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Abstract In this paper we introduce discounting in the bidding mechanism of Pérez-
Castrillo and Wettstein (J Econ Theory 100:274–294, 2001) who implemented the
Shapley value for cooperative transferable utility games. This modification of the
mechanism yields the corresponding discounted Shapley value as the payoff distrib-
ution in every subgame perfect equilibrium. The class of discounted Shapley values
contains the Shapley value and equal division solution as its extreme cases. Interest-
ingly, we obtain axiomatizations of each solution in this class by generalizing the null
player property (of the Shapley value) and nullifying player property (of the equal
division solution) to the so-called δ-reducing player property.

Mathematics Subject Classification 91A10 · 91A12
JEL-Codes C71 · C72

1 Introduction

One of the most well-known solutions for cooperative transferable utility games is
the Shapley value introduced and axiomatized in Shapley (1953). Pérez-Castrillo and
Wettstein (2001) provided a strategic (noncooperative) foundation by introducing a
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bidding mechanism that implements the Shapley value payoffs as unique subgame
perfect equilibrium payoffs.

In this paper we explore the effect of introducing discounting in this bidding mech-
anism. Assuming that after each rejection of the proposal the amount available to be
distributed among the remaining players in the next round is discounted by a parameter
δ ∈ [0, 1], we show that this modification of the mechanism of Pérez-Castrillo and
Wettstein (2001) yields the corresponding δ-discounted Shapley value as the payoff
distribution in every subgame perfect equilibrium of this game.1 These solutions are
introduced by Joosten (1996) who showed that all of them satisfy the famous Hart
and Mas-Colell reduced game consistency [(see Hart and Mas-Colell (1988, 1989)].
This class of solutions contains the Shapley value (for δ = 1) and equal division
solution (for δ = 0) as extreme cases. Therefore, the solutions characterized by this
bidding mechanism make a trade-off between marginalism and egalitarianism, such
that the higher (lower) the discount factor the more weight is put on marginalism
(egalitarianism).

Following Nash (1953), besides this implementation we provide an axiomatization
of the discounted Shapley values. Most axiomatic characterizations of the Shapley
value use some axiom related to null players (i.e. players whose marginal contribution
to any coalition is zero). An axiomatic comparison of the Shapley value and the equal
division solution is made by van den Brink (2007) who considers several axiomatiza-
tions of the Shapley value and shows that replacing an axiom concerning null players
by a similar axiom concerning nullifying players (i.e. players whose presence in a
coalition implies the coalition earns zero worth) characterizes the equal division solu-
tion. For example, in the original axiomatization of the Shapley value by efficiency,
the null player property, symmetry and additivity, replacing the null player property
(which states that null players receive a zero payoff) by the nullifying player property
(which states that nullifying players receive a zero payoff) characterizes the equal
division solution. In the underlying paper we generalize both axioms by introducing a
δ-reducing player in a game as a player such that any coalition containing this player
earns a fraction δ ∈ [0, 1] of the worth of that coalition without this player. Then the
δ-reducing player property states that such a player receives a zero payoff. Clearly,
δ = 1 implies that player i’s marginal contributions are all zero, and thus yields the
null player property of the Shapley value. On the other hand, δ = 0 implies that the
worth of any coalition containing player i is zero, and thus this yields the nullifying
player property. It turns out that replacing the null or nullifying player property (in
the axiomatizations of the Shapley value, respectively, equal division solution) by
this δ-reducing player property characterizes the corresponding δ-discounted Shap-
ley value. Besides the original axiomatization of Shapley (1953) we also adapt the
characterizations of Young (1985) and Chun (1991).

The paper is organized as follows. Section 2 contains preliminaries on TU-games
and solutions. In Sect. 3 we provide a strategic implementation of the discounted
Shapley values. In Sect. 4 we provide axiomatic characterizations. Finally, Sect. 5
contains concluding remarks.

1 So, the discounting in our mechanism is similar to that in Rubinstein (1982)’s ‘fixed discounting factor’
bargaining model but with the same discount factor for all players.
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2 Preliminaries

A situation in which a finite set of players can obtain certain payoffs by cooperation
can be described by a cooperative game with transferable utility, or simply a TU-
game, being a pair (N , v), where N ⊂ N is a finite set of players and v : 2N → R

is a characteristic function on N such that v(∅) = 0. For any coalition S ⊆ N , v(S)

is called the worth of coalition S. This is the transferable utility that the members of
coalition S can obtain by agreeing to cooperate. We denote the class of all TU-games
by G. In the sequel we denote n = |N | for the number of players in N . For generic
coalitions S ⊆ N we denote s = |S|.

A payoff vector of game (N , v) is an n-dimensional real vector x ∈ RN which
represents a distribution of the payoffs that can be earned by cooperation over the
individual players. A (point-valued) solution for TU-games is a function ψ which
assigns a payoff vector ψ(N , v) ∈ RN to every TU-game (N , v) ∈ G such that
ψi ({i}, v) = v({i}) if N = {i}. Two well-known solutions are the Shapley value and
the equal division solution.

The increase in worth when player i ∈ N joins coalition S ⊆ N \ {i} is called the
marginal contribution of player i to coalition S and is denoted by

mS
i (v) = v(S ∪ {i}) − v(S).

Suppose that the ‘grand coalition’ N forms in a way such that the players enter the
coalition one by one. Such an order of entrance can be represented by a permutation
π : N → N of the players. We denote the collection of all permutations on N by
�(N ). For every π ∈ �(N ) we denote by P(π, i) = { j ∈ N | π( j) < π(i)} the
set of players that enter before player i in the order π . The Shapley value (Shapley
1953) is the solution Sh : GN → RN that assigns to every player its expected marginal
contribution to the coalition of players that enter before him, given that every order of
entrance π has equal probability 1

n! to occur, i.e.

