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Abstract We analyze the Condorcet paradoxwithin a strategic bargainingmodel with
majority voting, exogenous recognition probabilities, and no discounting for the case
with three players and three alternatives. Stationary subgame perfect equilibria (SSPE)
exist whenever the geometric mean of the players’ risk coefficients, ratios of utility
differences between alternatives, is at most one. SSPEs ensure agreement within finite
expected time. For generic parameter values, SSPEs are unique and exclude Condorcet
cycles. In an SSPE, at least two players propose their best alternative and at most one
player proposes his middle alternative with positive probability. Players never reject
best alternatives, may reject middle alternatives with positive probability, and reject
worst alternatives. Recognition probabilities represent bargaining power and drive
expected delay. Irrespective of utilities, no delay occurs for suitable distributions of
bargaining power, whereas expected delay goes to infinity in the limit where one player
holds all bargaining power. An increase in the recognition probability of a player may
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weaken his bargaining position. A player weakly improves his bargaining position
when his risk coefficient decreases.

1 Introduction

Decisions on collective choice problems are often taken by means of majority voting,
and the analysis ofmajority voting is therefore an important topic in political economy.
When preferences are such that some alternative beats every other feasible alternative
in a pairwise vote, i.e. there is aCondorcetwinner, then thiswill be the outcome reached
for a huge variety of games that capture the underlying institution. Such would be the
case for instance inmodels with real-time agenda setting and fixed defaults as in Banks
and Duggan (2000), in models with evolving defaults as studied in Bernheim et al.
(2006), as well as in the more traditional social choice approach.

Unfortunately, Condorcet winners may not exist and this gives rise to the Condorcet
paradox in which any alternative can be reached from any other by a sequence of
alternatives,where each alternative in the sequence beats the previous one by a pairwise
majority vote as has been demonstrated in McKelvey (1976, 1979). It has been shown
in the literature that the occurrence of the Condorcet paradox is not an artifact. Work
by Plott (1967), Rubinstein (1979), Schofield (1983), Cox (1984), and Breton (1987)
shows that this paradox occurs generically.

The lack ofCondorcetwinners is also a frequently observed empirical phenomenon.
Balinski and Laraki (2010) provide a detailed documentation of the occurrence of the
Condorcet paradox in the 1976 Cabernet-Sauvignon wine tasting in Paris, the 1994
general election of the Danish Folketing, and the 2007 French presidential election.
Roessler et al. (2013) explain the underdevelopment of the Roman metro system as a
consequence of a Condorcet cycle in the majority preferences over building a metro,
preserving antiquities, and not digging.

In its most simple form the paradox features three players, three alternatives, and
players’ preferences such that a pairwise vote over the alternatives results in a Con-
dorcet cycle: one pair of players prefers the second alternative to the third alternative,
another pair of players prefers the first alternative to the second alternative, and a
third pair of players prefers the third alternative to the first alternative. Whether and
how players reach an agreement in this case is an open issue. It is the main research
question addressed in this paper.

We take the strategic bargaining approach to analyze the Condorcet paradox, an
approach that is advocated inBaron andFerejohn (1989) andBanks andDuggan (2000)
to study collective decision problems and that extends the seminal work on bargaining
by Rubinstein (1982) and Binmore (1987). Such an approach makes explicit how
alternatives that are up for voting are selected and how players vote on alternatives,
both on and off the equilibrium path. Our analysis complements the one of Baron and
Ferejohn (1989), who use this bargaining protocol to examine the collective decision
problem of dividing a surplus, or themore general framework of coalitional bargaining
in Chatterjee et al. (1993), which is the relevant case when the players can make
arbitrary side-payments and have utility functions that are linear in the side-payment
received.
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The Condorcet paradox revisited 143

In every bargaining round, exogenous and positive recognition probabilities select
one player who has the right to propose. This recognized player either proposes one
of the three alternatives or gives up the right to propose in which case the bargaining
proceeds to the next round. In the former case, the other players publicly vote in a
sequential order. Majority voting among three players implies that one vote in favor
suffices for acceptance, after which the alternative will be implemented, and players
receive their utility. Otherwise, no alternative is implemented and we proceed to the
next round where random selection determines the next proposer. Perpetual disagree-
ment leads to a utility of zero for every player. We are interested in the case where
bargaining occurs relatively fast, so where players do not heavily discount the future.
To analyze this case, we derive equilibria for the limit case where players do not
discount the future at all.

We characterize the set of stationary subgame perfect equilibria (SSPE). A subgame
perfect equilibrium is said to be stationary if the strategy of a player is the same when-
ever the player faces the same continuation game. In identifying identical continuation
games, we follow the approach suggested inMaskin and Tirole (2001) for determining
the notion of a stationary strategy. For a foundation of stationary equilibria, we refer
to Bhaskar et al. (2013).

When a player proposes his middle or worst alternative, it will be accepted for
sure by the player for whom this is the best alternative. Since proposing his middle
alternative strictly dominates proposing his worst alternative, a player will never pro-
pose his worst alternative in an SSPE, and the SSPE utility of a player conditional on
being the proposer weakly exceeds the utility of his middle alternative. When a player
proposes his best alternative, it may or it may not be accepted by the player for whom
this is the middle alternative, and it will be rejected by the player for whom this is
the worst alternative. A proposing player thereby effectively faces a trade-off between
getting the utility of his middle alternative for sure and proposing his best alternative,
which may result in a rejection and thereby ultimately in the continuation probability
distribution on alternatives.

We show that the continuation utility of a player is at most equal to the utility of
his middle alternative, from which it follows that there is an advantage to propose.
This implies that, except for degenerate cases, a player is never willing to give up
his right to propose. Similarly, a player responding to a proposal consisting of his
middle alternative may accept it, thereby securing the utility of his middle alternative,
or may reject it, ultimately leading to the continuation probability distribution on all
the alternatives.

We define an equilibrium type by the number of players that propose their best
alternative for sure, as well as the number of players that accept their middle alternative
for sure.We show that across all parameter values seven equilibrium types are possible,
three of which occur for a degenerate set of parameter values only, leaving four generic
equilibrium types.

Our main results are as follows.
ExistenceWe derive a very simple condition that is necessary and sufficient for the

existence of an SSPE in mixed strategy profiles. To express this condition, we define
a player’s risk coefficient as the ratio of the utility difference between his best and
middle alternative to the utility difference between his middle and worst alternative.

123



144 P. J.-J. Herings, H. Houba

The risk coefficient of a player is less than or equal to one if and only if the player
prefers his middle alternative to the fair lottery over his best and worst alternative. Risk
coefficients are equal to a particular transformation of the risk limit of Zeuthen (1930)
and Harsanyi (1977). The condition for existence states that the geometric mean of
the players’ risk coefficients should be less than or equal to one. As a side result, we
also identify the smaller subclass of preferences for which pure strategy SSPEs exist.

Generic uniqueness For generic parameter values, SSPE utilities are unique, though
in degenerate cases multiple SSPE giving rise to different utilities may co-exist.

Delay depends crucially on the division of bargaining power In bargainingmodels a
suitable way to express bargaining power is by the choice of recognition probabilities,
where more bargaining power corresponds to a higher recognition probability. The
division of bargaining power is a key factor to explain expected bargaining delay. For
each specification of the agents’ utility functions it is possible to divide bargaining
power in such a way that no delay occurs at all. At the same time, when almost all the
bargaining power goes to a single agent, expected delay goes to infinity.

Stochastic cycles Infinite cycles occur according to the logic of the Condorcet
paradox by assumption. However, within a cooperative game theoretic setting, Chwe
(1994) argues that cycles cannot occur when players are farsighted. We study SSPE
cycles in the sense of whether there is a positive probability that an equilibrium path
can result in which all three alternatives have been proposed and rejected before some
alternative is accepted. Generically, such SSPE cycles do not occur, though SSPE
cycles are possible in degenerate cases.

Higher recognition probabilities may lead to aworse bargaining positionWe inves-
tigate the comparative statics on outcome probabilities induced by changes in the
recognition probabilities in our discrete choice model featuring the Condorcet para-
dox. We consider the case where an increase in the recognition probability of a player
leads to a proportional decrease in the recognition probability of the other two play-
ers. We say that a player’s bargaining position improves if the probability of receiving
his best alternative increases and the probability of receiving his worst alternative
decreases. Restricting attention to the generic parameter values for which there is a
unique SSPE,wefind that increasing a player’s recognition probability either improves
his bargaining position, or has no effect at all, or worsens his bargaining position.

Lower risk coefficients lead to a weakly improved bargaining position We investi-
gate the comparative statics on outcome probabilities induced by changes in the risk
coefficients. Restricting attention to the generic parameter values for which there is a
unique SSPE, we find that decreasing a player’s risk coefficient either has no effect at
all or leads to a higher probability of attaining his best alternative and a lower proba-
bility of attaining his worst alternative, so improves the player’s bargaining position.

Since our equilibria will be described as solutions to a finite number of equations in
the same number of unknowns, for generic values of our parameters, one can apply the
implicit function theorem to derive equilibria nearby the SSPE with discount factor
equal to one as a function of the discount factor. It follows that results regarding
comparative statics of equilibria carry over to discount factors close to one. SSPE
existence is not an issue for values of the discount factor below one. In the presence
of discounting, equilibrium existence follows from standard results on equilibrium
existence in stochastic games, see Fink (1964), Takahashi (1964), and Sobel (1971).
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For this class of games, Haller and Lagunoff (2000) show that the set of stationary
equilibria is generically finite. Herings and Peeters (2004) show that generically there
is an odd number of stationary equilibria.

For parameter values where the geometric mean of the players’ risk coefficients is
less than or equal to one, consider a sequence of discount factors tending to one from
below. Then there is a corresponding sequence of SSPEs converging to the equilibrium
when the discount factor is equal to one, which implies that the probability of reaching
an agreement in a given bargaining round is bounded away fromzerowhen the discount
factor tends to one. On the other hand, for parameter values where the geometric mean
of the players’ risk coefficients is above one, there is no such sequence of SSPEs, and
the probability of reaching an agreement in a given bargaining round tends to zerowhen
the discount factor tends to one. Herings andHouba (2015) provides a detailed analysis
of the relationship between SSPEs for high discount factors and the limit equilibrium.

Our properties regarding the existence of equilibrium and the occurrence of delay
in an SSPE depend also crucially on our assumption that collective decision making
concerns the choice out of a finite set of alternatives. In the case studied by Baron and
Ferejohn (1989), the collective decision problem of dividing a surplus of size one and
discount factors below one, there is essentially a unique SSPE and this equilibrium
does not involve delay as has been shownbyEraslan (2002) andEraslan andMcLennan
(2013). Banks and Duggan (2000) generalize the set-up of Baron and Ferejohn (1989)
in several directions, and study collective decision making on a non-empty, compact
and convex set of alternatives. They also include an analysis of the case where all
discount factors are equal to one. The condition of limited shared weak preferences
(LWSP) says that if an alternative distinct from some given alternative is weakly
preferred to the given alternative by all members of an arbitrary coalition, then it can
be approximated by alternatives that all members of the coalition strictly prefer to the
given alternative. The model of Baron and Ferejohn (1989) satisfies LWSP. Banks and
Duggan (2000) show that LWSP is sufficient for the existence of an SSPE without
delay in the case with a non-empty, compact and convex set of alternatives, even when
all discount factors are equal to one.

Apart from offering insights in collective choice problems, our model also applies
to coalition and network formation, and thereby to marriage and roommate problems.
Proposing an alternative corresponds to proposing a coalition in a coalition formation
context and to proposing a link in a network formation model. Bloch (1996) studies
a sequential game of coalition formation when the division of the coalitional surplus
is fixed and payoffs are defined relative to the whole coalition structure. Bloch (1996)
shows for the rejector-proposes protocol introduced in Selten (1981) that core stable
coalition structures can be attained as a stationary subgame perfect equilibrium of
the game, but that stationary subgame perfect equilibria in pure strategies may fail to
exist when the condition of core stability is violated. When coalitional externalities
are absent, one obtains the class of hedonic games studied in Bloch and Diamantoudi
(2011). They note that, in roommate problems with odd top rings, equilibria in pure
strategies do not exist. When interpreted as a game of coalition formation, our model
allows for three non-trivial coalition structures to form, and the Condorcet cycle in our
model is equivalent to the absence of a core stable coalition structure and the presence
of an odd top ring.
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The paper is organized as follows. Section 2 describes the bargaining model. Sec-
tion 3 analyzes the case where all players are symmetric. Section 4 introduces the
notion of SSPE and characterizes the set of SSPEs as the solutions to a specific system
of equations. In that section, we also derive some of the general properties and reduce
the complexity of the problem at hand. Then, Sect. 5 analyzes this system by summa-
rizing the various equilibrium types discussed before. The details of the calculations
are relegated to Appendix A. All the other proofs can be found in Appendix B. Sec-
tion 6 combines all the results of Sect. 5 and studies the questions of SSPE existence
and uniqueness. Section 7 analyzes the potential for delay and cycles and Sect. 8 the
comparative statics on outcome probability vectors induced by changes in recognition
probabilities and risk coefficients. Section 9 concludes.

2 The model

Three players, labeled i = 1, 2, 3, have to decide which out of three possible alterna-
tives, x1, x2, and x3, should be implemented. The preferences of the players satisfy
the following restriction

x1 �1,3 x2 �1,2 x3 �2,3 x1. (2.1)

The formulation in (2.1) means that players 1 and 3 prefer the alternative x1 to x2,
players 1 and 2 prefer the alternative x2 to x3, and players 2 and 3 prefer the alternative
x3 to x1, so the players are involved in a decision problem that gives rise to the
Condorcet paradox. A naive approach would lead to the claim that majority voting
over the alternatives results in a cycle.

Here we model majority voting over the alternatives by means of an explicit
extensive-formgame.We take the standard non-cooperative bargainingmodel from the
literature, based on the work by Rubinstein (1982) and in particular Binmore (1987).
The same bargaining protocol has been advocated in Banks and Duggan (2000) to
analyze collective choice problems, and has been used in their work on bargaining in
legislatures by Baron and Ferejohn (1989).

We assume that in each period t some player, say player i, is selected randomly
according to an a priori specified probability distribution. Player i then decides either
to make a proposal to the other two players, i.e. he proposes some alternative x j , or
he decides not to make a proposal, and the players reach period t + 1. In the latter
case, we say that player i makes proposal x0. In the former case, the other two players
vote sequentially.1 To avoid inessential multiplicity of equilibria, we assume that the
player who ranks the alternative highest, is the first one to vote.2

1 Simultaneous voting may lead to undesirable equilibria due to coordination failures. For instance, the
case where all players vote in favor of all proposals leads to an equilibrium, as there is no player who can
gain by deviating. To avoid this problem, it is standard to assume either sequential voting or simultaneous
voting with players using stage–undominated voting strategies.
2 Suppose player 1 proposes x2, the best alternative for player 2, and suppose that player 3 votes before
player 2. The alternative x2 is the worst alternative for player 3. Player 3 may nevertheless decide to vote
Footnote 2 continued
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Table 1 The order of voting

Proposal Sequence Proposal Sequence Proposal Sequence

(x1, 1) (3,2) (x1, 2) (1,3) (x1, 3) (1,2)

(x2, 1) (2,3) (x2, 2) (1,3) (x2, 3) (2,1)

(x3, 1) (3,2) (x3, 2) (3,1) (x3, 3) (2,1)

Table 1 illustrates the order in which players vote given a proposal by some player,
where in the table (x j , i) means that proposal x j is made by player i. If player 1
proposes x1, then we assume that first player 3 votes and next, conditional on a vote
against by player 3, player 2. After player i makes proposal x j , the first player to
respond is denoted by f j i , the second by s ji .

