. We also evaluate the performance of these rules 
experimentally, using realistic probabilistic assumptions on the selection procedure.

1 Introduction

From “ask-me-anything” sessions to panel discussions and town hall meetings, an 
increasing number of both virtual and in-person discussion formats are enhanced 
by digital tools that aim to make the event more interactive and responsive to the 
audience. Using live Q&A platforms such as slido (https:// www. sli. do), Mentimeter 
(https:// www. menti meter. com) or Pigeonhole Live (https:// pigeo nhole live. com), par-
ticipants in the audience can submit questions and upvote questions submitted by 
others; a moderator then selects the most popular questions for the discussion. By 
reducing barriers to participation (e.g., by allowing anonymous submissions), these 
tools aim to better represent the diversity in the audience.1
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The moderator of the discussion is presented with an aggregated list, in which 
audience questions are ranked by popularity (i.e., number of upvotes). Based on this 
ranking, the moderator then picks the next question. When selecting a question, it is 
usually not required to follow the ranking strictly; rather, the choice is at the mod-
erator’s discretion, allowing him or her to take into account other factors such as 
discussion flow. That being said, it is generally expected that questions at the top of 
the ranking are more likely to be selected than questions further down the list. After 
a question has been selected, it is removed from the ranking.

Ranking questions solely by popularity, though intuitively appealing, has a major 
downside: minority opinions might go completely unrepresented, even when the 
minority makes up a substantial proportion of the audience. To illustrate this phe-
nomenon, which is often referred to as the “tyranny of the majority,” consider a situ-
ation in which the audience is composed of two groups. One group makes up 60% of 
the entire audience and is only interested in questions related to topic A;  the remain-
ing 40% of participants are only interested in questions on a different topic B. Now, 
assuming that sufficiently many questions on topic A have been submitted, and that 
participants only upvote questions related to their own interest, questions on topic 
B are unlikely to appear anywhere near the top of the ranking, which is populated 
exclusively by questions on topic A. As a consequence, questions on topic B are very 
unlikely to be selected, despite the fact that these questions are supported by 40% of 
the audience.

In this paper, we propose an approach to avoid the problem of underrepresenting 
minority opinions. Specifically, we model the scenario described above as a propor-
tional representation problem and employ ranking algorithms based on (approval-
based) proportional voting rules (Aziz et al. 2017; Lackner and Skowron 2022). The 
algorithms we consider aggregate the upvotes of the participants into a proportional 
ranking over questions, such that each minority (i.e., group of participants with sim-
ilar preferences) is represented in the ranking to an extent that is proportional to 
the group’s size. Whenever a question is selected by the moderator, our methods 
dynamically recompute the ranking, pushing questions supported by underrepre-
sented groups closer to the top.

Proportional representation in this setting can be understood in two distinct ways. 
Firstly, audience members can be represented via the selection of questions they 
upvoted. In the above example, fair representation of the two groups would mean 
that 60% of the questions selected by the moderator are on topic  A and 40% are 
on topic  B. This form of representation cannot be guaranteed without additional 
assumptions on the behavior of the moderator. Alternatively, audience members can 
be represented in the ranking if questions they have upvoted are placed near the top 
of the ranking, ensuring visibility of these questions to both the moderator and the 
rest of the audience. In the example, this would mean that around 60% of any prefix 
of the ranking (e.g., 3 out of the top-5 questions and 6 out of the top-10 questions) 
should consist of questions on topic A. We consider both versions of representation 
in this paper.

On a technical level, our point of departure is the theory of proportional rank-
ings (Skowron et  al. 2017), which studies how a collective ranking over a set of 
alternatives can be constructed in such a way that majority and minority opinions 
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are represented adequately. The question we are interested in is how proportional 
ranking algorithms can be adapted to the dynamic setting. More specifically, we ask:

How can the proportionality of a collective ranking be maintained in a 
dynamic setting, where alternatives get selected sequentially?

To answer this question, we consider two well-known aggregation rules dat-
ing back to the nineteenth century: sequential Phragmén (defined by Phragmén 
1894) and sequential PAV (defined by Thiele 1895). These two rules, together with 
a few variants of the latter, performed best in the analysis conducted by Skowron 
et al. (2017). For both rules, we propose two distinct generalizations to our setting: 
a dynamic variant and a myopic variant (see Sect. 3 for details). As a benchmark, we 
also consider the rule that simply orders questions by the number of received upvotes.

Our Contribution. In this paper, we formalize the setting of dynamic ranking rules 
and generalize the rules of Phragmén and Thiele to this setting (Sect. 3); we define a 
notion of satisfaction monotonicity and analyze to what extent the considered rules 
satisfy it (Sect. 4); we provide theoretical bounds regarding two different proportion-
ality notions (Sect. 5); and we experimentally evaluate our dynamic ranking rules 
(Sect. 6). Omitted proofs and further details can be found in the Appendix.

Related work. Proportional representation is a fundamental desideratum in mul-
tiwinner elections (Monroe 1995; Faliszewski et  al. 2017; Lackner and Skowron 
2022). For approval preferences in particular, a wide variety of proportionality axi-
oms have been studied (Aziz et  al. 2017; Sánchez-Fernández et  al. 2017; Janson 
2018; Peters and Skowron 2020; Brill et al. 2024a;  Brill and Peters 2023). Propor-
tionality in the context of rankings has been considered in the aforementioned paper 
by Skowron et al. (2017) and (for linear preferences) by Schulze (2011).

Notions of fairness over multiple elections among a fixed set of voters have 
received considerable attention in previous years. This line of work includes, 
e.g., the study of long-term fairness over different decisions (Freeman et al. 2017; 
Lackner 2020), single decisions under changing preferences (Tennenholtz 2004; 
Boutilier and Procaccia 2012; Parkes and Procaccia 2013; Oren and Lucier 2014; 
Hemaspaandra et al. 2017), and storable votes (Casella 2012).

In a practical attempt to avoid the underrepresentation of minorities, the live 
Q&A app SpeakUp (https:// speak up. digit al/) allows audience members to add attrib-
utes (relating to, e.g., gender or education) to submitted questions. The moderator 
can then manually filter questions with attributes that have been underrepresented in 
the discussion. Requiring organizers to identify relevant attributes poses the risk of 
overlooking important subgroups or introducing unwanted biases; it also presumes 
the willingness of participants to reveal potentially sensitive information. In contrast, 
the ranking algorithms considered in this paper do not require attributes in order to 
ensure the protection of minorities. Rather than using attributes to define and repre-
sent minority groups (an approach known as descriptive representation (Mansbridge 
1999)), the ranking algorithms in this paper—not having access to attributes but 
only to preferences—aim to proportionally represent minority opinions.

https://speakup.digital/
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2  Preliminaries

We briefly introduce some basic concepts from the theory of approval-based pref-
erence aggregation; for details, see the survey by Lackner and Skowron (2022). 
Let C be a finite set of candidates and N = {1,… , n} a finite set of voters. An 
(approval) profile A = (A1,… ,An) is a list that contains, for each i ∈ N, the approval 
set Ai ⊆ C of voter i. Given an approval profile A and a candidate c ∈ C, we let 
Nc = {i ∈ N ∶ c ∈ Ai} denote the supporters of c. The approval score of c is given 
by |Nc|. In the motivating application, C consists of all submitted questions and N 
consists of all participants who have upvoted at least one question. Therefore, for 
each voter i ∈ N, the set Ai ⊆ C of upvoted questions is nonempty by assumption.2

To measure the satisfaction of a group of voters V ⊆ N with a set S ⊆ C of candi-
dates, we often use the average satisfaction of V with S,  i.e.,

For a finite set S,  we let L(S) denote the set of all linear orders, or rankings, over S. 
We often write a ranking r ∈ L(S) as a sequence r = (r1, r2,… , r|S|), and for j ≤ |S|, 
we let r≤j denote the set {r1, r2,… , rj} ⊆ S of the first j elements in r. Accordingly 
we define r≤0 = �.

An approval-based ranking rule maps an approval profile A to a ranking r ∈ L(C) 
of all candidates. Note that all rules may encounter ties; we assume that a priority 
ordering over candidates is used as a tiebreaker. In the motivating example, the sub-
mission time of a question yields a natural priority ordering. We will make use of 
the following three (non-dynamic) ranking rules.

• Approval Voting (AV) ranks the candidates according to their approval score. 
This rule is not proportional and we use it mainly as a benchmark.

• Sequential PAV (seqPAV) (Thiele 1895; Janson 2016; Aziz et al. 2017) ranks 
candidates iteratively, in each iteration choosing an unranked candidate maxi-
mizing the marginal contribution in terms of weighted voter satisfaction. For-
mally, for a subset S ⊆ C of candidates, define its score by 

If k candidates have already been ranked, the marginal contribution of an 
unranked candidate c is given by mc(c) = sc(r≤k ∪ {c}) − sc(r≤k). SeqPAV then 
selects an unranked candidate maximizing the marginal contribution and ranks it 
in the (k + 1)-st position.

avgV (S) =
1

|V|
⋅

∑

i∈V

|Ai ∩ S|.

sc(S) =
∑

i∈N

|Ai∩S|∑

j=1

1

j
.

2 The rationale for not considering “inactive” participants as voters is that their preferences are unknown 
and can therefore not be considered in the ranking of questions. Moreover, this modeling choice makes 
the proportionality guarantees in Sect. 5 stronger, as the size of voter groups is measured as a fraction of 
“active” participants only.
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• Sequential Phragmén (Phragmén 1894; Janson 2016; Brill et al. 2024b) can be 
described in terms of voters buying candidates with credits they earn over time.3 
Assume that every candidate costs 1 credit and all voters start with 0 credits. All 
voters earn credits continuously over time at a constant and identical rate, e.g. 
by a rate of 1 credit per time unit. As soon as a group of voters who all approve 
the same candidate c together own 1 credit, they immediately buy that candidate. 
That means that each voter approving c will spend their total current budget on 
that candidate (as it is the first point in time where the supporters of c collec-
tively own 1 credit). At this point, their balance is thus reset to 0 and candidate c 
is added in the next position of the ranking. The voters then continue to earn 
credits until the next candidate is bought, and so on. This is done until all candi-
dates are ranked.

3  Dynamic ranking rules

In this section, we formally introduce the setting of dynamic ranking rules and we 
adapt existing (non-dynamic) ranking rules to this setting.

The input of a dynamic ranking rule consists of two parts: an approval profile and 
a (potentially empty) sequence of candidates that have already been “implemented” 
or “executed”; the output is a ranking of all not-yet-implemented candidates. To for-
malize this notion, we let X = (x1, x2,… , xj) denote the sequence of implemented 
candidates (where j ∈ {0,… , |C|} ); whenever the order of elements in X does not 
matter, we slightly abuse notation and treat X as the set X = {x1, x2,… , xj}.

Definition 1 An (approval-based) dynamic ranking rule R maps a profile A and a 
sequence X = (x1, x2,… , xj) of candidates to a ranking R(A,X) ∈ L(C⧵X).

Applying a dynamic ranking rule to a sequential selection process (as outlined 
in the introduction) is now straightforward: At the beginning, when no candidate 
has been implemented yet, X = () and the ranking R(A, ()) ranks all candidates 
in C. Given this ranking, a decision maker (DM) selects a candidate x1 ∈ C to be 
implemented. The updated ranking of the remaining candidates is then given by 
R(A, (x1)), and the process is repeated. At iteration t ∈ ℕ, when t − 1 candidates 
have been implemented and thus X = (x1, x2,… , xt−1), we let rt denote the ranking 
R(A,X) ∈ L(C⧵X) from which the DM can make a choice.