Shi (v) = 1

n!
∑

π∈�(N )

mP(π,i)
i (v) =

∑

S⊆N\{i}

(n − |S| − 1)!(|S|)!
n! · mS

i (v) for all i ∈ N .

The equal division solution is the solution that distributes the worth v(N ) of the ‘grand
coalition’ equally among all players, and thus assigns to every TU-game (N , v) the
payoff vector

EDi (N , v) = v(N )

n
for all i ∈ N .

Following a similar procedure as above, i.e. the ‘grand coalition’ N forms by the
players entering the coalition one by one, it follows from a more general result in
Malawski (2013) that allocating the marginal contribution of a player i equally among
its predecessors in P(π, i), the average payoff over all permutations yields the equal
division solution.
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Joosten (1996) introduces two classes of solutions that contain the Shapley value
and equal division solution as extreme cases. One is the class of egalitarian Shapley
values being convex combinations of the Shapley value and equal division solution.
The other is the class of solutions that were later called δ-discounted Shapley values by
Driessen and Radzik (2002). For δ ∈ [0, 1], the corresponding δ-discounted Shapley
value Shδ is given by

Shδ
i (N , v) =

∑

S⊆N\{i}

s!(n − s − 1)!
n! δn−s−1 (

v(S ∪ {i}) − δ · v(S)
)
for all i ∈ N .

Clearly, taking δ = 1 yields the Shapley value, while taking δ = 0 yields the equal
division solution.

Finally, for δ ∈ [0, 1], a TU-game is called δ-monotonic if v(S) ≥ δv(S \ {i}) +
v({i}) for all S ⊆ N and all i ∈ S. Taking δ = 1 yields the well-known zero-
monotonicity. Note that for nonnegative games (i.e. v(S) ≥ 0 for all S ⊆ N ), for any
pair of discount factors δ, δ′ ∈ [0, 1] with δ < δ′, a nonnegative game is δ-monotonic
if it is δ′-monotonic. So, δ-monotonicity is weaker than zero-monotonicity for every
δ ∈ (0, 1], and thus also weaker than superadditivity.2

3 Implementation

In the literature various implementations of the Shapley value can be found, see e.g.
Gul (1989), Hart and Mas-Colell (1996) and Pérez-Castrillo and Wettstein (2001).
A cooperative game solution is (strategically) implemented if for every cooperative
game one defines an associated strategic or extensive form game (a mechanism) such
that applying some strategic solution, for example the subgame perfect equilibrium,
always yields payoff outcomes according to this cooperative solution. In this paper we
modify the biddingmechanism of Pérez-Castrillo andWettstein (2001) by introducing
discounting of the worths to be allocated, each time a proposal is rejected and the
remaining players move to the next round. The bidding mechanism of Pérez-Castrillo
and Wettstein (2001) proceeds in rounds, where each round consists of four stages.
In the first stage of round 1, all players make bids to each other and the player with
the highest net bid (being the difference between the sum of all bids made to the other
players and the sum of all bids received from the other players) is chosen to be the
proposer in stage 2 (where ties are broken by assigning each of the players with highest
net bid to be the proposer with equal probability). We denote this winner by α1. The
‘winner’ α1 of this bidding pays the other players the bids that it offered. In the second
stage the proposer α1 makes a proposal (i.e. proposes a payoff) to every other player.
In stage 3 the other players, sequentially, accept or reject the proposal. The proposal is
accepted if all other players accept, and is rejected if at least one other player rejects
it. In stage 4, if the proposal is accepted the players are paid the proposed payoffs
(additional to the bids made by the proposer in stage 1). If the proposal is rejected then

2 A TU-game (N , v) is superadditive if v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ) for all S, T ⊆ N with
S ∩ T = ∅.
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the proposer α1 leaves the game and receives its own singleton worth (from which it
has to pay the bids made in stage 1) while the other players go to the next round to bid
and bargain over their worth v(N \ {α1}).

The second round has the same four stages as the first round (but with n−1 players).
The game proceeds untill at some round all remaining players accept the offer made
by the proposer of that round or, after a sequence of rejections, round n is reached in
which there is only one player who just gets its singleton worth (plus all the net bids
it received in all the first bidding stages of all rounds). Pérez-Castrillo and Wettstein
(2001) showed that, if the cooperative TU-game (N , v) is zero-monotonic then the
payoffs in any subgame perfect equilibrium of this extensive form game are equal to
the Shapley value of (N , v).

In this section we modify this bidding mechanism by discounting the worths to
be allocated each time a proposal is rejected and the players move to a next round.
So, after the proposal of player α1 in the first round is rejected, the remaining players
continue to bargain over δv(N \{α1}) instead of v(N \{α1}). We assume that the same
discount factor δ ∈ [0, 1] is applied in every round. So, in round t ∈ {1, . . . , n} the
remaining players bargain over δt−1 of their worth.

To formally describe the bidding mechanism, let Nt be the player set of the game
with which each round t ∈ {1, ..., n} will start, so N1 = N . For T ⊂ N the restricted
game (T, vT ) ∈ G is given by vT (S) = v(S) for all S ⊆ T .

