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Abstract Many economic and political organizations have some relational structure,
meaning that participating agents do not only differ with respect to certain individ-
ual characteristics such as wealth and preferences, but also belong to some relational
structure in which they usually take different positions. Two examples of such struc-
tures are communication networks and hierarchies. In the literature, the distinction
between these two types of relational structures is not always clear. In models of
restricted cooperation, this distinction should be defined by properties of the set of
feasible coalitions. We characterize the sets of feasible coalitions in communication
networks and compare them with sets of feasible coalitions arising from hierarchies.

1 Introduction

Many economic and political organizations have some relational structure, meaning
that participating agents do not only differ with respect to certain individual charac-
teristics such as wealth and preferences, but also belong to some relational structure
in which they usually take different positions. Two examples of such structures are
communication networks and hierarchies. Whereas hierarchical relations are usually
between different types of agents (or agents having different roles) and thus are asym-
metric relations, communication relations might be symmetric (and between similar
type of agents) or asymmetric. Bala and Goyal (2000), for example, consider com-
munication relations between symmetric agents and a communication link between
two agents means that these two agents share their information with one another
(the two-sided case) or only the agent who builds the relation gets access to the
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information of the other (the one-sided case). In their model of network formation
agents can unilaterally decide to build or delete communication links. In the network
formation model of Jackson and Wolinsky (1996), agents can unilaterally decide to
delete links, but for building links mutual agreement is needed. Their model applies
the static model of restricted communication in cooperative games of Myerson (1977)
where connectedness determines the possibilities of cooperation. An example of asym-
metric communication relations is given by Dewatripont and Tirole (2005) who con-
sider communication as a “transfer of knowledge” between a sender and a receiver.
They formulate a principal-agent model to communication as a moral hazard problem
between the sender and receiver.

Although these are different models of communication, their seems to be consensus
in the sense that for each form of communication the underlying idea is “connected-
ness”: agents must be connected in order to share information or to be able to cooperate.
There is less consensus about the meaning of hierarchy. It is even not clear whether
hierarchy implies authority or not, as expressed by Hart and Moore (2005). But even
when agreeing that hierarchy is about authority, the implications of authority differ
across different models. Moreover, there can be different forms of authority within one
organization, see Aghion and Tirole (1997) who distinguish between “formal author-
ity” (the right to decide) and “real authority” (the effective control over decisions).

Few attempts are made to build a consistent theory on organizations combining
both communication and hierarchies in the relational structure. In the field of restricted
cooperation, an attempt is made by Demange (2004), but as acknowledged implicitly
in that article this is mainly about communication. The so-called hierarchical out-
comes that are defined in that article are extreme points of the Core of the restricted
game introduced in Myerson (1977) for communication graph games. In that restricted
game, only coalitions that are connected in a communication network are feasible and
can cooperate. Le Breton et al. (1992) and Demange (1994, 2004), consider a modified
Core concept where coalitional stability is required only for these feasible coalitions.
Therefore, only for connected coalitions, it is required that the sum of payoffs of the
players is at least the worth of that coalition. They show that this set of Core-stable
payoff vectors is nonempty if the game is superadditive and the communication graph
is cycle-free, respectively a tree. This is interesting since superadditivity of a TU-game
does not guarantee the existence of a Core-stable payoff vector.

A model that studies restrictions in cooperation arising from hierarchies is that of
a game with a permission structure. In those games, it is assumed that players who
participate in a cooperative TU-game are part of a hierarchical organization in which
there are players that need permission or approval from certain other players before
they are allowed to cooperate. Two approaches to games with a permission structure
are considered. In the conjunctive approach as developed in Gilles et al. (1992) and
van den Brink and Gilles (1996), it is assumed that each player needs permission
from all its predecessors before it is allowed to cooperate with other players. This
implies that a coalition is feasible if and only if for every player in the coalition it
holds that all its predecessors belong to the coalition. Alternatively, in the disjunc-
tive approach as developed in Gilles and Owen (1994) and van den Brink (1997), it
is assumed that each player (except the top-players) needs permission from at least
one of its predecessors before it is allowed to cooperate. Consequently, a coalition
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is feasible if and only if every player in the coalition (except the top-players) has at
least one predecessor who also belongs to the coalition. In Algaba et al. (2004), it is
shown that the sets of feasible coalitions arising from these permission structures are
antimatroids being a well-known combinatorial structure representing hierarchies, see
Dilworth (1940) and Edelman and Jamison (1985). A set of feasible coalitions is an
antimatroid if it contains the empty set and satisfies accessibility (meaning that every
nonempty feasible coalition has at least one player that can leave the coalition leaving
behind a feasible subcoalition) and is closed under union (meaning that the union of
two feasible coalitions is also feasible).