We will sometimes make the assumption that the DM only ever implements can-
didates that appear near the top of the ranking. In this depth-restricted setting, we 
are given a natural number h and we assume that xt ∈ rt

≤h
 for all time steps t. This 

setting models situations in which the DM does not have the resources (or the abil-
ity) to consider the whole ranking. When using the depth-restricted setting, we usu-
ally assume h ≥ 2. This is because in the case of h = 1, the DM has no choice at all 

3 An equivalent formulation of this method is in terms of a load balancing procedure (Janson 2016; Brill 
et al. 2024b).
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and always picks the top element in the ranking. It is straightforward to verify that 
in this situation, all the dynamic ranking rules we consider degenerate to their non-
dynamic counterparts studied in the context of proportional rankings Skowron et al. 
(2017). We make this statement precise in Proposition 4 at the end of this section.

The straightforward ranking rule AV trivially translates to the dynamic setting: 
When a candidate is implemented, it is simply removed from the ranking; the order 
between the remaining candidates does not change. To the best of our knowledge, 
AV is used in all of the live Q&A platforms mentioned in the introduction.

To address the issues of AV as discussed in Sect. 1, we now propose dynamic 
variants of proportional ranking rules. For a more detailed description of these 
rules, including pseudocode formulations, we refer to Appendix A.

• Dynamic seqPAV is a straightforward dynamization of seqPAV. It ranks candi-
dates iteratively, in each iteration choosing an unranked candidate maximizing 
the marginal contribution in terms of weighted voter satisfaction. The score sc(S) 
of a subset S ⊆ C of candidates is defined exactly as under seqPAV. However, 
we modify the notion of marginal contribution to also take into account the sat-
isfaction derived from previously implemented candidates. If k candidates have 
already been ranked and a set X of already implemented candidates is given, the 
marginal contribution of an unranked candidate c ∈ C⧵(r≤k ∪ X) is given by 

Dynamic seqPAV adds in each round a candidate c ∈ C⧵(r≤k ∪ X) maximizing 
mcdyn(c). X is treated as a set here, as the order of elements in X does not matter.

• Dynamic Phragmén proceeds in two phases. As before, voters buy candidates 
and every candidate has a cost of 1 credit. Voters do not start with 0 credits, how-
ever; they may have an initial debt due to previously implemented candidates 
they approve. The debts of voters are determined in the first phase, which iterates 
through the sequence X (starting with x1 ) and, for each implemented candidate 
xj ∈ X, divides the cost of 1 among the voters in Nxj

. More precisely, this assign-
ment of debts is done in such a way that, in each iteration j,  the maximum total 
debt across all voters in Nxj

 is as small as possible. (The assignment of debts, 
therefore, mimics the assignment of loads in the load balancing formulation of 
sequential Phragmén.) We let di ≥ 0 denote the total debt of voter i ∈ N resulting 
from this first phase. In the second phase, we run sequential Phragmén to obtain 
the desired ranking of candidates in C⧵X. At the beginning of this phase, each 
voter i has a credit balance of −di ≤ 0. As in sequential Phragmén, voters contin-
uously earn credits, and voters starting with debts can only participate in the pur-
chase of a candidate once they have a positive balance.

These dynamic rules rank candidates in the same fashion as their non-dynamic 
counterparts, while taking the sequence X of previously implemented candidates 
into account. Note that the implementation order matters for dynamic Phragmén, 
but not for dynamic seqPAV. In particular, both dynamic rules coincide with their 

mcdyn(c) = sc(X ∪ r≤k ∪ {c}) − sc(X ∪ r≤k).
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non-dynamic counterpart when X = (). Moreover, the ranking among the remain-
ing candidates does not change whenever the top-ranked candidate is imple-
mented: if rt = (r1, r2, r3,…) and xt = r1, then rt+1 = (r2, r3,…).

We also consider two “myopic” dynamic ranking rules.

• Myopic seqPAV: In this myopic dynamization of seqPAV, we compute the 
marginal contribution of each candidate c ∈ C⧵X only with respect to the set X 
of previously implemented candidates, i.e., mcmyopic(c) = sc(X ∪ {c}) − sc(X). 
Then, we simply rank those candidates according to decreasing mcmyopic(c)-
value.

• Myopic Phragmén: In this myopic dynamization of sequential Phragmén, 
we first run the first phase of dynamic Phragmén in order to determine the 
debts {di}i∈N of voters. Then, for each candidate c ∈ C⧵X, we compute the 
voter debts that would result from adding candidate c to X (and running the 
first phase for one more iteration). Let the debts induced by candidate c be 
{dc

i
}i∈N . Myopic Phragmén ranks the candidates in C⧵X according to increas-

ing maxi∈Nc
dc
i
, breaking ties according to the second highest debt and so on. 

In other words, candidates whose addition would result in a low maximal debt 
are ranked higher than candidates for which the incurred maximal debt is 
larger.

Intuitively, myopic seqPAV and myopic Phragmén rank candidates according to 
their suitability of being the next implemented candidate. In contrast to dynamic 
seqPAV and dynamic Phragmén, this way of comparing candidates does not lead 
to rankings that are representative by themselves. In particular, both myopic rules 
coincide with AV when X = ().

Fig. 1  Rankings discussed in Example 1. Candidates approved by the three voter groups Vblue, Vred, and 
Vgreen are highlighted in blue, red, and green, respectively. The rankings produced by the dynamic rank-
ing rules are depicted on the left, the ones produced by the myopic rules on the right. The candidate that 
is chosen by the DM is marked with “ ✓ ” and appears in the sequence of implemented candidates X in the 
next iteration. In each iteration t,  the horizontal bar separates the sequence Xt of implemented candidates 
(above the bar) from the ranking rt over the remaining candidates in C⧵Xt (below the bar) (color figure 
online)
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We illustrate these rules with a simple example. The rankings discussed in this 
example are depicted in Fig. 1.

Example 1 Let C = {a, b, c, d, e, f , g} and assume alphabetic tiebreaking. Consider a 
set of n = 9 voters with the following approval sets:

Let Vblue denote the group consisting of the five {a, b, c}-voters, Vred the group con-
sisting of the three {d, e, f }-voters, and Vgreen the group consisting of the {g}-voter.

First, consider dynamic seqPAV and dynamic Phragmén. In the first iteration, 
both rules output r1 = (a, d, b, e, c, f , g), effectively alternating between candidates 
supported by voter groups Vblue and Vred. Let us assume that the DM first implements 
candidate x1 = b, i.e., X2 = (b). Then, the two rules output r2 = (d, a, e, c, f , g). If 
the DM implements candidate x2 = d next (and thus X3 = (b, d) ), both rules output 
r3 = (a, e, c, f , g).

Next, consider myopic seqPAV and myopic Phragmén. In the first itera-
tion, both rules (and AV) rank the candidates according to their approval 
scores: r1 = (a, b, c, d, e, f , g). After the implementation of b,   both rules output 
r2 = (d, e, f , a, c, g), which differs from the AV ranking r2 = (a, c, d, e, f , g). If the 
DM then implements candidate x2 = d, the two rules output r3 = (a, c, e, f , g).

In this example, all of our ranking rules demote candidate a in r2 because voter 
group Vblue is already (partially) satisfied with X2 = (b). The myopic rules even 
rank all candidates supported by Vred higher than a in  r2, since implementing 
any one of them would yield a more proportional sequence X than implement-
ing a would. This example effectively highlights the different philosophies of 
dynamic and myopic rules: When constructing the ranking for a given iteration t,  
the dynamic rules take into account not only the t − 1 candidates that have been 
implemented in previous iterations, but also the candidates that have already been 
ranked in rt. The myopic rules, on the other hand, only consider the t − 1 already 
implemented candidates when constructing rt. On a conceptual level, the dynamic 
rules provide a ranking that is proportional itself (with respect to the preferences 
of the voters and the already implemented candidates). In Example 1, this results 
in rankings that alternate between candidates supported by Vblue and Vred. Mean-
while, the myopic rules rank candidates greedily by their suitability to be selected 
next. In Example  1, this results in all candidates supported by one voter group 
being ranked consecutively.

All presented ranking rules can be computed in polynomial time. In order to 
give precise bounds on the running time, let n = |N| denote the number of voters 
and m = |C| the number of candidates.

Proposition 2 Given an approval profile and a sequence of implemented candi-
dates, the output of dynamic seqPAV can be computed in time O(m3n) and the output 
of myopic seqPAV can be computed in time O(m2n).

5 × {a, b, c}, 3 × {d, e, f }, 1 × {g}.
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Proposition 3 Given an approval profile and a sequence of implemented candi-
dates, the output of dynamic Phragmén can be computed in time O(m2n2) and the 
output of myopic Phragmén can be computed in time O(mn2).

Thus, the myopic versions of both sequential PAV and sequential Phragmén 
are asymptotically faster to compute (by a factor of m) compared to their dynamic 
counterparts. The proofs of Propositions  2 and  3 can be found in Appendix  A, 
where we also provide pseudocode for computing the respective rules.

An important assumption in our model is that the DM has some flexibility as 
to which candidates to implement. We conclude this section by showing that, in 
the absence of this flexibility, the rules we consider degenerate to the respective 
rules in setting of (non-dynamic) proportional rankings Skowron et al. (2017).

Proposition 4 Consider the depth-restricted setting with h = 1 and fix a profile A. 
Let rPAV (respectively, rPhr) be the ranking returned by the (non-dynamic) ranking 
rule sequential PAV (respectively, sequential Phragmén). The following statements 
hold for each iteration t ∈ ℕ.

 (i) For dynamic seqPAV and dynamic Phragmén, the concatenation (Xt, rt) of 
the sequence Xt of previously implemented candidates and the ranking rt is 
identical to the ranking returned by the respective non-dynamic ranking rule: 
for dynamic seqPAV, (Xt, rt) = rPAV; for dynamic Phragmén, (Xt, rt) = rPhr.

 (ii) For dynamic and myopic seqPAV and dynamic and myopic Phragmén, the 
sequence Xt of implemented candidates is identical to the (t − 1)-prefix of the 
ranking returned by the respective non-dynamic ranking rule: for dynamic and 
myopic seqPAV, Xt = rPAV

≤t−1
; for dynamic and myopic Phragmén, Xt = rPhr

≤t−1
.

Proof We first prove statements (i) and (ii) for dynamic seqPAV and dynamic 
Phragmén. For dynamic seqPAV, the statements hold for t = 1 because X1 = () and 
r1 = rPAV. At each iteration t ≥ 1, the top-ranked element xt of ranking rt is imple-
mented, so that Xt+1 = Xt ∪ {xt}. In the ranking rt+1 ∈ L(C⧵Xt+1), the order among 
the candidates is exactly the same as in rPAV : For each k ≥ 0, we have

Therefore, the marginal contribution mcdyn(c) of a candidate c ∈ C⧵Xt+1 with 
respect to Xt+1 ∪ rt+1

≤k
 (as computed by dynamic seqPAV) is identical to the marginal 

contribution mc(c) of c with respect to rPAV
≤t+k

 (as computed by non-dynamic sequen-
tial PAV). It follows that Xt = rPAV

≤t−1
 and (Xt, rt) = rPAV for all t ∈ ℕ.

For dynamic Phragmén, a similar argument holds: Candidates are implemented 
exactly in the order in which they are ranked in rPhr. To see this, consider an itera-
tion t ∈ ℕ. At the end of the first phase of dynamic Phragmén, the debt di of voter 
i corresponds exactly to the amount of money that voter i has spent on candidates 
in Xt under (non-dynamic) sequential Phragmén. Therefore, in the second phase of 
dynamic Phragmén, the candidates in C⧵Xt are ranked exactly as they are ranked 
under sequential Phragmén.

