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Abstract
The problem of no hands concerns the existence of so-called responsibility voids: 
cases where a group makes a certain decision, yet no individual member of the 
group can be held responsible for this decision. Criteria-based collective decision 
procedures play a central role in philosophical debates on responsibility voids. In 
particular, the well-known discursive dilemma has been used to argue for the exist-
ence of these voids. But there is no consensus: others argue that no such voids exist 
in the discursive dilemma under the assumption that casting an untruthful opinion 
is eligible. We argue that, under this assumption, the procedure used in the discur-
sive dilemma is indeed immune to responsibility voids, yet such voids can still arise 
for other criteria-based procedures. We provide two general characterizations of the 
conditions under which criteria-based collective decision procedures are immune to 
these voids. Our general characterizations are used to prove that responsibility voids 
are ruled out by criteria-based procedures involving an atomistic or monotonic deci-
sion function. In addition, we show that our results imply various other insights con-
cerning the logic of responsibility voids.
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1 Introduction

The problem of no hands concerns the existence of so-called responsibility voids 
in collective decision-making: cases where a group makes a certain decision, yet 
no individual member of the group can be held responsible for this decision.1 In 
arguments for and against the possibility of such voids, one particular example of 
collective decision-making plays a central role, viz. the discursive dilemma.2 On 
the one hand, Pettit and others have argued that the decision procedure used in the 
discursive dilemma is vulnerable to responsibility voids (Copp 2006; Pettit 2007; 
List and Pettit 2011). On the other hand, Braham and van Hees (2011) argue that, if 
voting untruthfully is eligible, it is immune to responsibility voids.3 In the present 
paper, we investigate whether such voids can arise even if untruthful voting is eligi-
ble. More precisely, we consider a wide class of collective decision procedures that 
includes the discursive dilemma as a special case and study the conditions under 
which responsibility voids can arise.

Our investigation is important for several reasons. First, criteria-based collec-
tive decision procedures play a central role in democratic and legal institutions, and 
responsibility voids may indicate a flaw in their regulation (Thompson 1980; Bovens 
1998).4 Second, if it turns out to be difficult or impossible to hold any participant 
accountable for certain outcomes, then we may need to resort to an irreducible 
notion of collective responsibility (List and Pettit 2011).5 Third, a clear allocation of 
responsibility for outcomes may incentivize participants to act responsibly and may 
thereby improve collective decision-making (Weaver 1986).6

1 This problem is distinct from the familiar “problem of many hands”; Thompson (1980, p. 905) writes: 
“Because many different officials contribute in many ways to decisions and policies of government, it is 
difficult even in principle to identify who is morally responsible for political outcomes. This is what I call 
the problem of many hands”.
2 The discursive dilemma was introduced by Pettit (2001). It is related to the doctrinal paradox, which 
originates from legal theory (see Kornhauser 1992; Chapman 1998, the former introduced the term ‘doc-
trinal paradox’). It is moreover related to the so-called Ostrogorski paradox (Rae and Daudt 1976). In 
each of these paradoxes, there is a mismatch between the majority opinion on a range of criteria, legal 
questions, or policy issues on the one hand, and the majority opinion on the final decision, verdict, or 
preferred candidate on the other hand.
3 Braham and van Hees (2011, p. 6) write: “the conditions for these voids are so restrictive as to reduce 
the philosophical or institutional significance they might be thought to possess”.
4 Bovens (1998, p. 49) writes:“A meaningful calling to account is rendered extremely difficult and some-
times even impossible by the above variations on the problem of many hands. This frustrates the need 
for compensation and retribution on the part of the victims (‘the guilty still run around freely’). More 
important still, such outcomes signify that what began as a conscious and rational human act can be 
transformed by the structure and the dynamics of complex organisations into a sort of ‘act of God’ with 
its own dynamic which seems to be independent of any specific individual human action (‘there are no 
guilty ones’).”
5 On collective responsibility and responsibility voids, Pettit (2007,  pp.  196–197) writes: “Let group 
agents be freed from the burden of being held responsible, and the door will open to abuses: there will be 
cases where no one is held responsible for actions that are manifestly matters of agential responsibility.”
6 Weaver (1986, p. 371) opens his paper with: “Politicians are motivated primarily by the desire to avoid 
blame for unpopular actions rather than by seeking to claim credit for popular ones.” Whether blame-
avoiding strategies actually yield positive or negative effects is up for debate (see Hood 2011, especially 
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To explain what is at stake in this paper, let us introduce a particular version of 
the discursive dilemma. Suppose a committee consisting of three members—A, B, 
and C—has to decide on whether to invite a candidate for a job interview (for an 
academic position). To form their collective decision, the committee members do 
not vote directly on the issue of whether to invite the candidate; rather, they give 
their opinion as to whether the candidate satisfies three basic criteria: (R) she is a 
good researcher; (T) she is a good teacher; and (D) she will fulfil her administrative 
duties. The collective decision procedure is as follows. In the first stage, the com-
mittee members independently form their own opinion on each of the criteria and, 
then, share their opinions. In the second stage, the committee considers the majority 
opinion on each of the separate criteria and the collective decision is based on the 
majority opinion: the candidate is invited if and only if for each criterion there is a 
majority who expressed the opinion that she satisfies that criterion.

Consider the scenario in which all but A submit that the candidate is a good 
researcher, all but B submit that the candidate is a good teacher, and all but C submit 
that the candidate will fulfil her administrative duties. Hence, the candidate satis-
fies each criterion according to the majority opinion and, as a result, the commit-
tee decides to invite the candidate. This scenario can be represented by the matrix 
in Table  1. What happens if it turns out that the candidate should not have been 
invited? In particular, can any of the committee members be held responsible for the 
decision to invite the candidate? Pettit (2007, p. 197f) defends a negative answer in 
a case similar to our example and concludes that responsibility voids are possible.

However, Braham and van Hees (2011, 2012) argue that responsibility voids 
do not arise in the discursive dilemma if voting untruthfully is an eligible option. 
Simply stated, on their conception of responsibility, an individual can be held (co-)
responsible for the group’s decision to invite the candidate if there is some other 
eligible action available to that individual that would have been better for avoid-
ing that decision (Braham and van Hees 2011, 2012, condition AOC). In the par-
ticular case of the discursive dilemma, for each committee member, the best way to 
avoid the decision to invite the candidate is by voting “no” on each of the criteria. 
Hence, since no committee member does this, if voting untruthfully is eligible, then 
all committee members can be held responsible for the decision to invite the candi-
date. Braham and van Hees conclude that “the relevance of these voids pales in the 
face of the fact that voting in many cases takes place in what is essentially a strategic 
environment. In such a context, it is eligible to express an opinion other than what 
one holds” (Braham and van Hees 2011, p. 14).

These considerations by Braham and Van Hees trigger three questions about 
responsibility voids that call for a general and systematic analysis. First, what exactly 
makes it the case that the discursive dilemma is immune to responsibility voids, 
under this assumption? Second, are there perhaps other decision procedures that 
are vulnerable to responsibility voids, even if untruthful voting is allowed? Third, 

Chapter 8). In any case, these studies show that blame and credit play a crucial role in politician’s deci-
sion-making and should therefore be incorporated in a formal account of collective decision-making.

Footnote 6 (continued)
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under which conditions is a collective decision procedure vulnerable to responsibil-
ity voids?

To answer these questions, we propose and specify a conception of individual 
responsibility that applies to a wide class of scenarios in which a group of agents 
is to form its decision on the basis of what we call a criteria-based decision proce-
dure. That is, we consider cases where the decision is functionally determined by 
the group opinion on the criteria, in the sense that as soon as one fixes that group 
opinion, the group’s decision is also fixed.7 In turn, the group opinion on each crite-
rion is fully determined by the individual opinions on that criterion. The discursive 
dilemma is an example where the criteria-based decision procedure can be described 
as follows: the group opinion on each criterion is obtained by applying the simple 
majority rule, and the candidate is invited if and only if according to the group opin-
ion, she satisfies all criteria.

Within this setting, we establish three key observations. First, our analysis vindi-
cates the logical possibility of responsibility voids (even if untruthful voting is eli-
gible). Second, it supports the conclusion that the discursive dilemma is immune to 
such voids (at least, under the assumption that untruthful voting is eligible): there 
cannot be a responsibility void, irrespective of the votes of the committee members. 
Third, and more generally, we show that if the underlying decision function of a 
criteria-based decision procedure is atomistic or, equivalently, monotonic, then that 
procedure is immune to responsibility voids (Theorem 5).8

Each of these observations follows from our central results that concern the char-
acterization of immunity to responsibility voids. That is, we establish necessary and 
sufficient conditions for the immunity to responsibility voids, for the class of all cri-
teria-based decision procedures. We characterize such immunity in two conceptually 
distinct ways.9 First, we characterize it in terms of whether and how each criterion 
contributes to the decision in question (Theorem 3). Second, we characterize immu-
nity in terms of the shape of the set of opinions that do not support the decision, 
when this set is conceived as a subspace of the entire opinion space (Theorem 4). 
Both characterizations are insightful in their own way. Moreover, both can be used 
to establish, in a relatively straightforward way, that atomistic (or monotonic) deci-
sion functions guarantee immunity to responsibility voids.

Our analysis can be used as a springboard for investigating a number of further 
topics from the general logic of responsibility voids. To illustrate this point, we 
will briefly cover two such topics.10 First, one may wonder whether the fact that a 
given collective decision procedure is vulnerable to responsibility voids with respect 
to a particular decision entails that that procedure is vulnerable to responsibility 
voids with respect to any possible decision. We show that this entailment does not 
hold. Second, one can view the problem of no hands as a problem concerning the 

10 See Sect. 8 for a more elaborate discussion.

7 The underlying decision function may be part of the institutional setting in which the group operates, 
or they may be the result of an earlier collective decision.
8 More details are given in Sect. 7.
9 More details can be found in Sect. 6.
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distribution of responsibility. Responsibility voids concern the case where no indi-
vidual can be held responsible for a decision, but one may also consider majoritar-
ian responsibility voids: the case where no majority of the group can be held respon-
sible for a given group decision. What is the logical relation between majoritarian 
responsibility voids and responsibility voids simpliciter? We show that, for criteria-
based decision procedures in which the group opinion is obtained by simple major-
ity over the criteria, immunity to majoritarian responsibility voids is equivalent to 
immunity to responsibility voids simpliciter (Theorem 6).

The paper is organised as follows. We start by introducing the class of criteria-
based decision procedures (Sect.  2) and specify our conception of responsibility 
voids in the context of such procedures (Sect. 3). We then show that the discursive 
dilemma is immune to responsibility voids yet there are other criteria-based decision 
procedures that are vulnerable to such voids (Sect. 4). In Sect. 5, we provide a char-
acterisation of responsibility and avoidance in virtue of whether and how the criteria 
may contribute to a given decision. Our central results regarding the characterisation 
of responsibility voids are presented in Sect. 6. In Sect. 7 we show that if the under-
lying decision function is atomistic or, equivalently, monotonic, then that procedure 
is immune to responsibility voids. We discuss two further topics in the general logic 
of responsibility voids in Sect. 8. In the concluding section, we discuss prospects for 
future work. All results are proved in the appendix.

2  Criteria‑based decision procedures

The purpose of this section is to introduce a broad class of collective decision pro-
cedures that includes the procedure of the discursive dilemma. Generally, a criteria-
based decision procedure enables a finite group of agents to make a collective deci-
sion, based on the opinions cast by each individual member on a finite set of criteria. 
(We will often omit the adjective “collective” and simply write “decision”.) The cri-
teria are taken to be binary, with their two possible values denoted by 0 and 1. We 
moreover presuppose that the actual collective decision is induced by the individual 
opinions on the criteria, in two stages (cf. the Introduction). First, starting from the 
individual opinions, we fix the group opinion on every criterion, using criteria-
specific thresholds. More precisely, for each criterion, its threshold represents how 
many members of the group should vote “1” on that criterion in order for the group 

Table 1  The discursive dilemma Good 
researcher?

Teaching skills? Admin duties? Invite?

A No Yes Yes No
B Yes No Yes No
C Yes Yes No No
Committee Yes Yes Yes Yes
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opinion to also be “1” for that criterion.11 Different criteria can hence have different 
thresholds. In the second stage, the decision is determined by the group opinion, 
using a function that determines, for every opinion, the decision that it supports.