A voter casts a vote either in favor or against x j . If the first voter casts a vote in
favor of x j , then together with the proposer he forms a majority in favor of x j , the
alternative x j is accepted, and bargaining ends. If the first voter votes against x j , then
the second voter is allowed to vote. If the second voter casts a vote in favor of x j , then
again a majority is in favor of x j , the alternative x j is accepted, and bargaining ends.
Otherwise, period t + 1 is reached. In period t + 1 a new proposer is selected, and the
entire procedure is repeated.

We assume that the probability of being recognized as a proposer is given by
ρ = (ρ1, ρ2, ρ3) in each period t, where ρ1 + ρ2 + ρ3 = 1 and ρi > 0 is the
probability that player i is recognized.

The preferences of the players are represented by von-NeumannMorgenstern utility
functions. We normalize utilities in such a way that the utility of disagreement forever
is 0 for all players.

We are interested in the case where bargaining occurs relatively fast, so players do
not heavily discount the future. To analyze this case, we derive equilibrium for the limit
case where players do not discount the future at all. Player i’s utility of acceptance of
proposal x j in period t is equal to ui (x j ). To satisfy (2.1), we have that

u1(x1) > u1(x2) > u1(x3) ≥ 0, (2.2)

u2(x2) > u2(x3) > u2(x1) ≥ 0, (2.3)

u3(x3) > u3(x1) > u3(x2) ≥ 0. (2.4)

For i = 1, 2, 3, and j = 0, 1, 2, 3, we define uij = ui (x j ), u j = (u1j , u
2
j , u

3
j ),

ui = (ui0, u
i
1, u

i
2, u

i
3)

�, and u = (u1, u2, u3). For i = 1, 2, 3, we define bi ,mi , and
wi as the number of the alternative related to the best, middle, and worst alternative
for player i. For instance, we have b1 = 1,m2 = 3, and w3 = 2.

Each sequence of proposers, proposals, and votes defines a history. A pure behav-
ioral strategy of a player assigns an action to each history where he has to take
a decision. Mixed behavioral strategies are defined in the usual way. Every strat-

in favor of x2 since he knows that the proposal will be accepted anyhow by player 2 next and is therefore
indifferent as far as his own voting behavior is concerned.
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egy implies a probability distribution (π0, π1, π2, π3) over the four possible final
outcomes, being perpetual disagreement, agreement on x1, agreement on x2, and
agreement on x3. Any mixed strategy therefore implies expected payoffs that are a
weighted average of u j , j = 0, 1, 2, 3, with weights π j . Note that π0 > 0 implies a
positive probability of the players’ worst possible outcome of perpetual disagreement.

Utility functions u and recognition probabilities ρ satisfying (2.2)–(2.4) determine
a game G = (u, ρ) in extensive form. The class of all such games is denoted G.

3 The symmetric case

Throughout this section, we consider a special case of interest in more detail, namely
what we call the symmetric case. In the symmetric case it holds that ρ1 = ρ2 =
ρ3 = 1/3, and for i = 1, 2, 3, the utilities uibi , u

i
mi

, and uiwi
are independent of i. To

simplify the analysis further, we assume uiwi
= 0 for every player i. We normalize the

utility of the best alternative to be equal to 1. The utility of the middle alternative is
independent of i and is denoted by c ∈ (0, 1).

Assume players use symmetric strategies that are time and history independent. We
use pb, pm, and pw to denote the probability that, conditionally on being recognized, a
player proposes his best, middle, and worst alternative, respectively. For the moment,
we ignore the possibility that a player gives up the right to propose, so pb + pm +
pw = 1. We use ab, am, and aw to denote the probability that a player accepts his
best, middle, and worst alternative, respectively, when responding to a proposal, so
0 ≤ ab ≤ 1, 0 ≤ am ≤ 1, and 0 ≤ aw ≤ 1. Since we are looking at symmetric
strategies, equilibrium utility is at most equal to (1 + c)/3 for every player. If a
player proposes his middle alternative, he is sure it will be accepted by the player for
whom this is the best alternative. It follows that conditional on being the proposer, the
payoff of a player is at least c. It is then clear that no player would like to propose
his worst alternative, since it would be accepted by the player for whom this is the
best alternative, leading to a payoff of 0. On the other hand, it is not a priori clear
what happens if a player proposes his best alternative. For sure it will be rejected by
the player for whom this is the worst alternative. However, the player for whom this
is the middle alternative may or may not accept it. In conclusion, equilibria should
have the property that pw = 0, ab = 1, and aw = 0. The only variables which are
not yet determined are pb and am . The value of pm is determined by the fact that
pb + pm = 1.

We first consider the case with c ∈ (1/2, 1). We claim, and prove formally later on
in Theorem A.4.4, that the pure strategy profile following from always proposing the
best alternative and always accepting the middle alternative, so pb = 1 and am = 1,
is an equilibrium. The equilibrium does not involve delay. Clearly, in a symmetric
equilibrium all three alternatives are selected with equal probability. Since there is
immediate agreement at equilibrium, it holds that π0 = 0 and π1 = π2 = π3 = 1/3.
The expected equilibrium utility is equal to (1+c+0)/3,which is less than the utility
c of the middle alternative. The fact that the utility of the middle alternative is fairly
high, i.e. above 1/2, makes players willing to compromise and avoid equilibrium delay.
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The Condorcet paradox revisited 149

To prove that pb = 1 and am = 1 induces an equilibrium, we consider one-stage
deviations and show that they are not profitable. Wewill show later on that the absence
of profitable one-shot deviations implies the absence of profitable general deviations.
When a player is selected as a proposer, he obtains a utility of 1 and clearly has no
incentive to deviate. When a player has to vote on his middle alternative, he gets
a utility of c when he follows the equilibrium strategy. A one-shot deviation to a
rejection leads to a uniform probability distribution on each outcome, giving rise to an
expected utility of (1+c)/3,which is less than c, so is not attractive. It will follow from
TheoremA.4.4 that there are no other equilibriawith proposer-independent acceptance
probabilities. When acceptance probabilities are allowed to depend on the identity of
the proposer, there are also other equilibria. For instance, in the off-the-equilibrium-
path subgame where a player has proposed his worst alternative, the player for whom
this is the best alternative votes first and might reject the proposal in the knowledge
that the player voting after him will accept his middle alternative. This construction
can also be used to generate non-symmetric equilibria. In Theorem 4.4 it will be
shown that as far as equilibrium utilities are concerned, there is no loss of generality
to restrict attention to proposer-independent acceptance probabilities. It now follows
that equilibrium utilities are unique when c ∈ (1/2, 1).

We next move to the case where c = 1/2. Although this case is clearly degenerate,
it may exhibit quite different behavior in equilibrium. First of all, it follows from
exactly the same argument as in the preceding paragraph that always proposing the
best alternative and always accepting the middle alternative, pb = 1 and am = 1, is an
equilibrium that does not involve delay. Equilibrium utility is equal to 1/2 for every
player, which is equal to the utility of the middle alternative. It follows that responders
are indifferent between accepting and rejecting their middle alternative.

There are other equilibria as well when c = 1/2. Consider for instance the mixed
strategy combination following from always proposing the best alternative and accept-
ing the middle alternative with positive probability below one, so pb = 1 and 0 <

am < 1.Every period there is delaywith positive probability 1−am . Since there is also
a positive probability of acceptance, it holds that π0 = 0 and π1 = π2 = π3 = 1/3.
The expected equilibrium utility is equal to (1 + c + 0)/3 = 1/2 = c. This class
of equilibria will be described in Theorem A.4.1. Conditional on being selected as
a proposer, a player obtains a utility of am + (1 − am)c > c. One-shot deviations
to proposing the middle alternative or the worst alternative lead to a utility of c and
0, respectively, so are not profitable. When a player responds to a proposal involv-
ing his middle alternative, acceptance leads to a utility of c and rejection leads to
a uniform probability distribution on each outcome, leading to an expected utility
equal to c as well. It follows that a responder does not have a profitable one-shot
deviation.

When c = 1/2, there are also equilibria where players propose their best alternative
with probability less than one. Consider the strategy profile induced by pb ∈ (0, 1)
and am = 0. A proposer randomizes between proposing his best alternative, which
is rejected for sure, and proposing his middle alternative, which is surely accepted.
Since in each period there is a positive probability that a proposer proposes his best
alternative, there is a positive probability of delay in every period. Since there is also a
positive probability that a proposer proposes his middle alternative, perpetual delay is
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excluded. We have that π0 = 0 and π1 = π2 = π3 = 1/3. The expected equilibrium
utility is equal to c = 1/2. This class of equilibria will be described in Theorem A.1.
When a proposer proposes his best alternative, it is rejected by both players, and the
expected utility for the proposer is equal to (1+c+0)/3 = c = 1/2.When a proposer
proposes his middle alternative, it is accepted by the player for whom this is the best
alternative, and the utility for the proposer is equal to c = 1/2 as well. It follows that
the proposer does not have profitable one-shot deviations. A player responding to a
proposal involving hismiddle alternative obtains utility equal to (1+c+0)/3 = c after
a rejection, and utility equal to c after an acceptance, so has no profitable deviation.

In the equilibriumof the previous paragraph, if a player proposes his best alternative,
it will be rejected for sure. In utility terms, nothing would change if the proposer would
give up his right to propose. The strategy profile induced by p0 > 0, pb > 0, p0+pb <

1, and am = 0 is therefore an equilibrium as well. The strategy profile following from
pb ∈ (0, 1) and am > 0 is not an equilibrium. If there is a positive probability that a
player accepts the middle alternative, then a proposer is strictly better off by proposing
his best alternative with probability one.

When c = 1/2, there is also another equilibrium without delay. Consider the
strategy profile following from pb = 0 and am = 0. A proposer always proposes
his middle alternative, which will be accepted by the player for whom this is the best
alternative. As before, it can easily be verified that no player has a profitable one-shot
deviation in any subgame. This equilibrium is also described in Theorem A.1.

We finally consider the case c < 1/2. In this case, players receive low utility
from their middle alternative, so are less willing to compromise. We will show in
Theorem 6.1 that in this case no equilibrium exists, neither symmetric nor asymmetric.
For the symmetric equilibria, this is easy to derive. First of all, perpetual disagreement
cannot be an equilibrium. Under perpetual disagreement, each player obtains a utility
equal to zero. A proposer has a profitable one-shot deviation when proposing his
middle alternative, which is going to be accepted by the player for whom this is the best
alternative. In any symmetric equilibrium, it should therefore hold that π0 = 0, π1 =
π2 = π3 = 1/3, and equilibrium utility is equal to (1+c+0)/3 > c.At equilibrium it
should then hold that am = 0, since an acceptance of themiddle alternative gives utility
equal to c,which is less than rejection with utility (1+c+0)/3. If a proposer proposes
his best alternative, it will be rejected, and the proposer receives his continuation utility
equal to (1+c+0)/3. This is more than the utility of proposing the middle alternative,
which will be accepted, leading to utility equal to c.At equilibrium it should therefore
hold that pb = 1. But pb = 1 and am = 0 leads to perpetual disagreement, which we
have already argued not to be an equilibrium. Consequently, no symmetric equilibrium
exists and, as said before, no asymmetric equilibrium exists either.

4 Stationary subgame perfect equilibria

We analyze the extensive-form game of Sect. 2 by examining its stationary subgame
perfect equilibria. Suppose a player has to take an action at two subgames that are
isomorphic. Then stationarity requires that the player take the same probability mix
over actions in both subgames. In defining two subgames to be isomorphic, we follow
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The Condorcet paradox revisited 151

the approach of Maskin and Tirole (2001), which corresponds to the coarsest way of
doing so. A subgame perfect equilibrium in stationary strategies is called a stationary
subgame perfect equilibrium (SSPE).

Since the continuation game following the selection of a proposer is history indepen-
dent, we can restrict ourselves to strategies where the proposal is history independent.
We denote by pij the probability that player i proposes x j when he is recognized as
proposer. Since the continuation game following a proposal by some player depends
only on the proposal made and the identity of the proposer, the rejection probability
may only depend on the identity of the proposer and the proposal made, but not on any
other aspect of the history. The continuation game starting with the last responder to
a proposal depends on the proposal made, but does not depend on the identity of the
proposer. We therefore require the response of the last responder to be independent of
the identity of the proposer.

The probability that player i rejects a proposal x j by player h is denoted r ijh .
As explained in the previous paragraph, the notion of a stationary strategy imposes
the requirement r132 = r133, r

2
11 = r213, and r321 = r322. For notational simplicity,

we define r i0h = 1. We define the set P of admissible proposal probabilities by
P = P1 × P2 × P3, where

Pi =
⎧
⎨

⎩
pi ∈ R

4+ |
∑

j = 0,1,2,3

pij = 1

⎫
⎬

⎭
, i = 1, 2, 3,

and the set R of admissible rejection probabilities by R = R1 × R2 × R3, where

Ri =
{
r i ∈ [0, 1]4×2 | for h, h′ �= i, r i0h = 1 and r iwi h = r iwi h′

}
.

Given stationary strategies, we can compute the expected utilities of the players. It
will be useful to do so conditional on the identity of the proposer. The expected utility
of player i conditional on the proposer being player h is denoted by vih .Unconditional

expected utility of player i is zi and satisfies zi = ∑3
h=1 ρhv

i
h .

Stationarity of the strategies implies that the following recursive system holds,

vih =
3∑

j=0

phj

(
1 − rh−1

jh rh+1
jh

)
uij +

3∑

j=0

phj r
h−1
jh rh+1

jh zi , i = 1, 2, 3, h = 1, 2, 3,

(4.1)

zi =
3∑

h=1

ρhv
i
h, i = 1, 2, 3. (4.2)

In the definition of rejection probabilities above, we identify player 0 with player 3,
and player 4 with player 1. Equation (4.1) expresses that the expected utility of player
i conditional on the proposer being player h is equal to the sum over all proposals of
the probability that player h makes this proposal and that it is accepted by the other
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players times the utility of the proposal plus the probability that player h makes a
proposal that is rejected times the continuation utility zi .