Xt+1 ∪ rt+1
≤k

= Xt ∪ {xt} ∪ rt+1
≤k

= Xt ∪ rt
≤k+1

= rPAV
≤t+k

.
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For myopic seqPAV and myopic Phragmén, statement (ii) holds because, for each 
iteration t ≥ 1, the top-ranked candidate in rt is, by definition, exactly the candidate 
that will be ranked next by the respective non-dynamic ranking rule.   ◻

4  Monotonicity of voter satisfaction

We start our analysis of dynamic ranking rules by considering the satisfaction of 
voters during the sequential selection process. In doing so, we assume that vot-
ers derive satisfaction not only from implemented candidates they approve, but 
also—possibly to a lesser extent—from approved candidates appearing near the 
top of the ranking: high positions in the ranking come with increased attention 
(and, presumably, high selection probabilities in future iterations) for the respec-
tive candidates. In particular, improved ranking positions of supported candidates 
can be viewed as a kind of compensation for (groups of) voters who are not (yet) 
well-represented by the implemented candidates. To make this concrete, con-
sider an iteration  t,   where the DM is confronted with ranking rt and chooses to 
implement candidate xt. Following the logic outlined above, it might be natural to 
expect that voters not approving xt (or, more precisely, the candidates approved 
by these voters) should get a “boost” in the ranking. At the very least, it seems 
reasonable to expect that the satisfaction of such voters with the new ranking rt+1 
is at least as high as with the old ranking rt. AV trivially satisfies this property, 
which we informally refer to as satisfaction monotonicity. Somewhat surprisingly, 
however, the following simple example demonstrates that this intuitive monoto-
nicity notion is not achievable for dynamic ranking rules that satisfy a minimal 
degree of representativeness. The rankings discussed in this example are depicted 
in Fig. 2.

Example 2 Consider the following profile with 7 voters:

1 × {a}, 3 × {b}, 3 × {a, c}.

Fig. 2  Rankings discussed in Example  2. All rules considered here either output r1 = (a, b, c) or 
r1 = (a, c, b). If the DM chooses to implement candidate  x1 = c, all of the rules—except AV—output 
r2 = (b, a) in the second iteration. This violates an intuitive understanding of monotonicity for the voter 
with ballot {a}
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All rules considered in this paper rank the approval winner  a first in r1. If the 
DM chooses to implement candidate  x1 = c, all of our rules—except AV—output 
r2 = (b, a) in the second iteration. Intuitively, the rules give more voting power to 
the 3 supporters of b (all of which are unrepresented by c) than to the 4 supporters of 
a (3 of which are already partially represented). Observe that the satisfaction of the 
voter only approving a decreases when going from r1 to r2, despite the fact that this 
voter does not approve the candidate being implemented.

Example 2 can be turned into an impossibility result: Every dynamic ranking rule 
that (i) ranks the approval winner at the top in the first iteration and (ii) gives prior-
ity to less satisfied voter groups fails satisfaction monotonicity.

4.1  Bounds for satisfaction monotonicity

The following definition is motivated by the question whether monotonicity failures 
can be prevented by moving to the depth-restricted setting and putting lower bounds 
on the size of voter groups for which monotonicity should hold.

Definition 5 For h ≥ 1 and � ∈ (0, 1], a dynamic ranking rule satisfies (h, �)-mono-
tonicity if, for all profiles and all groups of voters V ⊆ N of size |V| ≥ � ⋅ |N|, the 
following holds for every iteration t:

That is, (h, �)-monotonicity requires that satisfaction monotonicity holds for 
groups that make up at least an �-fraction of the electorate, and when measuring 
satisfaction with respect to the first h positions in a ranking.

AV trivially satisfies (h, �)-monotonicity for all h and all �. On the other hand, all 
other considered rules violate this notion unless we consider rather large groups of 
voters.

Proposition 6 Consider the depth-restricted setting for some h ≥ 3. Then, dynamic 
seqPAV and dynamic Phragmén fail to satisfy (h, �)-monotonicity for all 𝛼 <

6

2h+5
. 

Furthermore, myopic seqPAV and myopic Phragmén fail to satisfy (h, �)-monotonic-
ity for all 𝛼 <

1

h
.

Proof sketch We first consider both rules based on seqPAV and then extend the argu-
ment to the other two rules. Starting with dynamic seqPAV, let h = 3 and j = 6 ⋅ y 
for some y ∈ ℕ and consider the profile given by

If xt ∉
⋃

i∈V

Ai, then avgV (r
t+1
≤h

) ≥ avgV (r
t
≤h
).
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Initially, dynamic seqPAV outputs r1 = (a, b, c, d, e). After the DM implements 
x1 = b, dynamic seqPAV outputs r2 = (c, d, e, a) (where the ordering of c and d 
might depend on tie-breaking). Now consider the voter group V consisting of all the 
voters with approval sets {a} or {a, c, d}. In the first iteration, the average satisfaction 
of this group with the h = 3 top-ranked candidates is avgV (r1≤3) =

1

8+j
⋅ (14 + 2j); in 

the second iteration, it is only avgV (r2≤3) =
1

8+j
⋅ (12 + 2j). For j → ∞, this group of 

voters makes up nearly 6/11 of the electorate (and the rankings remain unchanged). 
To extend this example to the case of h > 3, we can introduce new candidates with 
j∕3 + 12 supporters each (these can be seen as “copies” of candidate e and all its 
supporters).

For myopic seqPAV, consider the following adaption of the profile where the two 
terms j∕3 and j∕2 in the previous profile are exchanged for j,   and we add 4 addi-
tional voters approving candidate e only:

Here, myopic seqPAV outputs r1 = (a, b, c, d, e). After the DM again implements 
x1 = b, the rule outputs r2 = (c, d, e, a) (where the ordering of c,   d and e might 
depend on tie-breaking). Again consider the same voter group V. As above we have 
avgV (r

1
≤3
) =

1

8+j
⋅ (14 + 2j) and avgV (r2≤3) =

1

8+j
⋅ (12 + 2j). For j → ∞, V makes up 

nearly 1/3 of the electorate in this profile. By introducing new candidates with 
j∕3 + 12 supporters each (i.e., “copying” e and all its supporters) we can again 
extend the profile to hold for h > 3.

We will now argue that myopic Phragmén also fails to satisfy (h, �)-monotonicity 
on this example for all j ∈ ℕ. Recall that this rule computes, for each candidate 
c ∈ C⧵X, debts incurred to all voters. The debts relate to buying the candidates in X 
(in the order of implementation) and afterwards buying candidate c. All candidates 
then get ranked by comparing the so computed debts of the voters lexicographically. 
In the first iteration X = () holds and thus myopic Phragmén is equivalent to AV. 
The ensuing ranking is r1 = (a, b, c, d, e), independent of j. Now assume that the DM 
implements candidate x1 = b. In the second iteration each supporter of b has a debt 
of 1

21+j
, since there are 21 + j voters who approve b and they all share the price of 1 

credit for buying b. Note that in this step it is always favorable to balance the debt 
induced by a candidate equally among its supporters (this might not be the case if a 
candidate that is only supported by very few voters got implemented before). Thus 
for every candidate c ∈ C⧵X we can compute the debt each of its supporters would 
have if c would be bought next by s(2)

c
=

1

�Nc�
(1 +

∑
i∈Nc

di), where di is voter i’s debt 
induced by X. Myopic Phragmén now ranks the candidates in non-increasing order 

2 × {a}, 15 × {a, b},

(
j

2
+ 6

)
× {b}, 10 × {c},

10 × {d}, (j + 6) × {a, c, d},

(
j

3
+ 12

)
× {e}.

2 × {a}, 15 × {a, b}, (j + 6) × {b}, 10 × {c},

10 × {d}, j + 6 × {a, c, d}, (j + 16) × {e}.
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of s(2)
c

 since this is the relevant part in comparing the debts of all voters by their 
maximum as described in the definition of myopic Phragmén. We can compute

To prove that, for all j ∈ ℕ, myopic Phragmén fails to satisfy group implementation 
monotonicity in this example, we have to validate that s2

a
> s2

e
 holds independent 

of j,  which can be done in a straightforward manner:

The claim regarding dynamic Phragmén can be shown in a similar manner using the 
first profile again. Here the computation gets far more technical as the debts that get 
compared during the ranking process of the candidates change in each step of the 
ranking and not just once per iteration as is the case for the myopic variant of the 
rule. Nevertheless, we obtain a system of inequalities that ensures that the candi-
dates get ranked by dynamic Phragmén in a similar way as by dynamic seqPAV and 
thus dynamic Phragmén also violates the monotonicity axiom. We can then again 
check that these inequalities hold for all j.   ◻

4.2  Weak satisfaction monotonicity

The examples used in the proof of Proposition  6 rely heavily on an implemented 
candidate that is co-approved with some candidate that is approved by a member of 
the group under consideration (i.e., there is a c ∈

⋃
k∈V Ak with {c, xt} ⊆ Ai for some 

i ∈ N).4 It thus makes sense to consider a weakening of the monotonicity axiom that 
excludes these cases from consideration.

Definition 7 For h ≥ 1 and � ∈ (0, 1], a dynamic ranking rule satisfies weak (h, �)
-monotonicity if, for all profiles and all groups of voters V ⊆ N of size |V| ≥ � ⋅ |N|, 
the following holds: For every iteration t where there is no c ∈

⋃
k∈V Ak with 

{c, xt} ⊆ Ai for some i ∈ N, we have avgV (rt+1≤h
) ≥ avgV (r

t
≤h
).

This allows us to obtain positive results for the two myopic rules. Consider a 
group of voters V and any candidate c that a voter in V approves. If c is not sup-
ported by any voter (not necessarily in V) that also supports the candidate that gets 
implemented next, then the voting power or the debt (depending on the rule we are 
interested in) of c’s supporters does not change from this iteration to the next. Since 
the voting power (or debt) of the supporters of other candidates can only decrease 

s(2)
a

=
36 + j

(23 + j)(21 + j)
and s(2)

c
= s

(2)

d
= s(2)

e
=

1

16 + j
.

93 + 8j > 0 ⇔ 576 + 52j + j2 > 483 + 44j + j2 ⇔ (36 + j)(16 + x) > (23 + j)(21 + j).

4 In the first instance in the proof of Proposition 6, for example, candidate a is approved by every voter 
in the group V,  but there are also 15 voters who approve a together with b,  the candidate that is imple-
mented first.
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(or increase, respectively), c’s position in the ranking cannot drop when going from 
one iteration to the next. Thus, the following result holds.

Proposition 8 Consider the depth-restricted setting for some h ≥ 3. Then, myopic 
seqPAV and myopic Phragmén satisfy weak (h, �)-monotonicity for all values of �.

On the other hand, for small values of �, both dynamic rules fail to satisfy this 
weaker axiom.

Proposition 9 Consider the depth-restricted setting for some h ≥ 3. Then, dynamic 
seqPAV fails to satisfy weak (h, �)-monotonicity for all 𝛼 <

2

4+h
.

Proposition 10 Consider the depth-restricted setting for some h ≥ 3. Then, 
dynamic Phragmén fails to satisfy weak (h, �)-monotonicity for all 𝛼 <

2

5+h
.

