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Abstract
The purpose of this note is to provide a topological characterization for the existence 
of the generalized stable set introduced by Van Deemen (Soc Choice Welf 8:255–
260, 1991) as a generalization of the Von Neumann–Morgenstern stable set.

1 Introduction

The notion of a stable sets solution1 introduced by Von Neumann and Morgenstern 
in their classical work Theory of Games and Economic Behavior (Von Neumann 
and Morgenstern 1947), is an important tool in the field of Decision Theory. In a 
social choice process, even if the best social choices are not available, there may be 
social choices that are acceptable as a possible outcome. Von Neumann and Mor-
genstern refer to sets of such acceptable social states as “standards of behavior”. The 
notion of stable set formalizes the idea of a standard of behavior of a social economy. 
While the authors describe this economy as a game of n participants with imputa-
tion-based payoffs, they also refer to a more general framework for their stable sets. 
This more general framework constitutes a theory of social phenomena based on the 
effective preferences between the various states of society (see Von Neumann and 
Morgenstern 1947, Sects. 4.4.3 and 4.6). The core is contained in each Von Neu-
mann–Morgenstern stable set. The theory of stable sets has a significant flaw in that 
it can be empty in the case of odd cycles. For example, if X is a collection of three 
social states x, y, z and R is a preference structure on X so that xRyRzRx, then for 
this preference structure there are no stable sets. More generally, if X = {x

1
, ..., x

n
} 

is a collection of social states with n odd and R is a preference structure on X, then 
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X has no stable sets if there is a unique cycle x
1
Rx

2
Rx

3
R, ..., x

n
Rx

1
 (see Van Deemen 

2013, Theorem 4.11). To avoid this particular problem, Van Deemen introduced the 
notion of the generalized stable set which for finite sets of alternatives is able to pro-
duce a solution for every possible cyclic dominance relation.

In this note, we prove that a feasible set X endowed with a dominance relation 
R has a characterization of the generalized stable set with respect to R if a compact 
topology � on X exists such that R is upper tc-semicontinuous. This is done in a gen-
eral framework for which dominance relation refers to an arbitrary binary relation 
defined on a set of alternatives that is not necessarily finite. Since any topology on 
a finite set X is compact and any dominance relation R is upper tc-semicontinuous 
(any subset of X is open), the results of this paper generalize corresponding results 
given by Van Deemen (1991).

2  Notations and definitions

An abstract decision problem consists of two parts. One is an arbitrary set X of alter-
natives (called the ground set) from which an individual or group must select. In 
most cases, there are at least two alternatives to choose from. Otherwise, there is 
no need to make a decision. The other is a dominance relation over this set, which 
reflects preferences or evaluations for different alternatives. Preferences or evalua-
tions over X are modelled by a binary relation R. When representing abstract deci-
sion problems, the pair (X, R) is used. We sometimes abbreviate (x, y) ∈ R as xRy. 
For any subset Y ⊆ X , let R|

Y
 denote the restriction of R to Y. That is, for any x, y ∈ X 

, xR|
Y
y if xRy and x, y ∈ Y  . The transitive closure of R is the relation R defined as 

follows: For all x, y ∈ X , (x, y) ∈ R if and only if there exist K ∈ ℕ and x
0
, ..., x