The bidding mechanism
Round t , t ∈ {1, ..., n − 1}:
Stage 1: Each player i ∈ Nt makes bids bij ∈ R for every j �= i . For each i ∈ Nt , let

Bi = ∑
j∈Nt\{i}

(
bij − b j

i

)
, be the net bid of player i . Let αt be the player

with the highest net bid of round t . (In case of a non-unique maximizer
we choose any of these maximal bidders to be the ‘winner’ with equal
probability.) Once αt has been chosen, player αt pays every other player
j ∈ Nt\{αt }, its offered bid bαt

j . Player αt becomes the proposer in the next
stage. Go to Stage 2.

Stage 2: Player αt proposes an offer yαt
j ∈ R to every player j ∈ Nt \ {αt }. (This

offer is additional to the bids paid at stage 1.) Go to Stage 3.
Stage 3: The players other than αt , sequentially, either accept or reject the offer. If at

least one player rejects it, then the offer is rejected. Otherwise, the offer is
accepted. Go to Stage 4.

Stage 43: If the offer is accepted, then each player j ∈ Nt\{αt } receives yαt
j and

playerαt obtains the remainder δt−1v(Nt )−∑
j∈Nt\{αt } y

αt
j of the discounted

payoff at this stage in round t . Hence, in this case the final payoff to player
j ∈ Nt \{αt } is yαt

j +bαt
j +∑t−1

k=1 b
αk
j , while player αt receives δt−1v(Nt )−∑

j∈Nt\{αt }(y
αt
j + bαt

j ) + ∑t−1
k=1 b

αk
αt . Stop.

If the offer is rejected then player αt leaves the game and obtains its
discounted stand-alone payoff δt−1v({αt }), while the players in Nt\{αt }

3 Note that in round t we have |Nt | = n − t + 1. Besides, if player αt is a proposer in round t then all the
proposers from earlier rounds, α1, α2, . . . , αt−1 are different from player αt .
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proceed to round t + 1 to bargain over δtv(Nt\{αt }). So, the final payoff for
player αt is δt−1v({αt }) + ∑t−1

k=1 b
αk
αt .

Round n: Nn = Nn−1\{αn−1}. Since Nn is a singleton coalition it is a one-player
(sub)game in this round. The game immediately stops such that player i ∈ Nn gets
its discounted stand-alone payoff δn−1v(Nn). Its final payoff thus is δn−1v(Nn) +∑n−1

k=1 b
αk
i .

As mentioned above, Pérez-Castrillo and Wettstein (2001) showed that for δ = 1
this bidding mechanism implements the Shapley value for zero-monotonic games.
Next we evaluate the subgame perfect equilibrium outcomes of this game for any
discount factor. It turns out that for any δ ∈ [0, 1] the above mechanism implements
the corresponding δ-discounted Shapley value in SPE.4

Theorem 3.1 Let δ ∈ [0, 1], and let (N , v) ∈ G be a δ-monotonic game.
Then the outcome in any subgame perfect equilibrium of the bidding mechanism is

equal to Shδ(N , v).

Proof Here we only give a brief intuition behind the proof. A more detailed proof can
be found in Sect. 5. Take δ ∈ [0, 1] and (N , v) ∈ G. It has been shown by Driessen and
Radzik (2002) that, for an n-player game (N , v), the solutions Shδ can be obtained by
applying the Shapley value to the modified game (N , vδ) given by vδ(S) = δn−sv(S),
S ⊆ N , i.e. for every δ ∈ [0, 1] it holds that

Shδ(N , v) = Sh(N , vδ). (3.1)

But then, for every δ ∈ [0, 1] and (N , v) ∈ G, applying the mechanism of Pérez-
Castrillo andWettstein (2001) to the game (N , vδ) implementsShδ(N , v) = Sh(N , vδ)

in the sense that the outcome in any subgame perfect equilibrium of this mechanism
is equal to Shδ(N , v). Let us refer to the mechanism of Pérez-Castrillo and Wettstein
(2001) applied to (N , vδ) as the PCW-2 mechanism. Note that this is not exactly the
same as themechanism described above since in any round t , if the proposal is rejected
then the proposer αt leaves the game with payoff vδ({αt }) = δn−1v({αt }) according
to the PCW-2 mechanism, while the proposer leaves with payoff δt−1v({αt }) in the
mechanism above.5 However, the offers to be accepted by the other players in round
t are determined by the SPE strategies in the subgame that starts after rejection of
the proposal, and it is known that the proposer in SPE of the PCW-2 mechanism
makes a proposal that will be accepted. Although the payoff for the proposer after
rejection in ourmechanism (δt−1v(αt )) is at least as much as in the PCW-2mechanism
(δn−1v(αt )), with equality if t = n or δ ∈ {0, 1}, it can be shown that this does not
affect the subgame perfect equilibrium outcomes. Asmentioned, amore detailed proof
can be found in Sect. 5. �


4 We remark that under the alternative condition v(S) ≥ δ(v(S \ {i}) + v({i})) in stage 4 of the bidding
mechanism we could allow proposer αt in round t to obtain δtv(αt ) if its proposal is rejected.
5 Note that the worth to be allocated in round t in the PCW-2 mechanism is δn−|Nt |v(Nt ) =
δn−(n−t+1)v(Nt ) = δt−1v(Nt ), and thus is the same as the payoff to be allocated in our mechanism
above.
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Note that, since for nonnegative games δ-monotonicity, with δ ∈ (0, 1], is weaker
than zero-monotonicity and thus also weaker than superadditivity, the implementation
also holds if we just require the game to be nonnegative and zero-monotonic (or
superadditive).