This means that, if h = 3, then there are instances where a group V of voters that 
makes up nearly one quarter of the electorate might encounter the following situa-
tion: A candidate is selected that is neither approved by any voter in V nor by any 
voter outside of V approving some candidate in 

⋃
i∈V Ai, but still the average satis-

faction of V drops in the next ranking under dynamic Phragmén. For dynamic seq-
PAV, this can even happen to groups that make up nearly two sevenths (≈ 29%) of 
the electorate.

Despite the mostly negative results in this section, we rarely found monotonicity 
violations of any kind in our experiments (see Sect. 6).

5  Proportional representation

We now turn to analyzing the proportionality that is provided by our dynamic 
ranking rules. The following two sections capture different perspectives on repre-
sentation, focusing on the proportionality of the ranking rt at any given iteration 
t (Sect.  5.1) and on the proportionality of the set X of implemented candidates 
(Sect. 5.2).

5.1  Proportionality of rankings

In certain applications of dynamic ranking rules, such as the live Q&A platforms 
mentioned in the introduction, it is desirable for the ranking rt to provide a repre-
sentative overview of the opinions (or interests) of the voters at any given iteration 
t. In this section, we prove proportionality guarantees that are satisfied by ranking rt 
for any fixed iteration t.

Measures for the proportionality of rankings have been proposed by Skowron 
et  al. (2017). In particular, �-group representation measures, informally speak-
ing, how far down in the ranking a group of voters needs to go in order to obtain a 



1 3

Dynamic proportional rankings  

given amount of satisfaction. In order to adapt the notion of �-group representation 
to the dynamic ranking setting, we need the following notation. For iteration t,  let 
Xt = {x1,… , xt−1} denote the set of candidates implemented in the first t − 1 rounds 
and, for a group V ⊆ N of voters, let �t(V) = �

⋂
i∈V Ai⧵X

t� denote the cohesiveness 
of V with respect to the remaining candidates C⧵Xt.

Definition 11 Let �(�, �) be a function from (((0, 1] ∩ℚ) × ℕ) to ℕ. A dynamic 
ranking rule satisfies �-group representation if the following holds for all profiles A,  
groups of voters V ⊆ N, rational numbers � ∈ (0, 1], and integers �, t ≤ |C| : If 
|V| ≥ � ⋅ n and �t(V) ≥ �, then avgV (rt≤�(�,�)) ≥ �.

In words: If a group V of voters makes up an �-fraction of the electorate and has 
at least � commonly approved candidates remaining at iteration t,   then this group 
derives an average satisfaction of at least � from the candidates ranked in the top 
�(�, �) positions of ranking rt.5

We also consider a quantitative proportionality measure from the field of 
approval-based committee voting, namely the proportionality degree as defined by 
Skowron (2021). We employ this measure in our setting by fixing a depth restriction 
h and view the candidates in rt

≤h
 as the “committee”. The proportionality degree then 

measures how proportionally the h highest-ranked candidates represent the elector-
ate. Informally, it lower bounds the happiness of voter group V given a certain depth 
restriction depending on the size and cohesiveness of V.

Definition 12 Consider a profile A,   a depth restriction h ≤ |C|, and a function 
g ∶ ℕ × ℕ → ℝ. We call a set of voters V ⊆ N �-large w.r.t. h if |V| ≥ 𝓁 ⋅

n

h
. A 

dynamic ranking rule R satisfies h-proportionality degree of g if for all �-large sets 
of voters V and all iterations t ∈ ℕ, the ranking rt+1 = R(A,Xt) satisfies

Let Gh be the set of all such h-proportionality degrees of R. Then, we say that R 
satisfies proportionality degree of d(�) = minh supg∈Gh

g(�, h). This means that the 
proportionality degree of R is the best guarantee on the above objective that holds 
for all depth restrictions h ≤ |C|.

Note that as was the case with the � functions used for group representation that 
did not only depend on � and �, but also on the set V and on the sequence X of previ-
ously implemented candidates, we simplify notation for the proportionality degree 
in a similar manner.

avgV (r≤h) ≥ min
(
�t(V), g(�, h)

)
.

5 A natural lower bound for �(�, �) is given by ⌈�∕�⌉. Note that the � functions used in this section not 
only depend on � and �, but also on the set V and on the sequence X of previously implemented candi-
dates. In an attempt to simplify notation, we decided to not make this dependencies explicit in Defini-
tion 11.
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5.1.1  Dynamic Phragmén

We first consider dynamic Phragmén. Recall that di denotes the initial debt of voter i 
at the end of the first phase of the method, and let dV

avg
=

1

�V�
∑

i∈V di denote the aver-
age debt of voters in V.

Theorem 13 Dynamic Phragmén satisfies �-group representation for

where u = �
⋃

i∈V Ai ∩ X� and s =
∑

i∈V (di − dV
avg

)2.

Observe that this function is increasing both in the number u of already imple-
mented candidates that are approved by some voter in V and in the variance s 
of debts of voters in V. For the special case X = (), Theorem 13 implies a group 
representation of 

⌈
2�+2

�

⌉
 for (non-dynamic) sequential Phragmén. For � ≥ 2, this 

is an improvement over the �-group representation bound of 
⌈
5�

�2
+

1

�

⌉
 proved by 

Skowron et al. (2017).
The proof of Theorem 13 employs a connection between �-group representa-

tion and the proportionality degree. In particular, we first prove a bound on the 
proportionality degree of dynamic Phragmén (Theorem  14), using a potential 
function approach that is similar to the one used by Skowron (2021) for the non-
dynamic setting. Then, we establish a relationship between the proportionality 
degree and group representation (Lemma 15), and use it to translate the bound on 
the former into a bound on the latter.

Theorem 14 Dynamic Phragmén satisfies proportionality degree of

where u = �
⋃

i∈V Ai ∩ X� and s =
∑

i∈V (di − davg)
2.

If X = (), then u = s = 0 and we have the proportionality degree that was also 
proved by Skowron (2021) for the non-dynamic setting. We prove the results by 
a similar potential function approach as provided for the respective non-dynamic 
result (Skowron 2021) while taking into account the added complexity of the 
dynamic setting.

This result is independent of the iteration t,  which makes it rather strong. On 
the other hand, the definition of proportionality degree (and thus this result) rely 
on a fixed value of h to determine �-large groups of voters. As we show next, it is 
possible to translate the proportionality degree defined by Skowron (2021) into �
-group representation as defined by Skowron et al. (2017). Skowron (2021) men-
tions this connection but, to the best of our knowledge, this is the first explicit 
translation from one proportionality measure to the other.

�(�, �) =

⌈
2(� + u + 1) + s ⋅ |V|

�

⌉
,

d(𝓁) ≥
𝓁 − 1

2
−

u

2
−

s ⋅ |V|
4

,
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Lemma 15 Let R be a (dynamic) ranking rule which satisfies proportionality 
degree of d(�) for all � ∈ ℚ. Then, R satisfies �-group representation for

where d−1 denotes the inverse of the function d.

Note that the proportionality degree is usually defined for � ∈ ℕ. For technical 
reasons, we need the function to be defined for all rational �, which is, however, 
covered by our proof of Theorem 14.

Proof Consider a group V ⊆ N of voters with proportion � = |V|∕|N| and adapted 
cohesiveness �t = �

⋂
i∈V Ai⧵X�. Let h =

⌈
1∕� ⋅ d−1(�t)

⌉
. Then, by construction, V is 

d−1(�t)-large w.r.t. h since

Thus, we can apply the proportionality degree with � = d−1(�t) and obtain an aver-
age satisfaction for V of

It follows that R satisfies �-group representation for �(�, �t) = h =
⌈
1∕� ⋅ d−1(�t)

⌉
.  

 ◻

Plugging the proportionality degree from Theorem 14 into this lemma we obtain 
the desired bound on the group representation as mentioned in Theorem 13.

5.1.2  Dynamic seqPAV

For dynamic seqPAV we prove the following generalisation of Theorem 3 by Skow-
ron et al. (2017), where the version of Skowron et al. corresponds to the special case 
where X = ().

Theorem 16 Dynamic seqPAV satisfies �-group representation for

Note that it is not immediately clear how to convert a bound on the group rep-
resentation into a result on the proportionality degree (i.e., whether an inverse ver-
sion of Lemma  15 is possible). Still, using the same approach as in the proof of 
Theorem 16, we are able to prove a bound on the proportionality degree of dynamic 
seqPAV.

�(�, �) =

⌈
d−1(�)

�

⌉
,

|V| = � ⋅ |N| = |N| ⋅ d−1(�t)
(1∕�) ⋅ d−1(�t)

≥
|N|
h

⋅ d−1(�t).

avgV (r≤h) ≥ min
(
�t, d(d−1(�t))

)
= �t.

�(�, �) =

⌈
2(� + 1 + avgV (X))

2

�2

⌉
.
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Theorem 17 Dynamic seqPAV satisfies an h-proportionality degree of

Note that this is the first such bound in closed form for a seqPAV-variant. There 
are explicit bounds for small h for the non-dynamic version provided by Skow-
ron (2021). The added generality of our closed form comes at the price of less 
accuracy when compared to those bounds. While Skowron (2021) shows that for 
h = 20 the proportionality degree of (non-dynamic) seqPAV is greater or equal to 
0.7503 ⋅ 𝓁 − 1 and for h = 200 it is still greater or equal to 0.694 ⋅ 𝓁 − 1 our bound 
gives 0.1581 ⋅ 𝓁 − 1 for h = 20 and 0.05 ⋅ 𝓁 − 1 for h = 200 (when considering the 
non-dynamic case where X = ()).

5.1.3  Myopic rules and AV

AV does not perform any different in the dynamic ranking setting compared to 
the non-dynamic one. Thus, it satisfies the same bounds on group representation 
as those stated in Theorem 2 by Skowron et al. (2017). Since myopic seqPAV and 
myopic Phragmén both agree with AV in the case X = (), the same bounds hold for 
these two rules.

Proposition 18 Myopic seqPAV and myopic Phragmén fail �-group representation 
for

and for all functions �(�, �) if � ≤
u+1

u+2
, where u = �

⋃
i∈V Ai ∩ X�.

Proof The first negative result follows simply by noting that both myopic rules are 
equal to AV if X = () and referring to the negative result for AV provided by Skow-
ron et al. (2017). We prove the second negative result by means of a counterexample 
which is again an adapted version of the one given by Skowron et al. (2017) for AV. 
Assume �t, u and a function �(�, �) are given, set � ≤

u+1

u+2
 and h = �(�, �t). Let 

A = AX ∪̇ AV ∪̇ AG with |AX| = u and |AV | = |AG| = h be a set of candidates and 
N = V ∪̇ G an electorate composed of the disjoint union of voter groups V and G 
with |V| < 𝛼|N|. Let the profile be such that all voters in V approve of all candidates 
in AX and AV and all voters in G approve of all AG and set X = AX . Then, both 
myopic rules rank all a ∈ AG higher than each candidate in AV and thus 
avgV (r≤h) = 0.   ◻

Since AV and both myopic rules do not allow for any bound on �-group represen-
tation for groups of voters that are not already a majority of the electorate it follows 
directly from Lemma 15 that they do not allow any bound on the proportionality 
degree for those groups either.

g(𝓁, h) = 𝓁 ⋅

√
1

2h
− avgV (X) − 1.

�(�, �) ≤

⌈
� ⋅ �

2� − 1

⌉
− 1,
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Corollary 19 AV does not satisfy any bound on the proportionality degree for 
groups of size � ≤

1

2
. Myopic seqPAV and myopic Phragmén do not satisfy any 

bound on the proportionality degree for groups of size � ≤
u+1

u+2
, where 

u = �
⋃

i∈V Ai ∩ X�.