K
∈ X 

such that x = x
0
, (x

k−1
, x

k
) ∈ R for all k ∈ {1, ...,K} and x

K
= y . A subset D ⊆ X is 

R-undominated if and only if for no x ∈ D there is a y ∈ X ⧵ D such that yRx. A sub-
set Y ⊆ X is an R-cycle if for all x, y ∈ Y  , we have (x, y) ∈ R and (y, x) ∈ R . We say 
that R is acyclic if there does not exist an R-cycle. An alternative x ∈ X is R-maxi-
mal with respect to an acyclic binary relation R, if (y, x) ∈ R for no y ∈ X . A subset 
F of (X, R) is called a Von Neumann-Morgenstern stable set if (i) no alternative in 
F is dominated with respect to R by another alternative in F, and (ii) any alternative 
outside F is dominated with respect to R by an alternative inside F. The first prop-
erty is called internal stability of domination and the second property external sta-
bility of domination. A subset F of X is called a generalized stable set if it is a Von 
Neumann-Morgenstern stable set of X with respect to the transitive closure of R. The 
following definitions are taken from Van Deemen (1991). An abstract decision prob-
lem (X, R) is called strongly connected if xRy for all x, y ∈ X . A strong component of 
an abstract decision problem (X, R) is an abstract decision problem (Y ,R|

Y
) , Y ⊆ X , 

satisfying the following properties: ( � ) (Y ,R|
Y
) is strongly connected; ( �� ) no abstract 

decision problem (Y �,R|
Y�
) with Y ′ ⊃ Y  is strongly connected. Note that when an 

element x is not on any cycle, it forms a singleton strongly connected component {x} 
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by itself. Clearly, the set of strongly connected components form a partition of the 
space (X, R). The contraction of (X, R) is an abstract decision problem (Ξ, R̃) where 

1. Ξ = {X
i
|i ∈ I} is the collection of ground sets of the strong components of (X, R);

2. for any X
i
,X

j
∈ Ξ , X

i
R̃X

j
 if there are x ∈ X

i
, y ∈ X

j
 with xRy. Clearly, R̃ is acyclic 

by definition.

In what follows, �(Ξ, R̃) = {X∗
i
|i ∈ I} denotes the family of ground sets which are R̃

-maximal in Ξ.
Let R be a binary relation defined on a topological space (X, �) . The relation R is 

upper (resp. lower) semicontinuous if for all x ∈ X the set xR = {y ∈ X|xRy} (resp. 
Rx = {y ∈ X|yRx} ) is open. According to Alcantud (1999, p 181) a binary relation 
R on a topological space (X, �) is upper (resp. lower) tc-semicontinuous if its transi-
tive closure is upper semicontinuous; i.e., if for all x ∈ X the set xR = {y ∈ X|xRy} 
(resp. Rx = {y ∈ X|yRx} ) is open. The acronym tc refers to transitive closure. Upper 
semicontinuity implies upper tc-semicontinuity, and both concepts are equivalent for 
transitive binary relations. We say that a topological space (X, �) is compact if for 
each collection of open sets which covers X there exists a finite subcollection that 
also covers X.

3  The main result

The following theorem gives a characterization of the generalized stable set of an 
abstract decision problem.

Theorem 3.1 Let (X, R) be an abstract decision problem, and let � be a compact 
topology on X. Suppose that R is upper tc-semicontinuous. Then, F is a generalized 
stable set of (X, R) if and only if it contains exactly one alternative of the ground set 
of each R̃-maximal strong component.

Proof Let (X, R) denote an abstract decision problem satisfying the assumptions of 
the theorem. Let {X∗

i
|i ∈ I} be the family of all ground sets which are R̃-maximal in 

Ξ and let xi ∈ X∗
i
 for each i ∈ I . We prove that F = {xi|i ∈ I} is a generalized stable 

set. If (X, R) is strongly connected, then X∗
i
= X for all i ∈ I . In this case, for each 

x ∈ X , {x} is a generalized stable set of (X, R). Suppose that X∗

i�
≠ X∗

i��
 for at least one 

pair (x
i�
, x

i��
) ∈ I × I . We first prove that F satisfies internal stability of domination. 

Indeed, let x
i�
, x

i��
∈ F . We suppose, by way of contradiction, that (x

i�
, x

i��
) ∈ R . 

