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Abstract
The doctrinal paradox is analysed from a probabilistic point of view assuming a 
simple parametric model for the committee’s behaviour. The well known premise-
based  and conclusion-based  majority rules are compared in this model, by means 
of the concepts of false positive rate (FPR), false negative rate (FNR) and Receiver 
Operating Characteristics (ROC) space. We introduce also a new rule that we call 
path-based, which is somehow halfway between the other two. Under our model 
assumptions, the premise-based rule is shown to be the best of the three according 
to an optimality criterion based in ROC maps, for all values of the model parameters 
(committee size and competence of its members), when equal weight is given to 
FPR and FNR. We extend this result to prove that, for unequal weights of FNR and 
FPR, the relative goodness of the rules depends on the values of the competence and 
the weights, in a way which is precisely described. The results are illustrated with 
some numerical examples.

1  Introduction

1.1 � The doctrinal paradox

The Condorcet Jury Theorem (attributed to Condorcet (1785)) states that “if n 
jurists act independently, each with probability 𝜃 >

1

2
 of making the correct deci-

sion, then the probability that the jury (deciding by majority rule) makes the cor-
rect decision increases monotonically to 1 as n tends to infinity”. See for instance 
Boland  (1989) and Karotkin and Paroush (2003), and the references therein, for 
precise statements, proofs, and extensions of this principle.
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The doctrinal paradox (a name introduced by Kornhauser (1992)  arises in 
some situations when a committee or jury has to answer a compound ques-
tion divided in two subquestions or premises, P and Q. The point of interest is 
in deciding between the acceptance of both premises P ∧ Q (P and Q) and the 
acceptance of the opposite ¬(P ∧ Q) = ¬P ∨ ¬Q (not P or not Q). In view of the 
Condorcet Jury Theorem, some kind of majority rule seems appropriate for this 
two-premises problem. However, in some cases, the same set of individual deci-
sions leads to different collective decisions depending on the manner in which the 
individual opinions are aggregated.

Classically, two standard decision procedures are considered in the litera-
ture: the conclusion-based and the premise-based procedures (Conc and Prem, 
respectively, for short). In Conc, each committee member or judge decides on 
both questions and votes P ∧ Q or ¬(P ∧ Q) . Then, simple majority wins. In the 
Prem procedure, each committee member decides P or ¬P first, and then a joint 
decision about this premise is taken by simple majority. Similarly, each member 
chooses between Q or ¬Q , and a joint decision is taken again by simple majority. 
If P and Q are separately chosen by a (perhaps differently formed) majority, then 
P ∧ Q is proclaimed. Otherwise, ¬(P ∧ Q) is the conclusion.

Procedure Conc is sometimes referred in the literature as the case-by-case rule 
(Kornhauser 1992; Kornhauser and Sager 1993). In fact, it is a reduction to the 
one-premise Condorcet case. Procedure Prem is then referred as the issue-by-
issue rule.

Both procedures look reasonable, but they may give rise to different results, 
hence the “paradox”. The simplest example is the case of a 3-member commit-
tee, when there is one vote for P ∧ Q , one for P ∧ ¬Q and one for ¬P ∧ Q . The 
Prem rule leads to decide in favour of P ∧ Q , whereas the Conc rule leads to the 
contrary.

In general, if we have a committee with n members, we can summarise their 
votes as in Table 1, where x, y, z and t are the number of votes received by each 
of the options P ∧ Q , P ∧ ¬Q , ¬P ∧ Q , and ¬P ∧ ¬Q respectively. We will assume 
throughout the paper that n is an odd number: n = 2m + 1 , m ≥ 1 . The doctrinal 
paradox appears when the following conditions are simultaneously satisfied:

In the sequel Table 1 will be called a voting table, but we will write it simply 
as a matrix

x + y > m , x + z > m , x ≤ m .

Table 1   Distribution of n votes 
on two premises

Q ¬Q Totals

P x y x + y

¬P z t z + t

Totals x + z y + t n
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and also as a vector (x, y, z, t), to save space.
We now introduce a new decision rule which is also reasonable and, as we 

will see later, lies in some sense in between of the classical Prem and Conc rules. 
We call it path-based (Path, for short), and it can be defined as follows: P ∧ Q is 
proclaimed if the number of voters that individually conclude P ∧ Q is greater 
than those who conclude ¬P , and greater than those who conclude ¬Q , separately. 
That is, in the notation of Table  1, if x > z + t and x > y + t . Comparing with 
Prem, only the number of supporters of P ∧ Q can be used to beat ¬P , without 
using the votes for P ∧ ¬Q , and similarly to beat ¬Q without using the votes for 
¬P ∧ Q ; it is therefore a stronger requirement to conclude P ∧ Q . Comparing with 
Conc, in order to conclude P ∧ Q , in Path the votes for P ∧ Q do not need to beat 
the sum of all other options, but only those who deny P and those who deny Q, 
separately, which is a weaker statement.

We can justify morally this new rule by saying that supporters of the conclu-
sion P ∧ Q must form a majority against the detractors of P, no matter its position 
about Q, and symmetrically for the other premise. It is not our intention to stand 
for a different “reasonable” rule, but to make it visible that, apart from the two 
classic rules, some others can be considered. For these specific three rules, we 
will show that any one of them is the best, depending on the adopted criterion of 
optimality, drawn from a family of perfectly reasonable criteria.

Our goal is to compare the performance of the three decision rules, for different 
committee sizes and different individual competence of its members. To this end, we 
define a theoretical framework consisting of a probabilistic model where the compe-
tence of a judge is defined as the probability that he/she takes the correct decision 
about each single premise. It is assumed that a “true state of nature” or “absolute truth” 
exists, which is one of the four possibilities that combine P, Q and their negations.

Our performance criterion is based on the concepts of true and false positive 
and negative rates and the Receiver Operating Characteristics (ROC) space. They 
have their origin in the field of electrical engineering and are commonly used 
in medicine, machine learning and other scientific disciplines (see e.g. Fawcett 
2006; Hand and Till 2001). We believe that its application to the doctrinal para-
dox is completely new, and that it provides an acceptable framework to decide 
which one of a given set of rules is the best to get the right conclusion. As will be 
apparent later, our analysis can be applied to any given set of rules, beyond those 
considered here.

We want to stress the fact that we treat conclusion and premises at a different 
level. We concentrate in assessing different rules in their ability to get the conclu-
sion right; not the premises. This is reflected in the consideration of false posi-
tives and false negatives of the conclusion only. We also note, however, that the 
computation of these false positives and negatives depends directly on the ability 
of the committee to get the premises right.

[
x y

z t

]
,
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1.2 � Related literature

The problem of a committee assessing the truth or falsity of the three logical 
clauses P, Q and R, with the constraint R ⇔ P ∧ Q is only an instance of the 
broader situation in which a collective decision is to be built from individual 
decisions in a community. The theory of judgement aggregation aims at studying 
and shedding light into these kind of problems. We refer the reader to the surveys 
(List 2012) and (List and Puppe 2009) for an overview of the field and its recent 
developments.

The doctrinal paradox is correspondingly a particular case of a general impos-
sibility theorem inside that theory (see, e.g. List and Pettit 2002): Under reason-
able assumptions, there exist individual logically consistent decisions on P, Q and R 
that lead to collective inconsistent decisions. Dietrich and List (2007) prove Arrow’s 
impossibility result on preference aggregation as a corollary of this impossibility in 
judgement aggregation. See also Camps et al. (2012) for a new approach to the prob-
lem of constrained judgement aggregation in a general setting.

The concept of decision rule that we introduce in the next section is somewhat 
narrower than that of aggregation rule in judgement aggregation theory, but suf-
ficient and adapted to our purposes. We do not go further explaining judgement 
aggregation theory concepts since we focus specifically in the doctrinal paradox 
with a simple model of behaviour of the committee members. For instance, we dis-
regard strategic behaviour, considered in Dietrich and List (2007), de Clippel and 
Eliaz (2015), Ahn and Oliveros (2014) and Terzopoulou and Endriss (2019), or the 
epistemic or behavioural perspective, studied in Bovens and Rabinowicz (2004), 
Bovens and Rabinowicz (2006), and Bonnefon (2010).

We consider that a true state of nature exists (not known, but certain) and that 
the committee members are seeking this absolute truth (the so called truth-tracking 
preference, see Bozbay (2019) and the references therein).

Sometimes, as in the recent papers (Bozbay 2019; Terzopoulou and Endriss 
2019), the state of nature is thought of as a random experiment, with an assumed 
prior probability distribution on the set of possible states, which in our case is the set 
{P ∧ Q,¬P ∧ Q,P ∧ ¬Q,¬P ∧ ¬Q} . This Bayesian approach is justified in applica-
tions where there is indeed a previous experience, independent of the decision to be 
currently made. We do not assume any prior probability. As a consequence, the neg-
ative conclusion ¬(P ∧ Q) is in fact composed by three different states of nature, and 
we use the concepts of classical statistics to state the notion of risk when concluding 
that P ∧ Q is false when in fact it is true. Some more notes on the Bayesian approach 
are pointed out in the discussion section.