5.2  Proportionality of implemented candidates

In this section, we study worst-case bounds on the proportionality of the set X of 
implemented candidates. Clearly, no non-trivial bounds are obtainable without 
restricting the selection behavior of an adversarial DM. Therefore, we will make the 
following two assumptions throughout this section:

• (A1)   The DM is depth-restricted and always implements a candidate from the 
top h positions of the ranking.

• (A2)   Every candidate c ∈ C has sufficiently many “clones,”6 i.e., candidates c′ 
with identical supporter set Nc� = Nc.

Assumptions (A1) and (A2) together ensure that the DM can be forced to implement 
a candidate approved by a voter, by populating the top h positions exclusively with 
such candidates. Arguably the most natural way to ensure (A2) is to assume that we 
are in the party-approval setting (Brill et al. 2024b), where candidates are interpreted 
as parties and can be selected arbitrarily often. In the motivating example of live Q&A 
platforms, party-approval preferences could result from assigning categories (or tags) 
to questions and eliciting participants’ approval preferences over categories.7

Recall that Xt+1 denotes the set containing the implemented candidates from the 
first t rounds. The following property is a natural adaption of the well-studied pro-
portionality axiom proportional justified representation (PJR) (Sánchez-Fernández 
et al. 2017).

Definition 20 A dynamic ranking rule satisfies proportional justified selection 
(PJS) if the following holds for all t,� ∈ ℕ and for all groups V ⊆ N of voters:

A weaker version of this axiom is obtained by fixing � = 1; in analogy to a well-
known notion due to Aziz et al. (2017), we refer to the resulting property as justified 
selection.

We prove the following theorem by interpreting the set Xt+1 of implemented can-
didates as a committee.

If |V| ≥ 𝓁

t
⋅ |N| and |

⋂

i∈V

Ai| ≥ 𝓁, then |Xt+1 ∩
⋃

i∈V

Ai| ≥ 𝓁.

6 Given an upper bound T on the number of iterations, h + T − 1 clones suffice (as at least h clones will 
always remain in the ranking).
7 Note that this is different from the attribute-based representation approach discussed in the introduc-
tion: Rather than categorizing voters by self-declared attributes, here we refer to a categorization of can-
didates (i.e., questions).
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Theorem 21 Under assumptions (A1) and (A2), myopic Phragmén satisfies PJS.

Proof First observe that myopic Phragmén always ranks clones consecutively. Due 
to (A2), there are always at least h clones of each candidate, so that the first h posi-
tion of each ranking rt′ (where t′ ≤ t ) will be occupied by a set of candidates that 
are all clones of each other. Due to (A1), the DM selects a candidate from this top-
ranked clone set in each iteration. Now consider the set Xt+1 = {x1,… , xt} of imple-
mented candidates. Since the assignment of debts under myopic Phragmén mimics 
the distribution of loads under sequential Phragmén, this set consists precisely of 
the first  t candidates that sequential Phragmén selects on the same instance. Since 
sequential Phragmén satisfies PJR (Brill et al. 2024b), it follows that myopic Phrag-
mén satisfies PJS.   ◻

Analogously, we can translate a representation guarantee for seqPAV 
(Sánchez-Fernández et al. 2017) into a guarantee for myopic seqPAV.

Proposition 22 Under assumptions (A1) and (A2), myopic seqPAV satisfies justi-
fied selection for t ≤ 5.

Similar positive results are not possible for the other rules. To see this, con-
sider the following example, which is consistent with assumptions (A1) and 
(A2). The rankings discussed in this example are depicted in Fig. 3.

Example 3 Let N = Vblue ∪ Vred be the electorate consisting of two disjoint groups 
of voters of equal size, i.e., Vblue ∩ Vred = � and |Vblue| = |Vred|. Now assume that 
each voter in Vblue approves of all candidates in {a1, a2,…} and each voter in Vred 
approves of all candidates in {b1, b2,…}. If we assume alphabetic tie-breaking 
between the parties, then both dynamic rules will in the first iteration output the 
ranking r1 = (a1, b1, a2, b2,…). If we set h = 4, then it is possible for an adversarial 
DM to implement 3 candidates supported by Vred before in the fourth iteration we 
have r4

≤4
= {a1, a2, a3, a4}. In particular, we have X3 = (b1, b2) and X4 = (b1, b2, b3).

Fig. 3  Rankings discussed in Example 3
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Proposition 23 Dynamic seqPAV and dynamic Phragmén fail to satisfy justified 
selection, even under assumptions (A1) and (A2) and for t = 2.

6  Experimental evaluation

In order to better understand the behavior of the dynamic ranking rules considered 
in this paper, we conducted computational experiments using randomly generated 
approval profiles. Since we were mainly interested in the proportional representa-
tion of groups of voters with similar preferences, we generated profiles according 
to two probabilistic models that lead to polarized electorates with easily identifiable 
groups. We measured (i) how the satisfaction of a voter group with the set of imple-
mented candidates varies with the size of the group, and (ii) how the satisfaction of 
a voter group with the current ranking varies over time.

6.1  Setup

All of our profiles consist of 60 voters and 20 candidates, and the approval sets are 
generated according to two different models. We first describe how we generate the 
approval profiles randomly. Since we want to study the satisfaction of groups of vot-
ers with roughly similar approval preferences we somehow want to generate profiles 
with such voter groups. We used two different approaches.

• Blurred parties model. Here we assign each of the 60 voters to one of two par-
ties. The size of the parties will vary over the experiments and we will concen-
trate on the satisfaction of one of the parties. Additionally, we will also associate 
half of the candidates to one of the parties and the other half to the other, such that 
each party has 10 candidates associated with them. Here, a party is a group of vot-
ers that have the same probability of approving a candidate. Now, for a voter we 
go over all candidates and say that the voter approves that candidate with prob-
ability 0.95, if it is a candidate of the voters party, and with probability 0.05, oth-
erwise. This process is done independently for each voter and for each candidate. 
Thus, each voter in expectation approves of 95% of the candidates in their party.

• Spatial model. This is an adaption of the 4-Gaussian model that was described by 
Elkind et al. (2017) for the setting of linear preferences. We again group voters and 
candidates into parties, this time using 3 parties. Thus, two parties are associated 
with 7 candidates and one party is associated with 6 candidates. The number of 
voters in the parties again varies but we are always concerned with the satisfac-
tion of the first party, V ⊆ N, of size |V| and set the sizes of the other two parties 
to 
⌈
60 − |V|∕2

⌉
 and 

⌊
60 − |V|∕2

⌋
, respectively. In this model we now take a spa-

tial approach using the Euclidean plane. Each of the three parties gets assigned a 
point—their center—that lies on the unit circle. To make the three points equidis-
tant from each other we place them at 0, 120 and 240 degrees. Now the voters and 
candidates from each party get sampled as points on the Euclidean plane accord-
ing to a 2-dimensional Gaussian (i.e., normal) distribution with standard deviation 
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0.4 around their party-center. We say a voter approves of a candidate if that candi-
date is at Euclidean distance at most 0.8. Note that if we assume that a voter gets 
assigned their party’s center as point in the Euclidean plane, then by construction 
of the Gaussian distribution with standard distribution 0.4, this voter approves of 
roughly 95% of the candidates of their party in expectation.

To decide which candidates the DM selects for implementation, we also use a prob-
abilistic approach. Since the ranking that is provided to the DM should somehow 
factor into the decision which candidate to select, we try to mimic a realistic behav-
ior. To this end, we use an approximation of Google’s click-through rates (CTRs). 
These rates describe how likely it is for a user to click on the first, second, etc. entry 
in a Google search result. These rates get approximated experimentally and pub-
lished by various companies. The specific values for the first 15 positions we use for 
our experiments are as follows.8 In order to use them as a probabilistic vector, we 
normalized the values to sum to 1. 

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CTR 32.5 17.6 11.4 8.1 6.1 4.4 3.5 3.1 2.6 2.4 1.0 0.8 0.7 0.6 0.4

We also ran our experiments with several other probability distributions, includ-
ing harmonically or quadratically decreasing probabilities and probabilities inspired 
by the notion of discounted cumulative gain (Järvelin and Kekäläinen 2002). Since 
the results were very similar for all probability distributions, we only discuss the 
results for the click-through rates.

6.2  Results

We now describe our findings with respect to the two measures of satisfaction men-
tioned above. A graphical representation of the results can be found in Figs. 4 and 5. 
For each experiment, the figures show the average over 100 runs. Figure 4 shows 
an overview of the results of the experiments. Additionally, Fig. 5 shows the 10–90 
percentile bands for all experiments and all rules (excluding the lowest 10% and the 
highest 10% of the values of all respective runs) as a measure of variance.

Satisfaction with implemented candidates. We measure the average satisfaction 
of voter group V ⊆ N with Xk+1, where k is the number of candidates associated 
with that group (i.e., k = 10 for the blurred parties model and k = 7 for the spatial 
model). We plot this value against the relative size � = |V|∕|N| of the group V. 
The graphs in the first row of Fig. 4 show that for both models, AV is not propor-
tional: avgV (Xk+1) starts out very low and only jumps up as soon as V becomes 
the biggest group (which happens at � = 1∕2 and � = 1∕3, respectively). In other 
words, AV underrepresents minorities and overrepresents majorities. The perfor-
mance of the other four rules are indistinguishable, as all yield proportionally 

8 These values are taken from http:// www. wikiw eb. com/ google- ctr/, accessed July 21st, 2023.

http://www.wikiweb.com/google-ctr/
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increasing satisfaction values. Figure 5 shows that, especially for the blurred par-
ties model, the spread is rather small for all rules.

Satisfaction with rankings. The graphs in the second row of Fig. 4 depict the 
average satisfaction of a group V of size � = 1∕4 with the first 5 candidates of 
the ranking over the first 11 iterations. Again, AV behaves poorly, as it gives 
satisfaction to V only once the larger groups have been satisfied. The satisfaction 
values under the two myopic rules jump heavily from one iteration to the next, 
as these rules tend to mainly represent one group of voters per iteration. This 
is also an explanation for the rather large spread (see Fig. 5). Depending on the 
(random) choice of the DM in the experiments, the group V is represented in dif-
ferent rounds for each run of the experiments, resulting in a large variance in the 
average satisfaction. On the other hand, the two dynamic rules keep the satisfac-
tion of V relatively constant at around one fourth of the maximum possible satis-
faction. These rules provide proportional representation in each single iteration, 
which is in line with the theoretical results in Sect. 5.1. The dynamic rules also 
behave differently from the myopic rules in terms of spread (see Fig. 5).

Fig. 4  Experimental results for the blurred parties model (left) and the spatial model (right). The graphs 
in the first row show the average satisfaction of V with the first k implemented candidates, for relative 
group size � ∈ [0, 1]. The graphs in the second row show the average satisfaction of V with rt

≤5
, for 

1 ≤ t ≤ 11
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7  Conclusion

Motivated by the problem of how questions in a live Q&A session can be ranked in 
a more representative way, we have introduced dynamic ranking rules. We proposed 
two paradigms of dynamizing existing ranking rules: under the dynamic paradigm, 
we target proportional representation of voter interests at each individual time step; 
under the myopic paradigm, we try to make the set of implemented candidates as 
representative as possible. While the former approach lends more flexibility to the 

Fig. 5  The 10–90 percentile bands for the five rules over the four experiments. Rows correspond to rules 
and columns to experiments. The colors of the rules are as in Fig. 4: AV is red, dynamic and myopic 
seqPAV are dark blue (solid and dotted lines, respectively), and dynamic and myopic Phragmén are light 
blue (solid and dotted lines, respectively)
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decision maker and guarantees a proportional exposure of candidates in each rank-
ing, the latter approach is computationally slightly more efficient and yields stronger 
selection guarantees. Our experimental results illustrate the difference between the 
two approaches, and verify that both approaches lead to proportional results. In a 
practical comparison, the dynamic paradigm seems more reasonable in scenarios 
where the audience closely observes the ranking’s evolution over time. In such sce-
narios, it is advantageous that the rankings exhibit relatively consistent positions 
between consecutive time steps, ensuring a smoother and more gradual evolution 
of the ranking. Conversely, the myopic paradigm might be more suitable for sce-
narios where there is a strong desire to encourage or even force the decision maker 
to adhere closely to the goal of proportionality, even if it leads to more pronounced 
changes in rankings between consecutive time steps.