Then, there exists N ∈ ℕ and x
1
, x

2
, ..., x

N
∈ X such that x

i′
Rx

1
Rx

2
R...Rx

N
Rx

i′′
 . There-

fore, there are X1,X2, ...,XN
∈ Ξ with x

n
∈ X

n
 for all n ∈ {1, 2, ...,N} satisfying 

X∗

i�
R̃X1R̃X2R̃...R̃xN

R̃X∗

i��
 . Therefore, X∗

i��
 cannot be maximal. This contradiction shows 

that (x
i�
, x

i��
) ∉ R . Similarly we can prove that (x

i��
, x

i�
) ∉ R . Hence, F satisfies inter-

nal stability of domination.
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To prove that F satisfies external stability of domination, let x∗ ∈ X with 
x∗ ∉ F . We have two cases to consider: when (1) x∗ ∈

⋃
i∈I X

∗
i
⧵ F and when (2) 

x∗ ∈ X ⧵
⋃

i∈I X
∗
i
 . In case (1), x∗ ∈ X∗

i�
 for some i� ∈ I . Then, either X∗

i�
 consists of a 

single element or not. Since x∗ ∉ F , X∗
i�
 cannot consist of a single element. Hence, 

X∗
i�
 must be an R-cycle. Therefore, (xi� , x∗) ∈ R.
In case (2), let x∗ ∈ X ⧵

⋃
i∈I X

∗
i
 . We prove that there exists i ∈ I such that 

(x
i
, x∗) ∈ R , which proves the desired property of external stability of domination.
Suppose to the contrary that:

Then, (y, x∗) ∉ R holds for every y ∈
⋃

i∈I X
∗
i
 . Indeed, assume, by contradiction, that 

(y, x∗) ∈ R for some y ∈ X∗

j
 with j ∈ I . Then, since (x

j
, y) ∈ R , we have that 

(x
j
, x∗) ∈ R , a contradiction to (1). Therefore,

Let

We show that A
x∗
≠ � , that is y

1
Ry

0
Rx∗ for some y

0
, y

1
∈ X ⧵

⋃
i∈I X

∗
i
.

We can always find a y
0
∈ X ⧵

⋃
i∈I X

∗
i
 such that y

0
Rx∗ . Indeed, suppose that 

(y, x∗) ∉ R for all y ∈ X ⧵
⋃

i∈I X
∗
i
 . Then, since as a consequence of (2), (y, x∗) ∉ R 

for all y ∈
⋃

i∈I X
∗
i
 , we have that y

0
 would be an R-undominated element. Hence, 

{y
0
} = X∗

i
 and thus y

0
= x

i
 , for some i ∈ I , an absurdity under the fact that 

y
0
∈ X ⧵

⋃
i∈I X

∗
i
 . Therefore,

To prove that there exists an y
1
∈ X ⧵

⋃
i∈I X

∗
i
 such that y

1
Ry

0
 , we simply need to 

demonstrate that y
0
 possesses the properties of x∗ . All that is required is for the prop-

erty (2) that satisfies x∗ to also satisfy y
0
 . That is, for all y ∈

⋃
i∈I X

∗
i
 it holds that 

(y, y
0
) ∉ R . Indeed, suppose that (y�, y

0
) ∈ R for some y� ∈ X∗

i
0

 , i
0
∈ I , then from 

(x
i
0

, y�) ∈ R , (y�, y
0
) ∈ R and (y

0
, x∗) ∈ R we have that (x

i
0

, x∗) ∈ R , a contradiction 

to (1). Therefore, there exists a y
1
∈ X ⧵

⋃
i∈I X

∗
i
 such that y

1
Ry

0
 . It follows that

By (5) we conclude that A
x∗
 is non-empty. We now show that A

x∗
 is closed with 

respect to � . Suppose that t belongs to the closure of A
x∗
 . Then, there exists a net 

(t
k
)
k∈K

 in A
x∗
 with t

k
→ t . We have to show that t ∈ A

x∗
 , i.e., Rt ⊆ Rx∗ . Take any 

(1)For each i ∈ I it holds that
(
x
i
, x∗

)
∉ R.

(2)for each y ∈
⋃

i∈I

X∗
i
we have (y, x∗) ∉ R.