In the field of restricted cooperation, the difference between hierarchies and com-
munication networks should be defined by properties of the sets of feasible coalitions.
The purpose of the underlying article is to make clear this distinction. The main result
is a characterization of the sets of feasible coalitions arising from communication net-
works (called communication feasible sets) using properties that are similar to those
that define antimatroids. It turns out that the communication feasible sets are charac-
terized by a weaker union property, but a stronger accessibility property. The weaker
union property is union stability meaning that the union of two feasible coalitions that
have a nonempty intersection is also feasible (see, Algaba et al. (2001)). The stronger
accessibility property is 2-accessibility meaning that every feasible coalition with two
or more players has at least two players that can leave the coalition leaving behind a
feasible coalition.

After this characterization of communication feasible sets for arbitrary communi-
cation graphs, we characterize the communication feasible sets arising from special
communication graphs that gained attention in the economic literature. For example,
adding closedness under intersection (meaning that the intersection of two feasible
coalitions is also feasible) yields communication feasible sets arising from cycle-
complete communication graphs. Further, we consider other special graphs such as
cycle-free communication graphs, line-graphs, and trees.

The article is organized as follows. In Sect. 2, we review cooperation restrictions
arising from limited communication and hierarchical restrictions represented by anti-
matroids and games with a permission structure. In Sect. 3, we give a full character-
ization of communication feasible sets using properties that are similar to those that
define an antimatroid. In Sect. 4, we consider some special classes of communication
networks. Finally, Sect. 5 contains some concluding remarks.

2 Communication and hierarchies in cooperative games

A situation in which a finite set of players can obtain certain payoffs by coopera-
tion can be described by a cooperative game with transferable utility, or simply a
TU-game, being a pair (N , v), where N ⊆ IN is a finite set of players and v : 2N → IR
is a characteristic function on N satisfying v(∅) = 0. For any coalition S ⊆ N , v(S)

is the worth of coalition S, meaning that the members of coalition S can obtain a
total payoff of v(S) by agreeing to cooperate. A TU-game (N , v) is superadditive if
v(S ∪ T ) ≥ v(S) + v(T ) for all S, T ⊆ N with S ∩ T = ∅, i.e., when two disjoint
coalitions merge in a superadditive game then it is always possible to reallocate the

123



724 R. van den Brink

worth of these coalitions in such a way that all players in the coalition benefit from
the merger.

In a superadditive TU-game, one might expect that eventually the “grand coali-
tion” N will form. Main question then is to determine the distribution of payoffs over
individual players. A payoff vector of an n-player TU-game (N , v) is an n-dimen-
sional vector x ∈ IRn giving a payoff xi ∈ IR to any player i ∈ N . A solution
for TU-games is a mapping F that assigns to every game (N , v) a set of payoff
vectors F(N , v) ⊆ IRn . A famous and widely applied solution is the Core which
assigns to every game the set of efficient and coalitionally stable payoff vectors, i.e.,
Core(N , v) = {x ∈ IRn | ∑

i∈N xi = v(N ) and
∑

i∈S xi ≥ v(S) for all S ⊂ N }.
For general TU-games, a Core payoff vector need not exist, even not for superadditive
games.

In a TU-game, any subset S ⊆ N is assumed to be able to form a coalition and earn
the worth v(S). However, in most economic and political organizations not every set
of participants can form a feasible coalition. For example, for two players to cooperate
it might be necessary that they know each other, or it might be sufficient that there are
other players in the coalition that know both players, or there are players that know
these players, and so on. In hierarchical organizations it might be that players need
approval from their superiors in order to cooperate within a coalition. Therefore, in
cooperative game theory models have been developed in which there are restrictions
on coalition formation. If there are restrictions on coalition formation then the set
of feasible coalitions F ⊆ 2N need not contain all subsets of the player set N . It
is obvious that considering the Core stability inequalities only for a subset of coali-
tions yields a set of stable payoff vectors that contains the Core of the unrestricted
game, and may even yield nonemptiness while the unrestricted game has an empty
Core.

2.1 Communication

One of the most well-known restrictions on coalition formation are communication
restrictions as introduced in Myerson (1977). In this model, there is a communication
network on the set of players in a cooperative game and a coalition S is feasible if
and only if the players in S are connected within this communication network. This
communication network is represented by an undirected graph on the set of players.