For technical reasons, we impose one additional restriction: if all except one 
member of the group agree on the value of a given criterion, then the exceptional 
individual cannot change the group opinion on that criterion. In other words, we 
do not allow for procedures in which unanimity is required for the group opinion 
to be 1, resp. 0 on a given criterion. Technically, we assume that the threshold for 
each criterion is higher than 1 and smaller than the total number of individuals in 
the group. As a result of this restriction, the group needs to contain at least three 
agents. We return to this restriction in Sect. 9, explaining how our results fare when 
it is dropped. Nevertheless, our analysis covers a broad class of collective decision 
procedures, as given by the following definition:

Definition 1 A criteria-based decision procedure (abbreviation: CDP) is a tuple 
Φ = ⟨N,C,D,T , f ⟩ , where N is a finite set of at least three agents, C is a finite set 
of criteria, D is a finite set of decisions with |D| ≥ 2 , T ∶ C → {2,… , |N| − 1} is a 
threshold assignment, and f ∶ {0, 1}C → D is a surjective decision function.12

We will use c, c�,… to refer to members of C and d, d�,… to refer to members of 
D . Given a CDP, an opinion O ∶ C → {0, 1} specifies for each criterion whether it is 
satisfied. That is, O(c) = 1 means that according to O , c is satisfied; O(c) = 0 means 
that according to O , c is not satisfied. We will use � to denote the opinion space, i.e. 
the set of all opinions. Note that formally, � = {0, 1}C . Hence, the opinion space 
can be viewed as a coordinate system with | C | dimensions and two values for each 
dimension. An opinion profile P ∈ �

N is a tuple of opinions, one for each agent in 
N . (Notice that every procedure we consider is symmetric: every individual agent 
has the same set of opinions available to her.) Given an opinion profile P ∈ �

N , we 
let Oi

P
 denote the vote cast by individual i in P.

Definition 2 Where Φ = ⟨N,C,D,T , f ⟩ is a CDP and P is an opinion profile: 

1. the group opinion OΦ
P

 induced by P is defined as follows: for all c ∈ C , 

2. the collective decision induced by P is Φ(P) ∶= f (OΦ
P
).

OΦ
P
(c) ∶=

{
1, if |{i ∈ N ∣ Oi

P
(c) = 1}| ≥ T(c)

0, otherwise.

11 Note that here, “group opinion” is a purely technical term that refers to an intermediate step in a deci-
sion procedure; it does not presuppose that groups have beliefs or anything alike.
12 The requirement that f is surjective simply means that D contains no redundancies: in principle, every 
decision d ∈ D could be reached, depending on the group opinion. Together with the requirement that 
|D| ≥ 2 , it also means that the procedure is non-vacuous, in that the decision is not settled beforehand.
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The decision procedure of the example from the Introduction can be formalized 
by the CDP Φ0 = ⟨N,C,D,T , f ⟩ where N consists of three agents, C consists of 
three criteria, and D consists of two possible decisions, i.e. to invite or not to invite 
the candidate. Let us denote these two decisions by “1” and “0” respectively. Moreo-
ver, each criterion has threshold 2, and the decision function f  is given by: f (O) = 1 
if and only if for all c ∈ C it holds that O(c) = 1 . We will often denote opinions as 
tuples of 0s and 1s; for instance, our example involves the respective opinions 
(0, 1, 1), (1, 0, 1), and (1, 1, 0) . So, (0, 1, 1)  is the opinion where only the second and 
third criterion are satisfied. The opinion profile discussed in the Introduction is 
P0 = ⟨(0, 1, 1), (1, 0, 1), (1, 1, 0)⟩ . Note that we have O

Φ0

P0

= (1, 1, 1) , and 
Φ0(P0) = f (O

Φ0

P0

) = 1 . In other words, the decision is that the candidate be invited.
The CDP Φ0 is one instance of a majoritarian criteria-based decision procedure, 

i.e. a CDP in which the threshold for each criterion is given by simple majority. Note 
that the use of threshold functions allows us to also include decision procedures 
where | N | is even and the threshold represents a tie-breaking rule in favour of either 
0 or 1. The CDP Φ0 is moreover binary, in the sense that it only leaves room for two 
decisions.13 In what follows, we will illustrate our results using examples of binary, 
majoritarian CDPs, but unless stated otherwise, they apply to CDPs in general.

Groups often need to make a decision between more than two alternatives. To 
illustrate non-binary CDPs, consider a variant of our example from the Introduction 
where candidates for an academic position are to be divided into three categories: 
“definitely invite”, “discuss at the meeting”, and “definitely do not invite”. Consider 
the criteria-based decision procedure which postulates that a given candidate is defi-
nitely invited if she satisfies all three criteria; definitely not invited if she satisfies no 
criterion; and discussed at the meeting otherwise. This would then be a CDP involv-
ing three criteria and three possible decisions.14

This example gives rise to a broad class of collective decision procedures that our 
formalism can accommodate: consider examples where a job candidate is directly 
hired if they satisfy a sufficiently high number of criteria k , will be directly rejected 
if they do not satisfy a sufficiently high number of criteria l , and will be reconsid-
ered if they satisfy a number of criteria between k and l (where |C| ≥ k > l ≥ 0).15 
Remark that whenever k ≠ l + 1 , then there are three possible group decisions: hire 
the candidate, reject the candidate, or reconsider the candidate. We propose to repre-
sent these group decisions by 1, 0, and 1

2
 , respectively. More precisely, the decision 

13 From the perspective of the literature on judgement aggregation, the criteria of a binary CDP can 
be viewed as premises of an agenda and the decision of such a CDP as a (unique, designated) conclu-
sion in the agenda, where the conclusion is a truth-function of the premises (Dokow and Holzman 2009; 
Nehring and Puppe 2008). Our formalism can then be viewed as implying the restriction that the prem-
ises are logically independent. The truth-functional relation between the premises and the conclusion is 
represented by the decision function f.
14 Similar procedures are commonly applied in the context of scientific conferences, where chairs make 
an initial categorization of submitted papers into “definitely accept”, “definitely reject”, and “discuss 
among the chairs”, based on the scores given by each of the individual reviewers.
15 This class of examples is inspired by—but different from—(Nehring and Puppe 2010, Example 1 on 
page 7).
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function f(k,l) is given by: f(k,l)(O) = 1 if and only if |{c ∣ O(c) = 1}| ≥ k ; f(k,l)(O) = 0 
if and only if |{c ∣ O(c) = 1}| ≤ l ; and f(k,l)(O) =

1

2
 otherwise. This gives us a gen-

eral class of CDPs of the form Φ(k,l) = ⟨N,C,D,T , f(k,l)⟩ where N,C, T , k, and l can 
be chosen arbitrarily such that |C| ≥ k > l ≥ 0.16 Note that the previous example 
falls within this class of examples, where k = 3 and l = 0 . The discursive dilemma 
falls within this class of examples, where k = 3 and l = 2.

For any CDP Φ = ⟨N,C,D,T , f ⟩ and any d ∈ D , let us use �Φ
d

 to denote the set of 
opinions that support decision d in Φ , and let us use �Φ

d
 to denote the set of opinions 

that do not support decision d in Φ . That is, �Φ
d

∶= {O ∈ � ∣ f (O) = d} and �Φ
d

 is 
the complement of �Φ

d
 relative to � . We will suppress the superscript Φ and simply 

write �
d
 ( �

d
 ) in case it does not give rise to ambiguity. To illustrate, for any CDP 

Φ(k,l) with k ≠ l + 1 it holds that �Φ(k,l)

1
= �

Φ(k,l)

0
∪ �

Φ(k,l)

1

2

.

Note that for the case where D = {0, 1} , i.e. for binary CDPs, every decision 
function f corresponds to a unique set of opinions �

1
 ; and, conversely, every set 

� ⊆ � can be associated with a unique binary decision function f given by f (O) = 1 
iff O ∈ �  . Consequently, for binary CDPs, the decision function f can be represented 
by the subset �

1
 of the entire opinion space. To see how this works, let us reconsider 

the example of the Introduction. Since |C| = 3 , the available opinions can be repre-
sented by a three-dimensional cube and the decision function can be represented as 
a subset of the vertices of that cube. We adopt the convention to represent decision 
functions by underlining the opinions that support the decision 1. It should hence be 
obvious that Fig. 1 represents the set of possible opinions and decision function of 
the example from the Introduction.

To prevent misunderstandings, it is important to emphasize one feature of the 
generality of the notion of CDPs. Foreshadowing terminology defined in Sects.  5 
and 7, CDPs can involve a non-monotonic or (equivalently) a holistic decision func-
tion. That is, there exist CDPs where the “valence” of some criteria may depend 
on which other criteria are satisfied.17 At this stage, this is best illustrated using an 
example.

Suppose the national government assembles a committee of three experts to 
decide on whether to implement a given policy for agriculture. For simplicity’s sake, 
let us assume that there are only three relevant questions: Will the policy create any 
significant inequalities among farmers (I)? Will the policy generate a surplus in 

16 Note that, given k and l  , Φ(k,l) is strictly speaking not a specific CDP but a class of CDPs, since 
N,C, and T  can still be chosen arbitrarily. Nonetheless, since our analysis does not depend on the exact 
nature of N,C, and T  , we loosely speak of Φ(k,l) as depicting a CDP.
17 There are some similarities between our notion of a binary criteria-based decision procedure and the 
“multi-dimensional decision-making rules” from Courtin and Laruelle (2020). The latter rules also work 
with a finite set of criteria (called “dimensions”), where the opinion profile (called “configuration”) is 
used to determine a decision on a binary issue. Multi-dimensional decision-making rules are more gen-
eral in one respect, since they do not presuppose that opinions are first aggregated per criterion, before 
the decision is made. In another respect, binary CDPs are more general, since they do not presuppose a 
monotonic relation between the criteria and the decision.
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terms of food production (S)? And third, is there a societal need for generating such 
a surplus (N)? It is plausible to assume that the policy should only be adopted if the 
answer to the first question is negative and if the answers to the second and third 
question are either both positive or both negative. After all, in these circumstances, 
the policy meets the societal need regarding generating such a surplus and does not 
generate inequality. In contrast, if exactly one of the answers to (S) and (N) is posi-
tive, then the policy should not be endorsed since it would not meet the societal 
demands.

This case can be represented by the CDP Φ1 = ⟨N,C,D,T , f ⟩ , where |N| = 3 , 
|C| = 3 , D = {0, 1} , T(c) = 2 for all c ∈ C , and f is such that f (O) = 1 if and only 
if O = (0, 1, 1) or O = (0, 0, 0) = 1 . Note that this is a binary, majoritarian CDP. The 
set of opinions and the decision function can be pictured as in Fig. 2. Notice that the 
impact of the second criterion c2 of generating a surplus (corresponding to the y-axis) 
is not monotonic: if the other criteria are both not satisfied, then the satisfaction of c2 
leads to the decision 0; but if only the third criterion of societal need (corresponding 
to the z-axis) is satisfied, then the satisfaction of c2 leads to the decision 1.

3  Responsibility voids and avoidance

To study responsibility voids, it is important to elaborate on the notion of individual 
responsibility. In particular, the aim of this section is to specify when we can hold 
an individual responsible (or at least co-responsible) for some collective decision 
that is obtained by means of a CDP. Our analysis imposes three assumptions. First, 
as mentioned in the Introduction, every opinion is eligible. Second, it is a situation 
of complete information: the individuals know the details of the collective decision 
procedure. Third, the individuals are fully uncertain about the opinions cast by the 
other members of the group: every opinion of the others is considered possible and 
their probabilities are unknown. While it would be interesting to investigate whether 
these assumption can be relaxed, this is left for future work.

Although the concept of moral responsibility is complex and heavily debated 
within philosophy, there is a commonly recognized intuition that an individual 
cannot be held responsible for a given outcome if that outcome was unavoida-
ble.18 To account for this intuition, and similar to the analysis of Braham and 
van Hees (2012), we propose that an individual cannot be held responsible for 
a given outcome if she maximally avoided that outcome. The main distinction 
with the work of Braham and van Hees is that we spell out the notion of maximal 

18 The idea that the ability to do otherwise plays a key role in responsibility attributions goes back to 
Aristotle’s Nichomachean Ethics (see Aristotle 2019, Book VI) and it is closely related to the principle 
of alternative possibilities (see however (Frankfurt 1969; Van Inwagen 1999) for a critical discussion of 
that principle). More precisely, our formalization is related to recent work on moral responsibility and the 
avoidance of blame (McKenna 1997; Wyma 1997; Otsuka 1998; Hetherington 2003). Formalisms that 
capture this idea in a somewhat different way than ours are presented by Vallentyne (2008) and Braham 
and van Hees (2012).
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avoidance in non-probabilistic terms, in line with our assumption of full uncer-
tainty mentioned before. Our non-probabilistic setting is very similar to Horty’s 
(2001) analysis of obligations. One can view our conception of responsibility in 
CDPs as an adaptation of Horty’s theory.

To understand our notion of maximal avoidance, it is important to consider 
the counterfactual scenarios where an individual unilaterally deviated from her 
actual vote. That is, we may ask whether there is an alternative vote by which 
that individual would have changed the decision while fixing the votes of the other 
committee members. Reconsider the example of the Introduction where the three 
members of the hiring committee voted in such a way that the group has made 
the decision to invite the candidate (Table 1). We see that any committee member 
would have avoided the decision to invite the candidate if she had unilaterally 
deviated from her actual vote by voting against all three criteria.