Theorem 3.1 gives a characterization of each δ-discounted Shapley value. The
difference is a discount factor δ in the process of the biddingmechanismwhich reflects
the higher cost of longer bargaining, similar to Rubinstein (1982)’s bargaining process.

Interestingly, Joosten (1996) showed that all these solutions satisfy Hart and Mas-
Colell (HM) consistency,6 see Hart and Mas-Colell (1988, 1989), irrespective of the
discount factor δ. Even stronger, he showed that for any δ ∈ [0, 1] the corresponding
δ-discounted Shapley value is characterized by HM-consistency and δ-standardness
for two player games.7 So, as a corollary from Theorem 3.1 we obtain the following.

Corollary 3.2 Let δ ∈ [0, 1]. The solution that assigns to every (N , v) ∈ G the SPE
payoffs of the corresponding bidding mechanism satisfies HM-consistency.

In the bidding mechanism above we presented the parameter δ as a discount factor
which determines the discounting of the available worth going from one round of
negotiation to the next after a rejection of the proposal. Alternatively, the parameter δ

can be interpreted as a probability of breakdown of the negotiations after a rejection.
In van den Brink et al. (2013) the mechanism of Pérez-Castrillo and Wettstein (2001)
is adapted by allowing this possibility of breakdown of the negotiations only after
rejection of the proposal in the first round of the negotiations. After that themechanism
is the same as that of Pérez-Castrillo and Wettstein (2001) so there is no possibility
of breakdown anymore. This kind of breakdown may occur, for example, when the
players do not know each other and speak different languages. Then it might be that
after rejection in the first round they decide that they cannot communicate and bargain
with each other. However, if they reject the proposal but agree to continue negotiations,
then then they will bargain untill they reach an agreement or only one player is left. In
van denBrink et al. (2013) it is shown that allowing breakdown of the negotiations only
in the first round implements the so-called egalitarian Shapley values, also introduced
by Joosten (1996), being convex combinations of the Shapley value and equal division
solution.8

4 Axiomatization

Next we turn our attention to an axiomatization of the discounted Shapley values.
In the literature several axiomatizations of the Shapley value can be found. We first

6 Solution ψ satisfies HM-consistency if ψi (N , v) = ψi (T, v
ψ
T ) for every (N , v) ∈ G, T ⊆ N , and i ∈ T ,

where the reduced game (T, v
ψ
T ) is given by v

ψ
T (S) = v(S ∪ T c) − ∑

j∈T c ψ j (S ∪ T c, vS∪T c ) for all
S ⊆ T with T c = N \ T .
7 For δ ∈ [0, 1], δ-standardness for two player games means that in a two player game each player gets a
fraction δ of its singleton worth, and the remaining surplus is distributed equally among the two players.
8 For everyα ∈ [0, 1], theα-egalitarian Shapley valueϕα is the solution given byϕα(N , v) = αSh(N , v)+
(1 − α)ED(N , v).
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consider the ‘classical’ axiomatization of Shapley (1953) and the modification for
the equal division solution given in van den Brink (2007). Both solutions satisfy the
well-known axioms of efficiency, symmetry and linearity. A solution ψ

• is efficient9 if
∑

i∈N ψi (N , v) = v(N ) for all (N , v) ∈ G;
• is symmetric if ψi (N , v) = ψ j (N , v) for all (N , v) ∈ G and i, j ∈ N such that

v(S ∪ {i}) = v(S ∪ { j}) for all S ⊆ N \ {i, j};
• is linear if ψ(N , βv + γw) = βψ(N , v) + γψ(N , w) for all (N , v), (N , w) ∈ G
and β, γ ∈ R, where βv + γw is given by (βv + γw)(S) = βv(S) + γw(S) for
all S ⊆ N .

Shapley (1953) characterized the Shapley value by efficieny, symmetry, linearity and
the null player property.10 Player i ∈ N is a null player in game (N , v) if mS

i (v) = 0
for all S ⊆ N . A solution ψ

• satisfies the null player property if ψi (N , v) = 0 whenever i is a null player in
(N , v).

In van den Brink (2007) it is shown that replacing the null player property by the
nullifying player property characterizes the equal division solution. Player i ∈ N is a
nullifying player in game (N , v) if v(S) = 0 for all S ⊆ N with i ∈ S. A solution ψ

• satisfies the nullifying player property11 if ψi (N , v) = 0 whenever i is a nullifying
player in (N , v).

We generalize the null- and nullifying player property as follows. For δ ∈ [0, 1] we
call player i ∈ N a δ-reducing player in game (N , v) if v(S ∪ {i}) = δv(S) for all
S ⊆ N \ {i}. So, when player i enters any coalition then the worth of this coalition
is a fraction δ of the worth of the coalition without player i . Clearly, if δ = 1 this
implies that the worth of no coalition changes when i enters, i.e. a 1-reducing player
is a null player. When δ = 0 then the worth of any coalition not containing i becomes
zero when i enters, i.e. a 0-reducing player is a nullifying player. Consequently the
following property generalizes the null- as well as the nullifying player property.

• For δ ∈ [0, 1], solution ψ satisfies the δ-reducing player property if ψi (N , v) = 0
whenever i is a δ-reducing player in (N , v).

Next, we show that this axiom together with efficiency, symmetry and linearity
characterizes the corresponding δ-discounted Shapley value for any δ ∈ [0, 1]. This
follows similar as axiomatizations of the Shapley value and equal division solution,
but using a different basis for TU-games. Consider a fixed player set N . For every
T ⊆ N , T �= ∅, and δ ∈ [0, 1] we define the game (N , dδ

T ) ∈ G by

dδ
T (S) =

{
δs−t if T ⊆ S
0 otherwise.