(3)A
x∗
=
{
y ∈ X|� ⊂ Ry ⊆ Rx∗

}
.

(4)there exists y
0
∈ X ⧵

⋃

i∈I

X∗
i
such that y

0
Rx∗.

(5)y
1
Ry

0
Rx∗ with y

0
, y

1
∈ X ⧵

⋃

i∈I

X∗
i
.
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z ∈ Rt . Since {w ∈ X|zRw} is an open neighborhood of t, there exists k� ∈ K such 
that for each k ≥ k′ , zRt

k
 holds. On the other hand, for each k ≥ k′ , t

k
∈ A

x∗
 . Hence, 

z ∈ Rt
k
⊆ Rx∗ . It follows that Rt ⊆ Rx∗ which implies that t ∈ A

x∗
 . Therefore, A

x∗
 is a 

closed subset of X.
We continue with the ultimate goal of proving that (1) does not hold true. This 

will ensure us the existence of an i∗ ∈ I such that (x
i∗
, x∗) ∈ R with x∗ ∈ X ⧵

⋃
i∈I X

∗
i
 . 

In this direction, we first show that,

Indeed, if t ∈ A
x∗
 , then t ∈ {y� ∈ X|� ⊂ Ry� ⊆ Rx∗} . It follows that Rt ≠ ∅ and 

Rt ⊆ Rx∗ . Therefore, there exists y ∈ X such that yRt and yRx∗ . Because of (2), we 
conclude that y ∈ X ⧵

⋃
i∈I X

∗
i
 . Therefore, Eq. (6) holds.

Based on the validity of (6), we have two cases to consider: when (a) y = t and 
when (b) y ≠ t.

In case (a), there exists an R-cycle C ⊆ X ⧵
⋃

i∈I X
∗
i
 which contains t. Assume 

(C
�
)
�∈Γ

 , C
𝛾
⊆ X ⧵

⋃
i∈I X

∗
i
 is the family of all R-cycles that contains t. Let ℭ = (C

�
)
�∈B

 , 
B ⊆ Γ , be any chain in (C

�
)
�∈Γ

 so that any two sets belonging to the chain are related 
by set inclusion. Clearly, 

⋃
�∈B C�

 is an upper bound for ℭ . However, because ⋂
�∈B C�

 contains t, 
⋃

�∈B C�
 is also an R-cycle. Therefore, by the Lemma of Zorn,2 

the family of all R-cycles (C
�
)
�∈Γ

 , C
𝛾
⊆ X ⧵

⋃
i∈I X

∗
i
 , which contains t has a maximal 

element, let C
�
0

 . Then, C
�
0

∈ Ξ . Since C
�
0

∈ X ⧵
⋃

i∈I X
∗
i
 we have that C

�
0

 is not a 

maximal element with respect to R̃ in Ξ . Thus, there exists î ∈ I such that X∗

î

R̃C
�
0

 . It 
follows that (x, y) ∈ R for some x ∈ X∗

î

 and some y ∈ C
�
0

 . Since X∗

î

 is an R-cycle, 

x, x̂
i
∈ X∗

î

 , (x, y) ∈ R and y ∈ A
x∗
 we conclude that (x̂

i
, x∗) ∈ R , a contradiction to (1).

In case (b), we have that for each t ∈ A
x∗
 there exists y ∈ X ⧵

⋃
i∈I X

∗
i
 with y ≠ t 

and (y, t) ∈ R . It follows that y ∈ A
x∗
 ( Ry ⊆ Rx∗ ). Therefore, for each t ∈ A

x∗
 , the sets 

{y ∈ X| yRt, y ≠ t} ∩ A
x∗
 are open in the relative topology of A

x∗
 , due to upper tc-

semicontinuity of R.
Thus, the collection ({t ∈ X| yRt, y ≠ t} ∩ A

x∗
)
y∈A

x∗

 is an open cover of A
x∗
 , that is,

A
x∗
=

⋃

y∈A
x∗

(
{t ∈ X| yRt, y ≠ t} ∩ A

x∗

)
.