An undirected graph is a pair (N , G) where N is the set of nodes and G ⊆
{{i, j}|i, j ∈ N , i 
= j} is a collection of subsets of N such that each element of
G contains precisely two elements. The elements of G represent bilateral communi-
cation links and are referred to as edges or links. Since the nodes in a graph represent
the positions of players in a communication network we refer to the nodes as players.
If there is a link between two players then we call them neighbors and we denote
the set of neighbors of player i by RG(i) = { j ∈ N | {i, j} ∈ G}. A sequence of k
different players (i1, . . . , ik) is a path in (N , G) if {ih, ih+1} ∈ G for h = 1, . . . , k−1.
Two distinct players i and j, i 
= j , are connected in graph (N , G) if there is a path
(i1, . . . , ik) with i1 = i and ik = j . A coalition S ⊆ N is connected in graph (N , G)

if every pair of players in S is connected by a path that only contains players from S,
i.e., for every i, j ∈ S, i 
= j , there is a path (i1, . . . , ik) such that i1 = i, ik = j , and
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Fig. 1 Communication graph (N , G) of Example 1

{i1, . . . , ik} ⊆ S. A maximally connected subset of coalition S in (N , G) is called a
component of S in that graph, i.e., T ⊆ S is a component of S in (N , G) if and only if
(i) T is connected in (N , G(S)) and (ii) for every h ∈ S \ T the coalition T ∪ {h} is
not connected in (N , G(S)), where G(S) = {{i, j} ∈ G|{i, j} ⊆ S} is the set of links
between players in S.

A sequence of players (i1, . . . , ik, i1) is a cycle in (N , G) if (i1, . . . , ik) is a path
in (N , G) and {ik, i1} ∈ G. A graph (N , G) is cycle-free when it does not contain any
cycle. A player i ∈ N is called a pending player if it is connected to exactly one other
player, i.e., if |{g ∈ G | i ∈ g}| = 1. Note that a cycle-free communication graph
(N , G) with |N | ≥ 2 and G 
= ∅ has at least two pending players. A graph that is
connected and cycle-free is called a tree.

Example 1 Consider the communication graph (N , G) on N = {1, . . . , 5} given by
G = {{1, 2}, {1, 3}, {2, 4}, {3, 4}, {4, 5}}, see Fig. 1. Players 1 and 5 are connected by
two paths: (1, 2, 4, 5) and (1, 3, 4, 5). Coalition {1, 4, 5} has two components: {1} and
{4, 5}. This communication graph has a cycle (1, 2, 4, 3, 1), and player 5 is the only
pending player.

A triple (N , v, G) with (N , v) a TU-game and (N , G) an undirected communica-
tion graph is called a communication graph game. In the communication graph game
(N , v, G) players can cooperate if and only if they are able to communicate with each
other, i.e., a coalition S is feasible if and only if it is connected in (N , G). In other
words, the set of feasible coalitions in a communication graph game (N , v, G) is the
set of coalitions FG ⊆ 2N given by

FG = {S ⊆ N | S is connected in (N , G)}.
We refer to this set as the communication feasible set of communication graph (N , G).
Myerson (1977) introduced the restricted game of a communication graph game
(N , v, G) as the TU-game (N , vG) in which every feasible coalition S can earn its
worth v(S). Whenever S is not feasible it can earn the sum of the worths of its com-
ponents in (N , G). Denoting the set of components of S ⊆ N in (N , G) by CG(S),
the restricted game (N , vG) corresponding to communication graph game (N , v, G)

thus is given by1

vG(S) =
∑

T ∈CG (S)

v(T ) for all S ⊆ N . (1)

1 Note that CG (S) is a partition of S.
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As solution Myerson (1977) proposes to take for every communication graph game
the Shapley value (Shapley (1953)) of the corresponding restricted game, a solution
that is later named the Myerson value for communication graph games. Alternatively,
Le Breton et al. (1992) and Demange (1994, 2004), consider a restricted Core concept
where coalitional stability is required only for feasible coalitions, i.e., they consider
the solution C(N , v, G) = {x ∈ IRn | ∑

i∈T xi = v(T ) for all T ∈ CG(N ), and∑
i∈S xi ≥ v(S) for all S ∈ FG}. They show that this set of Core payoff vectors is

nonempty if the game is superadditive and the communication graph is cycle-free,2

respectively a tree.3 This is interesting since, as mentioned before, superadditivity of
a game v does not guarantee the existence of a Core-stable payoff vector for v.