9 Efficient solutions are often called values.
10 This axiomatization is more often presented in this way although Shapley (1953) combines efficiency
and the null player property into a carrier axiom.
11 Deegan and Packel (1979) refer to nullifying players as zero players and use this property to characterize
their (non-efficient) Deegan-Packel value.
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To illustrate these games, consider coalition T = {1} of the player set N = {1, 2, 3}.
Then

dδ
T (S) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if S = {1}
δ if S ∈ {{1, 2}, {1, 3}}
δ2 if S = {1, 2, 3}
0 otherwise

Note that taking δ = 1, the game dδ
T is the unanimity game of coalition T ⊆ N ,

T �= ∅, i.e.

d1T (S) =
{
1 if T ⊆ S
0 otherwise.

It is well-known that every game can be expressed as a unique linear combination of
unanimity games by v = ∑

T⊆N
T �=∅


v(T )d1T with 
v(T ) = ∑
S⊆T (−1)|T |−|S|v(S) the

Harsanyi dividends, see Harsanyi (1959). This fact is used by Shapley (1953) to show
that the Shapley value is the unique solution satisfying efficiency, symmetry, linearity
and the null player property (where all players in N \T are null players in d1T .). On the
other extreme, taking δ = 0 the game dδ

T is the standard game of coalition T ⊆ N ,
T �= ∅, i.e.

d0T (S) =
{
1 if T = S,

0 otherwise.

Also, every game can be expressed as a unique linear combination of standard games
as v = ∑

T⊆N
T �=∅

v(T )d0T . This fact is used by van den Brink (2007) to show that the

equal division solution is the unique solution satisfying efficiency, symmetry, linearity
and the nullifying player property (where all players in N \ T are nullifying players
in d0T ).

Next, we first show that also the games dδ
T form a basis for the class of TU-games.

Lemma 4.1 For every (N , v) ∈ G and δ ∈ [0, 1] there exist unique numbers Dδ
v(T ) ∈

R such that v = ∑
T⊆N
T �=∅

Dδ
v(T )dδ

T .

Proof Consider a game (N , v) ∈ G and δ ∈ [0, 1]. Obviously, if T = {i} then
Dδ

v({i}) = v({i}) is uniquely determined since dδ{i} is the only game dδ
T for which

dδ
T ({i}) �= 0. Proceeding by induction, suppose that the numbers Dδ

v(T
′) have been

uniquely determined for any T ′ ⊂ N with |T ′| < |T |. Since the worth of any
S ⊆ N can be written as v(S) = ∑

H⊆N Dδ
v(H)dδ

H (S) = ∑
H⊆S D

δ
v(H)dδ

H (S) =
Dδ

v(S)dδ
S(S) + ∑

H⊂S D
δ
v(H)dδ

H (S), it follows with the induction hypothesis and
dδ
T (T ) = 1, that Dδ

v(T ) = 1
dδ
T (T )

(
v(T ) − ∑

H⊂T Dδ
v(H)dδ

H (T )
)
is uniquely deter-

mined. �
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Next, we can state our second main result, axiomatizing the δ-discounted Shapley
values.12

Theorem 4.2 Take δ ∈ [0, 1]. Solution ψ satisfies efficiency, symmetry, linearity and
the δ-reducing player property if and only if ψ = Shδ .

Proof It is straightforward to verify that Shδ satisfies these axioms. To show unique-
ness13 suppose that solution ψ satisfies the four axioms, and take T ⊂ N , T �= ∅.
We first show that every player i ∈ N \ T is a δ-reducing player in (N , dδ

T ). Consider
S ⊆ N \ {i}. We distinguish two cases.

(i) Suppose that T � S. Then T � S ∪ {i}, and thus dδ
T (S ∪ {i}) = dδ

T (S) = 0,
implying that dδ

T (S ∪ {i}) = δdδ
T (S) for any δ ∈ [0, 1].

(ii) Suppose that T ⊆ S. Then T ⊂ S∪{i}, and thus dδ
T (S) = δs−t and dδ

T (S∪{i}) =
δs+1−t , again implying that dδ

T (S ∪ {i}) = δdδ
T (S).

Thus, i ∈ N \ T is a δ-reducing player in (N , dδ
T ). (The remainder of the proof is

similar as that in Shapley (1953), but using the basis dδ
T instead of the unanimity

basis).14 Consider any (N , v) ∈ G and δ ∈ [0, 1]. Efficiency and symmetry imply that
ψi (N , dδ

N ) = 1
n for all i ∈ N .

Now, let T ⊂ N . Since i ∈ N \ T is a δ-reducing player in dδ
T , the δ-reducing

player property implies that ψi (N , dδ
T ) = 0 for all i ∈ N \ T . Efficiency then implies

that
∑

i∈T ψi (N , dδ
T ) = ∑

i∈N ψi (N , dδ
T ) = dδ

T (N ) = δn−t . Thus, with symmetry

it follows that ψi (N , dδ
T ) = δn−t

t for all i ∈ T . Uniqueness for arbitrary (N , v) ∈ G
follows since linearity of ψ and the fact that v = ∑

T⊆N
T �=∅

Dδ
v(T )dδ

T (see Lemma 4.1)

imply that ψi (N , v) = ∑
T⊆N
T �=∅

Dδ
v(T )ψi (N , dδ

T ) = ∑
T⊆N
i∈T

Dδ
v(T ) δn−t

t for all i ∈ N . �


We want to stress the difference between the δ-reducing player property and δ-
egalitarianism in Joosten (1996) or the quasi-dummy property in Ju et al. (2007).
Whereas the latter two properties adapt the null player property by stating what a null
player should get, with the δ-reducing player property, similar as in Chameni Nembua
(2012), we specify a type of player that gets a zero payoff (like null players according
to the null player property and nullifying players according to the nullifying player