Since A
x∗
 is compact there exist y

1
, y

2
, ..., y

n
∈ X such that

A
x∗
=

⋃

i=1,2,...,n

(
{t ∈ X| y

i
Rt, y

i
≠ t} ∩ A

x∗

)
.

We show that among the elements y
1
, y

2
, ..., y

n
 there must be an R-cycle. First note 

that if i∗ ∈ {1, 2, ..., n} , then y
i∗
 is an element of one of the covering sets 

(6)for each t ∈ A
x∗
there exists y ∈ X ⧵

⋃

i∈I

X∗
i
such that (y, t) ∈ R.

2 Lemma of Zorn states that every partially ordered set for which every chain (that is, every totally 
ordered subset) has an upper bound contains at least one maximal element.
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{t ∈ X| y
i
Rt, y

i
≠ t} ∩ A

x∗
 , i = 1, 2, ...n . If y

i∗
∈ {t ∈ X| y

i∗
Rt, y

i
≠ t} ∩ A

x∗
 , then we 

would have an R-cycle. Otherwise, for each i, j ∈ {1, 2, ..., n} , i ≠ j , 
y
i
∈ {t ∈ X| y

j
Rt, y

j
≠ t} ∩ A

x∗
 . Without loss of generality, we assume that 

y
1
∈ {t ∈ X| y

2
Rt, y

2
≠ t} ∩ A

x∗
 . Now, for an arbitrary i, we have just the case as we 

did for i = 1 , that y
i
∈ {t ∈ X| y

i+1
Rt, y

i+1
≠ t} ∩ A

x∗
 . Then, 

y
n
∈ {t ∈ X| y

k
Rt, y

k
≠ t} ∩ A

x∗
 with k ∈ {1, 2, ..., n} . Thus, we would have an 

R-cycle.
Therefore, there exists an R-cycle �C ⊆ X ⧵

⋃
i∈I X

∗
i
 which contain the elements of 

a set M ⊆ {y
1
, y

2
, ..., y

n
} . By the Lemma of Zorn, the family of all R-cycles (C̃

�
)
�∈Γ

 , 
�C

𝛾
⊆ X ⧵

⋃
i∈I X

∗
i
 , which contain M has a maximal element, which we call C̃

�
0

 . 
Therefore, as in the family C

�
 of the case (a) above, there exists ĩ ∈ I such that 

X∗

ĩ

R̃C̃
�
0

 which implies that (x̃
i
, x∗) ∈ R , a contradiction to (1). Because the assump-

tion referred to in (2) always leads to a contradiction, we conclude that F satisfies 
external stability of domination.

Conversely, let F be a generalized stable set and let x
0
∈ F . Let also {X∗

i
|i ∈ I} 

be the set of maximal elements in (Ξ, R̃) . We prove that x
0
∈ X∗

�
 for some � ∈ I . Put 

Then, since the space is compact, as in the case of A
x∗
 in (3) above, there exists a 

finite subset {t
1
, t

2
, ..., t

n
} of B

x
0

 where among its element there must be an R-cycle, 
let Ĉ . By the Lemma of Zorn, the family of all R-cycles (Ĉ

�
)
�∈Γ

 , �C
𝛾
⊆ B

x
0

 , which con-
tain {t

1
, t

2
, ..., t

n
} has a maximal element, let Ĉ

�
0

 . To prove that x
0
∈ X∗

�
 for some 

� ∈ I , we have two cases to consider: when (1) B
x
0

= � and when (2) B
x
0

≠ ∅ . In 
case (1), we have that x

0
 cannot be a member of a cycle. But then, x

0
 is an R-undomi-

nated element. Indeed, suppose to the contrary that xRx
0
 for some x ∈ X . Since F 

satisfies internal stability of domination, xRx
0
 implies that x ∉ F . Then, because of 

external stability of domination, there exists y ∈ F such that yRx . It follows that 
yRx

0
 , a contradiction to internal stability of domination. Therefore, x

0
 is an R-undom-

inated element. We now show that {x
0
} = X∗

î
 for some î  . Indeed, since (x, x

0
) ∉ R 

for all x ∈ X , by definition of R̃ , we cannot have X∗
i
R̃{x

0
} for some i ∈ I . Thus, 

X∗

î
= {x

0
} is an R̃-maximal element of Ξ with x

0
∈ X∗

î
.