Judgement Aggregation Theory frequently takes as starting point the concept 
of agenda, a consistent set of propositions, closed under negation, on which judge-
ments have to be made (List and Puppe 2009; Dietrich 2007; List and Pettit 2002). 
Moreover the propositions may be linked by logical restrictions. In our case, the 
agenda is {P,¬P,Q,¬Q,P ∧ Q,¬(P ∧ Q)} . In this language, the doctrinal paradox 
can be stated by saying that the majority rule can be inconsistent, in the sense that if 
all pairs of formulae in the agenda are decided by a majority rule, then the accepted 
formulae could be logically inconsistent.
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The aggregation problem is described in full generality in Nehring and Pivato 
(2011), starting with the concept of judgement, defined as a mapping from the set of 
propositions to the doubleton {True, False} , and that of feasible judgement, a map-
ping that respects the underlying logical constraints of the propositions. The judge-
ment aggregation problem is then defined as to find a “best” feasible mapping from 
the voters individual judgements. If the mapping is built by propositionwise major-
ity, a non-feasible mapping may arise. The range of possible voting paradoxes is the 
set of possible non-feasible mappings. In our case, the only such mapping, assuming 
the voters respect the underlying logic, is P ↦ True , Q ↦ True , (P ∧ Q) ↦ False.

The truth-functional judgement aggregation problem is the special case when 
there is one or more propositions called conclusions, that are functionally deter-
mined by the values of other propositions, called premises. This functional depend-
ence is not necessarily of conjunctive type; more complicated relations between 
them can be in force. In this paper we address the simplest non-trivial problem, in 
which the conjunction of two premises are equivalent to the conclusion.

We review some more literature in the discussion section when presenting pos-
sible extensions of the present work.

1.3 � Organisation of the paper

The paper is organised as follows: In Sect. 2, we define and characterise with preci-
sion the Prem, Conc and Path decision rules, and explain what we consider to be 
an admissible rule in the application context we are dealing with. We show that the 
three rules considered are admissible, and that there exist non-admissible (though 
not completely irrational) decision rules.

The specific model assumptions are given in Sect. 3. Although the doctrinal par-
adox cannot be avoided, one can speak of the “best rule”, once some theoretical 
model is defined and some reasonable performance criterion is chosen. Of course, 
different criteria gives rise to different “best rules”, and this is again unavoidable.

The concept of true and false positives and negatives and that of ROC space are 
introduced in Sect. 4. Translated to our setting, the false positive rate FPR will be 
the probability of accepting P ∧ Q when it is false, and the false negative rate FNR 
the probability of rejecting P ∧ Q when it is true.

Section 5 contains the main results of the paper and their proofs: Rule Prem is the 
best in the ROC setting under a symmetric criterion which gives the same weight 
to FPR and FNR; in case of unequal weights, any one of the three rules can be the 
best, depending on the relation between the competence parameter and the specific 
weights.

Section  6 contains some numerical computations and figures, showing that all 
values of interest resulting from the probabilistic model can be explicitly obtained. 
More than that, the simple hypotheses on the model that we impose in Sect. 3 can be 
relaxed to a great extent and the explicit computations can still be carried out with-
out difficulty with adequate computing resources. This is explained in more detail in 
the final discussion in Sect. 7, together with other considerations and open problems.
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To make the exposition smooth, we postpone most of the technical statements 
and their proofs to an appendix.

2 � Decision rules

In this section, we give a detailed characterization of the Prem, Path and Conc 
rules outlined in the introduction, and formalise the concept of admissible decision 
rule. We assume throughout the paper that the committee size is an odd number 
n = 2m + 1 , with m ≥ 1 . The simple majority for a single binary question is there-
fore achieved by any number of committee members greater than m.

Definition 2.1  Assume that the opinions of the committee are summarised as in 
Table 1. Then, we define the following decision rules: 

R1 ∶	� The premise-based rule (Prem), 

R2 ∶	� The path-based rule (Path), 

R3 ∶	� The conclusion-based rule (Conc), 

In the sequel, we shall use the following equivalent expressions, whose proof is 
straightforward and detailed in the Appendix (Proposition A.1):

where ⌊x⌋ denotes the integer part of x, i.e. the largest integer not greater than x, and 
x ∧ y stands for the minimum of x and y. (The context will distinguish the uses of ∧ 
as the minimum of two values or the logical operator ‘and’.)

From the characterisation of Proposition A.1, it is clear that the condition of rule 
R3 to choose P ∧ Q is more restrictive than that of R2 , and the latter in turn is more 
restrictive that the condition of R1 . Furthermore, rules R2 and R3 are equivalent when 
n = 3 or 5 , and they are different for n ≥ 7 . Rules R1 and R2 are not equivalent for 
any n ≥ 3 . These facts will be stated as a proposition after a formal definition of 
decision rule:

Definition 2.2  A decision rule is a mapping from the set �  of all voting tables into 
{0, 1} , where 1 means deciding P ∧ Q , and 0 means the opposite.

(1)Decide P ∧ Q if and only if x + y > z + t and x + z > y + t.

(2)Decide P ∧ Q if and only if x > z + t and x > y + t.

(3)Decide P ∧ Q if and only if x > y + z + t.

R1 ∶ Decide P ∧ Q if and only if x > m − y ∧ z

R2 ∶ Decide P ∧ Q if and only if x > m −
⌊ y∧z

2

⌋

R3 ∶ Decide P ∧ Q if and only if x > m
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If the committee has n members, there are N =

(
n + 3

3

)
 ways to fill the voting 

table, and 2N possible decision rules. The number N can be deduced by a combinato-
rial argument considering the number of ways to express n as the sum of four inte-
gers, including zero (the so-called weak compositions of a number).

Since we assume that P and Q must have the same relevance in the final decision, 
it is natural to impose that a decision rule must yield the same result if we inter-
change the number of votes for P ∧ ¬Q and Q ∧ ¬P , i.e. y and z.

Furthermore, we would like to consider only decision rules satisfying the follow-
ing rationality property: If a table leads to decision 1 and a committee member that 
has voted for P ∧ ¬Q or Q ∧ ¬P changes the vote to P ∧ Q , the decision for the new 
table should also be 1; analogously, if the decision was 0 and the same vote changes 
to ¬P ∧ ¬Q , then the decision for the new table should also be 0. This condition is 
easily implemented by considering only rules that preserve the partial order ≤ on �  
generated by the four relations (using the matrix notation of Sect. 1.1)

These considerations lead us to define the following concept of admissible rule. 
More often than not, we will use the vector notation (x, y, z, t) instead of the tabular 
form, to save space.

Definition 2.3  A decision rule R ∶ � ⟶ {0, 1} will be called an admissible rule if: 

1.	 It does not distinguish between transposed tables: 

2.	 It is order-preserving on the partially ordered set (� ,≤) : 

The resulting partial order for n = 3 is represented in Fig.  1, where we have 
already identified tables that merely interchange the values of y and z.

We will write R ≤ R′ whenever R(T) ≤ R�(T) for all tables T ∈ �  , and R < R′ 
whenever R ≤ R′ and R ≠ R′ . Rules R1 , R2 , R3 of Definition 2.1 are admissible and 
satisfy R3 ≤ R2 ≤ R1 (see Appendix, Proposition A.2).

As an example of a non-admissible rule, consider requiring that P ∧ Q gets more 
votes than each one of the other options:

Indeed, with n ≥ 5 , one has (2, 1, 1, 1) < (2, 2, 1, 0) , but applying R0 to both sides 
reverses the inequality. This contradicts the second condition of Definition 2.3.

[
x y

z t

]
≤

[
x + 1 y − 1

z t

] [
x y

z t

]
≤

[
x + 1 y

z − 1 t

]

[
x y

z t

]
≤

[
x y + 1

z t − 1

] [
x y

z t

]
≤

[
x y

z + 1 t − 1

]

R(x, y, z, t) = R(x, z, y, t) .

(x, y, z, t) ≤ (x�, y�, z�, t�) ⇒ R(x, y, z, t) ≤ R(x�, y�, z�, t�) .

R0(x, y, z, t) = 1 ⟺ x > y and x > z and x > t .
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The relation of R0 with the other three rules can be summarised as follows: In 
general, R3 ≤ R2 ≤ R0 . For n = 3 , the relations R3 = R2 = R0 < R1 hold true, with 
R0 and R1 differing on (1,  1,  1,  0). For n = 5 , we have R3 = R2 < R0 < R1 with 
R2 and R0 differing on (2, 1, 1, 1), and R0 and R1 differing on (1, 2, 2, 0) and on 
(2, 2, 1, 0). Starting with n ≥ 7 , R0 and R1 are no more comparable (neither R0 ≤ R1 
nor R1 ≤ R0 ), and all four rules are different. All these relations are easily checked.

3 � Probabilistic model of committee voting

Our probabilistic model is the simplest possible, and it is described by the four con-
ditions below. Under these conditions, we can develop the theory of ROC optimality 
without unnecessary complications, and produce comprehensible examples. As we 
will discuss in Sect. 7, these conditions can be very much relaxed and the computa-
tions of the ROC analysis can be carried out automatically without problems.

A framework similar to ours can be found in List (2005), where the main goal 
is to compute the probability of appearance of the paradox, and to investigate the 
behaviour of this probability when the committee size grows to infinity, in the spirit 
of the classical Condorcet theorem.

We assume that a true “state of nature” exists, in which one of the four exclusive 
events P ∧ Q , P ∧ ¬Q , ¬P ∧ Q and ¬P ∧ ¬Q is in force.

We assume the following conditions: 

Fig. 1   The partially ordered set 
(� ,≤) for n = 3 . We have identi-
fied tables which are transposed 
of each other

0 0
0 3

0 1
0 2

0 1
1 1

0 2
0 1

1 0
0 2

1 1
0 1

0 2
1 0

0 3
0 0

1 2
0 0

1 1
1 0

2 0
0 1

2 1
0 0

3 0
0 0
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	(C1)	 Odd committee size: The number of voters is an odd number, n = 2m + 1 , with 
m ≥ 1.