For the remainder of this section, let (p, r) be an SSPE inducing continuation utili-
ties v and z. No player has a profitable deviation at any decision node, so in particular,
no player has a profitable one-shot deviation at any decision node. The absence of a
profitable one-shot deviation is equivalent to the following set of implications, where
in (4.3) it holds that i ∈ {1, 2, 3} and j ∈ {0, 1, 2, 3},

pij > 0 ⇒ (1 − r i−1
j i r i+1

j i )uij + r i−1
j i r i+1

j i zi = max
k∈{0,1,2,3}(1 − r i−1

ki r i+1
ki )uik + r i−1

ki r i+1
ki zi ,

(4.3)

r ijh > 0 ⇒ zi ≥ uij or r
i ′
jh = 0, j = 1, 2, 3, h = 1, 2, 3, i = f jh, i ′ = s jh, (4.4)

r ijh < 1 ⇒ zi ≤ uij or r
i ′
jh = 0, j = 1, 2, 3, h = 1, 2, 3, i = f jh, i ′ = s jh, (4.5)

r ijh > 0 ⇒ zi ≥ uij , j = 1, 2, 3, h = 1, 2, 3, i = s jh, (4.6)

r ijh < 1 ⇒ zi ≤ uij , j = 1, 2, 3, h = 1, 2, 3, i = s jh . (4.7)

Equality (4.3) expresses that a proposal that is made with positive probability maxi-
mizes the sum of instantaneous and continuation utility. We obtain (4.4) by observing
that r ijh > 0 implies (1− r i

′
jh)u

i
j + r i

′
jh z

i ≥ uij ; the utility to player i of rejecting pro-
posal j by player h should weakly exceed the utility of acceptance. This inequality is
equivalent to zi ≥ uij or r

i ′
jh = 0. The derivation of (4.5)–(4.7) is analogous. Observe

that (4.4)–(4.5) correspond to the cases where player i is the first voter to accept or
reject a proposal, and (4.6)–(4.7) to the cases where player i is the second voter to
make such a decision.

We now derive several properties of SSPEs, thereby reducing (4.3)–(4.7) to a con-
siderably simpler system. The first property states that forever delay with probability 1
is not an SSPE. Indeed, forever delay with probability 1 implies, for every i, zi = 0
and vi = 0. By (4.3), player 1 should obtain expected utility 0 from proposing x1,
which can only be the case if r211 = r311 = 1. By (4.4), r311 = 1 implies z3 ≥ u31 or
r211 = 0. This leads to a contradiction as z3 = 0 < u31 and r211 = 1. It follows that
forever delay with probability 1 is not an SSPE.

We have derived that some player makes with positive probability a proposal that
is accepted with positive probability. Since such a player is recognized with positive
probability, the probability that negotiations have not terminated at period t goes to
zero as t goes to infinity.

Theorem 4.1 It holds that π0 = 0, every SSPE leads with probability 1 to agreement
in finite time.

Since π0 = 0, each zi is therefore a weighted average of uij , j = 1, 2, 3, with
π j ∈ [0, 1] such that π1 + π2 + π3 = 1 independent of i. It holds in particular that
π j > 0 for some j = 1, 2, 3 and

(
z1, z2, z3

) �= 0.
Theorem 4.1 shows that bargaining under exogenous recognition probabilities is

a road map to overcome the Condorcet paradox. Given the indeterminacy of many
cooperative theories about the Condorcet paradox, this result already suggests a great
potential in further elaborating the bargaining approach.
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Conditions (4.1)–(4.7) are necessary conditions for an SSPE. For games with dis-
counting, these necessary conditions are also sufficient. However, in the absence of
discounting, the system (4.1)–(4.7) is degenerate when for every proposer h = 1, 2, 3
it holds that

∑3
j=0 p

h
j r

h−1
jh rh+1

jh = 1, i.e. the case of perpetual delay, and admits solu-

tions for conditional utilities vih and continuation utilities zi that are not the actual
utilities of perpetual delay, which are equal to zero. Since perpetual delay is not an
equilibrium and the system (4.1)–(4.7) is not degenerate when for some h = 1, 2, 3

it holds that
∑3

j=0 p
h
j r

h−1
jh rh+1

jh < 1, we obtain the necessary and sufficient condi-

tions as specified in Theorem 4.2. This approach turns out to apply for quite general
bargaining models as has been demonstrated in Herings and Houba (2015).

Theorem 4.2 The strategy profile (p, r) ∈ P × R is an SSPE if and only if there
is h such that

∑3
j=0 p

h
j r

h−1
jh rh+1

jh < 1 and there is v ∈ R
3×3 and z ∈ R

3 such that
(4.1)–(4.7) hold.

In the next step, we use the characterization of SSPE given in Theorem 4.2 to derive
a number of intuitive properties that equilibria should satisfy.

Theorem 4.3 Let the strategy profile (p, r) be an SSPE with continuation utilities z
and outcome probability distribution π. Then

piwi
= 0, i = 1, 2, 3, (4.8)

r iwi h = 1, i = 1, 2, 3, h �= i, (4.9)

r221 = r332 = r113 = 0, (4.10)

r231r
3
31 = r112r

3
12 = r123r

2
23 = 0, (4.11)

zi > uiwi
, i = 1, 2, 3, (4.12)

zi < uibi , i = 1, 2, 3, (4.13)

π1, π2, π3 > 0. (4.14)

According to (4.12), each player i has zi strictly exceeding the utility uiwi
of his worst

alternative and, according to (4.13), has zi strictly lower than the utility of his best
alternative, uibi . It then follows that any voter rejects his worst alternative for sure
as expressed in (4.9). It follows from (4.10) that a proposal where a player proposes
his middle alternative is accepted by the player for whom this is the best alternative,
whereas (4.11) claims that proposing the worst alternative leads to an acceptance. The
recognized player can therefore always conclude the bargaining for sure by proposing
his worst or his middle alternative. As a corollary, a recognized player will never
propose his worst alternative, because he can do strictly better by proposing his middle
alternative, and (4.8) follows. Finally, (4.14) states that, ex ante, every alternative is
accepted with strictly positive probability.

The next result claims that there is no loss of generality in restricting the analysis
to proposer-independent rejection probabilities.

Theorem 4.4 If (p, r) ∈ P × R is an SSPE inducing utilities v and z, then there
is also an SSPE (p, r̄) ∈ P × R inducing utilities v and z such that r̄ is proposer-
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independent, i.e. r̄ ijh = r̄ ijh′ for all i, j, h, and h′. Moreover, r̄ can be defined by

setting, for i = 1, 2, 3, r̄ ibi i+1 = 0, r̄ imi i−1 = r imi i+1, and r̄
i
jh = r ijh, otherwise.

By virtue of Theorem 4.4, we may drop the subscript indicating the proposer from
the notation of a rejection probability. It is also more convenient now to express all
equations in terms of acceptance probabilities rather than rejection probabilities. The
set of proposer-independent acceptance probabilities is A = A1 × A2 × A3, where

Ai = {ai ∈ [0, 1]4 | ai0 = 0}.

It follows from Theorem 4.3 that at an SSPE (p, ā) ∈ P × A, for every player i,
piwi

= 0, āiwi
= 0, and āibi = 1. The only variables that have not yet been determined

are pi0, pimi
, pibi , and āimi

. It seems intuitive that the recognized player is better off

making some proposal instead of not making a proposal, so pi0 should be equal to 0.
As we will show in Appendix A.1, for some parameter values we can have pi0 > 0 for
some i. In such cases, however, there also exists an SSPE ( p̄, ā) ∈ P× A with p̄i0 = 0
for every player i that yields exactly the same utilities for everyone. This implies that
in characterizing the set of SSPEs, we may first search for SSPEs ( p̄, ā) ∈ P× A with
p̄i0 = 0 for every player i. Indeed, if (p, ā) is an SSPE with pi0 �= 0 for some i, then
( p̄, ā) is also an SSPE, where p̄ibi = pibi + pi0, p̄i0 = 0, and p̄ij = pij for j �= 0, bi .
By the definition of SSPE it should not be profitable to propose xbi instead of x0. This
means that either xbi is rejected with probability 1 when proposed or zi = uibi . The
latter case contradicts (4.13), so we only have to consider the former case. Since we are
considering SSPEs, the change in strategy from not making a proposal to proposing
one’s best alternative, which is rejected with probability 1, is not affecting the payoffs
of anyone, and is also an SSPE.

Theorem 4.5 gives an easy characterization of SSPEs ( p̄, ā) ∈ P × A where no
player gives up the right to make a proposal, i.e. p̄i0 = 0 for every player i.

Theorem 4.5 The strategy profile ( p̄, ā) ∈ P × A is an SSPE where all players
make a proposal with probability one if and only if for i = 1, 2, 3, p̄i0 = p̄iwi

= 0,
āibi = 1, āiwi

= 0, and there is π̄ ∈ R
3++ and z̄ ∈ R

3 such that

p̄imi
> 0 ⇒ uimi

≥ āi−1
mi−1

uibi + (1 − āi−1
mi−1

)z̄i , i = 1, 2, 3, (4.15)

p̄ibi > 0 ⇒ āi−1
mi−1

uibi + (1 − āi−1
mi−1

)z̄i ≥ uimi
, i = 1, 2, 3, (4.16)

āimi
< 1 ⇒ z̄i ≥ uimi

, i = 1, 2, 3, (4.17)

āimi
> 0 ⇒ z̄i ≤ uimi

, i = 1, 2, 3, (4.18)

π̄1u
i
1 + π̄2u

i
2 + π̄3u

i
3 = z̄i , i = 1, 2, 3, (4.19)

π̄1 + π̄2 + π̄3 = 1, (4.20)

π̄1 : π̄2 = ρ1 p̄
1
b1 ā

3
1 + ρ3 p̄

3
m3

: ρ2 p̄
2
b2 ā

1
2 + ρ1 p̄

1
m1

, (4.21)

π̄2 : π̄3 = ρ2 p̄
2
b2 ā

1
2 + ρ1 p̄

1
m1

: ρ3 p̄
3
b3 ā

2
3 + ρ2 p̄

2
m2

. (4.22)
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5 Equilibrium types

The results of the previous section show that player i faces twodilemmas. First, bywhat
probability pimi

will I propose my middle alternative xmi knowing it will be accepted
for sure instead of taking the risk involved in proposing my best alternative. Second,
by what probability aimi

will I accept my middle alternative xmi when offered to me
knowing that rejecting it leads to a gamble over my top three alternatives including my
worst. These dilemmas concern the SSPE values of pimi

and aimi
that also pin down

pibi = 1 − pimi
.

The answer to the first dilemma results in four possible types of equilibrium. The
first one is where every player i has a positive p̄imi

. This case is analyzed in Appendix
A.1. The other types of equilibria are characterized by two, one, and none of the players
having a positive p̄imi

and are treated in Appendix A.2, A.3, and A.4, respectively. The
answer to the second dilemma is intimately related to the value of the equilibrium
continuation utility z̄i . We will show that all SSPEs have the property that z̄i ≤ uimi

.

Then it follows that āimi
= 1 if z̄i < uimi

, whereas values for āimi
strictly below 1 are

admitted when z̄i = uimi
.

Theorem A.1 collects the necessary and sufficient conditions under which an SSPE
with three players having a positive p̄imi

exists. These conditions hold in degenerate
cases only. Moreover, in any such SSPE it holds that z̄i = uimi

for every player i. We
show that SSPEs with two players having a positive p̄imi

do not exist. For the case
with one of the players having a positive p̄imi

there exist two equilibrium subtypes,
depending on the number of players with z̄i < uimi

. These subtypes are treated in the
Subsects. A.3.1, when there is one such player, and A.3.2, when there are two such
players. Theorems A.3.1 and A.3.2 provide necessary and sufficient conditions under
which such SSPEs exist. For the case with none of the players having a positive p̄imi
there exist four equilibrium subtypes, again depending on the number of players with
z̄i = uimi

. These subtypes are treated in the Subsects. A.4.1, A.4.2, A.4.3, and A.4.4
of Appendix A.4, where Subsect. A.4.k treats the case when there are k − 1 players
with z̄i < uimi

. Theorems A.4.1, A.4.2, A.4.3, and A.4.4 collect the necessary and
sufficient conditions under which such SSPEs exist.

Table 2 summarizes the characteristics of the SSPEs as found in the Appendix. The
equilibrium types and subtypes lead to a total of seven cases, with three cases being
degenerate. The cases A.3.1, A.3.2, A.4.2, and A.4.3 have three rows, corresponding
to permutations of the players’ roles. Four cases, A.3.1, A.3.2, A.4.2, and A.4.4, are
robust in the sense of having positive Lebesgue measure in the parameter space. Case
A.4.4 corresponds to an SSPE in pure strategies.

Table 3 shows the necessary and sufficient conditions for which particular types of
equilibria exist. To explain these conditions, it is instructive to define the risk coefficient
αi of player i by
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Table 2 Characteristics of the various types of equilibrium

Theorem Proposals Utilities Occurrence

A.1 p̄12 > 0 p̄23 > 0 p̄31 > 0 z̄1 = u12 z̄2 = u23 z̄3 = u31 Degenerate

A.3.1 p̄12 = 0 p̄23 = 0 p̄31 > 0 z̄1 = u12 z̄2 = u23 z̄3 < u31
p̄12 = 0 p̄23 > 0 p̄31 = 0 z̄1 = u12 z̄2 < u23 z̄3 = u31
p̄12 > 0 p̄23 = 0 p̄31 = 0 z̄1 < u12 z̄2 = u23 z̄3 = u31

A.3.2 p̄12 = 0 p̄23 = 0 p̄31 > 0 z̄1 < u12 z̄2 = u23 z̄3 < u31
p̄12 = 0 p̄23 > 0 p̄31 = 0 z̄1 = u12 z̄2 < u23 z̄3 < u31
p̄12 > 0 p̄23 = 0 p̄31 = 0 z̄1 < u12 z̄2 < u23 z̄3 = u31

A.4.1 p̄12 = 0 p̄23 = 0 p̄31 = 0 z̄1 = u12 z̄2 = u23 z̄3 = u31 Degenerate

A.4.2 p̄12 = 0 p̄23 = 0 p̄31 = 0 z̄1 = u12 z̄2 = u23 z̄3 < u31
p̄12 = 0 p̄23 = 0 p̄31 = 0 z̄1 = u12 z̄2 < u23 z̄3 = u31
p̄12 = 0 p̄23 = 0 p̄31 = 0 z̄1 < u12 z̄2 = u23 z̄3 = u31

A.4.3 p̄12 = 0 p̄23 = 0 p̄31 = 0 z̄1 = u12 z̄2 < u23 z̄3 < u31 Degenerate

p̄12 = 0 p̄23 = 0 p̄31 = 0 z̄1 < u12 z̄2 = u23 z̄3 < u31 Degenerate

p̄12 = 0 p̄23 = 0 p̄31 = 0 z̄1 < u12 z̄2 < u23 z̄3 = u31 Degenerate

A.4.4 p̄12 = 0 p̄23 = 0 p̄31 = 0 z̄1 < u12 z̄2 < u23 z̄3 < u31

Table 3 Conditions under which various types of equilibrium exist

Theorem Conditions on α Conditions on ρ Occurrence

A.1 α1α2α3 = 1 Degenerate

A.3.1 α1α2α3 < 1 ρ1
ρ3

< β1 ρ2 ≥ α3β3
ρ3
ρ2

< β3 ρ1 ≥ α2β2
ρ2
ρ1

< β2 ρ3 ≥ α1β1

A.3.2 α1α2α3 < 1 ρ1
ρ2

< α2 ρ2 < α3β3
ρ3
ρ1

< α1 ρ1 < α2β2
ρ2
ρ3

< α3 ρ3 < α1β1

A.4.1 α1α2α3 = 1 Degenerate

A.4.2 α1α2α3 < 1 ρ1
ρ3

≥ β1
ρ1
ρ2

≤ α2
ρ3
ρ1

≥ α1
ρ3
ρ2

≥ β3
ρ3
ρ1

≤ α1
ρ2
ρ3

≥ α3
ρ2
ρ1

≥ β2
ρ2
ρ3

≤ α3
ρ1
ρ2

≥ α2

A.4.3 α1α2α3 < 1 ρ3
ρ1

= α1 ρ1 < 1
1+α1+α1α3

Degenerate

ρ1
ρ2

= α2 ρ2 < 1
1+α2+α1α2

Degenerate

ρ2
ρ3

= α3 ρ3 < 1
1+α3+α2α3

Degenerate

A.4.4 α1α2α3 < 1 ρ1
ρ2

> α2
ρ2
ρ3

> α3
ρ3
ρ1

> α1
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αi = uibi − uimi

uimi
− uiwi

, i = 1, 2, 3.