In case (2), we only have to prove that Ĉ
�
0

 is an R̃-maximal element in Ξ and 
x
0
∈ Ĉ

�
0

 . In order to prove that Ĉ
�
0

 is maximal with respect to R̃ in Ξ , suppose to the 
contrary that there exists a X∗

i
 for some i ∈ I such that X∗

i
R̃Ĉ

�
0

 . Then, there exist a 

x ∈ X∗
i
 and a y ∈ Ĉ

�
0

 such that xRy by definition of R̃ . Since y ∈ �C
𝛾
0

⊆ A
x
0

 and 
Ry ⊆ Rx

0
 we conclude that xRx

0
 . Therefore, because of the internal stability of domi-

nation, x cannot belong to F. Thus, there exists t ∈ F such that tRx . It follows that 
tRx

0
 , a contradiction to internal stability of domination. Hence, Ĉ

�
0

 is maximal with 

B
x
0

=
{
t ∈ X|Rt ⊆ Rx

0

}
.
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respect to R̃ in Ξ , that is, Ĉ
�
0

= X∗
i
 for some i ∈ I . It remains to prove that x

0
∈ X∗

i
 . 

Suppose to the contrary that x
0
∉ X∗

i
 . By B

x
0

≠ ∅ , there exists y
0
∈ B

x
0

 such that 

y
0
Rx

0
 . Then, because of the internal stability of domination, by y

0
Rx

0
 , we conclude 

that y
0
∉ F . Therefore, external stability of domination implies that tRy

0
 for some 

t ∈ F . It follows that tRx
0
 , a contradiction to internal stability of domination. Hence, 

x
0
∈ X∗

i
 and the proof is over.   □

The following corollary, which is the main result in Van Deemen (1991), is an 
immediate result of Theorem 3.1.

Corollary 3.2 (Van Deemen 2013,  Theorem  2). Let X be a nonempty finite set 
and let R be an asymmetric binary relation on X. Let �(Ξ, R̃) = {X∗

1
,X∗

2
, ...,X∗

n
} 

and x
1
, x

2
, ..., x

n
∈ X . Then, {x

1
, x

2
, ..., x

n
} is a generalized stable set if and only if 

x
1
∈ X∗

1
, x

2
∈ X∗

2
, ..., x

n
∈ X∗

n
.

Proof Since any topology on a finite set X is compact and any dominance relation R 
is upper tc-semicontinuous (any subset of X is open), the corollary is an immediate 
consequence of Theorem 3.1.   □

The following example serves two purposes: it demonstrates that Theorem  3.1 
generalizes Van Deemen’s corresponding result for infinite cases, and results in a 
strict extension of the stable set to the generalized stable set.

Example 3.3 Let X = A ∪ B where A,  B are disjoint sets of social states endowed 
with a compact topology. Given a cover (U

i
)
i∈I

 of X, it is in particular, a cover of A 
and B. By compactness, we can cover each of A and B individually by finitely many 
A

i
= {U

i
∩ A|i = 1, 2, 3, ..., n} and B

i
= {U

i
∩ B|i = 1, 2, 3, ..., n} . Together, they 

must cover the union, which is A ∪ B = X . We define a binary relation R on X such 
that xRy if and only if for each i ∈ {1, 2, 3, ..., n} one of the following conditions 
holds: (i) x, y ∈ A

