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Abstract
In this note, we report on a Condorcet domain of record-breaking size for n = 8 
alternatives. We show that there exists a Condorcet domain of size 224 and that 
this is the largest possible size for 8 alternatives. Our search also shows that this 
domain is unique up to isomorphism. In this note we investigate properties of the 
new domain and relate them to various open problems and conjectures.

1 Introduction

Condorcet domains (CD), which are sets of linear orders giving rise to voting pro-
files with an acyclic pairwise majority relation, have been studied by mathemati-
cians, economists, and mathematical social scientists since the 1950 s (Black 1948; 
Arrow 1951). Condorcet domains find use in Arrovian aggregation and social choice 
theory (Puppe and Slinko 2019; Lackner and Lackner 2017). In social choice theory, 
a Condorcet winner is a candidate who would win over every other candidate in a 
pairwise comparison by securing the majority of votes (Monjardet 2005). However, 
the existence of such a candidate is not always guaranteed, leading to the relevance 
of Condorcet Domains. A central question in this field has revolved around identify-
ing large Condorcet domains, see Fishburn (1997); Galambos and Reiner (2008); 
Monjardet (2009); Danilov et  al. (2012); Puppe and Slinko (2022); Karpov and 
Slinko (2022a); Karpov (2022).

A significant category of Condorcet domains is rooted in Fishburn’s alternating 
scheme, which alternates between two restriction rules on a subset of candidates and 
has been employed to construct numerous maximum size Condorcet domains. We 
refer to such domains based on the alternating scheme as Fishburn domains.

Fishburn introduced a function f(n) in Fishburn (1997), defined to be the maxi-
mum size of a Condorcet domain on a set of n alternatives, and posed the prob-
lem of determining the growth rate for f(n). Fishburn also proved that for n = 16 the 

 * Søren Riis 
 s.riis@qmul.ac.uk

1 University of Umeå, Umeå, Sweden
2 Queen Mary University of London, London, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s00355-023-01481-3&domain=pdf
http://orcid.org/0000-0003-0697-4116


110 C. Leedham-Green et al.

1 3

Fishburn domain is not the largest CD. This was followed by further research and 
bounds on f(n) by Galambos and Reiner (2008); Danilov et  al. (2012); Monjardet 
(2009). Karpov and Slinko extended and refined this work in Karpov and Slinko 
(2022b), as did Zhou and Riis (2023).

Although extensive research has been conducted, all known maximum-sized 
Condorcet domains have been built using components based on either Fishburn’s 
alternating schemes or his replacement scheme. For instance, Karpov and Slinko 
(2022a) introduced a novel construction that enabled the creation of new Con-
dorcet domains with unprecedented sizes. This allowed the authors to construct a 
Condorcet domain, superseding the size of Fishburn’s domain for 13 alternatives. 
Recently, Zhou and Riis (2023) constructed Condorcet domains on 10 and 11 alter-
natives, superseding the size of the corresponding Fishburn domains.

This paper shows that n = 8 is the smallest number of alternatives for which the 
Fishburn domain (size 222) is not the largest and that there is a Condorcet domain of 
size 224. Furthermore, relying on extensive computer calculation on the super-com-
puter Abisko at Umeå, we also established 224 as an upper bound and that there, up 
to isomorphism, is only one such Condorcet domain. The need for a supercomputer, 
and a carefully devised algorithm, reflects the fact that a naive search would lead to 
search-tree with more than 6112 vertices. We also analyse some of the properties of 
this new domain (Table 1).

2  Preliminaries

There are many equivalent definitions of Condorcet domains. In this paper, we adopt 
the definition proposed by Ward in Ward (1965). According to this definition, a 
Condorcet domain of degree n ≥ 3 is a set of orderings of Xn = {1, 2,… , n} that 
satisfies certain local conditions.