To talk about such counterfactual scenarios, it is useful to introduce some 
extra notation. Given an opinion O , an individual i and an opinion profile P , 
we let Pi→O be the opinion profile that would result from replacing the opin-
ion of individual i in P with O . Accordingly, the collective decision that would 
be made, had agent i cast vote O , is given by Φ(Pi→O) . For example, where 
P = ⟨(0, 1, 1), (1, 0, 1), (1, 1, 0)⟩ , the fact that the first committee member could 
have avoided the decision to invite the candidate, if she had unilaterally devi-
ated from her actual vote by voting against all three criteria, is expressed by 
Φ0(P1→(0,0,0)) = f (1, 0, 0) = 0.

In line with our assumption of full uncertainty above, we moreover propose to 
consider not only the actual votes of the other committee members, but all their pos-
sible votes. That is, to maximally avoid a given decision, a given committee mem-
ber needs to consider all possible votes she could have cast, and the decisions these 
would induce relative to all possible votes of the other members.

Fig. 1  A three-dimensional 
representation of the possible 
opinions and decision function 
in Φ

0

(1, 1, 1)(0, 1, 1)

(1, 0, 1)

(1, 1, 0)

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)(0, 0, 0)
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To make these ideas precise, we follow Horty’s account (Horty 2001), which is 
itself based on the familiar decision-theoretic notions of dominance and admissibil-
ity.19 In line with our assumption of full uncertainty, dominance and admissibility 
make most sense when individuals take all opinions of the others into consideration. 
To compare two opinions O and O′ with regard to their potential to avoid a given 
decision, we say that O simply dominates O′ for avoiding the decision if and only if 
O would avoid that decision whenever O′ would, regardless of the votes of the oth-
ers. Furthermore, O weakly dominates O′ if and only if O simply dominates O′ but 
not conversely. Finally, we submit that an opinion O maximally avoids a given deci-
sion if and only if there is no opinion O′ such that O′ weakly dominates O for avoid-
ing that decision. More formally:

Definition 3 (Dominance and Avoidance) Let Φ = ⟨N,C,D,T , f ⟩ be a CDP, let 
d ∈ D , and let O,O� ∈ � . Then, 

1. O simply dominates O′ for avoiding d in Φ (notation: O ⪯Φ
d
O� ) if and only 

if for every individual i ∈ N  and for every opinion profile P it holds that if 
Φ(P

i→O� ) ≠ d , then Φ(P
i→O

) ≠ d;
2. O weakly dominates O′ for avoiding d in Φ (notation: O ≺Φ

d
O� ) if and only if 

O ⪯Φ
d
O� and O� Φ

d
O;

Finally, O maximally avoids d in Φ if and only if there is no O� ∈ � such that 
O� ≺Φ

d
O . We let �Φ

d
 denote the set of opinions that maximally avoid d in Φ.

We will suppress the superscript Φ and simply write ⪯
d
 , ≺

d
 and �

d
 when it is 

clear from the context.

Fig. 2  A three-dimensional 
representation of the possible 
opinions and decision function 
in Φ

1

(1, 1, 1)(0, 1, 1)

(1, 0, 1)

(1, 1, 0)

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)(0, 0, 0)

19 Weak dominance relates to Savage’s (1972) “sure-thing principle”. Savage writes: “I know of no other 
extralogical principle governing decisions that finds such ready acceptance” (21). Horty in fact uses 
“weakly dominates” for what we call “simply dominates”, and “strongly dominates” for what we call 
“weakly dominates”. Our choice of terminology follows common practice in decision and game theory.



764 H. Duijf, F. Van De Putte 

1 3

It is important to note that our definition of dominance can be simplified: we 
can remove the quantifier ranging over individuals in N and replace the occur-
rences of individual i with the first agent 1. After all, every individual has the 
same set of opinions available to her and every criteria-based collective decision 
procedure treats every individual alike. More formally:

Observation 1 Let Φ = ⟨N,C,D,T , f ⟩ be a CDP and let d ∈ D . Let agent 1 be the 
first agent in N. Then, for any two opinions O,O′ it holds that O ⪯Φ

d
O� if and only if 

for every opinion profile P it holds that if Φ(P
1→O� ) ≠ d , then Φ(P

1→O
) ≠ d.

In what follows, we will freely rely on this observation.
In line with the above considerations and given our specification of avoidance, 

our conception of responsibility is as follows:

Definition 4 (Responsibility) Let Φ = ⟨N,C,D,T , f ⟩ be a CDP, let i ∈ N , and let 
d ∈ D . Let P be an opinion profile. Then, given P , an individual i can be held 
responsible for d if and only if Φ(P) = d and Oi

P
∉ �

Φ
d

.

Let us briefly consider how this theory of responsibility and maximal avoid-
ance addresses familiar cases of overdetermination. These cases can be illustrated 
by considering the decision procedure of the example from the Introduction, but 
where the committee members each cast a slightly different vote. Consider the 
scenario where each committee member casts a vote in favour of all three crite-
ria and the candidate is invited as a result. This case illustrates a crucial feature 
of cases of overdetermination: no individual member can change the decision by 
unilaterally changing her vote. Let us examine whether any of them is responsi-
ble for inviting the candidate. In other words, did the committee members maxi-
mally avoid the decision to invite the candidate? Consider the alternative to cast 
a vote against all three criteria. Then, it is easy to verify that this alternative vote 
weakly dominates their actual vote with respect to avoiding the decision to invite 
the candidate. More precisely, we get (0, 0, 0) ≺

1
(1, 1, 1) . As a consequence, each 

committee member can be held responsible for the decision. Hence, our theory of 
responsibility adequately addresses cases of overdetermination.

It may be helpful to note that for any two opinions O and O′ and any deci-
sion d there are only three possibilities: (1) they are equivalent for avoiding d , 
i.e. O ⪯

d
O� and O� ⪯

d
O ; (2) they are incomparable for avoiding d , i.e. O 

d
O′ 

and O′ 
d
O ; and (3) one weakly dominates the other for avoiding d , i.e. O ≺

d
O′ 

or O′ ≺
d
O . The second option where the two opinions are incomparable is often 

overlooked. We leave it to the reader to verify that this possibility is demonstrated 
by opinions (1, 1, 0) and (0, 1, 1) in the example from the Introduction. Moreover, 
these dominance orderings induce a preorder on the set of opinions:

Observation 2 Let Φ = ⟨N,C,D,T , f ⟩ be a CDP and let d ∈ D . Then, ⪯Φ
d

 is a preor-
der on � . That is, ⪯Φ

d
 is reflexive and transitive.
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It can be cumbersome to check whether a given opinion maximally avoids a 
given decision. For example, in cases where |C| = 3 and |N| = 3 , each individual has 
23 = 8 available opinions and this gives rise to 83 = 512 possible opinion profiles. 
To determine whether a given opinion O simply dominates another opinion O′ with 
respect to avoiding a given decision d in Φ , we may need to survey all 64 combina-
tions of opinions for the other individuals. Moreover, to check whether O maximally 
avoids d in Φ , we would have to check for all 7 other available opinions whether 
they weakly dominate O with respect to avoiding d in Φ . As a result, in the worst-
case scenario, we would have to cover 7 × 64 = 448 cases. It is therefore important 
to announce that we will provide a very neat characterization of both ⪯

d
 and �

d
 in 

Sect. 5.
Our conception of responsibility has an important implication: relative to any 

CDP, every agent is able to avoid being responsible for a given decision. That is, 
there always is an opinion that maximally avoids a given decision:20

Observation 3 Let Φ = ⟨N,C,D,T , f ⟩ be a CDP and let d ∈ D . Then there exists an 
opinion O in �Φ

d
.

Notice that there are cases where an agent can maximally avoid a given deci-
sion in multiple distinct ways. Nevertheless, to avoid being responsible for a given 
decision, agents may need to vote untruthfully. This should not come as a surprise, 
since our conception of responsibility gives no special weight to an agent’s personal 
convictions.21

Let us conclude by returning to the main aim of this paper: the study of respon-
sibility voids in collective decision-making. In a given criteria-based decision pro-
cedure, a profile of opinions creates a responsibility void when it induces a deci-
sion while none of the individual members of the group can be held responsible for 
that decision. From the perspective of our theory of responsibility, this means that 
a responsibility void occurs when a particular decision is made while every indi-
vidual member of the group casts a vote that maximally avoids that decision. More 
formally:

Definition 5 (Responsibility Voids) Let Φ = ⟨N,C,D,T , f ⟩ be a CDP and let d ∈ D . 
Then, 

1. Where P is an opinion profile, P creates a responsibility void with respect to d if 
and only if Φ(P) = d while for every i in N it holds that Oi

P
∈ �

Φ
d

.

20 This follows from the fact that the dominance relation ≺
d
 is irreflexive and transitive and the assump-

tion that an agent has only finitely many opinions available to her.
21 Although our analysis resembles that of Braham and van Hees (2012), it is important to note that they 
allow for the possibility that some alternatives are not eligible and, therefore, their framework includes 
models that give special weight to an agent’s personal convictions—in particular, by postulating that 
casting the opinion that coincides with the agent’s personal conviction is the only eligible alternative.
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2. Φ is immune to responsibility voids with respect to d if and only if there are no 
opinion profiles P that create a responsibility void with respect to d.

Φ is immune to responsibility voids if and only if Φ is immune to responsibility 
voids with respect to every d ∈ D.

We say that a CDP Φ is vulnerable to responsibility voids with respect to d if it 
is not immune to responsibility voids with respect to d ; and that it is vulnerable to 
responsibility voids if and only if it is vulnerable to responsibility voids with respect 
to some d ∈ D.

4  The possibility of responsibility voids

The discursive dilemma from the Introduction plays a central role in the philosophi-
cal debate on irreducible collective responsibility and responsibility voids. Let us 
investigate whether that example is vulnerable to responsibility voids. It can be 
verified that the only way for the committee members to maximally avoid the deci-
sion to invite the candidate is by voting against all three criteria.22 That is, for every 
O ≠ (0, 0, 0) it holds that (0, 0, 0) ≺

1
O . Moreover, whenever the committee collec-

tively decides to invite the candidate, then at least two committee members must 
have voted in favour of some criteria. Hence, this criteria-based decision procedure 
is immune to responsibility voids with respect to the decision to invite the candidate.

Since this key example is immune to responsibility voids with respect to the deci-
sion to invite the candidate, it is natural to ask whether responsibility voids are ruled 
out tout court. Our formalism can be used to vindicate the logical possibility of 
responsibility voids.

To do so, it is helpful to mention a necessary condition for immunity to responsi-
bility voids. Consider a CDP that is immune to responsibility voids with respect to a 
given decision d , and let O be an opinion that maximally avoids d . This means that, 
when every individual casts opinion O, then every individual casts an opinion that 
maximally avoids d . Consequently, since the CDP is immune to responsibility voids, 
the decision supported by that specific opinion profile must differ from d . But note 
that the group opinion induced by that profile is O , and hence the decision supported 
by the profile is f (O ). More generally, if a CDP is immune to responsibility voids, 
then every opinion that maximally avoids d must not support the decision d:23

Observation 4 Let Φ = ⟨N,C,D,T , f ⟩ be a CDP and let d ∈ D . If Φ is immune to 
responsibility voids with respect to d , then �Φ

d
⊆ �

Φ
d

.

To illustrate the logical possibility of responsibility voids, let us reconsider the 
example where the national government assembles a committee of three experts to 

22 As explained in Sect. 3, verifying this can be rather cumbersome. However, the claim readily follows 
from Theorems 1 and 2 in Sect. 5.
23 Recall that �Φ

d
= �⧵�Φ

d
.
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decide on whether to implement a given policy for agriculture, represented by Φ1 
and depicted in Fig. 2 on page 11. Given Observation 4, we see that if �0 ∩�0 ≠ � , 
then Φ1 is vulnerable to responsibility voids with respect to 0. So, in particu-
lar, Φ1 is immune to responsibility voids with respect to 0 only if (0, 1, 0) ( ∈ �0 ) 
is weakly dominated by either (0, 0, 0) or (0, 1, 1).24 Consider the opinion profile 
P = ⟨O1,O2,O3⟩ where O1 = (0, 1, 0) , O2 = (0, 1, 1) , and O3 = (0, 0, 1) . Then, we 
see that Φ1(P) = f ((0, 1, 1)) = 1 while Φ1(P1→(0,0,0)) = f ((0, 0, 1)) = 0 . Hence, 
(0, 0, 0) 

0
(0, 1, 0) = O1 . By similar reasoning, the opinion profile P� = ⟨O1,O

�
2
,O3⟩ 

where O�
2
= (0, 0, 0) demonstrates that (0, 1, 1) 

0
(0, 1, 0) = O1 . In fact, in virtue of 

Theorems 1 and 2 in Sect. 5, one can easily verify that (0, 1, 0) ∈ �0 . Hence, Φ1 is 
vulnerable to responsibility voids with respect to 0.