2.2 Hierarchies

A model that studies restrictions in coalition formation arising from hierarchies is that
of a game with a permission structure. In those games, it is assumed that players who
participate in a cooperative TU-game are part of a hierarchical organization in which
there are players that need permission or approval from certain other players before
they are allowed to cooperate. For a finite set of players N such a hierarchical organiza-
tion is represented by an irreflexive directed graph (N , D) with D ⊆ N × N such that
(i, i) 
∈ D for all i ∈ N , referred to as a permission structure on N . The directed links
(i, j) ∈ D are called arcs. The players in FD(i) := { j ∈ N | (i, j) ∈ D} are called the
successors or followers of player i , while the players in PD(i) := { j ∈ N | ( j, i) ∈ D}
are called the predecessors of i . A sequence of different players (i1, . . . , ik) is a
directed path between players i and j, i 
= j , in a permission structure (N , D) if
i1 = i, ik = j , and (ih, ih+1) ∈ D for all 1 ≤ h ≤ k − 1. It is widely accepted
that many hierarchies in economic organizations are acyclic. Therefore, we only con-
sider acyclic permission structures, i.e., we assume that there exists no directed path
(i1, . . . , ik) with (ik, i1) ∈ D. Note that in an acyclic permission structure there can
be two directed paths from player i to player j 
= i . Also note that in an acyclic per-
mission structure D there always exists at least one player with no predecessors, i.e.,
TOP(D) := {i ∈ N | PD(i) = ∅} 
= ∅. We refer to these players as the top-players
in the permission structure. If there is a unique top-player, and there is exactly one
directed path from the top-player to any other player then the permission structure is
a directed or rooted tree.

Two approaches to games with a permission structure are considered. In the con-
junctive approach as developed in Gilles et al. (1992) and van den Brink and Gilles
(1996), it is assumed that each player needs permission from all its predecessors before
it is allowed to cooperate. This implies that a coalition S ⊆ N is feasible if and only if
for every player in the coalition it holds that all its predecessors belong to the coalition.

2 Under these conditions, this solution coincides with the (unrestricted) Core of the restricted game (N , vG ),
see also Kaneko and Wooders (1982). For games that are not superadditive another main question is which
coalitions one might expect to form. Demange (1994, 2004) generalizes solutions to these cases by allowing
the players to eventually form a partition of the player set.
3 Demange (2004) also shows that in case the communication graph contains a cycle, one can always find
a superadditive game such that the corresponding set of Core payoff vectors is empty.
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Fig. 2 Permission structure (N , D) of Example 2

The set of feasible coalitions in this approach thus is given by

�c
D := {S ⊆ N | PD(i) ⊂ S for all i ∈ S} ,

which we refer to as the conjunctive feasible set of D.
Alternatively, in the disjunctive approach as developed in Gilles and Owen (1994)

and van den Brink (1997), it is assumed that each player (except the top-players) needs
permission from at least one of its predecessors before it is allowed to cooperate with
other players. Consequently, a coalition is feasible if and only if every player in the
coalition (except the top-players) has at least one predecessor who also belongs to the
coalition. Thus, the feasible coalitions are the ones in the set

�d
D := {S ⊆ N | PD(i) ∩ S 
= ∅ for all i ∈ S \ T O P(D)} ,

which we refer to as the disjunctive feasible set of D.

Example 2 Consider the permission structure (N , D) given by N = {1, 2, 3, 4} and
D = {(1, 2), (1, 3), (2, 4), (3, 4)}, see Fig. 2. Then�c

D = {{1}, {1, 2}, {1, 3}, {1, 2, 3},
{1, 2, 3, 4}} and �d

D = �c
D ∪ {{1, 2, 4}, {1, 3, 4}}.

An approach using restricted games similar to the approach of Myerson (1977) for
communication graph games assigns to every coalition in a game with a permis-
sion structure the worth of its largest feasible subset.4 If the permission structure has a
unique top-player and the (unrestricted) game is monotone (meaning that v(S) ≤ v(T )

whenever S ⊆ T ⊆ N ) then the conjunctive and disjunctive restricted games have at
least one Core-stable payoff vector.

Why do these models capture the idea of a hierarchy? Since we are in the field of
restricted cooperation, the answer must be found in the properties of the set of feasible
coalitions. Algaba et al. (2004) show that the conjunctive and disjunctive feasible sets
are antimatroids being well-known combinatorial structures that represent hierarchies,
see Dilworth (1940) and Edelman and Jamison (1985). An antimatroid is defined by
the following properties. A set of feasible coalitions F ⊆ 2N satisfies accessibility if
every nonempty feasible coalition has at least one player that can leave the coalition
leaving behind a feasible subcoalition, i.e., S ∈ F , S 
= ∅, implies that there exists an

4 Different properties of communication feasible sets and conjunctive- or disjunctive feasible sets yield
different properties of the restricted games. Whereas in communication graph games every coalition can be
partitioned into feasible components, in a conjunctive- or disjunctive permission structure every coalition
has a unique largest feasible subset.
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i ∈ S such that S \ {i} ∈ F . A set of feasible coalitions F ⊆ 2N is closed under union
if the union of any two feasible coalitions is also feasible, i.e., S, T ∈ F implies that
S ∪ T ∈ F . Together with the empty set being feasible these two properties define
an antimatroid. In addition, we require the set of feasible coalitions F ⊆ 2N to be
normal meaning that every player belongs to at least one feasible coalition,5 i.e., for
every i ∈ N there exists an S ∈ F such that i ∈ S.