Moreover, for notational convenience, we define

β1 = 1 − α1α2α3

α1 + α1α3 + α1α2α3
, β2 = 1 − α1α2α3

α2 + α1α2 + α1α2α3
, and

β3 = 1 − α1α2α3

α3 + α2α3 + α1α2α3
.

Table 3 demonstrates that the necessary and sufficient conditions for SSPE exis-
tence can be formulated in terms of the players’ risk coefficients (since also βi can
be expressed in terms of α1, α2, and α3) and the recognition probability vector ρ

only.
The risk coefficient is closely related to the concept of risk limit as introduced in

Zeuthen (1930) and further developed in Harsanyi (1977). The risk limit is defined
in a setting with two players and three outcomes. There is the outcome proposed
by the player himself, say y1, the outcome proposed by his opponent, say y2, and
the disagreement outcome, say y0. The risk limit of a player is then defined as the
probability on the disagreement outcome for which he would be indifferent between
getting the disagreement outcome with that probability and y1 with the remaining
probability, and getting outcome y2 for sure. In a formula the risk limit � is given by

� = u(y1) − u(y2)

u(y1) − u(y0)
.

This paper involves three players and four alternatives (we now count the disagreement
outcome as one alternative), so the risk limit is not directly applicable. However, if we
define y1 as the best alternative xbi for player i, y2 as his middle alternative xmi , and
y0 as his worst alternative xwi , then a straightforward calculation reveals that

�i = αi

1 + αi
.

Alternatively, we can write αi = �i/(1 − �i ).

A player i who is indifferent between getting xmi for sure and a fair lottery on xbi
and xwi has a risk coefficient of 1. A player with a risk coefficient above 1 prefers the
lottery, a player with a risk coefficient below 1 prefers getting his middle alternative
for sure. It is immediate from Table 3 that a necessary condition for SSPE existence
is α1α2α3 ≤ 1, or equivalently, 3

√
α1α2α3 ≤ 1. In words this condition expresses that

the geometric mean of the players’ risk coefficients is less than or equal to 1. In the
next section this condition is also shown to be sufficient for SSPE existence.

The robust cases have the following defining characteristics: First, conditional on
being recognized, at most one player randomizes between his best and middle alter-
native, and the other players always propose their best alternative for sure. To put it
differently, at most one player proposes cautiously and the others aggressively. Sec-
ond, the number of players who propose their best alternative and get it accepted for
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sure can be any number ranging from one to three, but it cannot be zero. Third, at
the start of any bargaining round during ongoing negotiations, all players can realize,
in expectation, an SSPE utility that is at most the utility of the middle alternative, so
z̄i ≤ uimi

. In case the inequality is strict, player i accepts his middle alternative for
sure, whenever it is on the table. In any SSPE, this will provoke player i + 1, for
whom mi is the best alternative, to propose aggressively whenever he is recognized.
Fourth, conditional on being recognized, a player realizes a utility weakly exceeding
the utility of his middle alternative, so v̄ii ≥ uimi

. Moreover, it can be shown that there
is a strict advantage in being recognized, so v̄ii > z̄i .

6 Existence and uniqueness of SSPE

Table 3 shows that there are seven different types of SSPE and presents the necessary
and sufficient conditions for the existence of each type in terms of six parameters:
α1, α2, α3, ρ1, ρ2, andρ3.Theorem6.1 is about the necessary and sufficient conditions
on the parameters for the existence of any of the seven types of SSPE, so corresponds
to the union of the seven sets of parameter values of Table 3. Surprisingly, this leads to
the very simple necessary and sufficient condition that the geometric mean of the risk
coefficients be less than or equal to 1: 3

√
α1α2α3 ≤ 1 or, equivalently α1α2α3 ≤ 1.

Theorem 6.1 There exists an SSPE if and only if α1α2α3 ≤ 1.

The necessary and sufficient condition for SSPE existence requires risk coefficients
to be sufficiently low on average. It allows for one or two risk coefficients that are
larger than one, but then at least one player’s risk coefficient should be sufficiently
below one. A player with a low risk coefficient prefers his middle alternative over a
lottery involving his worst and best alternative, and is thereforemore inclined to accept
proposals offering his middle alternative. The uncertainty over outcomes resulting
from the rejection of a proposal helps to avoid the Condorcet paradox and leads to
equilibrium existence.

What can be said when α1α2α3 > 1? An SSPE does not exist by Theorem 6.1.
Nevertheless, it is conceivable that weaker versions of equilibrium, where stationarity
and perfection requirements are no longer imposed, do exist. Suppose that we change
the utilities in the game in the following way. Whenever an agreement is reached,
players receive the payoff related to this agreement in every period following the
agreement and the utility of a player is determined by the average reward criterion.
The resulting game thereby falls into the class of average reward stochastic games.
Since the game also belongs to the subclass of three-player absorbing games, it follows
from Solan (1999) that an ε-equilibrium payoff exists for every ε > 0. Since our game
also belongs to the class of perfect information stochastic games, the existence of a
Nash equilibrium follows from the results of Thuijsman and Raghavan (1997). Finally,
our game is also a recursive perfect information game with non-negative payoffs, a
class for which Flesch et al. (2010) demonstrate the existence of a subgame-perfect
ε-equilibrium for every ε > 0.

In our model, SSPE utilities may not be unique and there might be infinitely many
SSPE utilities. This occurs under the conditions of Theorem A.4.3. The following
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result demonstrates that such examples are degenerate in the sense that this set of
games has a closure with Lebesgue measure zero. To compute the Lebesgue measure
of a set of games, we consider a game (u, ρ) as an element of R9 × R

2, where we
identify ρ by its first two coordinates. To require the zero Lebesgue measure property
for the closure of a set of games evidently implies this property for the set of games
itself, but not vice versa, as for instance illustrated by the set of rational numbers.

Theorem 6.2 Consider the set of games (u, ρ) ∈ G such that α1α2α3 ≤ 1. Except for
a subset of games whose closure has Lebesgue measure zero, SSPE utilities are unique
and there is a unique SSPE with proposer-independent acceptance probabilities.

The generic uniqueness of SSPEs with proposer-independent acceptance probabil-
ities enables us to carry out meaningful comparative statics exercises, the subject of
the next two sections.

7 Delay and cycles

We analyze the extent to which there can be delay in an SSPE. If the probability of
delay in a single bargaining round is δ, then the expected delay is equal to δ/(1 − δ)

periods. Using the results of the Appendix, it is a straightforward exercise to compute
the probability of delay in a single bargaining round. Table 4 gives an overview of the
delay probabilities. In the case of Theorems A.1 and A.4.3, the delay probability is
given by an interval. This means that for every value of delay in the interval, there is
an SSPE with that probability of delay.

An important question is whether there always exists some vector of recognition
probabilities ρ such that the corresponding SSPE does not involve delay.

Theorem 7.1 Let u be such that α1α2α3 ≤ 1. Then there is a ρ such that the game
(u, ρ) has an SSPE without delay.

If we think of the parameters ρi as ameasure of bargaining power, then Theorem 7.1
makes clear that irrespective of the players’ utility functions, delay in bargaining can
be avoided under an appropriate distribution of bargaining power.

The intuition behind Theorem 7.1 is the following. Suppose that every player pro-
poses his best alternativewith probability 1,meaning that alternatives are implemented
according to the probability vector ρ. Under the condition α1α2α3 ≤ 1 it is always
possible to choose ρ in such a way that every player i’s continuation payoff is less
than or equal to uimi

. In particular, this means that players with high risk coefficients
should have low recognition probabilities. Given a continuation payoff below uimi

,

player i accepts alternative xmi with probability 1, which in turn makes it optimal for
every player to propose his best alternative with probability 1.

The next result shows that the expected delay in bargaining goes to infinity when
one player has almost all the bargaining power. We model this by taking a sequence of
recognition probability vectors that converges to a unit vector and show that the limit
of the SSPE delay probability is equal to 1.
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Table 4 Delay probabilities

Theorem Delay probability Occurrence

A.1 [1 − (1 + α2 + α1α2)min{ρ1, ρ2
α1α2

,
ρ3
α2

}, 1) Degenerate

A.3.1 ρ2 + (α1α2α3(1 + β2) − β2)(1 − ρ2)

ρ1 + (α1α2α3(1 + β1) − β1)(1 − ρ1)

ρ3 + (α1α2α3(1 + β3) − β3)(1 − ρ3)

A.3.2 α3−(1+α2)α3ρ2
α3+ρ2

α2−(1+α1)α2ρ1
α2+ρ1

α1−(1+α3)α1ρ3
α1+ρ3

A.4.1 1 − (1 + α2 + α1α2)min{ ρ1
α2

, ρ2,
ρ3

α1α2
} Degenerate

A.4.2 1 − 1+α2+α1α2
α2

ρ1

1 − 1+α1+α1α3
α1

ρ3

1 − 1+α3+α2α3
α3

ρ2

A.4.3 D1 Degenerate

D2 Degenerate

D3 Degenerate

A.4.4 0

D1 = [0, 1 − (1 + α1 + α1α3)ρ1) ∩ (1 − (1+α2+α1α2)ρ1
α2

, 1 − (1+α2+α1α2)ρ1
α2+ρ1

]
D2 = [0, 1 − (1 + α2 + α1α2)ρ2) ∩ (1 − (1+α3+α2α3)ρ2

α3
, 1 − (1+α3+α2α3)ρ2

α3+ρ2
]

D3 = [0, 1 − (1 + α3 + α2α3)ρ3) ∩ (1 − (1+α1+α1α3)ρ3
α1

, 1 − (1+α1+α1α3)ρ3
α1+ρ3

]

Theorem 7.2 Let u be such that α1α2α3 ≤ 1. Consider a sequence of recognition
probability vectors (ρn)n∈N which converges to ei , the i-th unit vector, for some
i = 1, 2, 3.Forn ∈ N, let (pn, an)beanSSPEof (u, ρn)anddenote the corresponding
delay probability by δn . Then limn→∞ δn = 1.

Theorem 7.2 complements Theorem 7.1 and shows that extreme SSPE delay may
occur for certain distributions of bargaining power. To explain the result of Theo-
rem 7.2, it should be recalled that SSPE continuation payoffs are always less than or
equal to uimi

. Assume player i has ρi close to one. When he proposes his first-best,
it should be turned down with probability close to 1, to avoid his continuation payoff
reaching values above uimi

. His continuation payoff will actually be equal to uimi
in an

SSPE, implying that player i proposes his best alternative with probability 1 and his
middle alternative with probability 0. On the equilibrium path it therefore holds that
player i is recognized as a proposer almost all the time, he proposes his best alternative
with probability 1, which is subsequently turned down with probability close to 1. The
probability of delay is therefore close to 1 in every bargaining round.

We also analyze whether cycles can occur. Cycles should occur according to the
Condorcet logic. Other authors like Chwe (1994) have argued using tools from coop-
erative game theory that cycles should not occur when players are farsighted. We say
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that a particular play of the game has resulted in a cycle if all three alternatives have
been proposed and rejected, before some alternative is accepted. An SSPE is said to
have a cycle if there is a positive probability that the equilibrium path has resulted
in a cycle. If an SSPE has a cycle, then clearly there is also a positive probability on
an equilibrium path where consecutively alternatives 1, 2, 3, and 1 are proposed and
rejected.

Theorem 7.3 The set of games (u, ρ) ∈ G admitting SSPEs with cycles has Lebesgue
measure zero.

Cycles occur with positive probability in the SSPEs of Theorem A.1 and A.4.3. It
is easily verified that for Theorem A.1 there is always an SSPE where the equilibrium
path results in a cycle with probability arbitrarily close to one. But the conditions of
these theorems hold in degenerate cases only.

8 Comparative statics: recognition probabilities and risk coefficients

In this section we investigate the comparative statics of the SSPE outcome probability
vector (π̄1, π̄2, π̄3) induced by changes in the recognition probabilities ρ and the
risk coefficients α. We say that a change in a parameter value weakly improves the
bargaining position of a player i if π̄ ′

bi
≥ π̄bi and π̄ ′

wi
≤ π̄wi , where

(
π̄ ′
1, π̄

′
2, π̄

′
3

)
is

the SSPE outcome probability vector after the change and (π̄1, π̄2, π̄3) is the SSPE
outcome probability vector before the change.

The bargaining position of player i is said to be improved if one of the two inequali-
ties is strict. The induced order on outcome probability distributions is not complete as
it remains silent when the probability of obtaining the best outcome and the probability
of obtaining the worst outcome move in the same direction.

Table 5 reports the SSPE outcome probability vectors. For Theorem A.4.3, first
line, λ ≥ 1 should be chosen to satisfy

α2

1 + α2 + α1α2
< λρ1 ≤ α2 + ρ1

1 + α2 + α1α2

and

λρ1 <
1

1 + α1 + α1α3
.

For the other two lines corresponding to Theorem A.4.3, λ ≥ 1 should satisfy the
appropriate analogues of these inequalities.

We start by evaluating the local effects of a change in a player’s recognition prob-
ability. We do so under the assumption that an increase in the recognition probability
of player i leads to a proportional decrease in the recognition probability of the other
two players. We restrict attention to the generic parameter values of Theorems A.3.1,
A.3.2, A.4.2, and A.4.4 for which SSPE outcome probability vectors are unique.

It is immediate from Table 5 that a change in recognition probabilities has no effect
whatsoever on the outcome probability vector for the case of Theorem A.3.1. The
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equilibrium type of Theorem A.3.1 is such that two players have a continuation value
equal to the utility of their middle alternative. This completely pins down the equi-
librium probabilities by which the three outcomes occur, i.e. the outcome probability
vector. Exactly the same reasoning applies to the case of Theorem A.4.2.

Next, consider the first line of Theorem A.3.2. The vector of outcome probabilities
does not depend onρ1 andρ3,but only onρ2.The reason is that in equilibriumplayers 1
and2propose their best alternativewith probability 1, andplayer 3 randomizes between
proposing x1 and x3.Moreover, the expected equilibrium utility z̄2 of player 2 is equal
to u23, the utility of his middle alternative. If ρ2 does not change, then π̄2 does not
change, since player 2 is the only player proposing x2. To keep the utility of player 2
equal to u23, it follows that π̄1 should not change, the probability that player 2 gets
his worst alternative. Since perpetual delay does not occur, it follows that also π̄3
does not change. An increase in ρ2 leads to a higher probability π̄2, so to keep the
equilibrium utility z̄2 of player 2 equal to u23, π̄1 has to go up as well. Then π̄3 has to
go down.