Let us make this more explicit. Consider the particular scenario where all three 
experts submit that only the second criterion is satisfied, i.e.  submit the opinion 
(0, 1, 0) . The resulting group opinion is that only the second criterion is satisfied 
and, hence, the group decides not to implement the policy. Can any expert be held 
responsible for the decision 0? Since each expert could have voted differently, we 
need to ask whether her actual vote is weakly dominated for avoiding the decision 0. 
One might, for instance, think that her actual vote (0, 1, 0) is weakly dominated for 
avoiding 0 by casting the opinion that none of the criteria are satisfied, i.e. (0, 0, 0) . 
However, the opinion profile depicted by P , specified in the previous paragraph, 
demonstrates that there exists a counterfactual scenario where casting (0, 0, 0) would 
have lead to the decision 0 while her actual vote (0, 1, 0) would not have done so. 
As a consequence, her actual vote is not weakly dominated for avoiding 0 by the 
opinion (0, 0, 0) . More generally, each expert maximally avoided the decision not to 
implement the policy and, therefore, none of them can be held responsible for that 
decision.

We conclude that there exist criteria-based decision procedures that are vulner-
able to responsibility voids. In such cases the group could make a certain decision 
even if all agents cast a vote that maximally avoids that decision. This answers the 
second main question from the Introduction positively: there are indeed examples of 
collective decision-making that are vulnerable to responsibility voids. In particular, 
not every CDP is immune to responsibility voids. In Sect. 6 we will characterize the 
class of criteria-based decision procedures that are immune to responsibility voids.

5  The contribution of criteria

To arrive at our central characterization result, we first introduce a classification 
of whether and how criteria may contribute to a given decision in a given criteria-
based decision procedure (Sect. 5.1). This classification allows us to characterize the 

24 After all, given that �Φ1

1
= {(0, 0, 0), (0, 1, 1)} , if (0, 1, 0) is weakly dominated for avoiding 0 by neither 

(0, 0, 0) nor (0, 1, 1) , then either (0, 1, 0) maximally avoids 0 or some other opinion in �0 maximally avoids 
0. In either case, we have �0 ∩ �0 ≠ �.
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dominance relation that plays a key role in our conception of individual responsibil-
ity (Sect. 5.2).

5.1  Whether and how a criterion may contribute

As we have seen in Sect.  3, determining whether one opinion simply dominates 
another opinion for avoiding a given decision is routine, but may be cumbersome. 
To simplify this task, we propose to focus on each criterion separately and deter-
mine whether it plays a role in the outcome of the decision function. In the example 
of the Introduction, the majority opinion is that the candidate satisfies all three crite-
ria. We may wonder whether unilaterally changing the value of any of these criteria 
changes the outcome of the decision function. In this particular case and for this 
particular majority opinion, it is easy to see that every criterion plays a crucial role: 
if we were to change its value, then the decision would change from inviting the can-
didate to not inviting the candidate. To determine whether and how a given criterion 
affects the decision, we investigate for each opinion whether only changing the value 
of that criterion would affect the decision. By focusing on each criterion separately, 
we greatly simplify the task of determining whether one opinion simply dominates 
another for avoiding a given decision.

To make these ideas precise, we introduce some new terminology. Given opin-
ions O and O′ , we let Δ(O,O�) = {c ∈ C ∣ O(c) ≠ O�(c)} be the difference between O 
and O′ . We say that O agrees with O′ on criterion c if and only if O(c) = O�(c) (and 
hence if and only if c ∉ Δ(O,O�)).

In a given CDP, a given criterion does not contribute to that decision if and only 
if, for any two opinions that only differ on that criterion, it holds that the one sup-
ports the decision if and only if the other does. Conversely, a given criterion does 
contribute to that decision if and only if there are opinions that only differ on that 
criterion, where one supports the decision in question, and the other does not.

Definition 6 (Contribution) Let Φ = ⟨N,C,D,T , f ⟩ be a CDP, let c ∈ C , and let 
d ∈ D . Then, c does not contribute to d in Φ if and only if for all opinions O and O′ 
with Δ(O,O�) = {c} it holds that f (O) = d if and only if f (O�) = d.

Given a CDP Φ , we use C�
Φ,d

 to denote the set of criteria that do not contribute to 
d in Φ . We will simply write C�

d
 when Φ is clear from the context.

Let us reconsider the example of the Introduction. In line with our previous 
observations, each criterion contributes to the decision to invite the candidate.

Whenever a given criterion contributes to a given decision, we propose to dis-
tinguish between whether that criterion contributes positively or negatively, and 
between whether it contributes strictly or not. For instance, a criterion contributes 
positively to a given decision if and only if there exist opinions that (i) only differ 
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on that criterion, (ii) support different decisions, and (iii) the opinion according to 
which the criterion is satisfied supports that decision. More precisely:25

Definition 7 (Contribution: positive, negative, strict) Let Φ = ⟨N,C,D,T , f ⟩ be a 
CDP, let c ∈ C , and let d ∈ D . Then, 

1. c contributes positively to d in Φ if and only if there are opinions O and O′ with 
Δ(O,O�) = {c} , f (O) ≠ f (O�) , O�(c) = 1 and f (O�) = d.

2. c contributes negatively to d in Φ if and only if there are opinions O and O′ with 
Δ(O,O�) = {c} , f (O) ≠ f (O�) , O�(c) = 0 and f (O�) = d . Moreover,

3. c contributes strictly positively to d in Φ if and only if c contributes positively to 
d in Φ and does not contribute negatively to d in Φ.

4. c contributes strictly negatively to d in Φ if and only if c contributes negatively to 
d in Φ and does not contribute positively to d in Φ.

5. c contributes strictly to d in Φ if and only if c contributes strictly positively or 
strictly negatively to d in Φ.

Let us reconsider the example of the Introduction. In line with our previous 
observations, it is easy to see that each criterion contributes strictly positively to the 
decision to invite the candidate. That is, for each criterion there are opinions where 
changing the value of that criterion from ‘not satisfied’ to ‘satisfied’ will change the 
decision from ‘don’t invite the candidate’ to ‘invite the candidate’; and, moreover, 
unilaterally changing the value of any criterion from ‘satisfied’ to ‘not satisfied’ will 
never change the decision in this way.

To demonstrate the possibility that a criterion contributes both positively and 
negatively, let us reconsider CDP Φ1 from Sect. 2 (see also Fig. 2). In Φ1 , the second 
and third criterion contribute both positively and negatively to the decision 1. For 
example, since f (0, 1, 0) = 0 and f (0, 0, 0) = 1 , it follows that c2 contributes nega-
tively to 1. Since f (0, 0, 1) = 0 and f (0, 1, 1) = 1 , it follows that c2 also contributes 
positively to 1.

Finally, the terminology above yields a classification of whether and how a given 
criterion could contribute to a given decision. To clarify this, we introduce a few 
notational conventions. Consider any CDP Φ and any decision d . We use C+

Φ,d
 to 

denote the set of criteria that contribute strictly positively to d in Φ ; likewise, C−
Φ,d

 
denotes the set of criteria that contribute strictly negatively to d in Φ . We let C�

Φ,d
 

denote the set of all criteria that contribute strictly to d in Φ , i.e. C�
Φ,d

= C+
Φ,d

∪ C−
Φ,d

 . 
The set of criteria that contribute both positively and negatively to d in Φ is denoted 
by C±

Φ,d
 . We suppress the subscript Φ and simply write C�

d
 , C+

d
 , C−

d
 , C�

d
 , C±

d
 when it is 

clear from the context. Note that {C+
d
,C−

d
,C±

d
,C�

d
} is a partition of C . Table 2 gives 

an overview of our classification of criteria in terms of whether and how they con-
tribute to d in Φ.

25 Nehring and Puppe (2008) use the terms “positively relevant”, resp. “negatively relevant” for what 
we call “contributing positively”, resp. “contributing negatively”. Their setting in the cited paper is more 
general, since they only assume a relational (not a functional) connection between the premises (criteria) 
and the conclusion (decision).
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5.2  Contribution, right values, and avoidance

Once we know whether and how each criterion contributes to a given decision, 
the task of determining whether a given opinion dominates another opinion for 
avoiding that decision is greatly simplified. To make a start, consider criteria that 
do not contribute to a given decision. For any such criterion, any two opinions 
that only differ on that criterion will simply dominate each other for avoiding that 
decision. After all, under these assumptions, for any opinion profile, casting the 
first opinion will support the same decision as casting the second opinion would. 
More formally:

Observation 5 Let Φ = ⟨N,C,D,T , f ⟩ be a CDP, let O and O′ be opinions, and let 
d ∈ D . If Δ(O,O�) ⊆ C𝜖

Φ,d
 , then O ⪯Φ

d
O� and O� ⪯Φ

d
O.

What about opinions that only differ on criteria that contribute strictly? Given an 
opinion O that assigns value 1 to a given criterion that contributes strictly positively 
to a given decision, the opinion O′ that differs from O only on that criterion will 
weakly dominate O . More precisely:

Observation 6 Let Φ = ⟨N,C,D,T , f ⟩ be a CDP, let c ∈ C , and let d ∈ D . Then,

• If c contributes strictly positively to d in Φ , then for any opinions O,O′ with 
Δ(O,O�) = {c} and O�(c) = 0 it holds that O� ≺Φ

d
O.

• If c contributes strictly negatively to d in Φ , then for any opinions O,O′ with 
Δ(O,O�) = {c} and O�(c) = 1 it holds that O� ≺Φ

d
O.

This suggests that the best way to avoid a given decision is by assigning the value 
0 to any criterion that contributes strictly positively to that decision. By similar rea-
soning, this observation suggests that the best way to avoid a given decision is by 
assigning the value 1 to any criterion that contributes strictly negatively to that deci-
sion. In accordance with these suggestions, we introduce a function �Φ

d
 that assigns 

the right value for avoiding d in Φ to any criterion that contributes strictly to d.

Definition 8 (Right Values) Let Φ = ⟨N,C,D,T , f ⟩ be a CDP and let d ∈ D . Then, 
we define �Φ

d
∶ C�

d
→ {0, 1} by:

Moreover, let O ∈ � and let c ∈ C�
d
 be a criterion that strictly contributes to d in Φ . 

Then, 

1. O assigns the right value for avoiding d in Φ to c if and only if O(c) = �Φ
d
(c);

2. O is right for avoiding d in Φ if and only if O assigns the right value for avoiding 
d to every criterion that contributes strictly to avoiding d.

�Φ
d
(c) ∶=

{
0, if c ∈ C+

d

1, if c ∈ C−
d
.
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Lastly, we let RΦ
d
(O) denote the set of criteria that contribute strictly and for which 

the opinion O assigns the right value for avoiding d in Φ ; and we let ℝΦ
d

 denote the 
set of all opinions that are right for avoiding d in Φ.

It is easy to verify that RΦ
d
(O) = {c ∈ C�

d
∣ O(c) = �Φ

d
(c)} and that an opinion O 

is right for avoiding d in Φ if and only if RΦ
d
(O) = C�

d
 . In line with previous conven-

tions, we suppress the superscript Φ and simply write �d , Rd(O) , and ℝd when it is 
clear from the context.

With the help of these auxiliary definitions, we can characterize the simple domi-
nance relation ⪯Φ

d
 in terms of whether and how criteria contribute to d in Φ and 

the values assigned to the criteria by the opinions. An opinion O simply dominates 
opinion O′ for avoiding decision d in CDP Φ if and only if (a) O and O′ agree on all 
criteria that contribute non-strictly, and (b) for all the criteria that contribute strictly, 
O assigns the right value whenever O′ does.

Theorem 1 Let Φ be a CDP, let O,O� ∈ � , and let d ∈ D . Then,

To better grasp this characterization of the dominance relation, it may be helpful 
to state three corollaries of this theorem. Consider any CDP Φ and any decision d . 
Recall from Sect. 3 that for any two opinions O and O′ there are three possibilities: 

(1) they are equivalent for avoiding d , i.e. each simply dominates the other for avoid-
ing d;

(2) they are incomparable for avoiding d , i.e. neither simply dominates the other for 
avoiding d ; or

(3) one weakly dominates the other for avoiding d.

Each of these possibilities can now be characterized as follows. First, two opinions 
are equivalent for avoiding a given decision if and only if they differ only on criteria 
that do not contribute to that decision.26 Second, two opinions are incomparable for 

O ⪯Φ
d
O� iff (a)Δ(O,O�) ∩ C±

Φ,d
= � and

(b)RΦ
d
(O�) ⊆ RΦ

d
(O).

Table 2  Classification of criteria in terms of whether and how they contribute to a given decision d (sup-
pressing the subscript Φ)

c ∈ C+
d

c ∈ Cε
d

c ∈ C±
d c ∈ C−

d

Does c contribute positively to d?
Yes No

Does c contribute negatively to d?