The application of live Q&A platforms gives rise to some interesting extensions 
of our model. In realistic scenarios, neither the electorate nor the set of candidates 
is static, as people enter or leave the audience and new questions come up continu-
ously. Moreover, participants can change their approval preferences throughout the 
event. Our approach can take these dynamic aspects into account in a straightforward 
manner: After each implementation, we can apply our ranking rules to the current 
set of not-yet-implemented candidates and to the current approval preferences—the 
only necessary information from previous iterations is the sequence of implemented 
candidates. Another important issue motivated by real-world applications is that par-
ticipants often do not have the time or resources to thoroughly consider the whole 
set of candidates (i.e., questions). One way to mitigate this problem is to introduce 
categories (or tags) for questions and let participants submit preferences over these 
categories instead of individual questions (as discussed in Sect. 5.2).

The dynamic ranking rules proposed in this paper are applicable to a wide variety 
of sequential selection procedures in which proportional representation is desired 
and, at the same time, some flexibility on the part of the decision maker is necessary 
(e.g., think of human-in-the-loop decision support systems for hiring or budgeting 
decisions). Other applications of dynamic ranking rules include committee election 
scenarios in which some part of the committee is fixed (e.g., due to external con-
straints) and the remaining seats need to be filled in such a way that the committee 
as a whole is representative.

Appendix A: Algorithmic aspects of dynamic ranking rules

In this section, we study the dynamic ranking rules (introduced in Sect. 3) from an 
algorithmic perspective. For each of the rules, we provide a pseudocode formulation 
and give asymptotic bounds on the running time. We consider the two rules based on 
sequential PAV in Appendix A.1 and the two Phragmén variants in Appendix A.2.

All four rules take as input an approval profile A and a sequence of already imple-
mented candidates X. For a given profile A,   we denote the voters given implicitly 
through the profile by N(A) and the candidates by C(A). The rules output a ranking 
of all candidates C(A)⧵X that have not been implemented yet.
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In the following, we let n = |N(A)| denote the number of voters and m = |C(A)| the 
number of candidates. Furthermore, for a set S we use the notation

to denote the sequence in which the elements of S are ordered according to non-
decreasing f(i)-value (and analogously ↘ for non-increasing sequences). For exam-
ple, (i ∈ N ∣ sorted↗ by di) is the sequence that orders voters in N non-decreasingly 
according to di and (c ∈ C ∣ sorted ↘ by mc(c)) is the sequence that orders candi-
dates in C non-increasingly according to mc(c).

A.1 Algorithmic aspects of dynamic and myopic seqPAV

Dynamic seqPAV mimics the non-dynamic variant closely by computing the mar-
ginal contribution of a candidate according to all already ranked and already imple-
mented candidates. The rule ranks candidates greedily one by one. In every round it 
selects a candidate with maximal marginal contribution and appends that candidate 
to the end of the ranking (see Algorithm 1).

Algorithm 1  Dynamic seqPAV

The myopic version of this rule computes the marginal contribution of the candi-
dates once upfront—only with respect to the already implemented candidates—and 
then simply ranks all candidates according to this score (see Algorithm 2).

(i ∈ S ∣ sorted ↗ by f (i))
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Algorithm 2  Myopic seqPAV

Proposition 2 Given an approval profile and a sequence of implemented candi-
dates, the output of dynamic seqPAV can be computed in time O(m3n) and the output 
of myopic seqPAV can be computed in time O(m2n).

Proof Termination of both algorithms is straightforward. Concerning the running 
time of dynamic seqPAV, consider Algorithm 1. First note that mcdyn(c) can be com-
puted in time m ⋅ n. The loops starting in Lines 3 and 4 of Algorithm 1 each have at 
most m iterations. Choosing a candidate with maximum marginal contribution (Line 
7) can be done in an additional time of m. This, however, gets dominated by the run-
ning time of the loop in Line 4. Appending and deleting candidates in Lines 8 and 9 
is possible in constant time. Thus, the overall running time is in O(m3n).

Concerning the running time of myopic seqPAV, consider Algorithm 2. First note 
that mcmyopic(c) can be computed in time m ⋅ n. The loop starting in Line 2 of Algo-
rithm 2 runs for at most m iterations. Ranking (i.e., sorting) all candidates takes an 
additional time of m log(m) which is, however, dominated by the running time of the 
above loop. Thus, the overall running time is in O(m2n).   ◻

A.2 Algorithmic aspects of dynamic and myopic Phragmén

We present a pseudocode formulation of dynamic Phragmén as Algorithm 3. This 
algorithm uses two subroutines that we describe in more detail afterwards. For a 
voter i ∈ N(A), we denote i’s credits with ¢i.

First, to compute the initial debts for dynamic Phragmén (and myopic Phragmén, which 
we cover later in this section), we use a subroutine called compute_debts  (see Algo-
rithm 4). This algorithm takes an approval profile A and a sequence of implemented can-
didates X as input and outputs the amount of debt each voter i ∈ N(A) receives to accom-
modate the costs of the already implemented candidates in X. Dynamic Phragmén then 
interprets these debts as negative credits, setting ¢i = −di. Dynamic Phragmén constructs 
the output ranking iteratively. In order to find the next candidate to rank, the algorithm 
searches for the candidate that can be bought by (a subset of) its supporters at the earliest 
point in time. More precisely, for each unranked candidate c,   the algorithm calculates 
the minimal time we have to wait until the supporters of c can buy c. Then, we rank the 
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candidate with the smallest such time next and let its supporters pay for the candidate. The 
calculation of this minimal time is done by the subroutine compute_buying_time.

Algorithm 3  Dynamic Phragmén

Subroutine compute_debts. Algorithm  4 computes the initial debts for both 
Phragmén variants. The input of the algorithm is an approval profile A and a sequence 
of implemented candidates X;  the algorithm computes, for each voter i ∈ N(A), a non-
negative real number di which is the amount of debt voter i receives to accommodate 
the costs of the already implemented candidates in X. Since every candidate has a cost 
of 1, we have 

∑
i∈N(A) di = �X�. The algorithm iterates over X and for each candidate 

distributes the cost of 1 among all voters approving that candidate. More formally, 
let x ∈ X be an already implemented candidate and let Nx be the supporters of x. We 
divide the cost of 1 for x among Nx in a way that minimizes the maximal debt across 
all voters in Nx. This is the same approach that is used in the load-balancing version 
of sequential Phragmén. Note that the difference between debt (or load) of two voters 
assigned in previous steps of the algorithm can be arbitrarily high.9 (For example, if the 
first k implemented candidates in X are only supported by a single voter, this voter gets 

9 This is in contrast to the standard version of sequential Phragmén (Brill et al. 2024b).
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assigned a debt of k before any other voter gets assigned any debt.) This may lead to 
a situation where, in order to minimize the maximal total debt across voters in Nx, we 
distribute the cost only over a subset of Nx. Thus, for each x ∈ X we first have to deter-
mine the correct subset of Nx to distribute the debt to. We do this by ordering voters in 
Nx non-decreasingly by di and inspect any prefix of voters in this order. For every such 
prefix N′ ⊆ Nx we compute the debt voters in N′ have after distributing the additional 
debt of 1 by

Let v+1 ∈ Nx⧵N
� be that supporter of x not in N′ with the next lowest debt dv+1 . It is 

possible to lower dnew by adding v+1 to N′ if and only if dv+1 < dnew. The algorithm 
compute_debts  does this computation for each x ∈ X in the order given by the 
sequence X itself and then outputs the debts computed this way. 

Algorithm 4  compute_debts 

dnew =
1 +

∑
i∈N� di

�N��
.
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Proposition 24 Given an approval profile A and a sequence of implemented can-
didates X,   the subroutine compute_debts computes the debts for all voters in 
N(A) according to X in time O(mn2).

Proof Concerning termination of Algorithm 4, consider a candidate x ∈ X and its set of 
supporters Nx ⊆ N(A). The set Nx gets sorted into a sequence (non-decreasingly by di ) 
in Line 6. In the loop starting in Line 7, each prefix of voters approving x is considered. 
For each such prefix N′, the algorithm calculates the debt that each voter in N′ would 
get if they together had to pay 1 credit for candidate x (Line 9). As described above, the 
algorithm then checks whether this debt can be decreased by adding the next candidate in 
Nx⧵N

′ to N′ (Line 10). If not, the debt is distributed among voters in N′. Otherwise, the 
loop continues. The if-statement in Line 16 guarantees that in the end, if no proper subset 
of candidates N′ ⊂ Nx was singled out, all supporters of x share the debt.

Concerning running time, the loop starting in Line 5 runs for |X| ≤ m iterations. 
Sorting candidates in Nx can be done in time n log(n). The loop in Line 7 has at most 
n iterations and the calculation in Line 9 can be performed in O(n) operations. The 
assignment of debts in Lines 12 or 18 contributes another n operations, which are, 
however, dominated by the calculation in Line 9. Since the running time of the loop 
starting in Line 7 dominates the running time of the operation in Line 6, the overall 
running time of the algorithm is in O(mn2).   ◻

Subroutine compute_buying_time. As stated above, in each iteration of the 
ranking process, we calculate for each unranked candidate c the minimal time we 
have to wait until the supporters of c can buy c. Then, we rank the candidate with 
the smallest such time next and let the corresponding supporters pay for their can-
didate. Note that not necessarily all supporters of c have to pay, as it might be the 
case that some of them have too much debt and the rest of the supporters are able to 
raise 1 credit before those with a lot of debt can participate in the buying process. To 
compute that minimal time and the corresponding set of supporters of a candidate c,  
we use the subroutine compute_buying_time. This algorithm takes as input the 
approval profile A,  a candidate c ∈ C(A) and the current credit balance (¢i)i∈N of all 
voters. The function outputs the minimal additional time until a subset of support-
ers of candidate c will have accumulated a positive budget of 1 credit. Formally, the 
function finds the minimal tc ∈ [0, 1] such that there is a set of voters V ⊆ Nc with

Because of the minimality of tc we have ¢i + tc ≥ 0 for all i ∈ V . Practically, 
tc and the corresponding set of supporters can be computed as follows. Set 
V = {i ∈ Nc ∣ ¢i ≥ 0} and sort all remaining supporters i ∈ Nc⧵V  by non-increasing 
budget (i.e., voters with less debt are sorted to the top). For each k = 0, 1,… , |Nc⧵V| 
consider the set Vk containing voters in V and the first k voters in Nc⧵V . That means 
V0 = V  and for k = 1, 2, 3,… the set Vk will additionally contain the k voters in Nc⧵V  
with the fewest debt. For each k,  compute

∑

i∈V

(¢i + tc) ≥ 1.
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The function compute_buying_time   then outputs the lowest tk
c
 and the cor-

responding set of voters Vk, breaking ties by smaller k. We now consider the run-
ning time of this algorithm. Setting up the sets V and sorting Nc⧵V  can be done in 
O(n log(n)). This gets dominated by the running time of the loop over all k ≤ |Nc⧵V|. 
This loop has at most n iterations and for each k,   the calculation of tk

c
 is possible 

in O(n). Thus compute_buying_time   runs in time O(n2). We have therefore 
proven the following result.