If we consider the comparative statics of an increase in the recognition probability
ρ1 of player 1 accompanied by a proportional decrease in ρ2 and ρ3, then the decrease
in ρ2 causes π̄1 and π̄2 to go down and π̄3 to go up. This leads to counterintuitive
comparative statics, where a decrease in recognition probability for player 1 improves
his bargaining position. An increase in ρ2 increases π̄1 and π̄2 and decreases π̄3, so the
probability that player 2 receives his best and his worst alternative go both up in such
a way that the equilibrium utility of player 2 remains equal to u23. Finally, an increase
in ρ3 accompanied by a proportional decrease in ρ1 and ρ2 decreases π̄1 and π̄2 and
increases π̄3, so improves the bargaining position of player 3. The second and third
line corresponding to Theorem A.3.2 are obtained by a permutation of the players and
lead to analogous results.

The case of Theorem A.4.4 is straightforward. Since every player proposes his best
alternative with probability 1, the outcome probability vector π̄ is equal to ρ. The
comparative statics of changes in ρ are completely intuitive.

In summary, we obtain for the cases of Theorems A.3.1 and A.4.2 that changes in
the recognition probabilities have no effect on the outcome probability vector. Theo-
rem A.3.2 leads to the counterintuitive result that an increased recognition probability
weakens the bargaining position. Finally, Theorem A.4.4 gives the standard result that
an increased recognition probability improves the bargaining position.

We continue with evaluating the local effects of a change in a player’s risk coeffi-
cient. We again restrict attention to the generic parameter values of Theorems A.3.1,
A.3.2, A.4.2, and A.4.4 for which SSPE outcome probability vectors are unique. An
increase in αi corresponds to an increase in the utility difference of the best and the
middle alternative of player i relative to the utility difference between the middle and
the worst alternative of player i . We find that lower risk coefficients lead to a weakly
improved bargaining position.

Consider the first line of Theorems A.3.1 and A.4.2 for which

(π̄1, π̄2, π̄3) =
(

α2

1 + α2 + α1α2
,

1

1 + α2 + α1α2
,

α1α2

1 + α2 + α1α2

)

.

We have that
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∂π̄1
∂α1

< 0, ∂π̄2
∂α1

< 0, ∂π̄3
∂α1

> 0,
∂π̄1
∂α2

> 0, ∂π̄2
∂α2

< 0, ∂π̄3
∂α2

> 0,
∂π̄1
∂α3

= 0, ∂π̄2
∂α3

= 0, ∂π̄3
∂α3

= 0,

and ∂π̄1/∂αi + ∂π̄2/∂αi + ∂π̄3/∂αi = 0 for i = 1, 2, 3.
An increase in α1 yields player 1 lower probabilities for obtaining his best and

middle alternatives and a higher probability for obtaining his worst alternative, so
weakens his bargaining position. Player 3 faces a higher probability for obtaining his
best alternative and lower probabilities for obtaining his middle and worst alternatives
if α1 increases, so his bargaining position is improved. Player 2 faces lower probabil-
ities for both his best and worst alternatives and a higher probability for his middle
alternative when α1 increases.

Next, an increase in α2 yields player 2 a lower probability for obtaining his best
alternative and higher probabilities for attaining his middle and worst alternatives, so
weakens his bargaining position. Notice that player 2 is affected in a different manner
by a change in α2 than player 1 is affected by a change in α1. Player 3 faces increased
probabilities for obtaining his best and middle alternatives and a lower probability for
obtaining hisworst alternative if player 2 has a higher risk coefficient, so his bargaining
position is improved. Player 1 faces higher probabilities for both his best and worst
alternatives and an increased probability for his middle alternative when α2 increases.

Finally, changes in player 3’s risk coefficient have no effect on the outcome prob-
ability vector.

The crucial insight for changes in α1 and α2 is that when at an SSPE a player’s
continuation value is equal to the utility of his middle alternative, this property is
preserved under small changes of the player’s utility function. When the player’s risk
coefficient increases, the only way to keep his continuation utility equal to the utility
of the middle alternative, is to lower the probability by which he obtains his best
alternative and increase the probability by which he obtains his worst alternative. The
effect of a change in α3 is more subtle. Since player 1 and 2 have a continuation value
equal to the utility of their middle alternative, the ratio of the probability of receiving
the best alternative and the probability of receiving the worst alternative should not
be affected by a change in α3. Since freezing both ratios means that the outcome
probability vector does not change, we find that a change in α3 has no effects.

The second and third line corresponding to Theorems A.3.1 and A.4.2 are obtained
by a permutation of the players and lead to analogous results.

We verify that also in the case of Theorems A.3.2 and A.4.4 lower risk coefficients
improve the bargaining position. Consider the first line corresponding to Theorem
A.3.2 for which

(π̄1, π̄2, π̄3) =
(

α2 (α3 + ρ2)

1 + α3 + α2α3
,

α3 + ρ2

1 + α3 + α2α3
,
1 − ρ2 (1 + α2)

1 + α3 + α2α3

)

.

We have that
∂π̄1
∂α1

= 0, ∂π̄2
∂α1

= 0, ∂π̄3
∂α1

= 0,
∂π̄1
∂α2

> 0, ∂π̄2
∂α2

< 0, ∂π̄3
∂α2

< 0,
∂π̄1
∂α3

> 0, ∂π̄2
∂α3

> 0, ∂π̄3
∂α3

< 0,
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and ∂π̄1/∂α1 + ∂π̄2/∂α1 + ∂π̄3/∂α1 = 0 for i = 1, 2, 3. For this derivation, observe
that

∂

∂α3

α2 (α3 + ρ2)

1 + α3 + α2α3
= α2 (1 − ρ2 (1 + α2))

(1 + α3 + α2α3)
2 = α2

1 + α3 + α2α3
π̄3 > 0.

First, changes in player 1’s risk coefficient have no effect. Second, in case player 2 has
a higher risk coefficient, then this player has a weaker bargaining position and player 1
improves his bargaining position. Third, in case player 3 gets a higher risk coefficient,
then this player weakens his bargaining position and player 1 improves his bargaining
position. The second and third line corresponding to Theorem A.3.2 are obtained by
a permutation of the players and lead to analogous results.

Since z̄2 = u23, an increase in α2 is detrimental for player 2 by the same reasoning
as before. To explain the effect of an increase in α3 requires a new insight. Player 1 and
2 propose their best alternative for sure, followed by acceptance with probability 1, a
feature that is preserved following changes in α3. Player 3 randomizes as a proposer
between his best and his middle alternative, and his continuation utility conditional
on being a proposer is equal to u31, a property that is preserved under small changes
in α3. An increase in α3 therefore results in a worse probability mix on outcomes for
player 3 conditional on being the proposer, and given unchanged behavior following
the recognition of player 1 and 2 as a proposer, this results in aworse ex ante probability
mix on outcomes for player 3. Since player 1 plays a pure strategy, a change in α1 has
no effect.

Consider Theorem A.4.4 for which (π̄1, π̄2, π̄3) = (ρ1, ρ2, ρ3). Then changes in
any player’s risk coefficient have no effect on the outcome probability vector and for
each player the situation before and after such a change is unambiguously equivalent.
This result is caused by the fact that all players play a pure strategy.

In summary,we obtain for the three cases of TheoremsA.3.1, A.3.2, andA.4.2 that a
higher risk coefficient weakens the bargaining position in the sense that the probability
of attaining the best alternative decreases while the probability for obtaining the worst
alternative increases. In the remaining main case, the one of Theorem A.4.4, changes
in risk coefficients have no effect. So, combining these four cases, we find that lower
risk coefficients weakly improve the bargaining position.

9 Concluding remarks

The message that risk-averse players are willing to accept second-best alternatives,
thereby defying the Condorcet logic, is valid well beyond the simple case analyzed in
this paper. In a general setting with many players and many alternatives, players may
accept unfavorable alternatives, if they face the risk of ending up with an outcome that
is even worse. It also holds with great generality that the situation where an agreement
is never reached cannot be supported in an SSPE. Indeed, such a situation cannot occur
whenever there is an outcome that a majority of players prefers over not reaching an
agreement, and at least one such player has a positive recognition probability.
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Many SSPEs feature delay before an agreement is reached. We show that for any
specification of the players’ risk coefficients, there are recognition probability vectors
for which no delay occurs before an agreement is reached, but also that expected
delay goes to infinity when in the limit a single player is the only proposer. To what
extent such results hold in more general settings is an open issue, but our conjecture
is that under quite general circumstances players with high bargaining power will be
disciplined by the other players by means of frequent rejections of their proposals.

Wehave argued that a lower risk coefficientweakly improves the bargainingposition
of a player. This insight is also valid in more general set-ups. Consider an SSPE where
a player randomizes between proposing his first best and his second best alternative,
so is indifferent between these two proposals. If the player’s utility of the first best
alternative goes down, then proposing the second best alternative becomes strictly
preferred, so to keep the player indifferent, at the new SSPE the probability of an
acceptance of the first best should go up when compared to the probability of an
acceptance of the second best.

To derive results on existence and generic uniqueness of SSPE for the case with
many alternatives and many players may require using different techniques than in
this paper, since it is clear that already the case with three players and three alterna-
tives leads to extensive calculations when characterizing the set of SSPEs. Another
possibility would be to restrict attention to pure strategy equilibria or to make some
assumptions on the primitives like for instance the symmetry assumptions of Section 3.
Apart from generalizations in the direction of more alternatives and more players, it is
also interesting to study less restrictive notions of equilibrium or to introduce discount-
ing, in particular to understand the case where the geometric average of the players’
risk coefficients is above one.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix A

A.1 Three players with p̄imi
> 0

Consider a game (u, ρ) ∈ G and let (( p̄ibi , p̄
i
mi

, āimi
, z̄i )i=1,2,3, π̄) be a solution to

(4.15)–(4.22) with p̄imi
> 0, i = 1, 2, 3. From (4.15), for every i, uimi

≥ āi−1
mi−1

uibi +
(1−āi−1

mi−1
)z̄i , so z̄i ≤ uimi

.Weargue next that for every i, z̄i = uimi
. Suppose, for some

i, z̄i < uimi
. Then āimi

= 1 by (4.17), so p̄i+1
mi+1

= 0 by (4.15), a contradiction since

we are considering the case p̄i+1
mi+1

> 0. It follows that for every i, z̄i = uimi
, and by

(4.15), āi−1
mi−1

= 0, so the proposal xmi by a player i is accepted with probability 1 and
the proposal xbi by a player i is rejected with probability 1. Note that since a proposal
xbi by player i is rejected for sure, player i is indifferent between making such a
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proposal and giving up the right to propose, i.e. propose x0. Equations (4.19)–(4.20)
now reduce to the system

π̄1u
1
1 + π̄2u

1
2 + π̄3u

1
3 = u12, (A.1)

π̄1u
2
1 + π̄2u

2
2 + π̄3u

2
3 = u23, (A.2)

π̄1u
3
1 + π̄2u

3
2 + π̄3u

3
3 = u31, (A.3)

π̄1 + π̄2 + π̄3 = 1. (A.4)

Equations (4.21) and (4.22) can be simplified to

π̄1 : π̄2 : π̄3 = ρ3 p̄
3
m3

: ρ1 p̄
1
m1

: ρ2 p̄
2
m2

. (A.5)

Whenever utilities are such that (A.1)–(A.4) has a solution π̄ � 0, an equilibrium
of the type we are looking for in this subsection exists. We derive now under what
assumptions on utilities such a solution π̄ exists. We will show that there is at most
one solution, so a solution, if it exists, is unique.

From equalities (A.1) and (A.4), we obtain

(1 − π̄2)(u
1
2 − u13) = π̄1(u

1
1 − u13). (A.6)

Combining (A.2) and (A.4) leads to

π̄1(u
2
3 − u21) = π̄2(u

2
2 − u23) (A.7)

= (u22 − u23) − π̄1(u
2
2 − u23)

u11 − u13
u12 − u13

,

where the second equality follows using (A.6). Rewriting the last equality leads to

π̄1 = α2

1 + α2 + α1α2
.

It is immediate that 0 < π̄1 < 1.
By (A.7) we have π̄2 = π̄1/α2, and we find that

π̄2 = 1

1 + α2 + α1α2
.

Since π̄3 = 1 − π̄1 − π̄2, we find that

π̄3 = α1α2

1 + α2 + α1α2
.

Obviously, it holds that 0 < π̄2 < 1 and 0 < π̄3 < 1.At this point we have established
that there is at most one solution to (A.1)–(A.4). For there to be some solution, (A.3)
should hold. Using the already derived expressions for π̄1, π̄2, and π̄3, we find that
(A.3) holds if and only if α1α2α3 = 1.

123



168 P. J.-J. Herings, H. Houba

A game (u, ρ)with α1α2α3 = 1 has many equilibria ( p̄, ā) of the type described in
this subsection. All such equilibria can be constructed as follows. Let π̄ be the uniquely
determined probabilities bywhich the alternatives are implemented at equilibrium. Let
λ > 0 be such that, for i = 1, 2, 3, λπ̄mi ≤ ρi . If player i is selected as proposer,
he proposes xmi with probability λπ̄mi /ρi and xbi with probability 1− λπ̄mi /ρi . The
former proposal is accepted, the latter rejected. This construction ensures that (A.5)
holds. The higher λ, the less delay before an alternative is accepted. The highest
possible choice of λ occurs when there is at least one player i for which p̄imi

= 1. In
that case, the selection of player i as a proposer leads to a proposal that is accepted
for sure.

Summarizing, we have the following. Let utilities be such that α1α2α3 = 1, so there
is a unique solution π̄ � 0 to (A.1)–(A.4). Then the set of SSPEs with all players
making a proposal with probability one is given by

p̄ =
⎡

⎣
1 − p̄1m1

0 p̄3m3

p̄1m1
1 − p̄2m2

0
0 p̄2m2

1 − p̄3m3

⎤

⎦ (A.8)

ā1 =
⎡

⎣
1
0
0

⎤

⎦ , ā2 =
⎡

⎣
0
1
0

⎤

⎦ , and ā3 =
⎡

⎣
0
0
1

⎤

⎦ , (A.9)

where p̄ satisfies (A.5). The other SSPEs are obtained by transferring part or all of the
probability 1 − p̄imi

by which xbi is proposed by player i to the option not to make a
proposal, x0.

In this SSPE, each player randomizes between his security utility uimi
, knowing it

will be accepted for sure by player i+1, and some gamble among all three alternatives
in case he either proposes his best alternative, knowing the latter will be rejected
for sure, or does not make a proposal at all. In this gamble, at some future date
either player i − 1 proposes player i’s best alternative and player i accepts, or player
i + 1 may propose player i’s worst alternative but since this is player i − 1’s best
alternative the latter player accepts, or player i proposes hismiddle alternative,which is
accepted by player i+1.Notice that all SSPEs are symmetricwhenever the recognition
probabilities (ρ1, ρ2, ρ3) are identical to (π̄2, π̄3, π̄1), because the latter ensures that
the probabilities of proposing the middle alternative are equal. In that case there is one
SSPE without delay, i.e. pimi

= 1 for every player i. All other SSPEs involve delay.
All SSPEs ( p̄, ā) lead to the same equilibrium payoffs z̄ given by z̄i = uimi

. We
have uniqueness in equilibrium utilities but multiplicity in the supporting equilibrium
strategies. Since also v̄ii = uimi

= z̄i , there is no advantage in being the proposer.
The recognition probabilities ρ do not influence the probability π̄ j that the bargaining
process ends with alternative x j . These probabilities depend on the utilities only.