Definition 1 A set of feasible coalitions F ⊆ 2N is a normal antimatroid if it con-
tains the empty set and satisfies normality, accessibility and is closed under union.

We refer to a player i ∈ S ∈ F ⊆ 2N such that S \ {i} ∈ F as an extreme player of
coalition S in F . By accessibility every nonempty feasible coalition in an antimatroid
has at least one extreme player.

3 Characterizing communication feasible sets

To know whether one speaks about communication or hierarchies in restricted cooper-
ation, one needs to know the properties of the set of feasible coalitions. In this section,
we characterize the sets of feasible coalitions arising from communication restrictions
and compare them with those of hierarchies represented by antimatroids.

Let F ⊆ 2N be an arbitrary set of feasible coalitions. Since all singletons in a com-
munication graph are connected, it follows that communication feasible sets arising
from communication graphs contain the empty set and satisfy normality, i.e., every
player belongs to at least one feasible coalition. Further, they also satisfy accessibil-
ity. They even satisfy the following stronger property. We say that a set of feasible
coalitions F ⊆ 2N satisfies 2-accessibility if every feasible coalition with two or more
players has at least two players that can leave the coalition leaving behind a feasible
coalition, i.e., S ∈ F with |S| ≥ 2 implies that there exist i, j ∈ S, i 
= j , such that
S \ {i} ∈ F and S \ { j} ∈ F . Communication feasible sets are not closed under union
(as is illustrated by the two connected coalitions {1, 2} and {5} in Example 1 which
union is not connected). However, as shown by Algaba et al. (2001), communication
feasible sets satisfy the weaker union stability meaning that the union of two feasi-
ble coalitions that have a nonempty intersection is also feasible, i.e., S, T ∈ F with
S ∩ T 
= ∅ implies that S ∪ T ∈ F . It turns out that the four properties described
above characterize the communication feasible sets.

Theorem 1 Let F ⊆ 2N be a set of feasible coalitions. Then F is the communication
feasible set of some communication graph if and only if F contains the empty set and
satisfies normality, 2-accessibility, and union stability.

Proof (Only if) A communication feasible set containing the empty set and satisfying
normality and union stability follows from Algaba et al. (2001). To show that it satisfies
2-accessibility, let S ⊆ N with |S| ≥ 2 be connected in communication graph (N , G).

5 For results on games on antimatroids, we refer to Algaba et al. (2003, 2004). For antimatroids that are
not normal, similar results can be stated restricted to the class of players that belong to at least one feasible
coalition.
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Note that for any pending player i ∈ S it holds that S \ {i} is connected, i.e., pending
players are extreme players of S in FG . We show 2-accessibility by induction on the
number |G(S)| of links between players in S. Since S is connected in (N , G) we have
|G(S)| ≥ |S|−1. If |G(S)| = |S|−1 then (N , G(S)) is cycle-free and thus has at least
two pending players, which are extreme players of S in FG . If |G(S)| > |S| − 1, then
there is a subgraph G ′ ⊂ G such that S is connected in (N , G ′) and |G ′(S)| = |S|−1.
From above we know that S has at least two extreme players in FG ′ . Since FG ′ ⊆ FG ,
every extreme player of S in FG ′ is also an extreme player of S in FG , and thus S has
at least two extreme players in FG .

(If) Suppose that F ⊆ 2N satisfies the properties mentioned in the theorem. Con-
sider the communication graph GF = {S ∈ F | |S| = 2}. It is sufficient to show
that F is the set of connected coalitions in (N , GF ). By definition, F contains the
empty set. Next we first show that all singletons are feasible. For i ∈ N , normality
implies that there is an S ∈ F with i ∈ S. By 2-accessibility, it follows that there is a
j ∈ S \ {i} such that S \ { j} ∈ F . Repeated application of 2-accessibility, each time
deleting an extreme player different than i , eventually yields that {i} ∈ F .

Finally, we show that for every S ⊆ N with |S| ≥ 2, it holds that S ∈ F if and only
if S is connected in (N , GF ).