	(C2)	 Equal competence: The probability � of choosing the correct alternative when 
deciding between P and ¬P is the same for all voters and satisfies 1

2
< 𝜃 < 1 . 

The same competence � is assumed when deciding between Q and ¬Q.
	(C3)	 Mutual independence among voters: The decision of each voter does not depend 

on the decisions of the other voters.
	(C4)	 Independence between P and Q: For each voter, the decision on one premise 

does not influence the decision on the other.

Formally, conditions (C2)–(C4) can be rephrased by saying that for each voter k in 
the committee and each clause c ∈ {P,Q} , there is a random variable that takes the 
value 1 if the voter believes the clause is true, and zero otherwise, and all these vari-
ables are stochastically independent and identically distributed. Their specific distri-
bution depends on the true state of nature.

Under these hypotheses, we can obtain the probability of all possible distribution 
of votes in a table, for each given state of nature. As it is customary in probability 
and statistics, we distinguish between random variables represented by capital let-
ters X,  Y, etc, and their observed values, represented by small letters x,  y, etc. If 
(X, Y, Z, T) is the random vector representing the counts in Table 1 in the probabilis-
tic framework just defined, its probability law is multinomial (see Appendix, Propo-
sition A.4). From the law of (X, Y, Z, T), it is easy to compute the law of any given 
decision rule R ∶ � → {0, 1}.

Notice that the multinomial law holds irrespective of the existence of a back-
ground absolute truth or of the competence concept. It only needs independence 
between voters, and the existence of a vector of probabilities (px, py, pz, pt) adding 
up to 1, the same for all voters, representing the probability of opting for each of the 
four options. List (2005) studies the probability of appearance of the doctrinal para-
dox in this more general situation and shows that slightly different values of the vec-
tor of probabilities may lead to very different values of the probability of appearance 
of the paradox when n → ∞ . Applied to our case, his results imply that, if P ∧ Q is 
true, the probability of appearance of the paradox (disagreement between premise-
based and conclusion-based rules) tends to 0 when the competence � is greater than √
0.5 , and tends to 1 when it is lower; if P ∧ Q is not true, then it always tends to 0. 

Interestingly, he also computes the expectation of appearance of the paradox when 
the vector of probabilities is assumed to follow a non-informative uniform prior on 
the simplex.

4 � True and false rates and ROC analysis

Receiver operating characteristics (ROC) plots were introduced to visualize and 
compare binary classifiers in signal detection (see, e.g.  Egan  1975) and its use 
extends to medical tests, machine learning and other disciplines where binary deci-
sions have to be taken under uncertainty (see Fawcett 2006 for an introductory 
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presentation of ROC plots). The term classifier is also used as a synonym of deci-
sion rule.

In signal detection theory, propositions are related to the emission/reception of a 
binary digit. Denote by �̂ and �̂ the bit received and by � and � the bit actually sent. 
The true positive rate (TPR) is defined as the probability of receiving �̂ when � is the 
true bit emitted, and the true negative rate (TNR) as the probability of receiving �̂ 
when � is the bit sent. Analogously, the false positive rate (FPR) and the false nega-
tive rate (FNR) are, respectively, the probabilities of receiving �̂ when � is the true 
digit, and of receiving �̂ when � is the true digit. From these definitions, it is clear 
that a decision rule such that TPR ≈ 1 and and FPR ≈ 0 has a “good performance”.

In classical statistics, decision rules appear in the context of hypothesis testing, 
where the TPR is the power of the test, the greater the better, under the restriction 
that the FPR (called the type-I error) does not exceed a fixed small value (the signifi-
cance level). The type-II error corresponds to the FNR. The two types of errors are 
thus treated in a non-symmetric way. In medicine, the TPR and the TNR are respec-
tively called sensitivity and specificity.

In the ROC graph, several classifiers can be compared on the basis of the pair 
(FPR, TPR ) represented in the unit square [0, 1] × [0, 1] , the so-called ROC space 
(see Fig.  2). Usually, the rates are estimated from sample data. “Good” decision 
rules are expected to correspond to points close to the upper left corner (0, 1) of the 
unit square. Different measures of the proximity to that corner can be considered. 
The most widely used is the area of the shaded triangle in Fig.  2, defined by the 
points (0, 0), (1, 1) and ( FPR , TPR) . The closer the area to 0.5, the better the clas-
sifier is considered. Points on the diagonal of the square correspond to completely 
random classifiers, for which the probability of true and false positives are equal. 
Points below the diagonal line represent classifiers that perform worse than random. 
Following Fawcett (2006), the classifiers plotted near the (0, 0) corner can be said 
to be “conservative”, because they make few positive classifications (true or false). 

Fig. 2   The black dot represents 
a classifier in the ROC space, 
represented by its coordinates 
(FPR, TPR) , and the shaded area 
is AOT
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For the same reason, classifiers plotted near to the (1, 1) corner are sometimes called 
“liberal” because they tend to have a higher number of false positives.

It is immediate from Fig. 2 that the area of the triangle, that will be denoted by 
AOT, can be expressed in terms of the rates as follows:

In the definition of AOT, the roles of the rates FPR and FNR are symmetric. In 
some situations, it may be desirable to assign different weights to these errors. This 
leads to the concept of weighted area of the triangle, WAOT. Indeed, fixing a weight 
value w ∈ (0, 1) , one can define, by analogy with formula (5),

For any w ∈ (0, 1) , WAOTw takes values in [− 1

2
,
1

2
] , negative “areas” corresponding 

to points below the diagonal. If w >
1

2
 , the weighted area WAOTw penalizes false 

positives more than false negatives; and if w <
1

2
 , it is the other way round. The 

points of the ROC space yielding the same value of WAOT are straight lines, with 
slope equal to w∕(1 − w) , see Figure 3.

Unequal weights are useful in some practical situations: For instance, in court of 
justice cases, it is common that false positives (declaring guilty an innocent defend-
ant) are considered worst than false negatives; in medical tests, the two errors often 
play an obvious asymmetric role too.

In some applications, the rates TPR , FPR of a given classifier can be estimated 
on the basis of a “test sample” in which the actual states of nature are known ( � 

(4)AOT ∶ =
1

2
( TPR − FPR)

(5)=
1

2
−
(
FPR

2
+

FNR

2

)
.

(6)WAOTw ∶=
1

2
− (w ⋅ FPR + (1 − w) ⋅ FNR) .

Fig. 3   Level lines for the value 
WAOT

w
= 0.25 with weights 

w =
2

3
,
1

2
,
1

3
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or � in each observation) and the outputs of the classifier ( ̂� or �̂ ) are compared 
against the actual states. The results are often summarised in a table known as 
confusion matrix. In social applications, as is the case of court cases, the actual 
states are supposed to be unknown and there might not be test samples avail-
able. However, the rates FPR and TPR can be defined and computed exactly under 
our model assumptions as it is proved in the Appendix (Propositions A.5, A.6 
and A.7). First, we translate the ROC analysis vocabulary to our probabilistic 
framework.

Definition 4.1  Assume the model conditions (C1)–(C4) of Sect. 3. The true positive 
rate associated to a decision rule R is defined as the probability to “decide P ∧ Q ” 
under the state of the nature “ P ∧ Q true”, and it depends on n, � and the decision 
rule:

where ℙP∧Q denotes the multinomial law of Proposition A.4, with parameters cor-
responding to the state of nature “ P ∧ Q true”.

Under the model conditions, the true positive rates (7) for each rule R1 , R2 and 
R3 can be expressed in terms of the multinomial probabilities (14). The explicit 
expressions are stated in the Appendix (Proposition A.5).

Notice that the inequalities R3 ≤ R2 ≤ R1 induce the corresponding inequalities 
among the true positive rates:

False positives can arise under the three different states of nature contained in the 
negation ¬(P ∧ Q) . To define the false positive rate FPR, we adopt the conservative 
approach, taking the maximum of the probabilities of accepting P ∧ Q under each of 
the states. As shown in the Appendix, Proposition A.6, this maximum always cor-
responds to the case when one of the clauses P or Q is true and the other one is false. 
This is intuitive noticing that the state ¬P ∧ ¬Q is “the less likely one” to choose 
P ∧ Q.

Definition 4.2  Let R be any one of the rules R1 , R2 or R3 . We define the false positive 
rate as:

By Proposition A.6 again, one can write ¬P ∧ Q instead of P ∧ ¬Q in this defi-
nition. Furthermore, defining FPR as the largest of the different probabilities of 
accepting P ∧ Q when it is false, we are placing ourselves in the most unfavour-
able position and thus FPR will control the maximum risk. This is in accordance 
with classical statistics practice, and the sensible choice in the absence of any a 
priori knowledge on the state of nature. In the discussion section we comment on 
the relation between this setting and the alternative Bayesian approach.

(7)TPR(n, �,R) ∶= ℙP∧Q{R(X, Y , Z, T) = 1} ,

TPR(n, �,R3) ≤ TPR(n, �,R2) ≤ TPR(n, �,R1) .

(8)FPR(n, �,R) ∶=ℙP∧¬Q{R(X, Y , Z, T) = 1} .
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The computation of (8) for rules R1 , R2 , R3 are done in the Appendix, Proposi-
tion A.7, and we have the ordering

as with the positive rates.
We now define formally the criteria under which the decision rules will be 

compared.