Proposition 25 Given an approval profile A,  a candidate c ∈ C(A) and the credit 
balance of all voters (¢i)i∈N , compute_buying_time  outputs tc and Vc in time 
O(n2), where tc is the minimal additional time until a subset of voters Vc ⊆ Nc have a 
joint budget of 1 credit.

Next, we give a pseudocode formulation of myopic Phragmén (see Algorithm 5). 
Myopic Phragmén also uses the debts from compute_debts, but in a greedy 
way. Here, we first iterate over all remaining candidates and for each c ∈ C(A)⧵X 
do the following. We append c to the sequence X,   obtaining the sequence Xc, and 
then compute the debts for all voters according to Xc. We then rank those candidates 
highest for which the maximal voter debt is lowest. This, in a way, checks which 
candidate is most suitable to be implemented next. Formally, for each c ∈ C(A)⧵X, 
we first sort the debts (dc

i
)i∈N of all voters according to Xc non-increasingly. Then, 

we rank the candidates c ∈ C(A)⧵X by comparing the sorted vectors (dc
i
)i∈N lexi-

cographically, ranking lexicographically smaller candidates (i.e., candidates that 
induce a lower maximum debt) higher. 

Algorithm 5  Myopic Phragmén

We are now ready to prove the bounds on the asymptotic runtime of both Phragmén 
variants.

tk
c
=

�
0, if

∑
i∈Vk

¢i ≥ 1
1−

∑
i∈Vk

¢i

�Vk�, else.
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Proposition 3 Given an approval profile and a sequence of implemented candi-
dates, the output of dynamic Phragmén can be computed in time O(m2n2) and the 
output of myopic Phragmén can be computed in time O(mn2).

Proof Termination of both algorithms is straightforward. Regarding the running 
time of dynamic Phragmén, consider Algorithm 3. We begin with the loops starting 
in Lines 8 and 9 . Both loops have at most m iterations. By Proposition 25 we know 
that computing the buying time in Line 10 can be done in O(n2). This (in conjunc-
tion with the loop in Line 9) dominates the running time of choosing a candidate 
with minimum tc (Line 12) and the loop in Line 13. Further, also the running time of 
the subroutine compute_debts  of O(mn2) is dominated by this. Thus, the overall 
running time is in O(m2n2).

Regarding the running time of myopic Phragmén, first consider Algorithm 5. The 
loop in Line 3 runs for at most m iterations. Line 4 takes constant time and Line 
5 can be performed in O(mn2) operations, as shown in Proposition 24. Sorting the 
debts with respect to Xc (Line 6) needs n log(n) operations, which is dominated by 
the computation of the debts. Lastly, ranking all candidates lexicographically with 
respect to (dc

i
)i∈N can be done in O(nm log(m)) operations. This is, however, domi-

nated by the loop starting in Line 3. Thus the overall running time of this formula-
tion of myopic Phragmén is in O(m2n2).

Note that the asymptotic running time for computing myopic Phragmén can 
be improved based on the following observation. For two distinct candidates 
c, c� ∈ C(A), the sequences of candidates Xc and Xc′ only differ in the last entry. This 
is because c and c′ both get appended to the same sequence X. When computing the 
debts with respect to Xc in Line 5 of Algorithm 5, the computation of the debts for 
all candidates in X ⊆ Xc is the same, independent of the choice of candidate c. Thus, 
it is possible to compute the debts for all voters according to X first, before entering 
the loop in Line 3, by calling �������_�����(A,X) once, and reuse these debts for 
each candidate c ∈ C in the loop. To compute the debts with respect to Xc in Line 
5, only one more iteration of the calculations of compute_debts is needed (i.e., 
Lines 5 to 15 in Algorithm 4). This is possible in time O(n2), bringing the overall 
running time of myopic Phragmén down to O(mn2).10   ◻

Appendix B: Omitted proofs

B.1 Weak group monotonicity of dynamic SeqPAV

Proposition 9 Consider the depth-restricted setting for some h ≥ 3. Then, dynamic 
seqPAV fails to satisfy weak (h, �)-monotonicity for all 𝛼 <

2

4+h
.

10 To be able to use compute_debts  as is, we refrained from formulating this slightly faster version 
in Algorithm 5.
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Proof Consider the following profile with 177 voters and 5 candidates.

The rule outputs the ranking r1 = (a, b, c, e, d) in the first iteration. If we now 
assume that the DM implements candidate x1 = b then dynamic seqPAV outputs 
r2 = (d, a, e, c). Now consider the group of voters V that consists of the 39 support-
ers of c (i.e., the 30 voters approving only c and the 9 voters approving c and d). For 
h = 3 we have avgV (r1≤h) = 1 but avgV (r2≤h) =

9

39
 which is a violation of the above 

axiom. We can see that this again holds for larger h by introducing new candidates 
with 35 supporters each (i.e., by “copying” candidate e and its supporters).

Similar to what we did in the proof of Proposition 6, we can increase the relative 
size of V without changing the rankings dynamic seqPAV outputs. For that consider 
the following adapted profile, where j = 2 ⋅ y for some y ∈ ℕ.

For j → ∞ we have |V||N| →
2

7
. Combining this with the “copying” of candidate e and 

its j
2
+ 35 supporters we obtain an example where weak (h, �)-monotonicity is vio-

lated for every h ≥ 3 by a group of size nearly 2

4+h
.   ◻

B.2 Weak group monotonicity of dynamic Phragmén

Proposition 10 Consider the depth-restricted setting for some h ≥ 3. Then, 
dynamic Phragmén fails to satisfy weak (h, �)-monotonicity for all 𝛼 <

2

5+h
.

Proof We use a similar example as above where we only add an additional copy of 
candidate e and its 35 supporters.

In the first iteration dynamic Phragmén outputs the ranking r1 = (a, c, b, e1, e2, d). 
If we again assume that the DM implements candidate x1 = b then it outputs 
r2 = (d, e1, e2, c, a). We again consider the group of voters V that consists of the 39 
supporters of c. For h = 3 we have avgV (r1≤h) = 1 but avgV (r2≤h) =

9

39
 which is a vio-

lation of the above axiom. This again holds for larger h via an introduction of new 
candidates with 35 supporters each (i.e., “copies” of candidate e1 and its supporters). 
To increase the relative size of the voter group V consider the following adaption of 
the instance for an even natural number j.

4 × {a}, 27 × {a, b}, 27 × {b}, 30 × {c},

9 × {c, d}, 9 × {d}, 36 × {a, d}, 35 × {e}.

4 × {a}, (2j + 27) × {a, b}, 27 × {b}, 30 × {c},

(j + 9) × {c, d}, 9 × {d}, 36 × {a, d}, (j∕2 + 35) × {e}.

4 × {a}, 27 × {a, b}, 27 × {b}, 30 × {c},

9 × {c, d}, 9 × {d}, 36 × {a, d}, 35 × {e1}, 35 × {e2}.

4 × {a}, (2j + 27) × {a, b}, 27 × {b}, 30 × {c},

(j + 9) × {c, d}, 9 × {d}, 36 × {a, d}, (j∕2 + 35) × {e1}, (j∕2 + 35) × {e2}.
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By checking the inequalities arising from this example in the same manner as 
described earlier for the stronger axiom we can verify that this example works for all 
j → ∞. Again combining this with the idea of copying candidate e1 and its j

2
+ 35 

supporters we obtain an example where weak (h, �)-monotonicity is violated by 
dynamic Phragmén for every h ≥ 3 by a group of size nearly 2

5+h
.   ◻

B.3 Proportionality degree of dynamic Phragmén

Recall that di denotes the starting debt of agent i in dynamic Phragmén. Let 
davg =

1

�V�
∑

i∈V di be the average starting debt of agents in V.
Theorem 14 Dynamic Phragmén satisfies proportionality degree of

where u = �
⋃

i∈V Ai ∩ X� and s =
∑

i∈V (di − davg)
2.

Proof Our proof is an adaptation of the proof of Theorem  2 by Skowron (2021), 
henceforth referred to as Skowron’s proof. Let a depth restriction h ∈ ℕ and an itera-
tion t ∈ ℕ be given. We set g(𝓁, h) = 𝓁−1

2
−

u

2
−

s⋅|V|
4
. To make the prove more con-

sistent with Skowron’s proof, assume w.l.o.g. that a candidate costs n instead of 1 
credit. (This scaling of the cost does not change the workings of the rule.) Towards a 
contradiction, we assume that there is a set of candidates rt

≤h
 that is ranked in the 

first h positions of the ranking produced by dynamic Phragmén at iteration t,  and a 
group V of voters that is �-large w.r.t. h but has an average satisfaction of 
avgV (r

t
≤h
) < min (𝜆t, g(�, h)). Thus, there exists at least one candidate 

c ∈
⋂

i∈V Ai⧵(X ∪ r≤h), i.e., a candidate that is neither ranked nor implemented but 
approved by all voters in V. We will now investigate the ranking process of dynamic 
Phragmén in more detail. In order to do that, we imagine the process of buying can-
didates and waiting for credits for the voters as a time-dependent process. (Note that 
this process reflects the ranking of rt for a fixed iteration t ∈ ℕ; we denote the time 
elapsing during this process by �. ) For each point in time 𝜃 > 0 of the ranking pro-
cess at iteration t,  we define pi(�) to be the amount of credit voter i ∈ V  possesses at 
that moment, and pavg(�) =

1

�V�
∑

i∈V pi(�). With that we can define the potential 
function

In contrast to Skowron’s proof, in our setting might start with negative money, i.e., 
debt assigned to them by the dynamic Phragmén rule because of implemented can-
didates in X. This means that at time � = 0 we might have pi(𝜃) < 0 for some voters 
and thus the potential function at time � = 0 is not 0 but might be some positive 

d(𝓁) ≥
𝓁 − 1

2
−

u

2
−

s ⋅ |V|
4

,

�(�) =
∑

i∈V

(pi(�) − pavg(�))
2.
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real number s̄ = 𝜙(0) =
∑

i∈V (pi(0) − pavg(0))
2 = n2 ⋅ s. (Here, s̄ corresponds to 

s =
∑

i∈V (di − davg)
2 scaled according to the new costs of n credits per candidate.)