(“only if”) Take S ∈ F with |S| ≥ 2. We prove that S is connected in (N , GF )

by induction on |S|. If |S| = 2 then S is connected in (N , GF ) by definition of GF .
Proceeding by induction, suppose that S′ ∈ F is connected in (N , GF ) whenever
2 ≤ |S′| < |S|. By 2-accessibility there exist i, j ∈ S such that S \ {i}, S \ { j} ∈ F .
The induction hypothesis implies that S\{i} and S\{ j} are both connected in (N , GF ).
Since |S| > 2 there exists an h ∈ S \ {i, j} such that there is a path from i to h and
from j to h in (N , GF ) using only players from S. This implies that there is a path
from i to j in S, and thus S is connected in (N , GF ).

(‘if’) Take S ⊆ N connected in (N , GF ). We must prove that S ∈ F . If |S| = 2
then S ∈ F by definition of GF . If |S| > 2 then S is the union of all links in S, i.e.,
S = ⋃{{i, j} ∈ GF | i, j ∈ S}. Since all these links {i, j} belong to F by definition
of GF and S is connected, union stability implies that S ∈ F . �

Usually the set of links G, being coalitions of size two, are considered as the basis
of a communication network. Note that by applying 2-accessibility we can generate
these bilateral links from any communication feasible set.

Comparing Theorem 1 with Definition 1, we conclude that communication feasible
sets are characterized by similar properties that define hierarchical structures repre-
sented by normal antimatroids. To be specific, besides normality and feasibility of the
empty set, both satisfy an accessibility and a union property. Obviously, 2-accessibility
implies accessibility and thus communication feasible sets satisfy a stronger accessi-
bility property. But since closedness under union implies union stability, antimatroids
satisfy a stronger union property.

Also note that given 2-accessibility, normality implies that {i} ∈ F for all i ∈ N as
is the case for communication feasible sets. Given closedness under union, normality
implies that N ∈ F as is the case for antimatroids.
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4 Special classes of communication graphs

In this section, we characterize some special classes of communication graphs that are
often encountered in the economic literature. We do this by adding additional prop-
erties with respect to paths in a set of feasible coalitions. In the previous section, we
showed that every coalition in a communication feasible set has at least two extreme
players. We say that a coalition S ∈ F ⊆ 2N is a path in F if it has exactly two
extreme players.6 The path S ∈ F is called an {i, j}-path in F if it has i and j as
extreme players. From now on it will be clear from the context whether we speak about
a path (i1, . . . , ik) in a graph (N , G) or a path {i1, . . . ik} in a set of feasible coalitions
F ⊆ 2N .

4.1 Communication line-graphs

A special class of communication networks that one encounters often in the economic
literature are line-graphs, see, e.g., Greenberg and Weber (1986). For example, coop-
erative games arising from water distribution problems (see Ambec and Sprumont
(2002)), polluted river games (see Ni and Wang (2007)), one-machine sequencing
situations (see Curiel et al. (1994)), auction situations (see Graham et al. (1990)), and
(dual) airport problems (see Littlechild and Owen (1973)) satisfy the property that
the restricted game vG on an appropriately defined line-graph G is equal to the unre-
stricted game v, see also van den Brink et al. (2007). Without loss of generality we
consider line-graphs G ⊆ GL = {{i, i +1} | i ∈ {1, . . . , n −1}}, where GL is the full
line-graph where each pair of consecutive players is directly linked. For convenience
we denote coalition {i, i + 1, . . . , j − 1, j} by [i, j]. In van den Brink et al. (2007)
it is shown that a sufficient condition for the existence of a Core-stable payoff vector
for a restricted game on a line-graph is the game being linear-convex meaning that
v[i, j] − v[i + 1, j] − v[i, j − 1] + v[i + 1, j − 1] ≥ 0 for all connected coalitions
[i, j] .7

The examples mentioned above are linear-convex.
In the previous section, we characterized the communication feasible sets using

union stability. Next we introduce a similar property with respect to paths. A set of
feasible coalitions F ⊆ 2N satisfies path union stability if the union of every pair of
paths that have a nonempty intersection is also a path, i.e., if S, T ∈ F are both paths
in F with S ∩ T 
= ∅ then S ∪ T is a path in F . Adding this property to those of
Theorem 1 characterizes the communication feasible sets arising from communication
line-graphs.

Theorem 2 Let F ⊆ 2N be a set of feasible coalitions. Then F is the communication
feasible set of some communication line-graph if and only if F contains the empty set
and satisfies normality, 2-accessibility, union stability, and path union stability.