Definition 4.3  Let R be any one of the rules R1 , R2 or R3 . We define the area of the 
triangle as:

Fix w ∈ (0, 1) . We define the weighted area of the triangle as:

5 � Main results

In this section we will use the concepts from ROC analysis introduced in Sect. 4 
as a numeric criterion to compare the relative goodness of decision rules. Theo-
rem 5.2 establishes the preference order of the three rules considered, under the 
criterion of greater area of the triangle, where it is seen that R1 is uniformly the 
best. This is still true when the false negatives are more penalised than the false 
positives (Corollary 5.3). If false positives are deemed worse, the situation is 
more complex and interesting; it will be covered by Theorem 5.4. All proofs are 
in the Appendix.

Definition 5.1  A rule R is AOT-better than a rule R′ if and only if, for all n odd and 
𝜃 >

1

2
,

and the inequality is strict for some value of n or �.

Under our model assumptions, it is now shown that rule R1 is AOT-better than 
R2 and that R2 is AOT-better than R3:

Theorem 5.2  Under the model conditions (C1)–(C4), for all n ≥ 3 odd and for all 
𝜃 >

1

2
,

and the first inequality is strict for n ≥ 7.

FPR(n, �,R3) ≤ FPR(n, �,R2) ≤ FPR(n, �,R1) ,

(9)AOT(n, �,R) ∶=
1

2

(
TPR(n, �,R) − FPR(n, �,R)

)
.

WAOTw(n, �,R) ∶=
1

2
−
(
w FPR(n, �,R) + (1 − w)FNR(n, �,R)

)
.

(10)AOT(n, �,R) ≥ AOT(n, �,R�) ,

AOT(n, 𝜃,R3) ≤ AOT(n, 𝜃,R2) < AOT(n, 𝜃,R1)
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For the weighted area of the triangle defined by formula (6), and weights w <
1

2
 

(that means, when false negatives are considered more harmful than false positives), 
the relations between R1 , R2 and R3 are the same as with AOT (case w =

1

2
 ), as stated 

in the next Corollary 5.3. However, for w >
1

2
 , none of the rules gives a greater 

WAOT than another, uniformly in n ≥ 3 and 1
2
< 𝜃 < 1 ; this will be precisely stated 

in Theorem 5.4, Lemma A.8, and the numerical examples of Section 6.

Corollary 5.3  Under the model conditions (C1)–(C4), for all n ≥ 3 odd, and for all 
𝜃 >

1

2
 and w <

1

2
,

and the first inequality is strict for n ≥ 7.

The case w >
1

2
 is different. The relation between the WAOT of R1 and R2 is still 

the same of the AOT if the competence � stands above a certain threshold C(w), 
with 1

2
< C(w) < w , and similarly with R2 and R3 . But not necessarily for � below 

that threshold. This is made more precise in the next theorem.

Theorem  5.4  Fix n ≥ 3 . For every weight 1
2
< w < 1 , there exists C1(w) , smaller 

than w (except that C1(w) = w if n = 3 ), such that

Fix n ≥ 7 . For every weight 1
2
< w < 1 , there exists C2(w) , smaller than w, such that

6 � Examples

In this section we illustrate the above theory with some numeric computations and 
figures.

It is clear from the previous sections that none of the rules considered is best for 
all pairs (�,w) of competence and weight. In fact, no two rules Ri and Rj are com-
parable, uniformly in � and w (except for R2 and R3 when n ≤ 5 , because they coin-
cide). Indeed, Table 2 shows the different possible orders under the WAOT criterion 
for three fixed competence values and for varying w ∈ (0, 1) , and committee size 
n = 11.

Notice in Table 2 that in cases where w should be close to 1 (for instance in crim-
inal cases) rule R3 might be better than the others, specially for low competence 
levels. This can be also seen in Fig. 4b.

In Table 3, again with committee size n = 11 , the values of TPR, FPR, and AOT 
are computed to four decimal places for a large range of competence values, using 
(15–17) and (19–21). The last column is the value of WAOT for a fixed weight 
w = 0.75 ; in other words, false positives penalises the performance measure three 

WAOTw(n, 𝜃,R3) ≤ WAOTw(n, 𝜃,R2) < WAOTw(n, 𝜃,R1) ,

𝜃 > C1(w) ⇒ WAOTw(n, 𝜃,R1) > WAOTw(n, 𝜃,R2) .

𝜃 > C2(w) ⇒ WAOTw(n, 𝜃,R2) > WAOTw(n, 𝜃,R3) .
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times more than false negatives. In column AOT, both errors penalise in the same 
proportion.

Under the AOT criterion, R1 (Prem) is always better than R2 (Path), and R2 is 
better than R3 (Conc), as Theorem 5.2 claims. The numbers in the table give an 

Table 2   For each � , intervals of weights w where each order of rules holds true. The committee size 
is n = 11 . The symbol < in the first column means here the relation “worse than” with respect to the 
WAOT criterion.

� = 0.6 � = 0.75 � = 0.90

R
3
< R

2
< R

1
       0 < w < 0.6930        0 < w < 0.8722        0 < w < 0.9576

R
3
< R

1
< R

2
0.6930 < w < 0.7184 0.8722 < w < 0.9154 0.9576 < w < 0.9847

R
1
< R

3
< R

2
0.7184 < w < 0.8215 0.9154 < w < 0.9820 0.9847 < w < 0.9995

R
1
< R

2
< R

3
0.8215 < w < 1        0.9820 < w < 1        0.9995 < w < 1       

Table 3   Comparison of decision 
rules R

1
 , R

2
 and R

3
 in the ROC 

map for a fixed number of 
voters n = 11 , w = 0.75 in the 
column WAOT, and different 
competence levels � . Notice 
that R

1
 has the largest values of 

AOT for any fixed � , that is, the 
sequence of ordered rules from 
best to worst is always 1, 2, 3

n � rule TPR FPR AOT WAOT

11 0.55 1 0.4008 0.2323 0.0843 0.1760
11 0.55 2 0.1372 0.0589 0.0391 0.2401
11 0.55 3 0.0811 0.0327 0.0242 0.2457
11 0.60 1 0.5678 0.1857 0.1910 0.2526
11 0.60 2 0.2569 0.0480 0.1044 0.2782
11 0.60 3 0.1661 0.0283 0.0689 0.2703
11 0.65 1 0.7247 0.1266 0.2991 0.3363
11 0.65 2 0.4197 0.0340 0.1928 0.3294
11 0.65 3 0.2984 0.0219 0.1382 0.3081
11 0.70 1 0.8497 0.0721 0.3888 0.4083
11 0.70 2 0.6050 0.0207 0.2922 0.3857
11 0.70 3 0.4729 0.0148 0.2291 0.3571
11 0.75 1 0.9325 0.0331 0.4497 0.4583
11 0.75 2 0.7779 0.0105 0.3837 0.4366
11 0.75 3 0.6649 0.0084 0.3282 0.4099
11 0.80 1 0.9768 0.0115 0.4827 0.4856
11 0.80 2 0.9051 0.0042 0.4505 0.4731
11 0.80 3 0.8339 0.0037 0.4151 0.4557
11 0.85 1 0.9947 0.0026 0.4960 0.4967
11 0.85 2 0.9735 0.0012 0.4862 0.4925
11 0.85 3 0.9446 0.0011 0.4717 0.4853
11 0.90 1 0.9994 0.0003 0.4996 0.4996
11 0.90 2 0.9965 0.0002 0.4982 0.4990
11 0.90 3 0.9910 0.0002 0.4954 0.4976
11 0.95 1 1.0000 0.0000 0.5000 0.5000
11 0.95 2 0.9999 0.0000 0.5000 0.5000
11 0.95 3 0.9997 0.0000 0.4999 0.4999
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idea of the extent of the difference, suggesting that R2 and R3 are closer together 
than R1 and R2 . We also see that for very high values of � all rules get closer and 
approach fast to the perfect value 0.5.

For the WAOT criterion, with w = 0.75 , and low competence values of the 
jury, we see that it is better to use rules R2 or R3 . At some point, between � = 0.60 
and � = 0.65 , the order of AOT is re-established and preserved till the end of the 
table. Of course the exact value can be computed, and turns out to be 0.6374 (to 
four decimal places).

(a) (b)

Fig. 4   AOT and WAOT for each of the rules R
1
 (solid), R

2
 (dotted), R

3
 (dashed) as a function of � , for 

several committee sizes n 
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A simple illustration of the evolution of the AOT for the three rules we are con-
sidering, for several committee sizes, can be seen in Fig.  4a. For n = 3, 7, 11 the 
AOT value for the three rules is drawn against � . Notice that the largest absolute dif-
ferences in AOT take place around the middle values of the competence range. That 
means, for 0.6 ≲ 𝜃 ≲ 0.8 , say, it is when the selection of the decision rule is most 
critical.

The analogous Fig. 4b shows the same curves, in the case w = 0.75 . Rule R1 is 
the worst in the lower end of � values, and the best in the upper end. Rule R3 does 
the opposite.

Combining the committee sizes n = 3, 7, 11 and the competence values 
� = 0.60, 0.75, 0.90 , in Fig. 5 we draw the triangles in ROC space of the three deci-
sion rules. In this picture, it can be observed that the area of the triangle determined 

Fig. 5   ROC representation of R
1
 , R

2
 and R

3
 , for several committee sizes n and different competences � . 

Values in the legend are the AOT
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by rule R1 is larger than the area determined by R2 , which in its turn is larger than 
the area determined by rule R3 for n > 5 , and that the triangles of R2 and R3 coincide 
for n = 3 and n = 5.