The proof now proceeds as Skowron’s proof. After h time units in the ranking 
process, at most h ⋅ n credits can be amassed by all voters and the procedure cannot 
stop before that point in time. Until then, the voters in V have at most |V| ⋅ h credits. 
Now fix a point in time � at which a candidate supported by some voters in V is 
bought and a voter j ∈ V  that pays for this candidate. That means that the average 
pavg(�) decreases by pj(�)|V| . We denote by Δ� the change of the potential function due 
to that one voter paying for the newly bought candidate. The calculation of Δ� can 
be done in the same way as in Skowron’s proof, as it does not depend on the starting 
value of �. For a point in time � in which a candidate is bought, we get the 
following.

where in the last step we used the binomial formulas. By definition we have

which lets us conclude

Δ� =
∑

i∈V ,j≠i

(
pi(�) −

(
pavg(�)

pj(�)

|V|

))2

+

(
0 −

(
pavg(�)

pj(�)

|V|

))2

−
∑

i∈V

(pi(�) − pavg(�))
2

=
∑

i∈V

(
pi(�) −

(
pavg −

pj(�)

|V|

))2

+

(
pavg −

pj(�)

|V|

)2

−

(
pj(�) −

(
pavg −

pj(�)

|V|

))2

−
∑

i∈V

(pi(�) − pavg(�))
2

=
∑

i∈V

pj(�)

|V|

(
2 ⋅ pi(�) − 2 ⋅ pavg(�) +

pj(�)

|V|

)2

− pj(�)
2 + 2 ⋅ pj(�) ⋅

(
pavg(�) −

pj(�)

|V|

)
,

∑

i∈V

(2 ⋅ pi(�) − 2 ⋅ pavg(�)) = 0

Δ� =
pj(�)

2

|V|
+ pj(�) ⋅

(
2 ⋅ pavg(�) −

pj(�)

|V|
− pj(�)

)

= pj(�) ⋅

(
2 ⋅ pavg(�) −

pj(�)(|V| + 1)

|V|

)
.
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Just as in Skowron’s proof, we can observe that at each time � we have 
pavg(�) ≤

n

|V| ≤
h

�
. This is because otherwise voters in V would have more than n 

units of credits left and would have been able to buy a candidate they commonly 
approve of at an earlier time of the ranking process. Using that fact and setting 
y�,j = pj(�) −

2|V|
|V|+1 ⋅

h

𝓁
 we obtain

Following Skowron’s proof again, if x𝜃,j > 0, then � decreases by at least 2|y�,j| ⋅
h

𝓁
 

and if y�,j ≤ 0, then � increases by at most 2|y�,j| ⋅
h

𝓁
. Since the potential value is 

always non-negative and starts at s,  the net-change 
∑

Δ� has to be greater or equal 
to −s̄, i.e.,

Let z = |{(�, j) ∈ ℕ × V ∶ j pays at time �}| be the number of single payments the 
voters in V issued during the whole procedure. This is less than or equal to the total 
satisfaction of the group V,  i.e.

Rearranging the terms of the bound on s̄ above and plugging in the definitions of y�,j 
and z yields

where 
∑

(�,j) pj(�) is the total amount of credits voters in V spend for candidates they 
approved. Our goal now is to lower bound z and with that to lower bound the aver-
age satisfaction of voters in V.

For this, first note that we know that 
∑

(�,j) pj(�) ≥ �V� ⋅ (h + �X�) − n −
∑

i∈V di. 
Plugging this in the above equation and rearranging terms we obtain

where in the last step we used the fact that n ⋅ 𝓁

h
≤ |V|. We can now use this to get 

the desired lower bound on the average satisfaction of the voter group V.

Δ� ≤ pj(�) ⋅

(
2h

𝓁
−

y�,j(|V| + 1)

|V|
−

2h

𝓁

)
= −y2

�,j

|V| + 1

|V|
− 2y�,j

h

𝓁
≤ −2y�,j

h

𝓁
.

−s̄ ≤
∑

Δ𝜙 ≤
∑

(𝜃,j)∈ℝ×V∶j pays at time 𝜃

−2y𝜃,j ⋅
h

𝓁
.

z ≤
∑

i∈V

|r≤h ∩ Ai|.

s̄

2
⋅
𝓁

h
≥
∑

(𝜃,j)

pj(𝜃) −
2|V|

|V| + 1
⋅
h

𝓁
=
∑

(𝜃,j)

pj(𝜃) − z ⋅
2|V|

|V| + 1
⋅
h

𝓁
,

z ≥
|V| + 1

2|V|
⋅
𝓁

h
⋅

(
|V|(h + |X|) − n −

s̄ ⋅ 𝓁

2h
−
∑

i∈V

di

)

≥
1

2
⋅
𝓁

h
⋅

(
|V|(h + |X|) − n −

s̄ ⋅ 𝓁

2h
−
∑

i∈V

di

)

≥
1

2

(
|V|(𝓁 − 1) +

|V| ⋅ |X| ⋅ 𝓁
h

−
s̄ ⋅ 𝓁2

2h2
−

𝓁

h
⋅

∑

i∈V

di

)
,
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where we again use n ⋅ 𝓁

h
≤ |V| and the fact that u = �

⋃
i∈V Ai ∩ X� ≥ 1

n

∑
i∈V di. 

This contradicts our assumption that avgV (rt≤h) < g(�, h) and concludes the proof.  
 ◻

B.4 Group representation of dynamic SeqPAV

Theorem 16 Dynamic seqPAV satisfies �-group representation for

Proof Fix some � ∈ (0, 1], � ∈ ℕ and profile such that in some iteration t ∈ ℕ, there 
exists a group of voters V ⊆ N with |V| ≥ � ⋅ n and �t(V) ≥ �. Let r be the ranking 
dynamic seqPAV outputs in iteration t given the already implemented candidates X. 
Set h =

⌈ 2(�+avgV (X)+1)
2

�2

⌉
. Towards a contradiction assume that avgV (r≤h) < 𝜆. Now 

set

In every step k ∈ [h] of the ranking procedure of dynamic seqPAV (in iteration t), 
there exists at least one candidate c ∈

⋂
i∈V Ai⧵(X ∪ r≤h), i.e., a candidate that is nei-

ther ranked nor implemented but approved by all voters in V. We now consider a 
step k ∈ [h] of the ranking process of dynamic seqPAV. Define

Then, ai(k) ≤ ai(k + 1) and T(k) ≥ T(k + 1) for all k ∈ [h] with 
n ≥ T(1) ≥ T(2) ≥ ⋯ ≥ T(h + 1) ≥ 0. Further, for each k ∈ [h] it holds

and thus it holds that

where in the last step we used the inequality of arithmetic and harmonic means. 
Taking the inverse of this yields

1

|V|
∑

i∈V

|r≤h ∩ Ai| ≥
1

|V|
⋅ z ≥

𝓁 − 1

2
+

|X| ⋅ 𝓁
2h

−
1

2n
⋅

∑

i∈V

di −
s̄ ⋅ 𝓁

4n ⋅ h

≥
𝓁 − 1

2
−

u

2
−

s̄ ⋅ |V|
4n2

=
𝓁 − 1

2
−

u

2
−

s ⋅ |V|
4

,

�(�, �) =

⌈
2(� + 1 + avgV (X))

2

�2

⌉
.

z = |V| ⋅ (avgV (r≤h) + avgV (X)) < |V| ⋅ (𝜆 + avgV (X)).

ai(k) = |Ai ∩ r≤h| + |Ai ∩ X| and T(k) =
∑

i∈N

1

ai(k) + 1
.

∑

i∈V

ai(k) =
∑

i∈V

|Ai ∩ r≤k| + |Ai ∩ X| ≤
∑

i∈V

|Ai ∩ r≤h| + |Ai ∩ X| = z,

z + �V�
�V�

≥

∑
i∈V ai(k) + �V�

�V�
=

∑
i∈V (ai(k) + 1)

�V�
≥

�V�
∑

i∈V
1

ai(k)+1

,
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Now let V ′ be the group of voters supporting candidate c′ that got ranked in round k 
instead of c. Since dynamic seqPAV favored c′ over c we know that

We now obtain

Using the Cauchy–Schwarz inequality, we can bound this in the following way.

where in the second step we used Eq. (1). This holds for each k ∈ [h + 1] and thus 
we have

This yields T(k + 1) < T(1) − n ≤ 0, which is a contradiction.   ◻

B.5 Proportionality degree of dynamic SeqPAV

Theorem 17 Dynamic seqPAV satisfies an h-proportionality degree of

∑

i∈V

1

ai(k) + 1
≥

|V|2
|V| + z

>
|V|2

|V| + |V| ⋅ (𝜆 + avgV (X)
=

|V|
𝜆 + avgV (X) + 1

.

(1)
∑

i∈V �

1

ai(k) + 1
≥
∑

i∈V

1

ai(k) + 1
>

|V|
𝜆 + avgV (X) + 1

.

T(k) − T(k + 1) =
∑

i∈V �

(
1

ai(k) + 1
−

1

ai(k) + 2

)

=
∑

i∈V �

(
1

(ai(k) + 1)(ai(k) + 2)

)

≥
∑

i∈V �

(
1

2(ai(k) + 1)2

)
.

∑

i∈V �

(
1

2(ai(k) + 1)2

)
≥

1

2|V �|

(
∑

i∈V �

1

ai(k) + 1

)2

>
1

2n

(
|V|

𝜆 + avgV (X) + 1

)2

≥
𝛼2

⋅ n

2(𝜆 + avgV (X) + 1)2
,

T(1) − T(h + 1) =
∑

k∈[h]

T(k) − T(k + 1) > h ⋅
𝛼2 ⋅ n

2(𝜆 + avgV (X) + 1)2
≥ n.

g(𝓁, h) = 𝓁 ⋅

√
1

2h
− avgV (X) − 1.
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Proof Fix some h ≤ |C| and let r be the ranking dynamic seqPAV outputs for a given 
profile and set of already implemented candidates X. Further, let V be a group of vot-
ers and z = 𝓁 ⋅

√
1

2h
− avgV (X) − 1. Towards a contradiction assume that V is �-

large w.r.t. h but avgV (r≤h) < min
�
�
⋂

i∈V Ai⧵X�, z
�
. Thus there exists at least one 

candidate c ∈
⋂

i∈V Ai⧵(X ∪ r≤h), i.e., a candidate that is neither ranked nor imple-
mented but approved by all voters in V. We now consider the steps of the ranking 
process of dynamic seqPAV. For k ∈ [h], we again define

Then, ai(k) ≤ ai(k + 1) and T(k) ≥ T(k + 1) for all k ∈ [h] with 
n ≥ T(1) ≥ T(2) ≥ ⋯ ≥ T(h + 1) ≥ 0. Further, for each k ∈ [h + 1], the inequality 
of arithmetic and harmonic means

and

where we use that, by construction, avgV (r≤h) < z = 𝓁 ⋅

√
1

2h
− avgV (X) − 1. Plug-

ging the second inequality into the first, we obtain

Again, let V ′ be the group of voters supporting candidate c′ that got ranked in round 
k instead of c. Since dynamic seqPAV favored c′ over c we know that

As in the previous proof, we obtain using the Cauchy–Schwarz inequality

ai(k) = |Ai ∩ r≤h| + |Ai ∩ X| and T(k) =
∑

i∈N

1

ai(k) + 1
.

�

i∈V

1

ai(k) + 1
≥ �V�2 1∑

i∈V (ai(k) + 1)

1

|V|2
∑

i∈V

ai(k) + 1 =
1

|V|2
∑

i∈V

(
|Ai ∩ r≤h| + |Ai ∩ X| + 1

)

=
1

|V|2
∑

i∈V

(|Ai ∩ X| + 1) +
1

|V|
avgV (r≤h)

<
1

|V|2
∑

i∈V

(|Ai ∩ X| + 1)

+
1

|V|

(
𝓁 ⋅

√
1

2h
−

1

|V|
⋅

∑

i∈V

(|Ai ∩ X| + 1)

)

=
1

|V|
⋅
𝓁

h
⋅

√
h

2
=

1

n
⋅

√
h

2
,

∑

i∈V

1

ai(k) + 1
> n ⋅

√
2

h
.

(2)
∑

i∈V �

1

ai(k) + 1
≥
∑

i∈V

1

ai(k) + 1
> n ⋅

√
2

h
.
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where in the second step we used Eq. (2). This holds for each k ∈ [h + 1] and thus 
we have

This yields T(k + 1) < T(1) − n ≤ 0, which is a contradiction.   ◻
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