Yes

No

26 Notice that this entails Observation 5.
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avoiding a given decision if and only if either (a) they differ on criteria that contrib-
ute non-strictly, or (b) there exist two criteria that contribute strictly on which they 
differ such that the former opinion assigns the right value to the first criterion and 
the latter opinion assigns the right value to the second criterion. Third, one opinion 
weakly dominates another opinion for avoiding a given decision if and only if (a) 
they agree on criteria that contribute non-strictly, (b) whenever the latter opinion 
assigns the right value to a criterion that contributes strictly, then the former opinion 
does so too, and (c) they differ on a criterion that contributes strictly.27

Corollary 1 Let Φ be a CDP, let O,O� ∈ � , and let d ∈ D . Then,

To illustrate these characterizations, let us return to the broad class of collective 
decision procedures of the form Φ(k,l) presented on page 7 and consider the decision 
1. It is easy to see that every criterion contributes to decision 1 and, moreover, every 
criterion contributes strictly positively to decision 1. In other words, C�

1
= � and, 

moreover, C+
1
= C . Consider examples where |C| = 4 . Then, for instance, following 

Corollary 1, it is easy to verify that opinions (0, 0, 0, 1) and (1, 0, 0, 0) are incompa-
rable for avoiding 1 and that (1, 0, 1, 0) weakly dominates (1, 0, 0, 0) for avoiding 1.

It is important to remark that Theorem 1 yields a characterization of the opinions 
that maximally avoid a given decision. Recall that ℝΦ

d
 is the set of all opinions that 

assign the right value to all criteria that contribute strictly to d in Φ . The following 
theorem demonstrates that this set is identical to the set of opinions that maximally 
avoid decision d in Φ:

Theorem 2 Let Φ = ⟨N,C,D,T , f ⟩ be a CDP and let d ∈ D . Then,

We can thus determine the opinions that maximally avoid a given decision once 
we know which criteria contribute strictly. After all, a given opinion maximally 
avoids a given decision if and only if it assigns the right value to each criterion that 
contributes strictly.

To illustrate that Theorem  2 greatly simplifies the task of determining the 
opinions that maximally avoid a given decision, let us reconsider the broad class 
of collective decision procedures of the form Φ(k,l) and reconsider decision 1. As 
mentioned before, C+

1
= C and, therefore, C�

1
= C . As a result, �1 ∶ C → {0, 1} is 

(1) O ⪯Φ
d
O� and O� ⪯Φ

d
O iff Δ(O,O�) ⊆ C𝜖

Φ,d
.

(2) O Φ
d
O� and O� Φ

d
O iff (a) Δ(O,O�) ∩ C±

Φ,d
≠ � or

(b) RΦ
d
(O�) ⊈ RΦ

d
(O) and RΦ

d
(O) ⊈ RΦ

d
(O�).

(3) O ≺Φ
d
O� iff (a) Δ(O,O�) ∩ C±

Φ,d
= � and

(b) RΦ
d
(O�) ⊂ RΦ

d
(O).

ℝ
Φ
d
= 𝔸

Φ
d
.

27 Notice that this entails Observation 6.
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given by �1(c) = 0 for all c ∈ C and ℝ1 is the singleton set given by the opinion that 
assigns value 0 to all criteria. In light of Theorem 2, it follows that this opinion is the 
only one that maximally avoids 1.

Let us end with considering a case where k > l + 1 and, hence, 1
2
∈ D . It is easy to 

verify that every criterion contributes to decision 1
2
 and, moreover, every criterion 

contributes both positively and negatively to decision 1
2
 . In other words, C�

1

2

= � and 

C±
1

2

= C . In particular, C�
1

2

= � and thus ℝ 1

2

= 𝕆 . Hence, Theorem  2 implies that 

every opinion maximally avoids 1
2
 . In what follows we will see that this difference 

between decisions 1 and 1
2
 has immediate repercussions for whether the CDP is vul-

nerable to responsibility voids with respect to 1 and 1
2
 , respectively.

6  Characterization of responsibility voids

We are now in the position to characterize the class of all criteria-based decision 
procedures that are immune to responsibility voids with respect to a given decision. 
In Sect. 6.1, we provide a characterization in terms of the set of opinions that assign 
all the right values for avoiding that decision (Theorem  3). In Sect.  6.2, we give 
another characterization in terms of the shape of the set of opinions that do not sup-
port the decision, where this set can be conceived as a subspace of the entire opinion 
space � (Theorem 4).

6.1  Right values and responsibility voids

A given criteria-based decision procedure is immune to responsibility voids with 
respect to a given decision if and only if all the opinions that are right for avoiding 
that decision do not support that decision. Or, equivalently, (by Theorem 2) if and 
only if the opinions that maximally avoid that decision do not support the decision.28

Theorem 3 Let Φ = ⟨N,C,D,T , f ⟩ be a CDP and let d ∈ D . Then, the following are 
equivalent: 

1. Φ is immune to responsibility voids with respect to d;
2. any opinion that maximally avoids d does not support d , i.e. �Φ

d
⊆ �

Φ
d

;
3. any opinion that is right for avoiding d does not support d , i.e. ℝΦ

d
⊆ 𝔽

Φ
d

.

As a consequence, a given criteria-based decision procedure is vulnerable to 
responsibility voids with respect to a given decision if and only if there exists an 
opinion that maximally avoids that decision while supporting that decision. Or, 
equivalently, if and only if there exists an opinion that assigns the right values for 

28 Notice that this entails Observation 4.
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avoiding that decision to all criteria that contribute strictly while supporting that 
decision.

Let us illustrate the usefulness of this theorem by considering the broad class 
of collective decision procedures of the form Φ(k,l) . Consider decision 1. We have 
seen that ℝ1 and �1 are given by the singleton set containing the opinion that 
assigns value 0 to all criteria. Since the decision function assigns decision 0 to 
that opinion, Theorem 3 demonstrates that collective decision procedures of the 
form Φ(k,l) are immune to responsibility voids with respect to 1. Similar reasoning 
shows that Φ(k,l) is also immune to responsibility voids with respect to 0. Consider 
decision 1

2
 . We have seen that ℝ 1

2

= 𝔸 1

2

= 𝕆 . Hence, Theorem 3 shows that col-
lective decision procedures of the form Φ(k,l) are vulnerable to responsibility voids 
with respect to 1

2
.

In the remainder of this subsection we try to provide some insights into why 
the theorem obtains. Note first that, by Theorem 2, items (2.) and (3.) of Theo-
rem 3 are equivalent. Also, item (1.) implies item (2.) by Observation 4.

We now explain why (2.) implies (1.). To do so, we adapt the notion of an 
affine subset from linear algebra. An affine subset of � can be thought of as a set 
of opinions that is generated by fixing the values of some criteria and by freely 
choosing the values for the other criteria. More precisely:

Definition 9 (Affine Subset) Let Φ = ⟨N,C,D,T , f ⟩ be a CDP. A subset � ⊆ � is 
called an affine subset of � if and only if there is a C

�
⊆ C and g

�
∶ C

�
→ {0, 1} 

such that � = {O ∈ � ∣ O(c) = g
�
(c) for all c ∈ C

�
}.

To illustrate, it may be helpful to consider the case where |C| = 3 . We can dis-
tinguish four classes of affine subsets � of � by varying the size of C

�
 : 

 (i) |C
�
| = 3 yields singleton affine subsets of the form {O},

 (ii) |C
�
| = 2 yields affine subsets of the form {O,O�} with Δ(O,O�) a singleton, 

i.e., sets corresponding to one edge of the cube,
 (iii) |C

�
| = 1 yields affine subsets of the form {O1,O2,O3,O4} which correspond 

to one face of the cube,
 (iv) |C

�
| = 0 yields affine subsets that span the entire set � , hence the entire cube.

Let us briefly reconsider the CDPs Φ0 and Φ1 that we have discussed previously 
(see Figs. 1, 2). Notice that in Φ0 it holds that �

1
 is an affine subset of � while �

0
 

is not. In comparison, in Φ1 it holds that neither �
1
 nor �

0
 is an affine subset of �.

Affine subsets are important because they satisfy a kind of closure property: for 
every opinion profile that consists of opinions from an affine subset it holds that the 
group opinion based on that opinion profile will also be in that affine subset.

Observation 7 Let Φ = ⟨N,C,D,T , f ⟩ be a CDP. Let � be an affine subset of � and 
let P ∈ �

N be an opinion profile. Then, OΦ
P
∈ �.



775

1 3

The problem of no hands: responsibility voids in collective…

The final crucial observation is that the opinions that are right for avoiding a 
given decision constitute an affine subset of the set of opinions. After all, for any 
CDP Φ and decision d , it holds that C𝜎

d
⊆ C and �

d
 is a function from C�

d
 to {0, 1} . 

Since Theorem 2 proves that the set of opinions that are right for avoiding a given 
decision is identical to the set of opinions that maximally avoid that decision, it fol-
lows that the latter constitutes an affine subset.

Observation 8 Let Φ = ⟨N,C,D,T , f ⟩ be a CDP and let d ∈ D . Then, �Φ
d

 is an affine 
subset of �.

These observations jointly entail that whenever all individuals cast a vote that 
maximally avoids a given decision d , then the group opinion maximally avoids d as 
well. Under the assumption that all opinions that maximally avoid d do not support 
d , it follows that whenever all individuals cast a vote that maximally avoids d , then 
the collective decision does not support d . Hence, under this assumption, the CDP is 
immune to responsibility voids with respect to the decision in question.

6.2  Opinion space and responsibility voids

Whereas we have characterized responsibility voids with respect to a given decision 
in terms of the right values in the previous section, we here aim for such a charac-
terization in terms of the opinions that do not support the decision. More specifi-
cally, given a CDP Φ and a decision d , we investigate whether there exists a property 
on �

d
 that is both necessary and sufficient for immunity to responsibility voids with 

respect to decision d.
To do so, we generalize the notion of affine subsets. We first introduce some ter-

minology. For any two opinions, we let the interval between them be the set of opin-
ions that only differ on criteria where the initial two opinions differ. More precisely, 
for any opinions O and O′ , we use [O,O�] to denote the interval between O and O′ , 
which is given by [O,O�] ∶= {O�� ∈ � ∣ Δ(O,O��) ⊆ Δ(O,O�)}.

It may be helpful to note that one can imagine going from opinion O to O′ by 
stepwise changing one of the values of the criteria where they disagree. Note that, 
depending on the way the criteria are ordered, this gives different intermediate steps; 
the interval between O and O′ includes all possible intermediate steps.

An affine core � of a subset of opinions �′ can be thought of as an affine subset 
of the set of opinions where for every opinion in �′ there exists an opinion in the 
affine core � such that the interval between these opinions is included in �′ . More 
precisely,

Definition 10 (Affine Core) Let Φ = ⟨N,C,D,T ,F⟩ be a CDP and let �′ ⊆ � be a 
set of opinions. Then, 

1. A set � ⊆ �
′ is called an affine core of �′ if and only if (a) � is an affine subset 

of �′ and (b) for every O� ∈ �
� there exists an O ∈ � such that [O,O�] ⊆ �

�.
2. We say that �′ has an affine core if and only if there exists an affine core of �′.
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Every affine subset of the entire set of opinions trivially has an affine core 
(namely, the affine subset itself). There exist, however, subsets of opinions that 
have an affine core while they are not themselves an affine subset of the entire set of 
opinions. To demonstrate this possibility, let us briefly reconsider the CDP Φ0 (see 
Fig. 1). Recall that �Φ0

1
 is an affine subset of � while �Φ0

0
 is not. Although �Φ0

0
 is not 

an affine subset of � , it can easily be verified that �0 ∶= {(0, 0, 0)} is an affine core 
of �Φ0

0
 . It is also important to recognize that there exist subsets of opinions that do 

not have an affine core. To demonstrate this possibility, let us briefly reconsider the 
CDP Φ1 (see Fig. 2). It is easy to verify that �Φ1

1
= {(0, 0, 0), (0, 1, 1)} does not have 

an affine core. After all, any affine core of �Φ1

1
 needs to be a non-empty subset of it, 

and we have [(0, 0, 0), (0, 1, 1)] = {(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1)} ⊈ �
Φ1

1
.

Our main characterization result proves that a given CDP is immune to respon-
sibility voids with respect to a given decision if and only if the subset of opinions 
that do not support the decision has an affine core. The only-if implication follows 
from the more specific result that, for any given CDP that is immune to responsibil-
ity voids with respect to a given decision it holds that the opinions that are right for 
avoiding a given decision constitute an affine core of the set of opinions that do not 
support the decision.29

Theorem 4 Let Φ = ⟨N,C,D,T , f ⟩ be a CDP and let d ∈ D . Then, the following are 
equivalent: 

1. Φ is immune to responsibility voids with respect to d;
2. the set of opinions that do not support d has an affine core, i.e. �Φ

d
 has an affine 

core.