Specifically, a Condorcet domain of degree n = 3 is defined as a set of orderings 
of X3 that satisfies one of nine laws, denoted by xNi, where x is an element of X3 , and 
i is an integer between 1 and 3. The law xNi requires that x does not come in the i-th 

Table 1  The Condorcet domains for 3 alternatives which contain the identity order

Each rule assigned to the triplet (i, j, k) with i<j<k is associated with a CD (which is given on the same 
line). The CDs displayed fall into 3 isomorphism classes, and each CD has a core of size 2

Triple Rule assigned Condorcet domains Core

(i, j, k) 1N3 ijk jik ikj kij

ijk jik jki kji

}

Isomorphic {ijk, ikj}

2N3 {(ijk), (kji)}

3N1 ijk ikj jik jki

ijk ikj kij kji

}

Isomorphic {ijk, jik}

2N1 {(ijk), (kji)}

1N2 ijk ikj jki kji

ijk jik kij kji

}

Isomorphic {ijk, ikj}

3N2 {(ijk), (jik)}
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position in any order in the Condorcet domain. For example, xN1 means that x may 
never come first, while xN3 means that x may never come last.

A Condorcet domain of degree n > 3 is a set A of orderings of Xn that satisfies the 
following property: the restriction of A to every subset of Xn of size 3 is a Condorcet 
domain. In other words, for every triple a, b, c of elements of Xn , one of the nine laws 
xNi must be satisfied, where x ∈ a, b, c . For example, cN2 would mean that c may not 
come between a and b in any orderings in A.

A maximal Condorcet domain of degree n is a Condorcet domain of degree n that is 
maximal under inclusion among the set of all Condorcet domains of degree n. A Maxi-
mum Condorcet domain is a Condorcet domain of the largest possible size for a given 
value of n.

To avoid repetition, we will use the acronyms CD and MCD, to refer to Condorcet 
domain and Maximal Condorcet domain respectively.

For the case of degree 3, there are nine MCDs, each corresponding to one of the nine 
different laws xNi. It is easy to verify that these nine MCDs contain exactly four ele-
ments: two transpositions and two even permutations (either the identity or a 3-cycle). 
Among the 9 MCDs of order 3, precisely six contain the identity order 1 > 2 > 3 since 
the laws 1N1, 2N2, and 3N3 each rule out one CD of degree 3.

2.1  Transformations and isomorphism of condorcet domains

First, recall that each linear order L in a CD B may also be viewed as a finite sequence 
of integers, obtained by ordering the elements of Xn so that they are increasing accord-
ing to L, or as the permutation which permutes the identity order on Xn to this sequence. 
We let Sn denote the set of all permutations on Xn.

Let g ∈ Sn and i ∈ Xn . We define ig as g(i); and if A is a sequence of elements of Xn 
we define Ag to be the sequence obtained by applying g to the elements of A in turn. 
If B is a CD, regarded as a set of sequences, we define Bg to be the set of sequences 
obtained by applying g to the sequences in B, and then Bg is also a CD. Specifically, if 
B satisfies the law xNi on a triple (a, b, c) for some x ∈ {a, b, c} , then Bg satisfies the 
law xgNi on the triple (ag, bg, cg). We call CDs B and Bg isomorphic. Therefore, two 
isomorphic CDs differ only by a relabelling of the elements of Xn.

The core of a CD B is the set of permutations g ∈ B such that Bg = B . The core of a 
CD which contains the identity order B is a group. We provide a more detailed discus-
sion of the core in Akello-Egwell et al. (2023).

It can be readily shown that for any Condorcet domain, the total number of 1N3 and 
2N3 rules remains invariant under isomorphism. Likewise, this holds for the total num-
ber of 2N1 and 3N1 rules and the total number of 1N2 and 3N2 rules.

3  Search methodology

We developed an algorithm to generate all MCDs of a given degree n and size at 
least equal to a user-specified cutoff value (e.g. size ≥ 222 for n = 8 ). We imple-
mented this algorithm in C in a serial version which is sufficient for n ≤ 6 , and a 
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parallelized version that we used for n = 7 and 8. It is important to stress that this 
algorithm, unlike the one used by Zhou and Riis (2023), aims to construct all MCDs 
above some user-specified size.

Our algorithm works by starting with the unrestricted domain of all linear orders 
on n alternatives and then stepwise applying never laws iNp to those triples which 
do not already satisfy some such law. The algorithm works with unitary CDs, mean-
ing CDs which contain the identity permutation. Since every CD is isomorphic to 
some unitary CD this is without loss of generality. However, by using unitary CDs 
we reduce the set of possible never laws from 9 to 6, thereby speeding up our search. 
We will next sketch some of the details required in order to see that the algorithm is 
complete, though at first inefficient, and then how to also make it efficient.