The ROC analysis helps in comparing several decision rules, but it is also use-
ful to visualize the performance of a given rule depending on the parameters. For 
example, taking three values for the competence, � = 0.60, 0.75, 0.90 , and three 
values for the committee size n = 3, 7, 11 , the ROC representation in Fig. 6 displays 
a curve going from near the diagonal when � = 0.60 to near the corner (0, 1), when 
� = 0.90 . From the figure it is apparent that the quality of the voters in terms of 
the competence is definitely much more important than its quantity. (Karotkin and 
Paroush 2003 arrive to the same conclusion in the single-premise case.)

It is also natural to ask, for a given rule and competence value � , what is the 
minimum number of voters n that ensures that the TPR, TNR and AOT ( w = 0.5 ) 
reach a certain given threshold k. This minimum is easy to find out. For example, 
Table 4 give the numbers, for decision rule R1 (Prem), a range of � values, and quite 
demanding thresholds. Notice that to ensure a certain threshold of TPR the size of 
the committee must be greater than to ensure the same threshold for TNR. This is 

Fig. 6   ROC representation of R
1
 for different numbers of voters n = 3, 7, 11 (the number is used as the 

location in ROC space) and several competences � = 0.60, 0.75, 0.90 in different shades of grey. Notice 
that the range in the horizontal axis has been rescaled and the dashed line represents the diagonal of the 
unit square. The closer to the corner (0, 1), the lower the risk of erroneous classification (high TPR and 
low FPR). Therefore, we see a good behaviour with small but highly competent committees; but if the 
committee quality is low, its size has to be drastically increased to reduce the risk
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because for any fixed size n, the probability that rule R1 produce a true negative is 
greater than the probability of producing a true positive.

7 � Conclusions and discussion

In this paper, we have defined a theoretical framework, based on a probabilistic 
model, that describes the behaviour of a committee confronted with a compound 
yes-no question. The application of the Receiver Operating Characteristics (ROC) 
space, a concept originating in signal processing, and adopted in several other fields, 
seems to be new in judgement aggregation research. It allows an objective assess-
ment of the quality of a group decision on a complex issue, based on the (possibly 
subjective) competence of the members of the group. It also allows to compare dif-
ferent decision rules, both for symmetric or asymmetric penalising weights on the 
false positives and the false negatives.

The main results deal with to the comparison of the particular rules R1,R2 and 
R3 defined in Sect. 2 in terms of the quantities AOT and WAOTw in the ROC space 
introduced in Sect. 4. AOT is a particular case of WAOTw when false positives and 
false negatives are equally weighted ( w =

1

2
 ). Putting together Theorem 5.2 and Cor-

ollary 5.3, we have shown that rule R1 is better than rule R2 , and rule R2 is in its turn 
strictly better than rule R3 , for all competence values 𝜃 >

1

2
 , if the weight w on false 

positives is less or equal than 1
2
 . Rule R1 (premise-based) has been already consid-

ered superior than R3 (conclusion-based) according to other criteria (for example, 
by the deliberative democracy doctrine, see e.g. Dietrich and List 2007; List 2006).

Furthermore, Lemma A.8 establishes that R1 is still better than R2 and R2 better 
than R3 for some values of the weight w greater than the competence, but less than 
another quantity D(�) which depends only on the competence � . On the other hand, 
for w beyond D(�) , any one of the three rules can be the best. Notice that Theo-
rem 5.4 states these facts in a more natural way: once fixed the relative importance 
of the two errors FPR and FNR, the competence � ∈ (

1

2
, 1) of the committee deter-

mines the relative goodness of the three rules. The numerical experiments of Sect. 6 
show that there are several possible goodness orders of the rules and, in particular, 
both premise-based and conclusion-based can be the best and the worst of the three.

The simplicity of the model has allowed us to focus on the methodology of ROC 
space, but the assumptions can be easily weakened in several ways and the computa-
tions can be adapted without much difficulty. For example:

Table 4   For each indicator, 
TPR, TNR and AOT, minimum 
committee size needed to reach 
the threshold k, for rule R

1
 and 

different competence values �

�

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

For TPR, k=0.95 95 41 23 13 9 7 5 3
For TNR, k=0.95 65 29 15 9 7 5 3 3
For AOT, k=0.45 81 35 19 13 7 5 3 3
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•	 Different voters’ competence � . If competences are different, the law of 
(X, Y, Z, T) described in Proposition A.4 is no longer multinomial. The vote of 
each committee member k = 1,… , n is a random vector Jk equal to one of the 
four possible vote schemes with certain probabilities (pk

x
, pk

y
, pk

z
, pk

t
) , indepen-

dently. If �k is the competence of member k, then, under the true state P ∧ Q , 
this vector of probabilities is 

 The law of (X, Y, Z, T) will be the law of J1 +⋯ + Jn , which can be computed 
for any given set of parameters �k . The same can be done for the states of nature 
P ∧ ¬Q , ¬P ∧ Q , and ¬(P ∧ Q).

•	 The true and false positive rates under the vector of competences 
� = (�1,… , �n) and rule R will be given, following Definitions 4.1 and 4.2, by 

 and 

 A study of dichotomous decision making under different individual compe-
tences, within a probabilistic framework, can be found in Sapir (1998).

•	 Non-independence between voters. If the committee members do not vote 
independently, then, in order to make exact computations, one must have 
the joint probability law of the vector (J1,… , Jn) , which take values in the 
n-fold Cartesian product of {P ∧ Q,P ∧ ¬Q,¬P ∧ Q,¬(P ∧ Q)} . From the joint 
law, the distribution of the sum J1 +⋯ + Jn can always be made explicit, for 
each state of nature and taking into account the given vector of competences 
(�1,… , �n) . And from there, the values of FPR, FNR and AOT can be also 
obtained for any rule. Boland  (1989) studied this situation of non-independ-
ence and diverse competence values for the voting of a single question, and 
assuming the existence of a “leader” in the committee. He generalises Con-
dorcet theorem when the correlation coefficient between voters does not 
exceed a certain threshold. That situation is completely different from ours. 
Non-independence of voters may also arise when some voters have informa-
tion on other voters’ preferences and vote strategically (see for instance Ter-
zopoulou and Endriss 2019). Other works that have studied epistemic social 
choice models with correlated voters are Ladha (1992), Ladha (1993), Ladha 
(1995), Dietrich and List (2004), Peleg and Zamir (2012), Dietrich and Spiek-
ermann (2013), Dietrich and Spiekermann (2013), Pivato (2017).

•	 Non-independence between the premises. The premises may depend on each 
other in the sense that believing that P is true or false changes the perception on 
the veracity or falsity of Q. An extreme example of dependence is the classical 

(�2
k
, �k(1 − �k), �k(1 − �k), 1 − �2

k
) .

TPR(n, �,R) =
∑

R(i,j,k,𝓁)=1

ℙP∧Q

{
J1 +⋯ + Jn = (i, j, k,𝓁)} ,

FPR(n, �,R) =
∑

R(i,j,k,𝓁)=1

ℙP∧¬Q

{
J1 +⋯ + Jn = (i, j, k,𝓁)} .
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P =“existence of a contract” and Q =“defendant breached the contract”, where 
voting ¬P forces to vote ¬Q.

In these situations, some more data is needed, namely, the competence of each 
voter on one of the premises alone, and on the other premise conditioned to have 
guessed correctly the first, and conditioned to have guessed it incorrectly. To wit, 
suppose that �P is the competence of a voter on premise P, that �Q|P is her com-
petence on Q if she guesses correctly on P, and that 𝜃Q|P̄ is her competence on Q 
assuming she does not guess correctly on P. Then, the first row in the table of Prop-
osition A.4 would read 

px py pz pt

P ∧ Q �P�Q|P �P(1 − �Q|P) (1 − 𝜃P)𝜃Q|P̄ (1 − 𝜃P)(1 − 𝜃Q|P̄)

and similarly for the other true states of nature.Interconnection between issues has 
been considered recently by Bozbay (2019), in a case isomorphic to the extreme one 
just mentioned, but when the voters have private conflicting partial information that 
could lead to inconsistent conclusions depending on the aggregation rule. Bozbay 
also introduces the possibility of abstention in an issue to obtain efficient aggrega-
tion rules in the sense of Nash equilibrium in this situation.

•	 Competence depending on the true state. The probability to guess the truth may 
depend on the truth itself, i.e � = (�P, �¬P, �Q, �¬Q) could be four different param-
eters associated to the committee members, giving the probabilities of guessing 
the true state of nature when P is true, P is false, Q is true and Q is false, respec-
tively. And these probabilities can be different for each individual, of course.

•	 The Bayesian approach. It is immediate to cast our ROC analysis into a Bayesian 
setting. Only the definition of false positive rate has to be changed. In Sect. 4, we 
defined the FPR as the worst case probability of making the error, the situation 
that corresponds to one of the premises being true whereas the other is false. 
If we hypothesise the existence of a priori probabilities �P∧Q , �P∧¬Q , �¬P∧Q and 
�¬P∧¬Q on the set of states of nature, then the different probabilities ℙ become the 
different conditional versions of only one probability ℙ . In that situation, Defini-
tion 4.2 would read 

 where {R = 1} is a simplified notation for {R(X, Y , T , Z) = 1} . The definition of 
TPR does not change. The probabilistic settings in Bozbay (2019) and Terzopou-
lou and Endriss (2019) follow the Bayesian paradigm.