12 We remark that the results in this section hold if we restrict ourselves to the class of all TU-games on a
fixed player set N .
13 We remark that uniqueness also can be shown by applying Proposition 2 of Driessen and Radzik
(2013) which states that a solution ψ satisfies efficiency, symmetry and linearity if and only if there
exists a unique collection of constants {bs | s = 1, 2, . . . , n} with bn = 1 such that ψi (v) =∑

S⊆N\{i} s!(n−s−1)!
n! (bs+1v(S ∪ {i}) − bs (v(S)) for all i ∈ N . Take s ∈ {1, . . . , n} and take any

S ⊆ N with |S| = s. Then, defining the game w by w(S) = 1, w(S ∪ {i}) = δ and w(K ) = 0 for
all K ∈ 2N \ {S, S ∪ {i}}, we see that i is a δ-reducing player in w, and thus by the δ-reducing player

property ψi (w) = 0. Since ψi (w) = s!(n−s−1)!
n! (bs+1δ − bs ), it holds that bs+1δ = bs . This holds for all

s ∈ {n − 1, n − 2, . . . , 1}, and thus, by bn = 1, we get bs = δn−s for s ∈ {1, 2, . . . , n}. Therefore, ψ is
unique and equals the δ-discounted Shapley value. We thank a referee for suggesting this proof.
14 Similar, van den Brink (2007) used the standard basis for characterizing the equal division solution.
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property).15 Of course, we could also characterize the class of δ-discounted Shapley
values Shδ using a property similar to δ-egalitarianism or the quasi-dummy property
by specifying what is earned by null players. It is straightforward to prove that (the
obvious proof uses the unanimity basis and is omitted) if i ∈ N is a null player in
(N , v) ∈ G then Shδ

i (N , v) = (1 − δ)
∑

S⊆N\{i} δn−s−1 s!(n−s−1)!
n! v(S).

Since, for monotone games v(S ∪ {i}) ≥ v(S) ≥ δv(S) for all δ ∈ [0, 1], we have
the following proposition.

Proposition 4.3 Let 0 ≤ δ ≤ 1. If (N , v) ∈ G is monotone then Shδ
i (N , v) ≥ 0 for

all i ∈ N.

We end this section by mentioning that also other axiomatization of the Shapley value
and equal division solution can be modified to characterize the δ-discounted Shapley
values. For example, consider the following adaptations of well-known monotonicity
axioms. For δ ∈ [0, 1], solution ψ

• satisfies δ-monotonicity if ψi (N , v) ≥ ψi (N , w) for every pair of games
(N , v), (N , w) and i ∈ N such that v(S ∪ {i}) − w(S ∪ {i}) ≥ δ(v(S) − w(S)) for
all S ⊆ N \ {i}.

• satisfies coalitional δ-equivalence if for every pair of games (N , v), (N , w) ∈ G it
holds that ψi (N , v + w) = ψi (N , v) whenever i is a δ-reducing player in (N , w).

Taking δ = 1 in δ-monotonicity yields strong monotonicity used to axiomatize the
Shapley value by Young (1985), while taking δ = 1 in coalitional δ-equivalence yields
coalitional strategic equivalence of Chun (1991). Taking δ = 0 in these two axioms
yields coalitional monotonicity, respectively coalitional standard equivalence, which
are used in a similar way to axiomatize the equal division solution in van den Brink
(2007). We generalize the results of Young (1985) and Chun (1991).16

Theorem 4.4 Let δ ∈ [0, 1]. Then
(i) a solution ψ satisfies efficiency, symmetry and δ-monotonicity if and only if

ψ = Shδ .
(ii) a solution ψ satisfies efficiency, symmetry and coalitional δ-equivalence if and

only if ψ = Shδ .

Proof It is easy to verify that Shδ satisfies efficiency, symmetry, δ-monotonicity and
coalitional δ-equivalence. Since δ-monotonicity implies coalitional δ-equivalence, for
uniqueness we only have to prove uniqueness in (ii). Therefore, suppose that solution
ψ satisfies the three axioms of (ii). Now, we show uniqueness by induction on d(v) =
|{T ⊆ N | Dδ

v(T ) �= 0}| (in a similar way as in Young (1985) and Chun (1991) for
the Shapley value and in van den Brink (2007) for the equal division solution).

If d(v) = 0, then (N , v) is a null game and efficiency and symmetry imply that
ψi (N , v) = 0 = Shδ

i (N , v) for all i ∈ N .