We summarize our findings in the following theorem.

Theorem A.1 There is an SSPE ( p̄, ā) ∈ P × A with p̄imi
> 0, i = 1, 2, 3, if and

only if α1α2α3 = 1. In this case, there is a unique SSPE with minimal expected delay,
given by the solution ( p̄, ā) to (A.5), (A.8), and (A.9) with p̄imi

= 1 for at least
one player i, where (π̄1, π̄2, π̄3) is the unique solution to (A.1)–(A.4). Other SSPEs
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are obtained by proportionally lowering p̄imi
across players i, as well as by shifting

probability weight from p̄ibi to p̄i0. All SSPEs induce the same equilibrium utilities,

given by z̄i = uimi
, i = 1, 2, 3.

A.2 Two players with p̄imi
> 0.

Nextwe consider SSPEswhere oneplayer,without loss of generality player 1, proposes
his best alternative for sure, and the other two players put positive weight on their
middle alternative. We argue that no such SSPEs exist.

Consider a game (u, ρ) ∈ G and let (( p̄ibi , p̄
i
mi

, āimi
, z̄i )i=1,2,3, π̄) be a solution to

(4.15)–(4.22) with p̄11 = 1, p̄23 > 0, and p̄31 > 0. By (4.15), ā12u
2
2 + (1− ā12)z̄

2 ≤ u23,
so z̄2 ≤ u23. Suppose z̄

2 < u23. Then ā23 = 1 by (4.17), so p̄31 = 0 by (4.15), a contra-
diction to p̄31 > 0. It follows that z̄2 = u23.Now (4.15) implies u23 ≥ ā12u

2
2+(1−ā12)u

2
3,

so ā12 = 0. It follows that if player 2 proposes his best alternative, it is rejected for
sure. No other player ever proposes this alternative. The bargaining process never ends
with outcome x2, i.e. π̄2 = 0. This is a contradiction to π̄2 > 0.

Theorem A.2 There is no SSPE ( p̄, ā) ∈ P × A with for some i = 1, 2, 3, p̄imi
=

0, p̄i−1
mi−1

> 0, and p̄i+1
mi+1

> 0.

A.3 One player with p̄imi
> 0.

Now we consider SSPEs with two players proposing their best alternative for sure,
and where one player, without loss of generality player 3, puts positive weight on his
middle alternative.

Consider a game (u, ρ) ∈ G and let (( p̄ibi , p̄
i
mi

, āimi
, z̄i )i=1,2,3, π̄) be a solution to

(4.15)–(4.22) with p̄11 = 1, p̄22 = 1, and p̄31 > 0. So, player 1 proposes x1, player 2
proposes x2, and player 3 mixes over x3 and x1. To obtain π̄ j > 0, j = 1, 2, 3, we
must have p̄33 > 0, ā12 > 0, and ā23 > 0. By (4.15) and (4.16) we find

ā31u
1
1 + (1 − ā31)z̄

1 ≥ u12,

ā12u
2
2 + (1 − ā12)z̄

2 ≥ u23,

ā23u
3
3 + (1 − ā23)z̄

3 = u31.

Since ā23 > 0 and u33 > u31, the equality implies ā23 ∈ (0, 1) and z̄3 < u31. It follows by
(4.17) and (4.18) that z̄2 = u23. Since z̄

2 = u23, the second inequality above is satisfied.
Since z̄3 < u31, we have ā

3
1 = 1 by (4.17), so the proposal of player 1 is accepted for

sure. Also, since ā31 = 1, the first inequality above is satisfied. By ā12 > 0 and (4.18),
we also must have z̄1 ≤ u12. There are now two possible cases. Case 1 where z̄1 = u12
and Case 2 with z̄1 < u12. In Case 2 we have ā

1
2 = 1 by (4.17).
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A.3.1 Case 1

It holds that ( p̄, ā) ∈ P × A is an SSPE if and only if there is π̄ such that

p̄ =
⎡

⎣
1 0 1 − p̄33
0 1 0
0 0 p̄33

⎤

⎦ (A.10)

ā1 =
⎡

⎣
1
ā12
0

⎤

⎦ , ā2 =
⎡

⎣
0
1
ā23

⎤

⎦ , and ā3 =
⎡

⎣
1
0
1

⎤

⎦ , (A.11)

ā23u
3
3 + (1 − ā23)(π̄1u

3
1 + π̄2u

3
2 + π̄3u

3
3) = u31, (A.12)

π̄1u
1
1 + π̄2u

1
2 + π̄3u

1
3 = u12, (A.13)

π̄1u
2
1 + π̄2u

2
2 + π̄3u

2
3 = u23, (A.14)

π̄1u
3
1 + π̄2u

3
2 + π̄3u

3
3 < u31, (A.15)

π̄1 + π̄2 + π̄3 = 1, (A.16)

π̄1 : π̄2 : π̄3 = ρ1 + ρ3(1 − p̄33) : ρ2ā
1
2 : ρ3 p̄

3
3 ā

2
3 , (A.17)

where 0 < p̄33 < 1, 0 < ā12 ≤ 1, and 0 < ā23 < 1.
Using the same derivation as in Appendix A.1, it can be shown that there is a

solution π̄ � 0 to the system (A.13)–(A.16) if and only if

α1α2α3 < 1. (A.18)

Moreover, each specification of utilities satisfying (A.18) leads to a unique solution
π̄ � 0 to (A.13)–(A.16). Indeed, as before it holds that

π̄1 = α2

1 + α2 + α1α2
,

π̄2 = 1

1 + α2 + α1α2
,

π̄3 = α1α2

1 + α2 + α1α2
.

Rewriting (A.12), we obtain

ā23 = π̄2 − α3π̄3

α3 + π̄2 − α3π̄3
,

and substitution of the expressions for π̄2 and π̄3 results in

ā23 = 1 − α1α2α3

1 + α3 + α2α3
. (A.19)
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Notice that 0 < ā23 < 1. By (A.17) we have

α1 = ρ3 p̄33 ā
2
3

ρ1 + ρ3(1 − p̄33)
.

Substitution of the expression for ā23 in the latter equation, and then solving for p̄33
results in

p̄33 = ρ1 + ρ3

ρ3

α1 + α1α3 + α1α2α3

1 + α1 + α1α3
. (A.20)

Obviously, it holds that p̄33 > 0. Moreover, we have that p̄33 < 1 if and only if

ρ1

ρ3
<

1 − α1α2α3

α1 + α1α3 + α1α2α3
. (A.21)

By (A.17) we have

α2 = ρ1 + ρ3(1 − p̄33)

ρ2ā12
.

We substitute the expression found for p̄33 and solve the resulting equation for ā
1
2, and

obtain that

ā12 = ρ1 + ρ3

ρ2

1 − α1α2α3

α2 + α1α2 + α1α2α3
. (A.22)

This expression is clearly positive. It is less than or equal to one if and only if

ρ2 ≥ 1 − α1α2α3

1 + α2 + α1α2
. (A.23)

Since every player i proposes his best alternative xbi with positive probability, and
since ā31 = 1, ā12 > 0, and ā23 > 0 implies that such a proposal is accepted with
positive probability, no player wants to use the option not to make a proposal. Finally,
the SSPE utilities satisfy z̄1 = u12, z̄

2 = u23, and z̄3 < u31.
We summarize our findings in the following theorem.

Theorem A.3.1 There is an SSPE ( p̄, ā) ∈ P× A with p̄12 = 0, p̄23 = 0, p̄31 > 0, and
z̄1 ≥ u12 if and only if α1α2α3 < 1 and ρ is such that (A.21) and (A.23) are satisfied.
In this case, such SSPE is unique. It is given by (A.10), (A.11), (A.19), (A.20), and
(A.22). The equilibrium utilities satisfy z̄1 = u12, z̄

2 = u23, and z̄3 < u31.

Notice that, unlike the SSPEs of Theorem A.1, players never use the option to
refrain frommaking a proposal, i.e., pi0 = 0, i = 1, 2, 3. Since conditional equilibrium
utilities satisfy v̄ii > z̄i , i = 1, 2, 3, each player enjoys an advantage whenever he is
the recognized player. Moreover, conditional on being the recognized player, player 1
achieves his best alternative, player 2 is strictly better off compared to his security level,
and player 3 is kept at his security level. In many bargaining models, the advantage to
propose vanishes in taking the limit to the no discounting case. Here the advantage is
present under no discounting.
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TheSSPE leads to a positive expected delay. The reason is that player 3 is recognized
with positive probability and proposes x3 with positive probability. This proposal is
rejected by both players with positive probability. Player 1 always proposes x1,which
is accepted by player 3. Player 2 always proposes x2, which is accepted by player 1
with positive probability ā12 and is rejected by both players otherwise.

Using a straightforward relabeling of the players, we find fully symmetric results
for SSPEs with p̄22 = p̄33 = 1 and player 1 mixing between x1 and x2, and SSPEs
with p̄11 = p̄33 = 1 and player 2 mixing between x2 and x3.

A.3.2 Case 2

It holds that ( p̄, ā) ∈ P × A is an SSPE if and only if there is π̄ such that

p̄ =
⎡

⎣
1 0 1 − p̄33
0 1 0
0 0 p̄33

⎤

⎦ (A.24)

ā1 =
⎡

⎣
1
1
0

⎤

⎦ , ā2 =
⎡

⎣
0
1
ā23

⎤

⎦ , and ā3 =
⎡

⎣
1
0
1

⎤

⎦ , (A.25)

ā23u
3
3 + (1 − ā23)

(
π̄1u

3
1 + π̄2u

3
2 + π̄3u

3
3

)
= u31, (A.26)

π̄1u
1
1 + π̄2u

1
2 + π̄3u

1
3 < u12, (A.27)

π̄1u
2
1 + π̄2u

2
2 + π̄3u

2
3 = u23, (A.28)

π̄1u
3
1 + π̄2u

3
2 + π̄3u

3
3 < u31, (A.29)

π̄1 + π̄2 + π̄3 = 1, (A.30)

π̄1 : π̄2 : π̄3 = ρ1 + ρ3(1 − p̄33) : ρ2 : ρ3 p̄
3
3 ā

2
3, (A.31)

where 0 < p̄33 < 1 and 0 < ā23 < 1.
We can rewrite (A.26)–(A.29) as

α3 − (1 − ā23)(π̄1α3 + π̄2(1 + α3)) = 0, (A.32)

π̄1α1 − π̄3 < 0, (A.33)

−π̄1 + π̄2α2 = 0, (A.34)

−π̄2 + π̄3α3 < 0. (A.35)

We have a system (A.30), (A.31), (A.32), (A.34 ) with five equations in the five
unknowns π̄1, π̄2, π̄3, p̄33, and ā

2
3 . Solving this system results in outcome probabilities

π̄1 = α2(α3 + ρ2)

1 + α3 + α2α3
, π̄2 = α3 + ρ2

1 + α3 + α2α3
, and π̄3 = 1 − ρ2(1 + α2)

1 + α3 + α2α3
,
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and SSPE action probabilities

p̄33 = ρ1 − α2ρ2 + ρ3

ρ3
, (A.36)

ā23 = ρ2

α3 + ρ2
. (A.37)

It is immediate that the solution satisfies 0 < ā23 < 1.
The inequality (A.33) is equivalent to

ρ2 <
1 − α1α2α3

1 + α2 + α1α2

(

<
1

1 + α2

)

. (A.38)

The inequality (A.35) is always satisfied.
The requirement p̄33 > 0 is equivalent to ρ2 < 1/(1 + α2), which implies π̄3 > 0.

This requirement follows from (A.38). The requirement p̄33 < 1 is equivalent to

ρ1

ρ2
< α2. (A.39)

Since every player i proposes his best alternative xbi with positive probability, and
since ā31 = 1, ā12 = 1, and ā23 > 0 implies that such a proposal is accepted with
positive probability, no player wants to use the option not to make a proposal.

We summarize our findings in the following theorem.

Theorem A.3.2 There is an SSPE ( p̄, ā) ∈ P × A with p̄12 = 0, p̄23 = 0, p̄31 > 0,
and z̄1 < u12 if and only if α1α2α3 < 1 and ρ is such that (A.38) and (A.39) are
satisfied. In this case, an SSPE is unique. It is given by (A.24), (A.25), (A.36), and
(A.37). Equilibrium utilities satisfy z̄1 < u12, z̄

2 = u23, and z̄3 < u31.

For given utilities satisfying (A.18), (A.38) requires ρ2 to be sufficiently low. It
complements (A.23) which implies that SSPEs as in Case 1 cannot coexist with those
as in Case 2. Inequality (A.39) requires ρ1 to be sufficiently low compared to ρ2.

Notice that, like the SSPE of Theorem A.3.1, the option not to make a proposal cannot
be chosen with any positive probability.

TheSSPE leads to a positive expected delay. The reason is that player 3 is recognized
with positive probability, proposes x3 with positive probability, which is rejected by
both players with positive probability. The proposals of players 1 and 2 are accepted
for sure. Similar to the previous case, all three players have an advantage to propose.
Conditional on being the recognized player, player 3 cannot do better than getting the
utility of his middle alternative. Conditional on being the proposer, both player 1 and
player 2 achieve the utility of the best alternative.

By a relabeling of the players, we find fully symmetric results for SSPEs with
p̄22 = p̄33 = 1 and player 1 mixing between x1 and x2, and SSPEs with p̄11 = p̄33 = 1
and player 2 mixing between x2 and x3.
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A.4 No player with p̄imi
> 0

We finally consider SSPEs where all players propose their best alternative for sure.
Let ( p̄ibi , p̄

i
mi

, āimi
, z̄i ) be a solution to (4.15)–(4.22) with p̄11 = p̄22 = p̄33 = 1. To

obtain π̄ j > 0, j = 1, 2, 3, we must have ā31 > 0, ā12 > 0, and ā23 > 0. If follows
from (4.18) that z̄1 ≤ u12, z̄

2 ≤ u23, and z̄3 ≤ u31. Since all players propose their best
alternativewith positive probability, and since such a proposal is acceptedwith positive
probability, no player wants to use the option not to make a proposal. We distinguish
four possible cases of interest. In Case 1, there are three players with z̄i = uimi

, in
Case 2 there are two such players, without loss of generality, players 1 and 2, in Case 3
there is one such player, without loss of generality player 1, and in Case 4 every player
i has z̄i < uimi

.

A.4.1 Case 1

It holds that ( p̄, ā) ∈ P × A is an SSPE if and only if there is π̄ such that

p̄ =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ (A.40)

ā1 =
⎡

⎣
1
ā12
0

⎤

⎦ , ā2 =
⎡

⎣
0
1
ā23

⎤

⎦ , and ā3 =
⎡

⎣
ā31
0
1

⎤

⎦ , (A.41)

π̄1u
1
1 + π̄2u

1
2 + π̄3u

1
3 = u12,

π̄1u
2
1 + π̄2u

2
2 + π̄3u

2
3 = u23,

π̄1u
3
1 + π̄2u

3
2 + π̄3u

3
3 = u31,

π̄1 + π̄2 + π̄3 = 1,

π̄1 : π̄2 : π̄3 = ρ1ā
3
1 : ρ2ā

1
2 : ρ3ā

2
3 . (A.42)

As in Appendix A.1 we obtain that

α1α2α3 = 1, (A.43)

π̄1 = α2

1 + α2 + α1α2
, (A.44)

π̄2 = 1

1 + α2 + α1α2
, (A.45)

π̄3 = α1α2

1 + α2 + α1α2
. (A.46)

The SSPE is not unique. Let λ > 0 be such that, for i = 1, 2, 3, λπ̄mi ≤ ρmi . If player
i has to respond to the proposal xmi , he accepts with probability ā

i
mi

= λπ̄mi /ρmi > 0
and rejects with probability 1− λπ̄mi /ρmi < 1. This construction ensures that (A.42)
holds. The higher λ, the less delay before an outcome is accepted. The highest possible
choice of λ occurs when there is at least one player i for which āimi

= 1. In that case,
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selection of player i + 1 as proposer leads to a proposal that is accepted for sure.
Note that λ = 0 would violate π̄mi > 0. The set of SSPEs is not closed. The no
discounting case differs in this respect from the discounting case where the set of
SSPEs is compact.