The important distinction with Theorem 3 is that Theorem 4 gives us a means for 
verifying whether a given CDP Φ is vulnerable to responsibility voids with respect 
to a given decision d by directly checking a property on �Φ

d
 without having to first 

determine the opinions that maximally avoid that decision �Φ
d

 . Let us highlight the 
fruitfulness of this theorem by considering some examples. Consider the CDP Φ0 

(see Fig.  1). Above, we illustrated that �Φ0

0
(= �

Φ0

1
) is an affine subset of � . This 

implies that �Φ0

0
 has an affine core and, by Theorem 4, it follows that CDP Φ0 is 

immune to responsibility voids with respect to 0. Consider the CDP Φ1 (see Fig. 2). 

We have shown that �Φ1

0
(= �

Φ1

1
) does not have an affine core. Hence, Theorem  4 

implies that Φ1 is vulnerable to responsibility voids with respect to decision 0.

29 One may wonder whether, given a CDP Φ and a decision d , it holds that ℝd is the largest or smallest 
core of �d  (in terms of set inclusion). It can, however, be shown that this is not the case. More generally, 
it can be shown that the set of affine cores of a given subset need not be closed under intersection or 
union.
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7  Atomism, monotonicity, and immunity

As noted in the Introduction, Theorems 3 and 4 are the central results of this paper. 
They provide conditions that are both necessary and sufficient for immunity to 
responsibility voids. We proceed with investigating two conditions that are much 
more well-known: atomism and monotonicity. We prove that each is sufficient for 
immunity to such voids. We will demonstrate that these conditions are equivalent for 
our class of CDPs and that they naturally link to the two distinct characterizations of 
immunity to voids.

First, in analogy with the account of reason-based preferences of Dietrich and 
List (2017) and the debate on moral particularism (Ridge and McKeever 2016), 
we may distinguish between atomistic and holistic decision functions.30 Atomism 
requires that the “valence” of any given criterion does not depend on which other 
criteria are satisfied. In contrast, holism requires that such interdependencies can 
arise, at least in some cases: for a given criterion c, there may exist configurations 
of values for the other criteria such that satisfying c is “better” for realizing a given 
decision, whereas for other configurations of values for the other criteria, satisfying 
c is in fact “worse” for realizing that decision.31

From the perspective of our formalism, and given the terminology from Sect. 5, 
these philosophical positions can be made more precise. Atomism boils down to the 
requirement that, whenever a criterion contributes to a given decision at all, then it 
contributes strictly. Formally, a decision function f is atomistic with respect to deci-
sion d if and only if C±

d
= � . Or, equivalently, if and only if C = C�

d
∪ C�

d
 . Otherwise, 

f is holistic with respect to d.
Any CDP that involves an atomistic decision function is immune to responsibility 

voids:

Theorem 5 Let Φ = ⟨N,C,D,T , f ⟩ be a CDP and let d ∈ D . If f  is atomistic with 
respect to d , then Φ is immune to responsibility voids with respect to d.

Theorem 5 demonstrates that if one endorses atomism for the relation between 
criteria and a given decision, then responsibility voids with respect to that deci-
sion are ruled out. Let us indicate how this theorem follows from our first charac-
terization result, i.e. Theorem 3. Recall that Theorem 3 states that a given CDP Φ 
is immune to responsibility voids with respect to a given decision d if and only if 
ℝd ⊆ 𝔽d  . Consider any CDP Φ involving a decision function that is atomistic with 
respect to d . Take an arbitrary opinion O that is right for avoiding d , i.e. O ∈ ℝd . 
Assume that O ∉ �d  , i.e. f (O) = d . Since f is surjective and |D| ≥ 2 , there must be 

30 This terminology was introduced in the theory of reasons by Dancy (1993). Importantly, the distinc-
tion we discuss here should not be confused with the distinction between particular and general immu-
nity to responsibility voids that we introduce in Sect.  8.1. As Dietrich and List (2017) point out, the 
property of atomism is also known as “separability” in decision and game theory.
31 One may further distinguish between radical holists who argue that this holds for any criterion (or rea-
son), and more moderate holists who would argue this holds at least for some criteria (or reason). In what 
follows we only consider the moderate version and call that “holism”.
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some O′ ≠ O such that f (O�) ≠ d . But note that, since f is atomistic with respect 
to d , O′ can only differ from O on criteria that either do not contribute to avoiding 
d at all, or that contribute strictly. Consider O�� ∈ ℝd such that O��(c) = O�(c) for 
all c ∉ C�

d
 . Then, O and O′′ only differ on criteria that do not contribute to avoid-

ing d . The assumption that f (O) = d entails that f (O��) = d (cf. Observation 5). 
Since f (O�) ≠ d = f (O��) and Rd(O

�) ⊆ Rd(O
��) , there must be a criterion c� ∈ C�

d
 

and opinions O
1
 and O

2
 such that Δ(O

1
,O

2
) = {c�} , f (O

1
) ≠ d = f (O

2
) , and 

O
2
(c�) = �

d
(c) . This contradicts the definition of �d and the fact that c′ contributes 

strictly to d . Hence, O ∈ �d  and, therefore, ℝd ⊆ 𝔽d  and Theorem 3 entails that Φ 
is immune to responsibility voids with respect to d.

Second, the notion of monotonicity is commonly considered in the literature 
on judgement aggregation. When we think of the opinion space � as a coordi-
nate system, then a decision function is (O, d)-monotonic if and only if, given 
any opinion O′ , whenever one moves from O′ towards O, one always preserves 
decision d . More precisely, given a decision function f, an opinion O and a deci-
sion d , we say that f is (O, d)-monotonic if and only if for all O′,O′′ such that 
O�� ∈ [O�,O] , if O� ∈ �

d
 , then O�� ∈ �

d
 . More generally, we say that the decision 

function f  is monotonic with respect to decision d if and only if there is some 
opinion O such that f  is (O, d)-monotonic.

For the class of collective decision-making procedures that we consider, it can 
be shown that any decision function is atomistic with respect to a given decision 
if and only if it is monotonic with respect to that decision:

Observation 9 Let f  be a decision function and let d ∈ D . Then, f  is atomistic with 
respect to d if and only if f  is monotonic with respect to d.

In light of this equivalence, Theorem  5 means that any CDP that involves a 
monotonic decision function is immune to responsibility voids. This statement 
can be verified alternatively using the notion of monotonicity and our second 
characterization result, i.e. Theorem 4. Recall that Theorem 4 states that a given 
CDP Φ is immune to responsibility voids with respect to a given decision d if and 
only if �d  has an affine core. Consider any CDP Φ involving a decision function 
that is monotonic with respect to d . Then, there exists an opinion O such that f  
is (O, d)-monotonic. Define O∗ as the opinion that disagrees with O on every cri-
terion: O∗(c) = 1 if and only if O(c) = 0 , for all c ∈ C . We show that {O∗} is an 
affine core of �d  . First, since f  is surjective and |D| ≥ 2 , there exists an opinion 
O′ with f (O�) ≠ d . Notice that O� ∈ [O∗,O] and, since f  is ( O, d)-monotonic, it 
holds that f (O∗) ≠ d . Second, take any O�� ∈ �d  and consider any O

1
∈ [O��,O∗] . 

Then, O�� ∈ [O
1
,O] and, since f  is (O, d)-monotonic, it holds that f (O

1
) ≠ d . It 

follows that {O∗} is an affine core of �d  and Theorem 4 entails that Φ is immune 
to responsibility voids with respect to d.

Given Theorem  5, it is natural to ask whether every CDP that is immune to 
responsibility voids necessarily involves an atomistic or monotonic decision func-
tion. Our formalism can be used to refute this claim. Consider the binary, majori-
tarian CDP Φ2 involving three agents, three criteria, and the decision function 
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depicted in Fig. 3. It is straightforward to verify that c3 contributes non-strictly to 
1 ( c3 corresponds to the z-axis). Therefore, C±

d
≠ � and f  is neither atomistic nor 

monotonic. However, �Φ2

1
 has an affine core, viz. the set {(1, 1, 1), (1, 1, 0)} . So, by 

Theorem 4, while its decision function is not monotonic, this CDP is immune to 
responsibility voids with respect to decision 0. Hence, immunity to responsibility 
voids with respect to a given decision does not entail monotonicity of the under-
lying decision function with respect to that decision. Conversely, that the underly-
ing decision function is holistic or non-monotonic need not imply vulnerability to 
responsibility voids.

8  Further observations

Our formal framework allows us to study the problem of no hands more rigorously 
and more generally. To illustrate this prospect, we now briefly consider two further 
questions that are triggered by our analysis. We show how answers to them can eas-
ily be found, relying on our characterization theorems. Since these questions have 
not been discussed in the literature on responsibility voids, they illustrate that our 
analysis can offer a novel and general perspective on philosophical issues.

8.1  Particular and general immunity

We have investigated the conditions under which collective decision-making can 
give rise to responsibility voids with respect to a particular decision. Whenever a 
criteria-based decision procedure is immune to responsibility voids with respect to 
a given decision, we could say that it satisfies particular immunity. Analogously, 
we could say that a CDP satisfies general immunity if it is immune to responsibility 
voids with respect to any decision.

This distinction is relevant in the following sense. There may be cases where 
responsibility voids with respect to one decision are considered worse than respon-
sibility voids with respect to another decision. For instance, consider again the 
example from the Introduction. It may well be that it is more important to invite all 
good candidates than it is to reject all poor candidates. After all, poor candidates 
will likely not persuade the committee in the interview. Under these circumstances, 
while we would like to avoid responsibility voids altogether, a responsibility void 
with respect to “the candidate is not invited” is considered more problematic than 
a responsibility void with respect to “the candidate is invited”. As a consequence, 
we would like to adopt a decision procedure that, among other desiderata, avoids 
responsibility voids with respect to the decision to reject applicants.

Let us now apply the above distinction to the example from the Introduction. 
The decision procedure of that example can be represented by CDP Φ0 (see Fig. 1). 
Recall from Sect. 6.2 that both �Φ0

1
 and �Φ0

0
 have an affine core. By Theorem 4, it fol-

lows that the example satisfies both particular and general immunity.
Given this observation, it is natural to ask whether particular immunity logically 

entails general immunity. Our formal analysis can be used to show that it does not. 
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To see why, let us reconsider the example Φ1 , represented in Fig. 2. As noted before 
(see Sect. 6), �Φ1

1
 does not have an affine core. In contrast, �Φ1

0
 does have an affine 

core, viz. {(1, 0, 0), (1, 1, 0), (1, 0, 1), (1, 1, 1)} . Consequently, Φ1 is not vulnerable to 
responsibility voids with respect to 1. In other words, if the committee of experts 
decides to adopt the policy for agriculture, then at least one of the group members 
can be held responsible for that decision. Hence, particular immunity does not entail 
general immunity:

Observation 10 There exist (binary, majoritarian) CDPs that satisfy particular 
immunity while not satisfying general immunity.

In light of the previous section on atomism and monotonicity, the above discus-
sion illustrates that CDP Φ1 shows that particular immunity does not entail mono-
tonicity of the underlying decision function. We may ask whether general immu-
nity would entail monotonicity. However, CDP Φ2 can be used to demonstrate the 
invalidity of this entailment. After all, this CDP satisfies general immunity: notice 
that �Φ2

0
 has an affine core, viz. the set {(0, 0, 0), (0, 0, 1)} , and, therefore, Φ2 is also 

immune to responsibility voids with respect to 1. Hence:

Observation 11 There exist (binary, majoritarian) CDPs that involve a non-mono-
tonic and holistic decision function while satisfying general immunity.

8.2  Majoritarian responsibility voids

One can view the problem of responsibility voids as an instance of a more general 
problem regarding responsibility distributions. One may worry that a given collec-
tive decision procedure is open to the possibility that too little responsibility can be 
allocated to the involved individuals. For instance, our notion of responsibility voids 
concerns cases where the responsibility for a given decision cannot be allocated to 
any individual. More generally, we may consider the problem where the responsibil-
ity for a given decision cannot be allocated to enough individuals. In this section, 

Fig. 3  A three-dimensional 
representation of the possible 
opinions and decision function 
in Φ

2

(1, 1, 1)(0, 1, 1)

(1, 0, 1)

(1, 1, 0)

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)(0, 0, 0)
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we focus on a particular instance of this more general concern, namely majoritarian 
responsibility voids, and on the question of whether majoritarian CDPs are immune 
to those majoritarian voids.

To be precise, we say that a group of individuals G ⊆ N is a majority if and only 
if |G| ≥ |N|+1

2
 . In a given CDP, a profile of opinions creates a majoritarian responsi-

bility void when it brings about a certain decision while the group of individuals that 
can be held responsible do not constitute a majority group. More formally:

Definition 11 (Majoritarian responsibility voids) Let Φ = ⟨N,C,D,T , f ⟩ be a CDP, 
and let d ∈ D.

• Where P is an opinion profile, P creates a majoritarian responsibility void with 
respect to d if and only if Φ(P) = d while the group of all individuals that can be 
held responsible for d is not a majority.

• Φ is immune to majoritarian responsibility voids with respect to d if and only if 
there are no opinion profiles P that create a majoritarian responsibility void with 
respect to d.