15 Instead of using the basis described in Lemma 4.1, we could use Lemma 9 of Ruiz et al. (1998) who
give a specific formula that characterizes the class of solutions satisfying efficiency, symmetry and linearity.
Because of its relation with the δ-reducing player property we prefer to use the basis dδ

T , ∅ �= T ⊆ N .
16 Also the axiomatization of Brink (2001) by efficiency, fairness and the null player property can be
generalized, but the proof is more tedious and therefore omitted.
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Proceeding by induction, assume that ψi (N , w) = Shδ
i (N , w) if d(w) < d(v). Let

H(v) = {i ∈ N | Dδ
v(T ) = 0 for all T ⊆ N \ {i}}. For every i ∈ N \ H(v) there

exists a T ⊆ N \{i} such that Dδ
v(T ) �= 0. Coalitional δ-equivalence and the induction

hypothesis imply that ψi (N , v) = ψi (N , v − Dδ
v(T )dδ

T ) = Shδ
i (N , v − Dδ

v(T )dδ
T ) =

Shδ
i (N , v) for i ∈ N \ H(v) and T ⊆ N \ {i}. With symmetry and efficiency it then

follows that ψi (N , v) = v(N )−∑
j∈N\H(v) Sh

δ
j (N ,v)

|H(v)| = Shδ
i (N , v) for i ∈ H(v). �


5 Proof of Theorem 3.1

In this section we give amore detailed proof of Theorem 3.1.Wewill use the following
two lemma’s. First, we provide a recursive formula that generalizes that of Maschler
and Owen (1989) for the Shapley value:

Shi (N , v) = v(N ) − v(N \ {i})
n

+ 1

n

⎛

⎝
∑

j∈N\{i}
Shi

(
N \ { j}, vN\{ j}

)
⎞

⎠ for all i ∈ N .

(5.1)

Lemma 5.1 For every δ ∈ [0, 1], (N , v) ∈ G and i ∈ N, it holds that

Shδ
i (N , v) = v(N ) − δv(N \ {i})

n
+ δ

n

⎛

⎝
∑

j∈N\{i}
Shδ

i

(
N \ { j}, vN\{ j}

)
⎞

⎠

Proof Take δ ∈ [0, 1] and (N , v) ∈ G. If |N | = 1 then the statement of the theorem is
obviously true since Shδ

i (N , v) = v({i}) in that case. Proceeding by induction, suppose
that the statement is true for all (N ′, v) ∈ G with |N ′| < |N |. We already mentioned
that it has been shown by Driessen and Radzik (2002) that, for an n-player game
(N , v), it holds that Shδ(N , v) = Sh(N , vδ)with (N , vδ) given by vδ(S) = δn−sv(S),
S ⊆ N , see (3.1).

But then

Shδ
i (N , v) = Shi (N , vδ)

= vδ(N ) − vδ(N \ {i})
n

+ 1

n

⎛

⎝
∑

j∈N\{i}
Shi (N \ { j}) , (vδ)N\{ j})

⎞

⎠

= v(N ) − δv(N \ {i})
n

+ δ

n

⎛

⎝
∑

j∈N\{i}
Shi (N \ { j}) ,

(
vN\{ j})δ

)
⎞

⎠

= v(N ) − δv(N \ {i})
n

+ δ

n

⎛

⎝
∑

j∈N\{i}
Shδ

i

(
N \ { j}, vN\{ j}

)
⎞

⎠ ,
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where the first equality follows from (3.1), the second equality follows from (5.1)
and the definition of vδ , the third equality follows from17 the fact that (vδ)N\{ j} =
δ(vN\{ j})δ , and the fourth equality again follows from (3.1). �


Second, in proving Theorem 3.1 we also use a modified balanced contributions
property. Recall that Myerson (1980)’s balanced contributions property of the Shapley
value states that

Shi (N , v) − Shi
(
N \ { j}, vN\{ j}

) = Sh j (N , v) − Sh j
(
N \ {i}, vN\{i}

)
. (5.2)

Lemma 5.2 For any game (N , v), and for all i, j ∈ N with i �= j ,

Shδ
i (N , v) − δShδ

i

(
N \ { j}, vN\{ j}

) = Shδ
j (N , v) − δShδ

j

(
N \ {i}, vN\{i}

)
. (5.3)

Proof The proof follows straightforward since (3.1), (5.2) and footnote 17 imply
that Shδ

i (N , v) − δShδ
i (N \ { j}, vN\{ j}) = Shi (N , vδ) − δShi (N \ { j}, (vN\{ j})δ) =

Shi (N , vδ) − δShi (N \ { j}, 1
δ
(vδ)N\{ j}) = Shi (N , vδ) − Shi (N \ { j}, (vδ)N\{ j}) =

Sh j (N , vδ) − Sh j (N \ {i}, (vδ)N\{i}) = Sh j (N , vδ) − δSh j (N \ {i}, 1
δ
(vδ)N\{i}) =

Sh j (N , vδ) − δSh j (N \ {i}, (vN\{i})δ) = Shδ
j (N , v) − δShδ

j (N \ {i}, vN\{i}), where
the first equality follows from (3.1), the second equality follows from footnote 17, the
fourth equality follows from (5.2), and the following equalities follow similar as the
previous ones with the roles of players i and j reversed. �


Next we show how the proof of the implementation of the Shapley value in Pérez-
Castrillo and Wettstein (2001), can be modified to prove Theorem 3.1.

Proof of Theorem 3.1 Theproof follows the lines of the proof of the implementation of
the Shapley value in Pérez-Castrillo andWettstein (2001, Theorem1), and thereforewe
only mention the differences.18 First, Pérez-Castrillo andWettstein (2001) construct a
strategy profile that is a subgame perfect equilibrium (SPE) in their bidding game and
yields the Shapley value payoffs as outcomes. In this strategy profile, in all actions of
player i we discount the part that is based on payoffs in restricted games on the set of
players without the proposer αt (in the bidding in stage 1, the proposals in stage 2 if i
is the proposer, and what proposals i will accept in stage 3 if i is not the proposer), i.e.
in round t ∈ {1, . . . , n − 1} we just replace payoffs φ j (Nt \ {i}) by δφ j (Nt \ {i}) and
replace φi (Nt \ { j}) by δφi (Nt \ { j}).19 All net bids being zero can be shown using
the modified balanced contributions (5.3) instead of balanced contributions.