6 A path in FG is also a path in the corresponding graph (N , G).
7 Note that this is weaker than convexity of the game and neither stronger nor weaker than superadditivity.
A game v is convex if v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ) for all S, T ⊆ N .
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Proof (Only if) Let (N , G) be a communication line-graph. FG containing the empty
set and satisfying normality, 2-accessibility, and union stability follows from Theo-
rem 1. The paths in a communication line-graph are exactly the connected (consecu-
tive) coalitions [i, j]. FG satisfying path union stability follows since [i, j] and [k, l]
being two paths in (N , G) with j > k implies that their union [i, l] is connected in
(N , G), and thus an {i, l}-path in FG .

(If) Suppose that F ⊆ 2N satisfies the properties mentioned in the theorem. From
Theorem 1, it follows that F is the communication feasible set of a communication
graph (N , G). Suppose that (N , G) is not a line-graph. Then there is an i ∈ N with
|RG(i)| ≥ 3. If there exist distinct h, j, k ∈ RG(i)with {{h, j}, {h, k}, { j, k}}∩G = ∅,
then {i, h, j} and {i, k} are both paths in F , but their union {i, j, h, k} is not a path.
Otherwise, there is a cycle between i and two of its neighbors, say {h, j} ∈ G for
h, j ∈ RG(i). But then {i, j} and {i, h} are both paths in F but their union {i, j, h} is
not a path. In both cases we have a contradiction with path union stability of F . �

4.2 Cycle-free communication graphs

An important class of communication graphs that contains the communication line-
graphs is that of cycle-free communication graphs as considered in, e.g., Le Breton
et al. (1992) and Demange (1994, 2004). As mentioned before, they have shown that
the Core of the restricted game vG is nonempty if the game is superadditive and
the graph is cycle-free, respectively a tree. The communication feasible sets arising
from cycle-free communication graphs that are not a line need not satisfy path union
stability (as can seen from the cycle-free graph (N , G) with N = {1, . . . , 4} and
G = {{1, j} | j ∈ {2, 3, 4}}, where {1, 2, 3} and {1, 4} are both paths in FG but their
union is not). However, requiring the path union stability condition only for the union
of two paths that have a common extreme player, this property is satisfied for cycle-
free communication graphs. We say that a set of feasible coalitions F ⊆ 2N satisfies
weak path union stability if the union of an {i, j}-path and an {i, k}-path, j 
= k, is also
a path. Weakening path union stability in this way characterizes the communication
feasible sets arising from cycle-free communication graphs.

Theorem 3 Let F ⊆ 2N be a set of feasible coalitions. Then F is the communication
feasible set of some cycle-free communication graph if and only if F contains the
empty set and satisfies normality, 2-accessibility, union stability, and weak path union
stability.

Proof (Only if) Let (N , G) be a cycle-free communication graph. FG containing the
empty set and satisfying normality, 2-accessibility and union stability follows from
Theorem 1. Note that for a cycle-free graph the paths in FG exactly correspond to
the paths in the graph (N , G). Thus, FG satisfying weak path union stability follows
since S being an {i, j}-path and T being an {i, k}-path, j 
= k, implies that their union
is a path from j to k in (N , G), and thus S ∪ T is a { j, k}-path in FG .

(If) To prove the ‘if’ part, suppose that F ⊆ 2N satisfies the properties men-
tioned in the theorem. We already showed in Theorem 1 that F is the communi-
cation feasible set of a communication graph (N , G). Suppose that (N , G) has a
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cycle. Then there exists a minimal cycle (i1, i2, . . . , ik, i1), k ≥ 3, such that there
is no cycle (h1, h2, . . . , hg, h1) with {h1, h2, . . . , hg} ⊂ {i1, i2, . . . , ik}. Take any
l ∈ {2, . . . , k − 1}. Then {i1, . . . , il} is an {i1, il}-path and {il , . . . , ik} is an {il , ik}-
path in F , but their union is not a path, yielding a contradiction with weak path union
stability of F . �

4.3 Cycle-complete graphs

For games on antimatroids, Algaba et al. (2004) show that adding to the properties
of Definition 1 the requirement that every player belongs to exactly one coalition
in which it is the only extreme player, characterizes the so-called poset antimatroids
(which turn out to be exactly those antimatroids that can be the conjunctive feasible set
of some acyclic permission structure). Since we showed that every connected coalition
in a communication graph has at least two extreme players, we consider the following
modification of this property. A set of feasible coalitions F ⊆ 2N satisfies the path
property if for every pair of players i, j ∈ N there is at most one {i, j}-path.