We say that a given CDP is vulnerable to majoritarian responsibility voids with 
respect to a given decision if and only if there exists an opinion profile that creates a 
majoritarian responsibility void with respect to that decision.

Obviously, vulnerability to responsibility voids entails vulnerability to majoritar-
ian responsibility voids. Or, equivalently, immunity to majoritarian responsibility 
voids entails immunity to responsibility voids. It is, therefore, natural to investigate 
the converse entailment and ask whether immunity to responsibility voids entails 
immunity to majoritarian responsibility voids. For the class of majoritarian CDPs, it 
turns out that this entailment is valid:32

Theorem 6 Let Φ = ⟨N,C,D,T , f ⟩ be a majoritarian CDP and let d ∈ D . Then, Φ 
is immune to majoritarian responsibility voids with respect to d if and only if Φ is 
immune to responsibility voids with respect to d.

9  Conclusion and outlook

Examples of collective decisions such as the familiar discursive dilemma have been 
central in arguments for the threat of responsibility voids. We have studied the gen-
eral class of criteria-based decision procedures (which includes the decision proce-
dure of the discursive dilemma) and specified a conception of individual responsi-
bility for collective decisions that are obtained by means of such a procedure. The 
resulting framework has been used to illustrate the threat of the problem of no hands 

32 Theorem 6 can be generalized to arbitrary CDPs, by introducing a notion of m-responsibility voids for 
any m ∈ {1,… , |N|} . See Theorem 7 in Appendix C.
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for such procedures: there exist criteria-based decision procedures that are vulner-
able to responsibility voids. Nevertheless, the procedure of the discursive dilemma 
has been shown to be immune to responsibility voids (at least, under the assumption 
that voting untruthfully is eligible).

Our central results provide two conceptually distinct characterizations of immu-
nity to responsibility voids for the class of criteria-based decision procedures. For 
all these characterizations, the shape of the decision function f is essential; note that 
the threshold function plays no role in our characterizing conditions (cf. items 2 and 
3 of Theorem 3 and item 2 of Theorem 4). We have moreover indicated how our 
framework and results can be used to investigate a number of topics in the general 
logic of responsibility voids. In particular, we have proved that any CDP involving a 
monotonic or atomistic decision function is immune to responsibility voids.

While our formalism is quite general, one could consider further dropping some 
restrictions in future work. We add four remarks. First, one may ask whether and 
how our results generalize to a setting in which unanimity thresholds are allowed 
(i.e. where T(c) = 1 or T(c) = |N| for some c ∈ C ). Here it should be noted that 
some of our theorems are no longer valid in this more general setting: the conditions 
from Theorem 3.3 and Theorem 4.2 are no longer necessary for immunity to respon-
sibility voids.33 Furthermore, it remains an open question whether those conditions 
are sufficient for immunity to responsibility voids, and it is unclear whether the con-
dition from Theorem  3.2 is necessary and sufficient for immunity to responsibil-
ity voids in this general setting. Lifting the non-unanimity assumption thus seems 
to invite intricacies that require characterizing conditions other than the ones we 
spelled out in Theorems 3 and 4.

For a second type of generalization, one could consider dropping our assumption 
regarding full uncertainty. After all, there will be cases where individuals have at 
least some clue about the opinions of the others. Our specification of responsibility 
involves dominance and admissibility. This decision-theoretic principle makes most 
sense in cases where individuals take all actions of the others into consideration. 
In other cases, one could consider adopting other decision-theoretic principles to 
specify a conception of responsibility. Of course, doing so may give rise to other 
conditions for immunity to responsibility voids.

Third, one could consider dropping the assumption of full eligibility. One could 
argue that certain opinions are not eligible in some cases. Relaxing this assumption 
is a delicate affair and may lead to different conditions for responsibility voids.

33 To see why this is so, consider a procedure Φ = ⟨N,C,D,T , f ⟩ with N arbitrary, C = {c1, c2} , 
D = {0, 1} , T(c1) = T(c2) = 1 , and f (O) = 1 iff O = (1, 1) or O = (0, 0) . In this case, both criteria con-
tribute non-strictly and so ℝf

0
= 𝕆 , but given the way the thresholds and the decision function interact, 

only (1, 1) is maximal for avoiding 0. Indeed, if a voter casts opinion (1, 1) , then the group is guaranteed 
to have that opinion as well and hence to avoid decision 0; the same cannot be said about any of the 
other opinions. As a result, this procedure is immune to responsibility voids with respect to 0. However, 
the decision function clearly does not satisfy the characterizing conditions from Theorem 3.3 or Theo-
rem 4.2.
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Fourth, another interesting generalization would be to drop the assumption that 
the criteria have just two possible values. That is, one may consider ranges of values 
other than {0, 1} . For example, one could introduce a value for indecision to accom-
modate cases where individuals can be undecided on some of the criteria. Alter-
natively, for certain collective decisions one may adopt the Likert scale (typically 
a five point scale) to express how much one agrees or disagrees with a particular 
statement.34 In other cases, criteria may even need to be able to take any value from 
a continuous scale—e.g. if the criterion is specified in terms of the utility a certain 
agent will receive. Each of these alternatives would require a fundamental change 
to our present framework, in that there are different ways one might determine the 
group opinion—depending on the specific interpretation of the criteria and their 
possible values.

Setting these assumptions and generalizations aside, we would like to emphasize 
that our framework and results can be the basis for studying the likelihood of respon-
sibility voids. One could investigate the probability that a given collective decision 
procedure leads to such a void. Of course, this probability will be zero for CDPs that 
are immune to responsibility voids. As a first step, one could try to approximate this 
likelihood in a given CDP by assuming that all opinion profiles are equally likely. 
More generally, one could estimate the likelihood of responsibility voids for the 
class of CDPs involving a fixed number of individuals ( N ), criteria ( C ), or collec-
tive decisions ( D ). In doing so, one could follow up with the question of whether the 
likelihood of such voids grows or diminishes when the number of agents, criteria, or 
decisions is increased.

Appendix

In this appendix, we prove all the observations and theorems that are mentioned in 
the main text. To enhance readibility, we hold fixed a given CDP Φ = ⟨N,C,D,T , f ⟩ 
and suppress it in notation whenever possible. We first establish a number of useful 
lemmas (Section A) and we prove the main results of the paper (Section B). In Sec-
tion C, we prove the theorems from Sects. 7 and 8.

Appendix A: Some useful lemmas

In what follows, we say that an agent i is pivotal for criterion c given opinion profile 
P if and only if for every O ∈ � it holds that OΦ

Pi→O

(c) = O(c) . Intuitively, this means 
that given P , i ’s opinion regarding c determines whether the group opinion (given 
threshold assignment T  ) will settle on value 0 or rather on value 1, for criterion c.

34 A telling example here are the criteria that are used to review papers in the online system Easychair, 
with a scale ranging from “ −2 ” to “ +2 ”. On the basis of these criteria one may for instance decide when 
the paper is accepted or considered for peer review.
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Lemma 1 Each of the following hold: 

1. If c contributes positively to d , O(c) = 0 , and O�(c) = 1 , then O′ d O.
2. If c contributes negatively to d , O(c) = 1 , and O�(c) = 0 , then O′ d O.

Proof Ad 1. Suppose the antecedent holds. By Definition 7.1, there are O∗,O
�
∗
 such 

that Δ(O∗,O
�
∗
) = {c} , O∗(c) = 0 , O�

∗
(c) = 1 , f (O∗) ≠ d , and f (O�

∗
) = d.

Fix an opinion profile P in which the opinion of the first agent is arbitrary, 
T(c) − 1 other agents choose O∗ , and the remaining agents choose O�

∗
.35 Note that for 

all c� ∈ C⧵{c} , all agents except from (possibly) the first agent agree. Since 
1 < T(c�) < |N| for all c� ∈ C , this implies that the first agent is only pivotal for c 
given P : for all c� ∈ C⧵{c} , OΦ

P1→O

(c�) = OΦ
P1→O�

(c�) = O∗(c
�) = O�

∗
(c�).

Note also that there are T(c) − 1 agents i with Oi
P1→O

(c) = 1 , and there are T(c ) 
agents i with Oi

P1→O�
(c) = 1 . Hence, OΦ

P1→O

(c) = 0 and OΦ
P1→O�

(c) = 1.
From this it follows that OΦ

P1→O

= O∗ and OΦ
P1→O�

= O�
∗
 . Consequently, 

Φ(P1→O) ≠ d and Φ(P1→O� ) = d . By Definition 3.1, O′ d O.
Ad 2. The proof is entirely analogous to the proof for item (1.), relying on Defini-

tion 7.2 and swapping the values 0 and 1 throughout.   ◻

Lemma 2 Each of the following hold: 

1. If c ∈ C+
d
 , Δ(O,O�) = {c} , and O�(c) = 1 , then O ≺d O

′.
2. If c ∈ C−

d
 , Δ(O,O�) = {c} , and O�(c) = 0 , then O ≺d O

′.

Proof Ad 1. Suppose the antecedent holds. We first show that O ⪯d O
� . So let P be 

an arbitrary opinion profile. Note that the only difference (if any) between OΦ
P1→O

 and 
OΦ

P1→O�
 consists in the value they assign to c . If, given P , the first agent is not pivotal 

for c , then OΦ
P1→O

= OΦ
P1→O�

 . If the first agent is pivotal for c , then OΦ
P1→O

(c) = 0 while 
OΦ

P1→O�
(c) = 1 . But in that case, since c does not contribute negatively to d and by 

Definition 7.2, it follows that Φ(P1→O� ) ≠ d implies Φ(P1→O) ≠ d . Since P was 
arbitrary, it follows that O ⪯d O

�.
By the supposition, c contributes positively to d . By Lemma 1.1, O′ d O . Hence, 

O ≺d O
′.

Ad 2. The proof is entirely analogous to that for item (2.), switching values 0 and 
1 throughout and relying on Definition 7.1 and Lemma 1.2.   ◻

Lemma 3 If Δ(O,O�) ⊆ C𝜎
d
 and Rd(O) ⊂ Rd(O

�) , then O ≺d O
′.

35 Note that in this proof, we crucially rely on the property that, for all c ∈ C , 1 < T(c) < |N| and hence 
that T(c) − 1 ∈ {1,… , |N| − 2} . See also our remark in Sect. 9 concerning unanimity thresholds and the 
fact that we exclude these.
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Proof Suppose the antecedent holds. Fix a repetition-free enumeration {c1,… , cm} 
of Δ(O,O�) . Consider the sequence ⟨O = O1,O2,O3,… ,Om = O�⟩ , where for all 
n ∈ {1,… ,m − 1} , On+1 is obtained from On by switching the value of cn+1 . By 
Lemma 2, O1 ≺d O2 ≺d … ≺d Om−1 ≺d Om . By the transitivity of ≺d (cf. Observa-
tion 2), O1 ≺d Om and hence O ≺d O

′ .   ◻

Lemma 4 If Δ(O,O�) ⊆ C𝜎
d
 and Rd(O) ⊆ Rd(O

�) , then O ⪯d O
�.

Proof Suppose the antecedent holds. If Rd(O) = Rd(O
�) , then O = O� and hence the 

consequent holds trivially. If Rd(O) ⊂ Rd(O
�) , then by Lemma 3, O ⪯d O

� .   ◻

Lemma 5 If Δ(O,O�) = {c} for some c ∈ C�
d
 , then O� ⪯d O and O ⪯d O

�.

Proof Suppose the antecedent holds. Let P be an arbitrary opinion profile. Note that 
the only difference between OΦ

P1→O

 and OΦ
P1→O�

 can consist in the value they assign to 
c. But then, since c ∈ C�

d
 , it follows that Φ(P1→O) = d iff Φ(P1→O� ) = d .   ◻

Lemma 6 If Δ(O,O�) ⊆ C𝜖
d
 , then O ⪯d O

� and O� ⪯d O.

Proof Analogous to the proof of Lemma 3, but relying on Lemma 5 instead of 
Lemma 2, and relying on the transitivity of ⪯d (cf. Observation 2).   ◻

Lemma 7 If Δ(O,O�) ⊆ C𝜎
d
 , Rd(O) ⊆ Rd(O

�) , and O ∈ �d , then O� ∈ �d.

Proof Analogous to the proof of Lemma 3: construct a sequence of opinions that 
connect O and O′ , each time changing the value for one criterion in Δ(O,O�) , and 
then, relying on the supposition that Rd(O) ⊆ Rd(O

�) , show that if O ∈ �d , then all 
opinions in this sequence are in �d .   ◻

Appendix B: Main characterization results

Theorem 1. Let Φ be a CDP, let O,O� ∈ � , and let d ∈ D . Then,

Proof (⇒ ) Suppose that (a) is false. Hence, there is some criterion c that contributes 
both positively and negatively to d , and O(c) ≠ O�(c) . By Lemma 1, O d O

′ . Sup-
pose that (b) is false. This can mean only two things. Either there is a c ∈ C+

d
 such 

that O�(c) = 0 and O(c) = 1 , or there is a c ∈ C−
d
 such that O�(c) = 1 and O(c) = 0 . In 

either case, by Lemma 1, O d O
′.