Checking that the corresponding strategies yield an SPE goes similar as in Pérez-
Castrillo and Wettstein (2001), but under the condition of δ-monotonicity.

17 This can be seen since for all S ⊆ N \ { j} we have (vN\{ j})δ(S) = δn−1−sv(S) = δ−1δn−sv(S) =
δ−1(vδ)N\{ j}(S).
18 The full proof can be obtained from the authors on request.
19 Pérez-Castrillo andWettstein (2001) shorten payoffs φi (T, vT ) by φi (T ) for T ⊂ N which we will also
do in this proof. They use the notation N for the player set in any subgame, while in our notation N refers
to the full player set, and subgames are played on subsets Nt in round t ∈ {1, . . . , n − 1}.
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Then, Pérez-Castrillo and Wettstein (2001) show that any SPE yields the Shapley
value payoffs by a series of claims. Claim (a) states that in any SPE all players i �= αt

that are not proposer in round t ∈ {1, . . . , n − 1} accept the offer of proposer αt if
that is greater than their payoff φi (Nt \ {αt }), and the offer is rejected if at least one
of those players i �= αt gets an offer smaller than φi (Nt \ {αt }). We just discount the
payoffs on the player set Nt \ {αt } by multiplying these payoffs by δ, i.e. replacing
φi (Nt \ {αt }) by δφi (Nt \ {αt }).

Claim (b) states that if v(Nt ) > v(Nt\{αt })+v({αt }), the onlySPEof the (sub)game
that starts at stage 2 is such that the proposer offers φi (Nt \ {αt }) to all i �= αt , and at
stage 3 every player i �= αt accepts any offer greater or equal than φi (Nt \ {αt }) and
rejects all smaller offers. Again we simply discount the payoffs of restricted games
and replace φi (Nt \{αt }) by δφi (Nt \{αt }). Using δ-monotonicity, this claim is shown
if v(Nt ) > δv(Nt \ {αt }) + v({αt }), i.e. we also discount the surplus v(Nt \ {αt }).
(Also in the proof of this claim everywhere we replace v(Nt \ {αt }) by δv(Nt \ {αt }).

Claim (c) of Pérez-Castrillo and Wettstein (2001) states that in any SPE, the net
bids of all players are equal, and therefore equal to zero. For this claim discounting is
not relevant, and for our mechanism this is proved in the same way.20

Claim (d) of Pérez-Castrillo and Wettstein (2001) states that in any SPE, each
player’s payoff is the same regardless who is chosen as the proposer. Also the proof
of this claim does not need discounting, and is identical for all discounted Shapley
values.

Finally Claim (e), stating that in any SPE the final payoff received by each of
the players coincides with their Shapley value, uses Maschler and Owen (1989)’s
recursive formula for the Shapley value [see (5.1)]. Discounting the payoff v(Nt \ {i})
by δv(Nt \ {i}), we can apply Lemma 5.1 to obtain a similar result for any discounted
Shapley value.

This completes the proof. �


6 Concluding remarks

In this paper we provided a strategic implementation and axiomatic characterization of
the discounted Shapley values. First, we gave a strategic implementation bymodifying
the bidding mechanism of Pérez-Castrillo and Wettstein (2001) implementing the
Shapley value, but allowing discounting of the worths to be allocated after every
rejection of the proposal.

Second, we provided an axiomatization of the δ-discounted Shapley values by
replacing the null-, respectively, nullifying player property that are used in characteri-
zations of the Shapley value, respectively, the equal division solution, by the δ-reducing
player property (with the null- and nullifying player properties as special cases).21

20 In the proof of this claim in Pérez-Castrillo and Wettstein (2001) the player j /∈ � should be one with
the highest net bid among those not in �, where � is the set of players in N with the highest net bid.
21 Although among the efficient symmetric solutions the Shapley value is the most marginalistic solution
(seeYoung 1985), there are different possibilitieswith respect to themost egalitarian solution. An alternative
to the equal division solution is the CIS-value, or equal surplus division solution, which assigns to every
TU-game the Center of the Imputation Set, i.e. every player gets its singleton worth and the remaining

123



Implementation and axiomatization of discounted Shapley values 343

Table 1 Discounting and consistency

Discounting in
implementation

Reduced game
consistency

Discounted Shapley values Every round Hart and Mas-Colell

Egalitarian Shapley values Only in first round Sobolev

We already mentioned that van den Brink et al (2013) showed that the egalitarian
Shapley values (i.e. convex combinations of the Shapley value and equal division solu-
tion) of Joosten (1996) can be implemented by allowing the possibility of breakdown
to occur only in the first round, while the discounted Shapley values are implemented
by allowing this possibility of breakdown (or discounting) in every round. It is a plan
for future research to consider what classes of solutions are obtained by a strategic
implementation where discounting is applied only in the first k ∈ {2, . . . n−1} rounds.
Moreover, we might consider different discount factors in different rounds, and for
different players.

Whereas Joosten (1996) showed that all discounted Shapley values satisfy Hart
and Mas-Colell consistency, van den Brink et al. (2013) showed that all egalitarian
Shapley values satisfy Sobolev’s reduced game consistency (Sobolev 1973).

This gives another comparison between discounted and egalitarian Shapley values
(we summarize these comparisons in Table 1), and the natural question what kind of
consistency properties are satisfied by solutions obtained from the strategic imple-
mentation where discounting is applied only in the first k ∈ {2, . . . n − 1} rounds.
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