By definition of this case, the equilibrium utilities satisfy z̄i = uimi
, i = 1, 2, 3.

Since also āimi
> 0 and z̄i = uimi

, the conditional equilibrium utilities satisfy
v̄ii ∈ (uimi

, uibi ), i = 1, 2, 3. We conclude that there is an advantage in becoming
the recognized player and that a recognized player does strictly better than his security
level uimi

.

Theorem A.4.1 There is an SSPE ( p̄, ā) ∈ P × A with p̄imi
= 0, i = 1, 2, 3, and

z̄i ≥ uimi
, i = 1, 2, 3, if and only if α1α2α3 = 1. In this case, there is a unique SSPE

with minimal delay. It is given by the solution ( p̄, ā) to (A.40), (A.41), and (A.42)
with āimi

= 1 for at least one player i, where (π̄1, π̄2, π̄3) is defined in (A.44)–( A.46).
Other SSPEs are obtained by proportionally lowering āimi

across players i. All SSPEs
induce the same equilibrium utilities, given by z̄i = uimi

, i = 1, 2, 3.

A.4.2 Case 2

It holds that ( p̄, ā) ∈ P × A is an SSPE if and only if there is π̄ such that

p̄ =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ (A.47)

ā1 =
⎡

⎣
1
ā12
0

⎤

⎦ , ā2 =
⎡

⎣
0
1
ā23

⎤

⎦ , and ā3 =
⎡

⎣
1
0
1

⎤

⎦ , (A.48)

ā23u
3
3 + (1 − ā23)(π̄1u

3
1 + π̄2u

3
2 + π̄3u

3
3) ≥ u31, (A.49)

π̄1u
1
1 + π̄2u

1
2 + π̄3u

1
3 = u12,

π̄1u
2
1 + π̄2u

2
2 + π̄3u

2
3 = u23,

π̄1u
3
1 + π̄2u

3
2 + π̄3u

3
3 < u31,

π̄1 + π̄2 + π̄3 = 1,

π̄1 : π̄2 : π̄3 = ρ1 : ρ2ā
1
2 : ρ3ā

2
3 . (A.50)

As in Case 1 in Subsects. A.3.1 we obtain that

α1α2α3 < 1, (A.51)

π̄1 = α2

1 + α2 + α1α2
, π̄2 = 1

1 + α2 + α1α2
, and π̄3 = α1α2

1 + α2 + α1α2
.
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From (A.50) it then follows that

ā12 = ρ1

α2ρ2
, (A.52)

ā23 = α1ρ1

ρ3
. (A.53)

To satisfy (A.49) we need that

ρ1

ρ3
≥ 1 − α1α2α3

α1 + α1α3 + α1α2α3

(

<
1

α1

)

. (A.54)

The requirements ā12 ≤ 1 and ā23 ≤ 1 lead to

ρ1

ρ2
≤ α2, (A.55)

ρ3

ρ1
≥ α1. (A.56)

By definition of the case, the equilibrium utilities satisfy z̄1 = u1m1
, z̄2 = u2m2

, and

z̄3 < u3m3
. For i = 1, 2, āi−1

bi
> 0 and z̄i = uimi

imply that the conditional equilibrium

utilities satisfy v̄ii > uimi
. Since z̄3 < u3m3

, it follows that player 3 has an advantage
to propose.

We summarize our findings in the following theorem.

Theorem A.4.2 There is an SSPE ( p̄, ā) ∈ P× A with p̄imi
= 0, i = 1, 2, 3, z̄1 ≥ u12,

z̄2 ≥ u23, and z̄3 < u31 if and only if α1α2α3 < 1 and ρ is such that (A.54), (A.55 ),
and (A.56) are satisfied. In this case, there is a unique SSPE. It is given by (A.47),
(A.48), (A.52), and (A.53). The equilibrium utilities satisfy z̄1 = u12, z̄

2 = u23, and
z̄3 < u31.

By (A.50), the SSPE does not involve delay if and only if ρi is equal to π̄i for all
i = 1, 2, 3.

By a relabeling of the players, we obtain fully symmetric results for SSPEs with
p̄imi

= 0, i = 1, 2, 3, z̄1 ≥ u12, z̄
2 < u23, and z̄3 ≥ u31, and for SSPEs with p̄imi

= 0,
i = 1, 2, 3, z̄1 < u12, z̄

2 ≥ u23, and z̄3 ≥ u31.

A.4.3 Case 3

It holds that ( p̄, ā) ∈ P × A is an SSPE if and only if there is π̄ such that

p̄ =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ (A.57)

ā1 =
⎡

⎣
1
ā12
0

⎤

⎦ , ā2 =
⎡

⎣
0
1
1

⎤

⎦ , and ā3 =
⎡

⎣
1
0
1

⎤

⎦ , (A.58)
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ā12u
2
2 + (1 − ā12)(π̄1u

2
1 + π̄2u

2
2 + π̄3u

2
3) ≥ u23, (A.59)

π̄1u
1
1 + π̄2u

1
2 + π̄3u

1
3 = u12, (A.60)

π̄1u
2
1 + π̄2u

2
2 + π̄3u

2
3 < u23, (A.61)

π̄1u
3
1 + π̄2u

3
2 + π̄3u

3
3 < u31, (A.62)

π̄1 + π̄2 + π̄3 = 1,

π̄1 : π̄2 : π̄3 = ρ1 : ρ2ā
1
2 : ρ3. (A.63)

Notice that the analogue of (A.59) for player 3 is automatically satisfied since ā23 = 1.
Rewriting (A.60) and using (A.63), we find that

ρ3 = α1ρ1. (A.64)

It follows that Case 3 admits SSPEs in degenerate cases only, more precisely, when
(A.64) holds. In these degenerate cases, there is a continuum of SSPEs, inducing a
continuum of SSPE utilities for players 2 and 3. We parametrize the SSPEs by means
of the positive real number λ and using (A.63) we write

π̄1 = λρ1 and π̄3 = α1λρ1.

Suppose by means of contradiction that λ < 1. Using (A.63), we find that

π̄1 = λρ1 < ρ1, π̄2 = π̄1ρ2ā12
ρ1

= λρ2ā
1
2 < ρ2, and π̄3 = π̄1ρ3

ρ1
= λρ3 < ρ3.

We obtain the contradiction 1 = π̄1 + π̄2 + π̄3 < ρ1 + ρ2 + ρ3 = 1. Consequently,
we have shown that λ ≥ 1.

Since ρ1 + ρ2 + ρ3 = 1 and π̄1 + π̄2 + π̄3 = 1, we have

ρ2 = 1 − (1 + α1)ρ1, and π̄2 = 1 − (1 + α1)λρ1.

Using (A.63), we have

ā12 = 1 − (1 + α1)λρ1

λ − (1 + α1)λρ1
. (A.65)

The denominator of (A.65) is positive if and only if ρ1 < 1/(1+α1). The inequalities
in (A.61) and (A.59) are satisfied if and only if

α2

1 + α2 + α1α2
< λρ1 ≤ α2 + ρ1

1 + α2 + α1α2

(

<
1

1 + α1

)

. (A.66)

The inequality in (A.66) in parentheses implies that ā12 and π̄2 are positive.
The inequality (A.62) is satisfied if and only if

λρ1 <
1

1 + α1 + α1α3
. (A.67)
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The first inequality of (A.66) together with (A.67) imply that α1α2α3 < 1. There is
some λ ≥ 1 such that (A.66) and (A.67) are satisfied if and only if α1α2α3 < 1 and

ρ1 <
1

1 + α1 + α1α3
. (A.68)

We summarize our findings in the following theorem.

Theorem A.4.3 There is an SSPE ( p̄, ā) ∈ P×A with p̄imi
= 0, i = 1, 2, 3, z̄1 ≥ u12,

z̄2 < u23, and z̄3 < u31 if and only if α1α2α3 < 1, ρ3 = α1ρ1, and ρ1 satisfies (A.68).
In this case there is a continuum of SSPEs. Any λ ≥ 1 satisfying (A.66) and (A.67)
induces an SSPE given by (A.57), (A.58), and (A.65). Equilibrium utilities depend on
λ and satisfy z̄1 = u12, z̄

2 < u23, and z̄3 < u31.

The SSPE does not involve delay if and only if λ = 1. Whenever ρ1 < α2
1+α2+α1α2

,

the lowest possible choice for λ strictly exceeds 1, and delay cannot be avoided.
Fully symmetric results hold for SSPEs with p̄imi

= 0, i = 1, 2, 3, z̄1 < u12,
z̄2 ≥ u23, and z̄3 < u31, and for SSPEs with p̄imi

= 0, i = 1, 2, 3, z̄1 < u12, z̄
2 < u23,

and z̄3 ≥ u31.

A.4.4 Case 4

It holds that ( p̄, ā) ∈ P × A is an SSPE if and only if there is π̄ such that

p̄ =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ (A.69)

ā1 =
⎡

⎣
1
1
0

⎤

⎦ , ā2 =
⎡

⎣
0
1
1

⎤

⎦ , and ā3 =
⎡

⎣
1
0
1

⎤

⎦ , (A.70)

π̄1u
1
1 + π̄2u

1
2 + π̄3u

1
3 < u12, (A.71)

π̄1u
2
1 + π̄2u

2
2 + π̄3u

2
3 < u23, (A.72)

π̄1u
3
1 + π̄2u

3
2 + π̄3u

3
3 < u31, (A.73)

π̄1 + π̄2 + π̄3 = 1,

π̄1 : π̄2 : π̄3 = ρ1 : ρ2 : ρ3. (A.74)

The equalities in (A.74) immediately lead to the conclusion that π̄1 = ρ1, π̄2 = ρ2, and
π̄3 = ρ3.The inequalities in (A.71)–(A.73) are equivalent to the following conditions:

ρ3

ρ1
> α1, (A.75)

ρ1

ρ2
> α2, (A.76)

ρ2

ρ3
> α3. (A.77)
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It is immediate to verify that (A.75)–(A.77) imply that α1α2α3 < 1.
By definition of the case, the equilibrium utilities satisfy z̄1 < u1m1

, z̄2 < u2m2
and

z̄3 < u3m3
. Since each player accepts his middle alternative for sure, the conditional

equilibrium utilities satisfy v̄11 = u11, v̄
2
2 = u22 and v̄33 = u33. Therefore, each player

has an advantage to propose and, as the recognized player, each player can realize his
best alternative for sure.

We summarize our findings in the following theorem.

Theorem A.4.4 There is an SSPE ( p̄, ā) ∈ P × A with p̄imi
= 0, i = 1, 2, 3, z̄1 <

u12, z̄
2 < u23, and z̄3 < u31 if and only if α1α2α3 < 1 and ρ is such that (A.75)–(A.77)

are satisfied. In this case there is a unique SSPE. It is given by (A.69) and (A.70). The
equilibrium utilities satisfy z̄1 < u12, z̄

2 < u23, and z̄3 < u31.

Appendix B

Proof of Theorem 4.2:
⇒ After observing that

∑3
j=0 p

h
j r

h−1
jh rh+1

jh < 1 for some player h, i.e. player h
makes with positive probability a proposal that is accepted with positive probability
is equivalent to π0 = 0, this direction follows from the derivations in Sect. 4.
⇐ We first argue that a solution (p, r, v, z) to (4.1)–(4.7) corresponds to a strategy
profile (p, r) inducing utilities (v, z) and satisfying the one–shot deviation property.
To show that (v, z) are the utilities induced by (p, r) we have to show that given the
strategy profile (p, r) the system (4.1)–(4.2) has a unique solution. We substitute the
expression for vih given in (4.1) in (4.2) and obtain a system of three equations and
three unknowns of the form

zi = ci + dzi , i = 1, 2, 3.

The constant d is given by

d =
3∑

h=1

ρh

3∑

j=0

phj r
h−1
jh rh+1

jh < 1,

where the inequality follows from the fact that ρh is positive for every player h. Since
d < 1, the uniqueness of z follows immediately, leading to the uniqueness of v. Now
it follows from (4.1)–(4.7) that (p, r) has the one–shot deviation property.

We argue next that the absence of a profitable one-shot deviation implies the absence
of a profitable deviation, proving that (p, r) is an SSPE. The usual proofs do not apply
because future payoffs are not discounted. Nevertheless, the property that for some
h it holds that

∑3
j=0 p

h
j r

h−1
jh rh+1

jh < 1 coupled with the observation that ρh > 0
implies that every round there is a positive probability that negotiations terminate.
Suppose there is some player, say i, who has a profitable deviation from (p, r) at
some decision node. The feature that every round there is a positive probability that
negotiations terminate implies that player i also has a profitable deviation from (p, r)
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that coincides with the strategy prescribed by (pi , r i ) except for a finite number of
decision nodes, exactly as in the case with discounting. Finally, the usual backwards
induction argument shows that player i must then also have a profitable one–shot
deviation. ��
Proof of Theorem 4.3: We show first that each player i has zi strictly exceeding the
utility uiwi

of his worst alternative. Suppose, on the contrary, that player i has zi = uiwi
.