i
 or x, y ∈ B

i
 ; (ii) x ∈ A

i
, y ∈ B

i+1
 ; (iii) x ∈ B

i+1
 and y ∈ B

i
 . In all 

other cases x and y are non-comparable. For each x ∈ X , the set K
x
= {y ∈ X|xRy} is 

open. Indeed, if x belongs to some A
i
 with i ∈ {1, 2, 3, ..., n − 1} , then 

K
x
= A

i
∪ B

1
∪ B

2
∪ ... ∪ B

i+1
 and K

x
= A

i
 if i = n . If x belongs to some B

i
 with 

i ∈ {2, ..., n} , then K
x
= B

1
∪ ... ∪ B

i
 and K

x
= B

i
 if i = 1 . Therefore, R is upper tc-

semicontinuous. It follows that (X, R) satisfies the assumptions of Theorem 3.1 and 
thus it has at least a generalized stable set. The set M = {x

1
, x

2
, ..., x

n
} where x

i
∈ A

i
 

for all i ∈ {1, 2, ..., n} can serve as a confirmation of this fact. Since the members of 
A

i
 , A

j
 , i ≠ j , are not comparable with respect to R, M is internally stable. For each 

y ∈ X ⧵M there exists x
i
∈ M such that x

i
Ry . Hence, we have that M is a general-

ized stable set with respect to R in X. Because the elements of B
1
 are non-dominated 

with respect to R from the elements of A and the elements of A are non-dominated 
with respect to R from the elements of B, (A, R) has no stable set.
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4  Conclusions

The theory of generalized stable sets is strongly related to the Von Neumann–Mor-
genstern theory of stable sets, which are flawed in that they can fail to yield a solu-
tion in the case of odd cycles. This is addressed by the theory of generalized sta-
ble sets, which is able to yield a solution for any possible cyclic social preference. 
Another advantageous feature is that if the set of best social choices is not empty, 
the recommended solution set will include it. Defining general solutions concepts 
over an infinite space requires us to think more deeply about the choice process, 
with choice sets being subsets of the alternative space rather than simply orderings 
of alternatives. In social choice, every generalization is not straightforward because 
certain characterizations of a finite set of alternatives are lost in the case of infinite 
sets of alternatives. Since each finite set can be considered as a discrete topological 
space, it makes sense for a social science model to be generalized through topol-
ogy. On the other hand, the concept of compactness is an extension of the benefits 
of finiteness to infinite sets. Most properties of compact sets in social science are 
analogous to the properties of finite sets which are quite trivial. A crucial aspect in 
proving the validity of Theorem 3.1, for instance, is the demonstration of the exist-
ence of maximal elements for the ground sets of the strong components of (X, R). 
If the feasible set is finite, a sufficient condition for the existence of such a maximal 
element is that preference must be acyclic. However, the same statement remains 
true if finiteness is replaced by compactness and the dominance relation is upper 
semicontinuous. With these two notions as the main assumptions in Theorem 3.1, 
the transition from finite to infinite is generally secured because the validity of appli-
cations from the finite case is preserved in the infinite one. Indeed, when finiteness 
is replaced by compactness and upper tc-semicontinuity, given the validity of Theo-
rem 3.1, it is straightforward to verify the validity of all theorems and conclusions 
of Van Deemen (1991) for the case of infinite sets of alternatives (Van Deemen uses 
asymmetric binary relations). If, as required in Theorem 3.1, the binary relation is 
arbitrary (i.e. symmetry is allowed), all of the results in Van Deemen (1991) are still 
true, with the exception that in Theorem 4, sec. 3, the set of maximal elements is 
replaced by the set of R-undominated elements. Finally, in abstract decision prob-
lems (X, R) where X is finite and R is asymmetric, there are important differences 
and commonalities between the generalized stable set and the other solution theories 
in the social choice literature. It will be interesting to be explored if there are analo-
gous generalizations of other general solution concepts to the case of an infinite set 
of alternatives and to determine if their differences and similarities with the general-
ized stable set, as presented in Theorem 3.1, follow the same logic as those of the 
finite case.
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