O ⪯Φ
d
O� iff (a) Δ(O,O�) ∩ C±

Φ,d
= � and

(b) RΦ
d
(O�) ⊆ RΦ

d
(O).
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(⇐ ) Suppose that both (a) and (b) hold. Let O∗ be such that it agrees with O 
for all c ∈ C⧵C�

d
 and with O′ for all c ∈ C�

d
 . Hence, Δ(O,O∗) ⊆ C𝜖

d
 . By Lemma 6, 

O ⪯d O∗ ( † ). Note that Rd(O∗) = Rd(O) and hence Rd(O
�) ⊆ Rd(O∗) . Moreover, 

Δ(O∗,O
�) ⊆ C𝜎

d
 . By Lemma 4, O∗ ⪯d O

� . By ( † ) and the transitivity of ⪯d , O ⪯d O
� .  

 ◻

Theorem 2. Let Φ = ⟨N,C,D,T , f ⟩ be a CDP and let d ∈ D . Then,

Proof (⊆ ) Suppose that O ∉ �d . Hence, there is some O� ∈ � with O′ ≺d O . By 
Theorem 1, Δ(O,O�) ∩ C±

d
= � . Since O d O

′ , it also follows by Theorem 1 that 
Rd(O) ⊂ Rd(O

�) . But then Rd(O) ≠ C�
d
 , and hence O ∉ ℝd.

(⊇ ) Suppose that O ∉ ℝd . It follows that Rd(O) ≠ C�
d
 . Let c ∈ C�

d
⧵Rd(O) and 

let O′ differ from O only in the value of c . It follows that Rd(O) ⊂ Rd(O
�) and 

Δ(O,O�) ∩ C±
d
= � . By Theorem 1, O′ ≺d O . Hence, O ∉ �d .   ◻

Theorem 3. Let Φ = ⟨N,C,D,T , f ⟩ be a CDP and let d ∈ D . Then, the following 
are equivalent: 

1. Φ is immune to responsibility voids with respect to d;
2. any opinion that maximally avoids d does not support d , i.e. �Φ

d
⊆ �

Φ
d

;
3. any opinion that is right for avoiding d does not support d , i.e. ℝΦ

d
⊆ 𝔽

Φ
d

.

Proof Note that items 2 and 3 are equivalent in view of Theorem 2. We freely rely 
on this equivalence in what follows.

(1 ⇒ 2) Suppose that �d ⊈ �d . Fix an O ∈ �d ∩�d . Let P be such that, for all 
i ∈ N , Oi

P
= O . Then OΦ

P
= O and hence Φ(P) = d . However, none of the agents can 

be held responsible for d , given P . It follows that Φ is not immune to responsibility 
voids with respect to d.

(3 ⇒ 1) Suppose that Φ is not immune to responsibility voids with respect to d . 
Hence, there is some P for which it holds that Φ(P) = d and yet, no agent in N can 
be held responsible for d given P . This means that, for all agents i ∈ N , Oi

P
∈ �d 

and hence Oi
P
∈ ℝd . Since Rd is an affine subset of � , Observation 7 entails that 

OΦ
P
∈ ℝd . Moreover, f (OΦ

P
) = Φ(P) = d . It follows that, for some O ∈ ℝd , f (O) = d 

and, hence, ℝd ⊈ 𝔽d .   ◻

Theorem 4. Let Φ = ⟨N,C,D,T , f ⟩ be a CDP and let d ∈ D . Then, the following 
are equivalent: 

1. Φ is immune to responsibility voids with respect to d;
2. the set of opinions that do not support d has an affine core, i.e. �Φ

d
 has an affine 

core.

ℝ
Φ
d
= 𝔸

Φ
d
.
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Proof In what follows, we freely rely on the equivalence between items (1.) and (3.) 
of Theorem 3.

(⇒ ) Suppose that ℝd ⊆ 𝔽d . We show that ℝd is an affine core of �d . Notice that ℝd 
is affine. It thus suffices to prove that ℝd satisfies item (b) in Definition 10.1.

Take an arbitrary O ∈ �d . Let O′ be given by

Notice that O� ∈ ℝd , that Rd(O) ⊆ Rd(O
�) and that Δ(O,O�) ⊆ C𝜎

d
 . We need to prove 

that [O,O�] ⊆ �d.
Let O�� ∈ [O,O�] . It follows that Δ(O,O��) ⊆ Δ(O,O�) ⊆ C𝜎

d
 and Rd(O) ⊆ Rd(O

��) . 
By Lemma 7, O�� ∈ �d , as desired.

(⇐ ) Assume that � is an affine core of �d . We need to show that ℝd ⊆ 𝔽d . 
Let CK ⊆ C and gK ∶ CK → {0, 1} be such that � = {O ∣ for every c ∈ CK it 
holds that O(c) = gK(c)} . Let us define, for any O ∈ � , the set K(O) ⊆ CK as 
the set of criteria in CK for which O assigns the same value as gK . Formally, 
K(O) = {c ∈ CK ∣ O(c) = gK(c)}.

First, we show that that ( † ) for all O,O� ∈ � : if Δ(O,O�) ⊆ K(O) and O� ∈ �d , 
then O ∈ �d . Let O,O� ∈ � be such that Δ(O,O�) ⊆ K(O) and O� ∈ �d . Since � is 
an affine core of �d , there exists an O∗ ∈ � such that [O�,O∗] ⊆ �d . We prove that 
O ∈ [O�,O∗] . Let c ∈ Δ(O�,O) . Then, since Δ(O�,O) ⊆ K(O) and O∗ ∈ � , it follows 
that c ∈ K(O) ⊆ CK = K(O∗) and c ∉ K(O�) . Hence, c ∈ K(O∗)⧵K(O�) ⊆ Δ(O�,O∗) . 
In sum, O ∈ [O�,O∗] and thus O ∈ �d , as desired.

Second, we show that ( ‡ ) CK ∩ C±
d
= � , or, equivalently, that CK ⊆ C𝜎

d
∪ C𝜖

d
 . 

Let c ∈ CK . Case 1: gK(c) = 1 . We show that c does not contribute positively to d . 
Take any O and O′ with Δ(O,O�) = {c} , O�(c) = 0 , O(c) = 1 , and f (O�) ≠ d . Hence, 
O� ∈ �d . We need to show that also O ∈ �d . Notice that O(c) = gK(c) and, therefore, 
Δ(O,O�) = {c} ⊆ K(O) . So by ( † ), it follows that O ∈ �d . Case 2: gK(c) = 0 . By an 
analogous argument, we can show that c does not contribute negatively to d . In sum, 
CK ∩ C±

d
= � , as desired.

Third, we show that ( ⋆ ) for any c ∈ CK ∩ C�
d
 it holds that gK assigns the right 

value for avoiding d to c , i.e. gK(c) = �d(c) . Let c ∈ CK ∩ C�
d
 . Case 1: gK(c) = 1 . In 

view of Case 1 of the preceding paragraph, this entails that c does not contribute 
positively to d . Hence, c contributes strictly negatively to d and hence gK(c) = �d(c) . 
Case 2, i.e. gK(c) = 0 is again proven analogously, relying on Case 2 of the preced-
ing paragraph.

Finally, we prove that ℝd ⊆ 𝔽d . Take an arbitrary O ∈ ℝd . We show that O ∈ �d . 
Consider O∗ given by:

Then, O∗ ∈ � ⊆ �d and by ( ‡ ), Δ(O,O∗) ⊆ CK ⊆ C𝜎
d
∪ C𝜖

d
 . By ( ⋆ ), it follows that 

Δ(O,O∗) ⊆ C𝜖
d
 . Hence, f (O) = d iff f (O∗) = d . Since f (O∗) ≠ d , it follows that 

f (O) ≠ d . We conclude that O ∈ �d , as desired.   ◻

O�(c) =

{
O�(c) = �d(c) if c ∈ C�

d

O(c) otherwise.

O∗(c) ∶=

{
gK(c), if c ∈ CK

O(c), otherwise.
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Appendix C: Further results

Observation 9. Let f  be a decision function and let d ∈ D . Then, f  is atomistic with 
respect to d if and only if f  is monotonic with respect to d.

Proof (⇒ ) Suppose f  is atomistic with respect to d . Let O be some arbitrary 
member of ℝd . Then for any O�,O�� ∈ � such that O�� ∈ [O�,O] , it holds that 
Rd(O

�) ⊆ Rd(O
��) ⊆ Rd(O) . By Lemma 7, if f (O�) = d , then also f (O��) = d . Hence, 

f  is (O, d)-monotonic and hence f  is monotonic with respect to d.
(⇐ ) Assume for contradiction that f  is monotonic with respect to d but not 

atomistic with respect to d . Let O be such that f  is (O, d)-monotonic. By our 
assumption, C±

d
≠ � . Let c ∈ C±

d
 . It follows that there must be O1,O

′
1
,O2,O

′
2
 such 

that f (O1) = f (O�
2
) = d , f (O�

1
) = f (O2) ≠ d , Δ(O1,O

�
1
) = Δ(O2,O

�
2
) = {c} , and 

O1(c) = O2(c) , O�
1
(c) = O�

2
(c) . Case 1: O(c) = O1(c) = O2(c) . Then O2 ∈ [O�

2
,O] , 

and hence f (O2) = d —a contradiction. Case 2: O(c) = O�
1
(c) = O�

2
(c) . Then 

O�
1
∈ [O1,O] , and hence f (O�

1
) = d—again a contradiction.   ◻

Theorem 5. Let Φ = ⟨N,C,D,T , f ⟩ be a CDP and let d ∈ D . If f  is atomistic 
with respect to d , then Φ is immune to responsibility voids with respect to d.

Proof Suppose the antecedent holds. Let O ∈ � be such that f (O) ≠ d.36 Let O′ 
be such that it agrees with O on all c ∈ C�

d
 , but Rd(O

�) = C�
d
 . Note that O� ∈ ℝd 

and Rd(O) ⊆ Rd(O
�) . By Lemma 7, f (O�) ≠ d . Moreover, since f is atomistic with 

respect to d , for all O�� ∈ ℝd , Δ(O�,O��) ⊆ C𝜖
d
 and hence, f (O��) = d . It follows that 

ℝd ⊆ 𝔽d . By Theorem 3, Φ is immune to responsibility voids with respect to d .   ◻

In order to generalize Theorem 6 to the setting with thresholds, we first need a 
more general notion of responsibility voids.

Definition 12 Where m ∈ {1,… , |N|} : P creates an m-responsibility void w.r.t. d 
iff Φ(P) = d and there is a G ⊆ N with |G| = m such that every i ∈ G can be held 
responsible for d.

Theorem 7 Let Φ = ⟨N,C,D,T , f ⟩ be a CDP. Let d ∈ D and let m ∈ {2,… , n − 1} 
be such that for all c ∈ C , T(c) ≤ m and |N| − T(c) ≤ m . Then Φ is immune to 
m-responsibility voids w.r.t. d if and only if ℝd ⊆ 𝔽d.

Proof (⇒ ) Suppose ℝd ⊆ 𝕆d . Consider an arbitrary P such that, for some G ⊆ N 
with |G| = m , for all i ∈ G , Oi

P
 maximally avoids d . By Theorem 3, for all i ∈ G 

and all c ∈ C�
d
 , Oi

P
(c) = �d(c) . Since m ≥ T(c) and m ≥ |N| − T(c) , this implies 

that for all c ∈ C�
d
 , OΦ

P
(c) = �d(c) . Hence, OΦ

P
∈ ℝd and hence by the supposition, 

36 Note that there is such an O , in view of our supposition that f ∶ {0, 1}C → D is surjective.
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Φ(P) = f (OΦ
P
) ≠ d . Thus, P cannot create an m-responsibility void. Since P was 

arbitrary, this implies that Φ is immune to m-responsibility voids.
(⇐ ) Suppose that Φ is immune to m-responsibility voids w.r.t. d . Then a forti-

ori, Φ is immune to responsibility voids (simpliciter) w.r.t. d . Hence by Theorem 3, 
ℝd ⊆ 𝔽d .   ◻

Corollary 2 Let Φ = ⟨N,C,D,T , f ⟩ be a CDP. Let d ∈ D and let m ∈ {2,… , n − 1} 
be such that for all c ∈ C , T(c) ≤ m and |N| − T(c) ≤ m . Then Φ is immune to 
m-responsibility voids w.r.t. d if and only if Φ is immune to responsibility voids 
(simpliciter).

To see how Theorem 6 follows from Corollary 2, it suffices to note that when N 
is odd and T(c) = |N|+1

2
 , then m =

|N|+1
2

 satisfies the conditions in the antecedent of 
Corollary 2, and m-responsibility voids are majoritarian responsibility voids.
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