The probability is therefore 1 that the alternative xwi is accepted at some point in
time, since otherwise the utility of i strictly exceeds uiwi

. Therefore, it follows that

zi−1 = ui−1
bi−1

and zi+1 = ui+1
mi+1

. Since ui−1
mi

= ui−1
wi−1

< ui−1
bi−1

= zi−1, (4.7) yields that

player i − 1 rejects proposal xmi by player i with probability 1, so r i−1
mi i

= 1. Since

r i−1
mi i

= 1 and zi+1 = ui+1
mi+1

< ui+1
bi+1

= ui+1
mi

, (4.4) yields that player i + 1 rejects
proposal xmi by player i with probability 0. Proposal xmi by player i is therefore
accepted with probability 1, so vii ≥ uimi

> uiwi
. Since vii−1 ≥ uiwi

and vii+1 ≥ uiwi
,

we find that uiwi
= zi = ρ1v

i
1 + ρ2v

i
2 + ρ3v

i
3 > uiwi

, a contradiction. We conclude
that each player has zi strictly exceeding uiwi

, i.e.

zi > uiwi
, i = 1, 2, 3. (4.12)

We show next that each player i has zi strictly lower than the utility of his best
alternative, uibi . If some player i has zi = uibi , then alternative xbi is accepted with

probability 1, so zi+1 = ui+1
bi

= ui+1
wi+1

, a contradiction to (4.12). We have found that

zi < uibi , i = 1, 2, 3. (4.13)

Next, we argue that any voter rejects his worst alternative for sure. To see this, when
player h proposes alternative xwi , i �= h, then player i is the last one to vote. It holds
by (4.12) that zi > uiwi

, so by ( 4.7), r iwi h
= 1. We have shown that

r iwi h = 1, i = 1, 2, 3, h �= i. (4.9)

We continue by establishing that, independent of who proposes, the recognized
player can always conclude the bargaining for sure by proposing either his worst or
his middle alternative. Consider a proposal xmi by player i, so player i proposes his
middle alternative and player i + 1, for whom this is the best alternative, votes before
player i − 1. We argue that this proposal will be accepted with probability 1 by player
i + 1, i.e. r i+1

mi i
= 0. By (4.9), since mi = wi−1, r

i−1
mi i

= 1. Using that mi = bi+1, we

know by (4.13), ui+1
mi

> zi+1. Since r i−1
mi i

= 1,we use (4.4) to conclude that r i+1
mi i

= 0.
We have derived that

r221 = r332 = r113 = 0. (4.10)

Consider now a proposal xwi by player i meaning player i proposes his worst
alternative. We argue that this proposal will be accepted with probability one, i.e.
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r i−1
wi i

r i+1
wi i

= 0. Since wi = bi−1, it follows from (4.13) that ui−1
wi

> zi−1, so by (4.4),

r i−1
wi i

= 0 or r i+1
wi i

= 0. We have derived that

r231r
3
31 = r112r

3
12 = r123r

2
23 = 0. (4.11)

As a corollary, a recognized player will never propose his worst alternative, because
he can do strictly better by proposing his middle alternative, i.e.

piwi
= 0, i = 1, 2, 3. (4.8)

We have already argued that each zi is a weighted average of uij , j = 1, 2, 3,
with weights π j independent of i. We argue next that all these weights are positive. If
only one weight would be positive, we would get a contradiction to (4.12) for some i.
Suppose that exactly twoweights are positive, without loss of generality theweightsπ1
onoutcome x1 andπ2 on x2 sumup to one andπ3 = 0, so zi = π1ui1+π2ui2.From (4.4)
and (4.9), the proposal x1 by player 1 is accepted with probability 1 by player 3. The
proposal x2 by player 1 is accepted with probability 1 according to (4.10). We can now
use (4.3) to conclude that p10 = p12 = 0, and since p13 = 0 by (4.8), we know that p11 =
1.Aproposal x2 by player 2would be rejectedwith probability 1 by player 1 using (4.5)
and the fact that r322 = 1 by (4.9). Player 3 never proposes x2 by (4.8). It now follows
that π1 = 1, a contradiction to (4.12). We conclude that all weights are positive,

π1, π2, π3 > 0. (4.14)

��
Proof of Theorem 4.4: Assume that (p, r) ∈ P × R satisfies (4.1)–( 4.7). We show
that (p, r̄) satisfies (4.1)–(4.7 ), where r̄ is as defined in Theorem 4.4. We verify
first that r̄ is proposer independent. Indeed, for i = 1, 2, 3, we have the following.
It holds by definition that r̄ i0h = 1, h �= i. We have by definition that r̄ ibi i+1 = 0

and r̄ ibi i−1 = r ibi i−1 = 0, where the last equality holds by (4.10). Also it holds by

definition that r̄ imi i+1 = r imi i+1 and r̄
i
mi i−1 = r imi i+1, so r̄

i
mi i+1 = r̄ imi i−1. Finally, we

have r iwi h
= 1, h �= i, by (4.9), and r̄ iwi h

= r iwi h
, h �= i, by definition.

We show next that

rh−1
jh rh+1

jh = r̄ h−1
jh r̄ h+1

jh , h = 1, 2, 3, j = 0, 1, 2, 3. (B.1)

For j = 0, this follows immediately from the definition of R. Three possible cases
remain: (i) j = bh, (ii) j = mh, and (iii) j = wh .

Case (i), j = bh . Since bh = mh−1 = wh+1, we have

r̄ h−1
bhh

r̄ h+1
bhh

= r̄ h−1
mh−1h

r̄ h+1
wh+1h

= rh−1
mh−1h

rh+1
wh+1h

= rh−1
bhh

rh+1
bhh

,

where the second equality follows by definition of r̄ .
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Case (ii), j = mh . Since mh = wh−1 = bh+1, we obtain

r̄ h−1
mhh

r̄ h+1
mhh

= r̄ h−1
wh−1h

r̄ h+1
bh+1h

= rh−1
wh−1h

rh+1
bh+1h

= rh−1
mhh

rh+1
mhh

,

where the second equality follows by definition of r̄ .
Case (iii), j = wh . By (4.11), it holds that rh−1

whh
rh+1
whh

= 0. Since wh = bh−1, we

have that r̄ h−1
whh

= r̄ h−1
bh−1h

= 0, where the last equality follows by definition of r̄ . It

follows that r̄ h−1
whh

r̄ h+1
whh

= 0.
Using (B.1) we have that (p, r̄ , v, z) satisfies (4.1), (4.2), and (4.3). We verify next

that (p, r̄ , v, z) satisfies (4.4)–(4.7). Consider some r̄ ijh . If j = bi , then r̄ ijh = 0 and
i = f jh, so (4.4), (4.6), and (4.7) hold trivially. Implication (4.5) holds as well, since
zi < uibi by (4.13). If j = wi , then r̄ ijh = r ijh = 1 by (4.9), so (4.5) and (4.7) hold

trivially. Since by (4.12) zi > uiwi
, we find that ( 4.4) and (4.6) also hold. If j = mi

and h = i + 1, then i = f jh, so (4.6) and (4.7) hold trivially. We have that r̄ ijh = r ijh
and r̄ i

′
jh = r̄ i−1

wi−1i+1 = r i−1
wi−1i+1 = r i

′
jh, so (4.4) and (4.5) hold. Finally, we consider the

case where j = mi and h = i−1, so i = s jh and (4.4) and (4.5) hold trivially. Assume
r̄ ijh > 0. Since by definition r̄ ijh = r̄ imi i−1 = r imi i+1, we have r

i
mi i+1 > 0, so by (4.4)

zi ≥ uimi
or r i−1

mi i+1 = 0. Since mi = wi−1, (4.9) implies r i−1
mi i+1 = 1, so zi ≥ uimi

. It

follows that (4.6) holds. Assume r̄ ijh < 1. Since by definition r̄ ijh = r̄ imi i−1 = r imi i+1,

we have r imi i+1 < 1, so by (4.5) zi ≤ uimi
or r i−1

mi i+1 = 0. Since mi = wi−1, (4.9)

implies r i−1
mi i+1 = 1, so zi ≤ uimi

. It follows that (4.7) holds. ��
Proof of Theorem 4.5:
(⇒) This direction follows immediately from the results derived in Sect. 4.
(⇐)This direction follows fromTheorem 4.2 by defining, for h = 1, 2, 3, i = 1, 2, 3,
and j = 0, 1, 2, 3,

v̄ih = p̄hmh
uimh

+ p̄hbh ā
h−1
bh

uibh + p̄hbh (1 − āh−1
bh

)z̄i ,

r̄ ijh = 1 − āij ,

and verifying that a solution ( p̄, ā, π̄ , z̄) to (4.15)–(4.22) inducing expected utili-
ties v̄ and rejection probabilities r̄ leads to a solution ( p̄, r̄ , v̄, z̄) to (4.1)–(4.7) with∑3

j=0 p̄
h
j r̄

h−1
jh r̄ h+1

jh < 1. ��
Proof of Theorem 6.1: Necessity follows by Table 3. We now turn to sufficiency of
the condition. By Theorem A.1 an SSPE exists if α1α2α3 = 1. It remains to be shown
that an SSPE exists if α1α2α3 < 1.

By Theorem A.4.4 an SSPE exists if ρ1/ρ2 > α2, ρ2/ρ3 > α3, and ρ3/ρ1 > α1.

Consider now the cases where the conditions of Theorem A.4.4 are not satisfied. We
claim that then
(

ρ3

ρ1
≥α1 and

ρ1

ρ2
≤α2

)

or

(
ρ1

ρ2
≥α2 and

ρ2

ρ3
≤α3

)

or

(
ρ2

ρ3
≥ α3 and

ρ3

ρ1
≤ α1

)

.

(B.2)
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Indeed, assume,without loss of generality,ρ1/ρ2 ≤ α2.Either it holds thatρ3/ρ1 ≥ α1
or ρ3/ρ1 < α1. In the former case the first formula in (B.2) is true, in the latter case
it should hold that ρ2/ρ3 ≥ α3, since otherwise

1 = ρ1

ρ2

ρ2

ρ3

ρ3

ρ1
< α2α3α1 < 1,

and the third formula in (B.2) is true.
We show next that an SSPE exists whenever ρ3/ρ1 ≥ α1 and ρ1/ρ2 ≤ α2. The

other two cases in (B.2) follow by symmetry. If ρ3/ρ1 = α1 and ρ1/ρ2 ≤ α2, then
line 1 in Table 3 corresponding to Theorem A.4.3 implies the existence of an SSPE
since ρ1/ρ2 ≤ α2 implies ρ1 < 1/(1 + α1 + α1α3). Suppose, by contradiction, that
ρ1 ≥ 1/(1 + α1 + α1α3). Then

1 = ρ1 + ρ2 + ρ3 ≥ 1

1 + α1 + α1α3
+ 1

α2 + α1α2 + α1α2α3
+ α1

1 + α1 + α1α3

= 1 + α2 + α1α2

α2 + α1α2 + α1α2α3
> 1,

a contradiction. If ρ1/ρ2 = α2 and ρ3/ρ1 > α1, then line 2 in Table 3 corresponding
to Theorem A.4.3 implies the existence of an SSPE since ρ3/ρ1 ≥ α1 implies ρ2 <

1/(1 + α2 + α1α2). Suppose, by contradiction, that ρ2 ≥ 1/(1 + α2 + α1α2). Then

1 = ρ1 + ρ2 + ρ3 >
α2

1 + α2 + α1α2
+ 1

1 + α2 + α1α2
+ α1α2

1 + α2 + α1α2
= 1,

a contradiction.
It remains to be shown that an SSPE exists if ρ3/ρ1 > α1 and ρ1/ρ2 < α2.

By line 1 in Table 3 corresponding to Theorem A.4.2, an SSPE exists if ρ3/ρ1 ≥ α1,

ρ1/ρ2 ≤ α2, andρ1/ρ3 ≥ β1, and by line 1 inTable 3 corresponding toTheoremA.3.1
an SSPE exists if ρ1/ρ3 < β1 and ρ2 ≥ α3β3.

It remains to be shown that an SSPE exists ifρ3/ρ1 > α1,ρ1/ρ2 < α2,ρ1/ρ3 < β1,

and ρ2 < α3β3. This follows from line 1 in Table 3 corresponding to Theorem A.3.2.
��

Proof of Theorem 6.2: Existence follows from Theorem 6.1. Leave out the games
satisfying the conditions of Theorems A.1, A.4.1, and A.4.3. This corresponds to a set
of games whose closure has Lebesgue measure zero. Comparing the conditions in any
two distinct rows (that do not correspond to Theorem A.3.1) of Table 3 leads to the
conclusion that the corresponding two sets of parameters have an empty intersection.
This conclusion follows directly in most cases. In some cases one has to make use
of the property that αiβi < 1, which implies that we cannot have simultaneously
ρ j/ρk < αi and ρk/ρ j < βi . Finally, each of the Theorems A.3.1, A.3.2, A.4.2, and
A.4.4 identify a unique SSPE. ��
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Proof of Theorem 7.1: First we consider the case where α1α2α3 = 1. From Table 4
and Theorem A.1 it follows that we can choose

ρ1 = 1

1 + α2 + α1α2
, ρ2 = α1α2

1 + α2 + α1α2
, and ρ3 = α2

1 + α2 + α1α2
,

which leads to a delay probability of 1 − 1 = 0.
Next we consider the case where α1α2α3 < 1. We show that ρ can be chosen

such that the conditions of Theorem A.4.4 as listed in Table 3 are satisfied, which
demonstrates the absence of delay. We define γ = 1/ 3

√
α1α2α3 > 1 and

ρ1 = γ 2α2α3

1 + γα3 + γ 2α2α3
, ρ2 = γα3

1 + γα3 + γ 2α2α3
, and

ρ3 = 1

1 + γα3 + γ 2α2α3
.

It therefore holds that

ρ1

ρ2
= γα2 > α2,

ρ2

ρ3
= γα3 > α3, and

ρ3

ρ1
= 1

γ 2α2α3
= γα1 > α1.

��
Proof of Theorem 7.2: Without loss of generality, we may assume that for all n ∈
N, (u, ρn) satisfies the conditions of exactly one of the theorems, i.e. one of the 15
subcases displayed in Table 4.

According to Table 4, the lower bound on the delay probability following from an
SSPE of Theorem A.1 is given by

1 − (1 + α2 + α1α2)min

{

ρn
1 ,

ρn
2

α1α2
,
ρn
3

α2

}

.

Clearly, this lower bound converges to 1 when n → ∞.

According to Table 3, the first line of conditions in Theorem A.3.1 states that
ρn
2 ≥ α3β3, so limn→∞ ρn

2 = 1. Then Table 4, first line corresponding to A.3.1,
yields that limn→∞ δn = 1. The other cases corresponding to Theorem A.3.1 follow
by symmetry.

According to Table 3, the first line of conditions in Theorem A.3.2 states that ρn
2 <

α3β3. Since α3β3 < 1, it is impossible that limn→∞ ρn
2 = 1, so limn→∞ ρn

2 = 0.
Then Table 4, first line corresponding to A.3.2, yields that limn→∞ δn = 1. The other
cases corresponding to Theorem A.3.2 follow by symmetry.

It is evident from Table 4 that the delay probability following from Theorem A.4.1
goes to 1 when n goes to infinity.

According to Table 3, the first line of conditions in Theorem A.4.2 states that
ρn
1 ≤ α2ρ

n
2 , so limn→∞ ρn

1 = 0. Then Table 4, first line corresponding to A.4.2,
yields that limn→∞ δn = 1. The other cases corresponding to Theorem A.4.2 follow
by symmetry.
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According to Table 3, the first line of conditions in Theorem A.4.3 states that
ρn
1 < 1/(1 + α1 + α1α3), so limn→∞ ρn

1 = 0. Then Table 4, first line corresponding
to A.4.3, yields that the lower bound on the delay probability following from an SSPE
converges to 1. The other cases corresponding to Theorem A.4.3 follow by symmetry.

Table 3 demonstrates that (u, ρn)n∈N cannot satisfy the conditions of Theo-
rem A.4.4. Suppose without loss of generality that limn→∞ ρn

1 = 0. Since ρn
2 <

ρn
1 /α2, we have limn→∞ ρn

2 = 0. Since ρn
3 < ρn

2 /α3, we have limn→∞ ρn
3 = 0. It

follows that ρ converges to the zero vector, a contradiction. ��
Proof of Theorem 7.3: It is easily verified that, with the exception of Theorems A.1
and A.4.3, there is always an alternative that, in an SSPE, is never rejected when being
proposed. The Conditions in Theorems A.1 and A.4.3 are only satisfied for sets of
games having a closure with Lebesgue measure zero. ��
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