We define the Condorcet tree of rank n, which is a homogeneous rooted tree of 
valency 6 and depth 

(

n

3

)

 , as follows. The 
(

n

3

)

 triples of elements of Xn are arranged in 
some order, so that the vertices of the tree at a given depth t are associated with the 
corresponding triple Tt . The six laws that a unitary CD may obey on a given triple 
are also ordered, and each child w of a non-leaf v of the tree is associated with one 
such law Lw . Every vertex v is associated with a set cv of linear orders on Xn . If v is 
the root then cv is the set of all orderings. If w is a child of v, where v has depth t, 
then cw is obtained from cv by removing those orderings that do not satisfy the law 
Lw when applied to Tt.

It is possible, in theory, to process the entire tree, depth first, constructing the 
sets cv for every vertex v. Then the unitary MCDs of degree n, as well as many non-
maximal CDs, are found among the sets cv for the leaves v. In practice this is imprac-
ticable for n > 5 as the tree is too big.

For any leaf v the set cv is a unitary CD, but these are not always maximal, and 
there will be very many duplicates. This arises from the fact that, as we move down 
the tree, the sets cv will often not only obey the laws that have been explicitly applied 
on triples but may also obey laws on triples which are implied by the applied laws. 
Using this observation allows a massive reduction in the number of vertices that 
need to be processed, giving us a tree with 0, 1 or 6 descendants from v depending 
on whether cv cannot be maximal or must be a duplicate, has an implied law, or is 
unrestricted by earlier laws. This is determined as follows.

When a vertex v of height t is processed the law that was enforced on each triple 
Ts for s ≤ t to define v - in other words the path from the root to v - is recorded, and cv 
is constructed by taking cu , where u is the parent of v, and deleting all elements that 
do not satisfy the corresponding never law Nv . For each s ≤ t + 1 the set Ls of laws 
that all the elements of cv obey when applied to the triple Ts is determined. If, for 
some s ≤ t , the set Ls contains a law that precedes the law Nu , where u is the ances-
tor of v of depth s, then the vertex v is not processed any further, on the grounds 
of duplication, and its descendants are not visited. Otherwise, for each s ≤ t , a law 
from Ls is selected, and the set of sequences that obey all these laws is computed. 
This set clearly contains cv , and if, for some such selection of laws, this set strictly 
contains cv then again cv is not processed further. In this case, any unitary CD arising 
from a leaf descendant of v must either fail to be maximal, or will be a duplicate of a 
unitary MCD constructed from a descendant of another vertex of depth t. If v passes 
these tests, and Lt+1 is non-empty, the only descendant of v that will be processed is 
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the child w defined by the least element of Lt+1 , and then cw = cv . Otherwise all chil-
dren of v are processed.

The validity of these restrictions of the full Condorcet tree follows from a recur-
sive argument which is given in full in Akello-Egwell et al. (2023).

4  Condorcet domains on 8 alternatives with size 224

Relying on extensive computer calculation on the super-computer Abisko at Umeå, 
we have established that:

Theorem  4.1 The maximum size of a CD on 8 alternatives is 224. Up to isomor-
phism, there is only one such CD. This CD has a core of size 4. There are no MCDs 
of size 223.

The largest Condorcet domain containing the identity permutation and its reverse 
for n = 8 alternatives is the Fishburn domain, which has a size of 222.

We aim to extend this with more precise counts and analysis of other large Con-
dorcet domains on 8 alternatives in an upcoming paper.

Now let us investigate the properties of the MCD of size 224. 

1. The Fishburn domain has size 222 and hence is not the maximum CD for n = 8 
alternatives

2. There are 56 isomorphic Condorcet domains of size 224 which contain the iden-
tity order. Among these there is one special MCD we will refer to as D224, where 
each never-rule - except for the two triplets (123) and (678) - is 1N3 or 3N1. We 
display the rules for D224 in Table 2 and its linear orders in Table 3

3. The domain does not have maximal width, i.e. it does not contain a pair of 
reversed orders.

4. The domain is self-dual. That is, the domain is isomorphic to the domain obtained 
by reversing each of its linear orders.