•	 More than two premises. It is not difficult to extend the setting to more than two 
premises when the truth of the conclusion is equivalent to the truth of all and 
every premise. If the premises are represented by P1,… ,Ps , and n is the com-

FPR(n, �,R) ∶=

ℙ{R = 1 ∣ P ∧ ¬Q}�P∧¬Q + ℙ{R = 1 ∣ ¬P ∧ Q}�¬P∧Q + ℙ{R = 1 ∣ ¬P ∧ ¬Q}�¬P∧¬Q

1 − �P∧Q
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mittee size, then the total number of individual voting profiles is 2s , and a vot-
ing table is an element of 𝕋 = {(x1,… , x2s ) ∈ ℕ

2s ∶
∑2s

i=1
xi = n} . The extension 

of the concept of admissible rule is straightforward. The probability of a false 
negative is computed, obviously, under the state of nature P1 ∧⋯ ∧ Ps , and that 
of false positive must be computed, according to the logic explained in Sect. 4, 
under the state P1 ∧⋯ ∧ Ps−1 ∧ ¬Ps.

All these extensions can be combined together. The key to compute FPR, FNR, and 
consequently the values of AOT and WAOTw of any given rule is the ability to com-
pute the probability of appearance of all possible voting tables; and this is possible 
for all the extensions of the list above. It is not easy to establish general theorems of 
comparison between rules, but a computer software can evaluate and compare rules 
for any specific value of all the parameters involved. Notice that it is not even neces-
sary to fix n and � . Two differently formed committees, adhering to the same or to 
different decision rules, can be compared applying the same ideas, using the sym-
metric or the weighted area of the triangle. In this paper, we have stuck to the sim-
plest of the situations in our exposition, to better highlight the methodology, and to 
obtain some specific theoretical results. We have also selected three particular rules, 
two of them classical and founded in well understood principles, corresponding to 
the comprehensive deliberative and the minimal liberal approaches to decision mak-
ing (Dietrich and List 2007); but the methodology can be applied to compare any 
given subset of general binary rules.

The extension of the model to other truth-functional agendas can be more 
involved, although in principle all computations should be possible. For instance, 
assume that the conclusion is true if and only if the three-premisses formula 
(P1 ∨ P2) ∧ (P1 ∨ P3) is true, and that the state of nature is “all premises are true”. If 
a voter competence is � for each premise, then their probability to get the conclusion 
right is �3 + 3�2(1 − �) + �(1 − �)2 , corresponding to get P1 right (true), or wrong 
(false) and the other two right (true). The probability to get the conclusion wrong 
is the complement 2�(1 − �)2 + (1 − �)3 . Note that a voter may get the conclusion 
right even when failing on all premises; for instance, if the true state of nature is 
¬P1 ∧ P2 ∧ P3 , then voting P1 ∧ ¬P2 ∧ ¬P3 would lead to the correct conclusion.

In ROC analysis one usually relies in sample training data for the classifier. Here 
we have postulated the existence of an exact competence parameter � . This param-
eter can be assigned on subjective grounds, but of course past data, if available, can 
be used to estimate its value. Furthermore, if after a new experiment it is possible to 
assess the quality of a voter’s decision, this value could be readjusted in a Bayesian 
manner. As examples of possible practical relevance, we mention: In court cases, the 
level of a court, and the proportion of cases that have been successfully appealed to 
higher instances, can measure the competence of individual judges; in some profes-
sional sport competitions, referees are ranked according to their performance in past 
events, and it is usually easy to determine a posteriori the proportion of their cor-
rect decisions in a given event; in simultaneous medical tests, the “competence” or 
reliability of each one is usually known to some extent, and they can be combined 
to offer the best diagnostic decision, taking possibly into account the risks of false 
positives or false negatives through the weight parameter w.
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It may be argued that the appearance of the discrepancy between different 
decision rules is rare in practice, but this depends on the competence param-
eter � , and the committee size n. In fact, the probability to obtain different out-
comes in different decision rules can be computed explicitly. For instance, List 
(2005, Proposition 2) computes the probability of the occurrence of the paradox 
from our formula (14), for the two classical rules premise-based (Prem, R1 ) and 
conclusion-based (Conc, R3).

However, the potential appearance of the paradox cannot be avoided, except 
for the trivial one-member committee. The interest must then be focused in the 
choice of the “best decision rule” among a catalogue of rules. The question then 
becomes to define a criterion to evaluate decision rules. In this work, we have 
considered a family of criteria, which are completely objective, once fixed the 
subjective weight of the two competing risks, the false positive and the false 
negative, in assessing if the conjunction P ∧ Q is true. This is in contrast with 
the classical theory of Hypothesis Testing, but in line with Statistical Decision 
Theory.

Once the weight w is given, the WAOT criterion to choose the rule is an defi-
nite way to arrive to a collective decision. To be honest, though, we must men-
tion again that the definition of the false positive rate (Definition 4.2), although 
logical, and justified by Proposition A.6 in the Appendix, it is to some extent 
arbitrary.

Let us finish by commenting on possible extensions and open questions:
Instead of using the majority principle, another “qualified majority” or quota 

can be employed, and the analysis of the modified rules can be done similarly. 
Still another possibility is to use score versions of the rules: Instead of 0/1 out-
puts, one can use more general mappings from the set of tables into the set of 
real numbers. These mappings are called scores. The natural scores to associate 
to rules R1 , R2 , R3 are, respectively

and clearly S3 ≤ S2 ≤ S1 . ROC analysis can be done the same with scores, where the 
goal is to find the best score to fix as a boundary between P ∧ Q and ¬(P ∧ Q) from 
the point of view of the “area under the curve”. Admissible scores can be defined 
similarly to admissible rules: they must be non-decreasing functions with respect to 
the partial order on �  defined in Sect. 2. See Fawcett (2006) for a good short intro-
duction to score rules and ROC curves. Note that this notion is different from the 
“judgement aggregation scoring rules” introduced by Dietrich (2014).

We have compared three particular rules, two of them traditional, and a rea-
sonable third one that lies in between. They are easily expressed in terms of the 
entries of the voting table. But there are much more admissible rules; a total of 
36 in the case n = 3 , and they are not easy to enumerate systematically in gen-
eral. Hence, the question of enumerating all admissible rules and choosing the 
best according to some criterion is open.

S1 = x + y ∧ z − m , S2 = x + ⌊y ∧ z

2
⌋ − m , S3 = x − m ,
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Appendix

We first prove the equivalence between the expressions defining the three rules in 
Section 2.

Proposition A.1  Rules R1 , R2 , R3 can be defined by

Proof  For rule R1 , we must show the equivalence

Indeed,

taking into account that we are dealing with integer numbers. The equivalence 
x + z > y + t ⟺ x > m − z is proved in an identical way and (11) follows.

For rule R2 , we must prove the equivalence in (12), that is,

We have

If y is odd, say y = 2q + 1 , then both y−1
2

 and ⌊ y

2
⌋ are equal to q, and we get the equiv-

alence with x > m − ⌊ y

2
⌋ . If y = 2q,

Analogously, we obtain x > y + t ⟺ x > m − ⌊ z

2
⌋, and (12) is proved.

Finally, for rule R3 , we have to prove the equivalence in (13):

Indeed,

and we are done. 	� ◻

(11)R1 ∶ Decide P ∧ Q if and only if x > m − y ∧ z

(12)R2 ∶ Decide P ∧ Q if and only if x > m −
⌊ y∧z

2

⌋

(13)R3 ∶ Decide P ∧ Q if and only if x > m

(x + y > z + t, x + z > y + t) ⟺ x > m − y ∧ z .

x + y > z + t ⟺ x + y > n − x − y ⟺ 2x + 2y > n = 2m + 1

⟺ x + y > m +
1

2
⟺ x > m − y ,

(x > z + t, x > y + t) ⟺ x > m − ⌊ y∧z

2
⌋ .

x > z + t ⟺ x > n − x − y ⟺ 2x > 2m + 1 − y ⟺ x > m −
y−1

2
.

x > m −
y−1

2
= m − q +

1

2
⟺ x > m − q = m − ⌊ y

2
⌋ .

x > y + z + t ⟺ x > m .

x > y + z + t ⟺ x > n − x ⟺ 2x > 2m + 1

⟺ x > m +
1

2
⟺ x > m ,
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The relations among the rules R1 , R2 , R3 can be stated as follows:

Proposition A.2  Rules R1 , R2 , R3 of Definition 2.1 are admissible and, as functions 
� → {0, 1} , they satisfy R3 ≤ R2 ≤ R1.

Moreover, we have R3 = R2 < R1 for n = 3, 5 , and R3 < R2 < R1 for n ≥ 7.

Proof  The admissibility of the three rules is completely obvious from the defining 
inequalities (1), (2) and (3). The order R3 ≤ R2 ≤ R1 as functions � ⟶ {0, 1} is 
also clear, so we focus on the equalities and strict inequalities.

First, we will prove that R2 = R3 for n = 3 (i.e. m = 1 ). When n = 3 , y + z ≤ 3 and 
this implies ⌊ y∧z

2
⌋ = 0 . According to Proposition A.1, rules R2 and R3 are the same.

Secondly, for n = 5 ( m = 2 ), we have y + z ≤ 5 and then ⌊ y∧z

2
⌋ ≤ 1 . On the points 

(x, y, z, t) for which ⌊ y∧z

2
⌋ = 0 , the two rules R2 and R3 clearly coincide, by Proposi-

tion A.1. Assume ⌊ y∧z

2
⌋ = 1 . That means y ≥ 2 , z ≥ 2 , and therefore x ≤ 1 . For such 

points, the value of both rules is zero. Hence, they coincide everywhere.
To see that R1 > R2 for all n ≥ 3 , recall that this inequality means that R1 ≥ R2 

and the two rules are not identical. Consider the point (x, y, z, t) = (1,m,m, 0) . On 
this point, condition (1) is satisfied, but (2) fails. Therefore, R1(1,m,m, 0) = 1 and 
R2(1,m,m, 0) = 0.