5. The restriction of the domain to each triple of alternatives has size 4. This means 
that this domain is copious in the terminology of Slinko (2019) and is equivalent 
to the fact that the domain satisfies exactly one never-rule on each triple.

6. The domain is a peak-pit domain in the sense of Danilov et al. (2012), i.e. every 
triple satisfies a condition of either the form xN1 or xN3, for some x in the triple.

7. The authors of Karpov and Slinko (2022a) asked for examples of maximum CDs 
which are not peak-pit domains of maximal width. Our domain is the first known 
such example and shows that n = 8 is the smallest n for which this occurs.

8. The domain is connected (see Monjardet (2009) for the lengthy definition of this 
well used property.) This is in line with the conjecture from Puppe and Slinko 
(2022) that all maximal peak-pit CDs are connected.

9. The domain has a core of size 4, which is given in captions of Tables 2 and 3.
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5  Conclusion

In conclusion, our work has demonstrated a record-breaking maximum Condorcet 
domain for n = 8 alternatives, which is essentially unique (up to isomorphism and 
reversal). We have also investigated how our domain relates to various well-stud-
ied properties of MCDs. Our findings contribute to understanding the structure 
of Condorcet domains and have potential applications in voting theory and social 
choice.

Overall, our work highlights the importance of understanding the properties 
and structures of CDs in order to construct larger examples and might pave the 
way for future research in this area.

We also observe that some record-breaking CDs for n = 8 alternatives exhibit 
almost all rules of the form 1N3 and 3N1. These rules can be interpreted as a form 
of seeded voting. In such a system, for each set of three alternatives, a seeding is 
implemented to restrict the lowest-seeded alternative from being the highest-ranked 
preference or the highest-seeded alternative from being the lowest-ranked prefer-
ence. A better understanding of the global effects of this type of local seeding could 

Table 2  Table of triplets 
and rules that produces the 
Condorcet domain D224 of size 
224 for 8 alternatives

This specific CD is invariant under the action by the permutations 
group G = {id, (12)(34), (56)(78), (12)(34)(56)(78)}

Triplets Rules Triplets Rules Triplets Rules Triplets Rules

(1, 2, 3) 2N3 (1, 4, 8) 1N3 (2, 4, 7) 3N1 (3, 5, 8) 3N1
(1, 2, 4) 1N3 (1, 5, 6) 1N3 (2, 4, 8) 3N1 (3, 6, 7) 3N1
(1, 2, 5) 3N1 (1, 5, 7) 1N3 (2, 5, 6) 1N3 (3, 6, 8) 1N3
(1, 2, 6) 3N1 (1, 5, 8) 3N1 (2, 5, 7) 1N3 (3, 7, 8) 1N3
(1, 2, 7) 3N1 (1, 6, 7) 3N1 (2, 5, 8) 3N1 (4, 5, 6) 1N3
(1, 2, 8) 3N1 (1, 6, 8) 1N3 (2, 6, 7) 3N1 (4, 5, 7) 1N3
(1, 3, 4) 1N3 (1, 7, 8) 1N3 (2, 6, 8) 1N3 (4, 5, 8) 3N1
(1, 3, 5) 3N1 (2, 3, 4) 1N3 (2, 7, 8) 1N3 (4, 6, 7) 3N1
(1, 3, 6) 3N1 (2, 3, 5) 1N3 (3, 4, 5) 3N1 (4, 6, 8) 1N3
(1, 3, 7) 3N1 (2, 3, 6) 1N3 (3, 4, 6) 3N1 (4, 7, 8) 1N3
(1, 3, 8) 3N1 (2, 3, 7) 1N3 (3, 4, 7) 3N1 (5, 6, 7) 3N1
(1, 4, 5) 1N3 (2, 3, 8) 1N3 (3, 4, 8) 3N1 (5, 6, 8) 3N1
(1, 4, 6) 1N3 (2, 4, 5) 3N1 (3, 5, 6) 1N3 (5, 7, 8) 3N1
(1, 4, 7) 1N3 (2, 4, 6) 3N1 (3, 5, 7) 1N3 (6, 7, 8) 2N1
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serve as a foundation for future research, potentially offering insights into algorith-
mic fairness and impartiality in computer-supported decision-making.
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