To show that R2 > R3 for all n ≥ 7 (implying that m ≥ 3 ), we distinguish 
two cases, depending on whether m is even or odd. For an even m ≥ 4 , take 
(x, y, z, t) = (m,

m

2
,
m

2
, 1) ; for m ≥ 3 odd, take (x, y, z, t) = (m,

m+1

2
,
m+1

2
, 0) . In both 

cases condition (2) is satisfied and (3) fails. 	�  ◻

Remark A.3  We could have started by defining an equivalence relation ∼ on �  , iden-
tifying tables

The partial order would be shorter to define, and an admissible rule considered on 
the quotient set �∕ ∼ would not need condition 1 of the definition. Figure 1 implic-
itly uses this equivalence. Although elegant, this setup would introduce more com-
plications in the discussions of the next sections.

Proposition A.4  Under conditions (C1)–(C4) of Sect.  3, the joint distribution of 
(X, Y, Z, T) is multinomial M(n, px, py, pz, pt) , with parameters depending on the true 
state of nature, according to the following table:

[
x y

z t

]
and

[
x z

y t

]
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px py pz pt

P ∧ Q �2 �(1 − �) �(1 − �) (1 − �)2

P ∧ ¬Q �(1 − �) �2 (1 − �)2 �(1 − �)

¬P ∧ Q �(1 − �) (1 − �)2 �2 �(1 − �)

¬P ∧ ¬Q (1 − �)2 �(1 − �) �(1 − �) �2

Proof  For each voter k = 1,… , n , let Vk be the random variable taking values in one 
of the four possible final decisions of the voter, and let px, py, pz, pt the probabil-
ity of each of them. Since these n variables are mutually independent and identi-
cally distributed, the law of the counts (X, Y, Z, T) is multinomial with parameters 
(n, px, py, pz, pt) . The independence of the decisions concerning the two premises, 
gives immediately the particular parameters of the table, once given the true state of 
nature.

Recall that the multinomial probability function is given by

where k, j, i,� are non-negative integers such that n = k + j + i + � , and 
(

n

k, j, i,�

)
 

means the quotient of factorials n!

k!⋅j!⋅i!⋅𝓁!
 . 	�  ◻

Proposition A.5  Under the assumptions (C1)–(C4), the true positive rates defined in 
(7) for rules R1 , R2 , R3 are:

where � = n − i − j − k . 	�  ◻

Proof  The probability of deciding P ∧ Q for any decision rule can be computed 
summing up the multinomial probability function (14) over the set where the rule 
takes the value 1. That means, taking into account Proposition A.1,

(14)ℙ{X = k, Y = j, Z = i, T = 𝓁} =

(
n

k, j, i,𝓁

)
pk
x
⋅ pj

y
⋅ pi

z
⋅ p𝓁

t
,

(15)TPR(n, �,R1) =

n∑

i=0

n−i∑

j=0

n−i−j∑

k=m−i∧j+1

(
n

k, j, i,�

)
�i+j+2k(1 − �)2n−i−j−2k ,

(16)TPR(n, �,R2) =

n�

i=0

n−i�

j=0

n−i−j�

k=m−⌊ i∧j

2
⌋+1

�
n

k, j, i,�

�
�i+j+2k(1 − �)2n−i−j−2k ,

(17)TPR(n, �,R3) =

n∑

i=0

n−i∑

j=0

n−i−j∑

k=m+1

(
n

k, j, i,�

)
�i+j+2k(1 − �)2n−i−j−2k ,
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Now using the values of Proposition A.4 for the case P ∧ Q , we obtain the stated 
true positive rates. 	�  ◻

Proposition A.6  Let R be any one of the rules R1 , R2 or R3 . Under assumptions (C1)–
(C4) of Sect. 3, we have

Proof  To check the equality in (18), first recall that every admissible decision rule 
satisfies R(x, y, z, t) = R(x, y, z, t) . Moreover, the law of the random vector (X, Y, Z, T) 
under P ∧ ¬Q , which is multinomial M(n, �(1 − �), �2, (1 − �)2, �(1 − �)) , coincides 
with the law of (X, Z, Y, T) under ¬P ∧ Q . Therefore,

For the inequality in the statement, we have, from Proposition A.4,

where � = n − i − j − k . Each term in the first line is greater than the correspond-
ing one in the second line: 𝜃n−i+j(1 − 𝜃)n+i−j > 𝜃2n−i−j−2k(1 − 𝜃)i+j+2k is equivalent 
to 𝜃2k+2j−n > (1 − 𝜃)2k+2j−n , and this inequality, since 𝜃 >

1

2
 , is true provided that 

2k + 2j − n > 0 . Indeed,

ℙ
�
R1(X, Y , Z, T) = 1

�
=

n�

i=0

n−i�

j=0

n−i−j�

k=m−i∧j+1

n!

k!j!i!(n − i − j − k)!
pk
x
pj
y
pi
z
p
n−i−j−k
t .

ℙ
�
R2(X, Y , Z, T) = 1

�
=

n�

i=0

n−i�

j=0

n−i−j�

k=m−⌊ 1

2
i∧j⌋+1

n!

k!j!i!(n − i − j − k)!
pk
x
pj
y
pi
z
p
n−i−j−k
t .

ℙ
�
R3(X, Y , Z, T) = 1

�
=

n�

i=0

n−i�

j=0

n−i−j�

k=m+1

n!

k!j!i!(n − i − j − k)!
pk
x
pj
y
pi
z
p
n−i−j−k
t .

(18)
ℙP∧¬Q{R(X, Y , Z, T) = 1} = ℙ¬P∧Q{R(X, Y , Z, T) = 1} >

ℙ¬P∧¬Q{R(X, Y , Z, T) = 1} .

ℙP∧¬Q{R(X, Y , Z, T) = 1} = ℙ¬P∧Q{R(X, Z, Y , T) = 1}

= ℙ¬P∧Q{R(X, Y , Z, T) = 1} .

ℙP∧¬Q{R1
(X, Y , Z, T) = 1} =

n∑

i=0

n−i∑

j=0

n−i−j∑

k=m−i∧j+1

(
n

k, j, i,�

)
�n−i+j(1 − �)n+i−j ,

ℙ¬P∧¬Q{R1
(X, Y , Z, T) = 1} =

n∑

i=0

n−i∑

j=0

n−i−j∑

k=m−i∧j+1

(
n

k, j, i,�

)
�2n−i−j−2k(1 − �)i+j+2k ,
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The same argument is valid for R2 and R3 , since m − i ∧ j + 1 ≤ m − ⌊ i∧j

2
⌋ + 1 ≤ m + 1 . 

This completes the proof.
In fact, one can prove, using a probabilistic coupling argument, that the inequal-

ity ℙP∧¬Q{R = 1} ≥ ℙ¬P∧¬Q{R = 1} holds true not only for R1,R2,R3 , but for any 
admissible rule as defined in 2.3. For simplicity, we have restricted ourselves here to 
prove the statement as it is. 	�  ◻

Using the formulae of Proposition A.4, one can write the analogue of Proposition 
A.5 for FPR. The computations are completely analogous to those of Proposition 
A.5.

Proposition A.7  Under the assumptions (C1)–(C4), the false positive rate defined in 
(8) for each fixed rule is:

where � = n − i − j − k.

Proof of Theorem 5.2:  We start with the second inequality, which is equivalent, by 
(4), to TPR(n, 𝜃,R2) − FPR(n, 𝜃,R2) < TPR(n, 𝜃,R1) − FPR(n, 𝜃,R1) , and therefore 
to

In other words, it is equivalent to say that the increase in true positives when chang-
ing from R2 to R1 more than compensates the increase in false positives.

Using formulae (15), (16), (19) and (20), it is clearly enough to prove that, for all 
0 ≤ i ≤ n , for all 0 ≤ j ≤ n − i , and for all m − i ∧ j + 1 ≤ k ≤ m − ⌊ i∧j

2
⌋,

or, equivalently, that

k ≥ m − i ∧ j + 1 ≥ m − j + 1 ⇒ 2k + 2j ≥ 2m + 2 ⇒ 2k + 2j − n ≥ 1 .

(19)FPR(n, �,R1) =

n∑

i=0

n−i∑

j=0

n−i−j∑

k=m−i∧j+1

(
n

k, j, i,�

)
�n−i+j(1 − �)n+i−j ,

(20)FPR(n, �,R2) =

n�

i=0

n−i�

j=0

n−i−j�

k=m−⌊ i∧j

2
⌋+1

�
n

k, j, i,�

�
�n−i+j(1 − �)n+i−j ,

(21)FPR(n, �,R3) =

n∑

i=0

n−i∑

j=0

n−i−j∑

k=m+1

(
n

k, j, i,�

)
�n−i+j(1 − �)n+i−j ,

(22)FPR(n, 𝜃,R1) − FPR(n, 𝜃,R2) < TPR(n, 𝜃,R1) − TPR(n, 𝜃,R2) .

𝜃n−i+j(1 − 𝜃)n+i−j < 𝜃i+j+2k(1 − 𝜃)2n−i−j−2k

(1 − 𝜃)2i+2k−n < 𝜃2i+2k−n ,
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which can be easily checked taking into account that 0 < 1 − 𝜃 < 𝜃 and 
2i + 2k − n > 0 : Indeed, n = 2m + 1 and k ≥ m − i ∧ j + 1 imply that 
2i + 2k − n ≥ 2i + 2(m − i ∧ j + 1) − (2m + 1) = 2i − 2i ∧ j + 1 ≥ 1 . Thus, the sec-
ond inequality is proved.

A similar argument proves the first one, using (16), (17), (20) and (21), and notic-
ing that k ≥ m − i ∧ j + 1 also holds. The inequality is strict, unless n ≤ 5 , in which 
case R2 and R3 are equal (see Proposition A.2). 	�  ◻

Proof of Corollary 5.3:  The proof of Theorem  5.2 is based in check-
ing the inequality (22). The analogue for the weighted area is 
w
(
FPR(n, 𝜃,R1) − FPR(n, 𝜃,R2)

)
< (1 − w)

(
TPR(n, 𝜃,R1) − TPR(n, 𝜃,R2)

)
 , which 

trivially follows from (22) when w <
1

2
 . 	�  ◻

Theorem 5.4 will follow from two preliminary lemmas. In the proofs, we only 
treat in detail the claims relating R1 and R2 , those relating R2 and R3 being analo-
gous, with only slight changes that will be noted. Condition n ≥ 7 in the second case 
is needed since otherwise R2 and R3 coincide, as we have seen in Sect. 2.

The first lemma is interesting in itself in that it establishes a dichotomy when we 
look at � as fixed and let w vary. The second lemma states some technical proper-
ties of the functions introduced in the first. Refer to Fig. 7 for a graphical clue of the 
situation presented in theorem and lemmas.

Lemma A.8  Fix n ≥ 3 . For every competence 1
2
< 𝜃 < 1 , there exists a constant 

D1(�) , greater than � (except that D1(�) = � if n = 3 ), such that

w < D1(𝜃) ⇒ WAOTw(n, 𝜃,R1) > WAOTw(n, 𝜃,R2)

w > D1(𝜃) ⇒ WAOTw(n, 𝜃,R1) < WAOTw(n, 𝜃,R2) .

Fig. 7   An example graph of a 
function D(�) with the proper-
ties of Lemmas A.8 and A.9. 
For competence values � greater 
than C(w), rule R

1
 is better 

than rule R
2
 in the sense of the 

weighted area of the triangle
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Fix n ≥ 7 . For every competence 1
2
< 𝜃 < 1 , there exists a constant D2(�) , greater 

than � , such that

Lemma A.9  For i = 1, 2 , the functions � ↦ Di(�) in Lemma A.8 satisfy: 

1.	 For any 1
2
< 𝜃 < 1 , we have also 1

2
< Di(𝜃) < 1.

2.	 Di is continuous in the interval ( 1
2
, 1).

3.	 lim
�↘

1

2

Di(�) =
1

2
 and lim�↗1 Di(�) = 1.

Proof of Lemma A.8:  We prove the first part of the lemma, the other one being analo-
gous, and write simply D instead of D1.

Fix n ≥ 3 , and let 1
2
< 𝜃 < 1 . From the definitions of WAOT, FPR, FNR and TPR, 

the inequality WAOTw(n, 𝜃,R2) < WAOTw(n, 𝜃,R1) is equivalent to

or

We know that inequality (23) is true for w ≤
1

2
 , for all n ≥ 3 and all 𝜃 >

1

2
 , by The-

orem  5.2 and Corollary 5.3, whereas for w = 1 is manifestly false, since clearly 
FPR(n, 𝜃,R1) − FPR(n, 𝜃,R2) > 0 , from (19)–(20).

Since the left-hand side is a linear function of w, there must be a unique point 
D(�) such that the equality holds in (23), and such that for every w < D(𝜃) rule R1 
yields a greater weighted area than R2 , whereas for every w > D(𝜃) it is the other 
way round.

Let us now prove than D(𝜃) > 𝜃 : Consider the particular weight w = � . Clearly, 
we only need to check that (23) is satisfied for this w. Using (15–16) and (19–20), 
inequality (23) is equivalent, for this particular value, to

The expression in square brackets is non-negative if and only if

which is true because 𝜃 >
1

2
 , and 2(i + k) ≥ n + 1 in this range of indices. Therefore, 

the sum (24) is non-negative. Furthermore, one can easily check that there is at least 
one positive term in the sum for n > 3 . We conclude that the critical point D(�) is 

w < D2(𝜃) ⇒ WAOTw(n, 𝜃,R2) > WAOTw(n, 𝜃,R3)

w > D2(𝜃) ⇒ WAOTw(n, 𝜃,R2) < WAOTw(n, 𝜃,R3) .

w
(
FPR(n, 𝜃,R1) − FPR(n, 𝜃,R2)

)
< (1 − w)

(
TPR(n, 𝜃,R1) − TPR(n, 𝜃,R2)

)
,

(23)
(1 − w)

(
TPR(n, 𝜃,R1) − TPR(n, 𝜃,R2)

)
− w

(
FPR(n, 𝜃,R1) − FPR(n, 𝜃,R2)

)
> 0 .

(24)

n�

i=0

n−i�

j=0

(m−⌊ i∧j

2
⌋)∧(n−i−j)�

k=m−i∧j+1

�
n

k, j, i,�

�

�
𝜃i+j+2k(1 − 𝜃)1+2n−i−j−2k − 𝜃1+n−i+j(1 − 𝜃)n+i−j

�
> 0 .

(
�

1 − �

)2(i+k)−(n+1)

≥ 1 ,
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greater than � . In the special case n = 3 , there is only one term in the sum and it is 
equal to zero, hence D(�) = �.

The claim on R2 and R3 can be proved in the same way, with the only differ-
ence that the index k in the sum (24) ranges from m − ⌊ i∧j

2
⌋ + 1 to m ∧ (n − i − j) . If 

n = 7 , the only term in the sum (24) is already positive, so there is no need to con-
sider this case separately.

Proof of Lemma A.9:  Again, we prove the claims first for D1 and we call it simply D. 
Fix n ≥ 3 . The point D(�) is easily computed: D(�) = A(�)∕(A(�) + B(�)) , with

Using (15–16) and (19–20), their explicit expressions are:

Notice first that the function D(�) is the quotient of two polynomials in � that never 
vanish because both the true and the false positive rates are greater for rule R1 than 
for R2 , for all 𝜃 >

1

2
 and n ≥ 3 (see again (15)–(16) and (19)–(20)). Hence, it is clear 

that D is continuous and less than 1 in its domain. Moreover, Lemma A.8 ensures 
that 1

2
< 𝜃 ≤ D(𝜃) . In particular, 1

2
< D(𝜃) < 1 . For � =

1

2
 , both A and B are well 

defined and A( 1
2
) = B(

1

2
) , giving lim

�↘
1

2

D(�) =
1

2
 . Finally, 𝜃 ≤ D(𝜃) < 1 , implies 

that lim�↗1 D(�) = 1 , and the three claims of the Lemma are proved for the function 
D1.

The proof for D2 is identical, using formulae (16–17) and (20–21) and the hypoth-
esis n ≥ 7 . 	�  ◻

Proof of Theorem 5.4:  Denote, as before, by D and C the functions D1 and C1 , respec-
tively. The proof of the second part of the theorem is identical, with D2 and C2.

From Lemmas A.8 and A.9, we know that D(�) defines a continuous function that 
maps [ 1

2
, 1] onto [ 1

2
, 1] (extending it by continuity at the endpoints), and that the curve (

�,D(�)
)
 lies above the diagonal, as depicted in Fig. 7. The shaded region below the 

curve is the set of pairs (�,w) for which WAOTw(n, 𝜃,R1) > WAOTw(n, 𝜃,R2) , and 
the inequality is reversed above the curve.

Regardless whether D is and increasing function or not, and because it is a quo-
tient of polynomials, for any fixed w in ( 1

2
, 1) there is a largest value C(w) ∈ (

1

2
, 1) 

that solves for � the equation D(�) = w . And it is clear from the figure that for all 
𝜃 > C(w) , all points of the segment {(𝜃,w) ∶ 𝜃 > C(w)} lie below the curve, hence 
WAOTw(n, 𝜃,R1) > WAOTw(n, 𝜃,R2) for these values.

Finally, since D(𝜃) > 𝜃 for all � if n > 3 , we have in particular w = D(C(w)) > C(w) . 
For n = 3 , D(�) = � , and we get w = C(w) . This finishes the proof. 	�  ◻

A(�) ∶= TPR(n, �,R1) − TPR(n, �,R2) , B(�) ∶= FPR(n, �,R1) − FPR(n, �,R2) .

A(�) =

n�

i=0

n−i�

j=0

(m−⌊ i∧j

2
⌋)∧(n−i−j)�

k=m−i∧j+1

�
n

k, j, i,�

�
�i+j+2k(1 − �)2n−i−j−2k

B(�) =

n�

i=0

n−i�

j=0

(m−⌊ i∧j

2
⌋)∧(n−i−j)�

k=m−i∧j+1

�
n

k, j, i,�

�
�n−i+j(1 − �)n+i−j .
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In Theorem 5.4 we have not assumed that the function � → D(�) is increasing. 
We conjecture that it always is, but we do not have yet a formal proof. If the conjec-
ture is true, or in a particular case in which it is checked to be true, then one could 
strengthen the theorem by claiming that for every weight 1

2
< w < 1 , there exists a 

value C(w), smaller than w, such that

and similarly for R2 in relation with R3.
R session info.
Computations have been done in R with the following setup:
R version 4.0.2 (2020-06-22), x86_64-w64-mingw32.
Base packages: base, datasets, graphics, grDevices, methods, stats, utils.
Other packages: knitr  1.30, xtable  1.8-4,compiler  4.0.2, digest  0.6.25, evalu-

ate 0.14, magrittr 2.0.1, stringi 1.5.3, stringr 1.4.0, tools 4.0.2, xfun 0.18.
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