Requiring this additional property for communication feasible sets exactly yields
those that can arise from cycle-complete communication graphs. A communication
graph is cycle-complete if, whenever there is a cycle, the subgraph restricted to the
players in that cycle is complete, i.e., if there is a cycle (i1, . . . , ik, i1) then {{i, j} |
{i, j} ⊆ {i1, . . . , ik}} ⊆ G. In van den Nouweland and Borm (1991) it is shown that
the restricted game vG is convex, and thus its Core is nonempty, if the game is con-
vex and the graph is cycle-complete. So, compared to the results of Le Breton et al.
(1992) and Demange (1994, 2004) mentioned in the previous subsection, they show
under a weaker condition on the communication graph (since cycle-completeness is
implied by cycle-freeness) but stronger condition on the game (since convexity implies
superadditivity) nonemptiness of the Core of the restricted game.

Theorem 4 Let F ⊆ 2N be a set of feasible coalitions. Then F is the communication
feasible set of some cycle-complete communication graph if and only if F contains the
empty set and satisfies normality, 2-accessibility, union stability, and the path property.

Proof (Only if) Let (N , G) be a cycle-complete communication graph. FG contain-
ing the empty set and satisfying normality, 2-accessibility and union stability follows
from Theorem 1. A path (i1, . . . , ik) from i to j in communication graph (N , G)

is a shortest path from i to j if there is no path (h1, . . . , hg) from i to j such that
{h1, . . . , hg} ⊂ {i1, . . . , ik}. Since (N , G) is cycle-complete, there is at most one
shortest path between every pair of players.8. The shortest paths in a cycle-complete
graph exactly correspond to the paths in FG . Therefore, for every i, j ∈ N there is at
most one {i, j}-path in FG .

8 Let HG (i, j) = {h ∈ N | there is a path (i1, . . . , ik ) from i to j in communication graph (N , G) such that
h ∈ {i1, . . . , ik }}. If (N , G(HG (i, j))) is cycle-free then there is at most one path between i and j . (There
is exactly one such a path if i and j are connected.) If (HG (i, j), G(HG (i, j))) is complete then {i, j} is
the unique shortest path. Otherwise, every path from i to j contains players from complete subgraphs such
that there are only two players of this complete subgraph (one of them possibly being i or j) that belong to
the shortest path from i to j .
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(If) Suppose that F ⊆ 2N satisfies the properties mentioned in the theorem. We
already showed in Theorem 1 that F is the communication feasible set of a com-
munication graph (N , G). Suppose that (N , G) is not cycle-complete. Then there
is a cycle (i1, i2, . . . , ik, i1), k ≥ 4, with im ∈ {i3, . . . , ik−1} such that RG(i1) ∩
{i1, i2, . . . , ik} = {i2, ik} and RG(im) ∩ {i1, i2, . . . , ik} = {im−1, im+1}. (Note that
a cycle of length 3 is complete.) Take any l ∈ {3, . . . , k − 1}. Then {i1, . . . , il}
and {il , . . . , ik, i1} are both {i1, il}-paths in F , yielding a contradiction with the path
property. �

The reason why the path property still allows complete subgraphs is that in a cycle
of length 3 (i.e., a cycle of three players) each pair of players in this cycle is the unique
path of this pair of players in the corresponding communication feasible set. There-
fore, in the previous subsections on cycle-free graphs we needed (weak) path union
stability to exclude cycles of length 3.

Alternatively, it can be shown that communication feasible sets of cycle-complete
communication graphs are characterized by replacing the path property in Theorem
4 by closedness under intersection meaning that the intersection of any two feasible
coalitions is also feasible, i.e., S, T ∈ F implies that S ∩ T ∈ F .

4.4 Connectedness

In the communication graphs considered in this section, we allowed the graph to be
not connected. In many applications, connectedness of the graph is required, see, e.g.,
Demange (1994, 2004) who considers trees. We can easily adapt the characterizations
given in the previous sections by adding connectedness for sets of feasible coalitions.
A set of feasible coalitions F ⊆ 2N is connected if for every i, j ∈ N there is an
S ∈ F with {i, j} ⊆ S. We state this result for trees, but similarly we can characterize
connected line-graphs and cycle-complete graphs.

Theorem 5 Let F ⊆ 2N be a set of feasible coalitions. Then F is the communica-
tion feasible set of some communication tree if and only if F contains the empty set
and satisfies normality, 2-accessibility, union stability, weak path union stability, and
connectedness.

Proof (Only if) Let (N , G) be a communication tree. FG containing the empty set
and satisfying normality, 2-accessibility, union stability, and weak path union stabil-
ity follows from Theorem 3. FG satisfying connectedness follows since N ∈ FG if
(N , G) is a tree.

(If) To prove the ‘if’ part, suppose that F ⊆ 2N satisfies the properties mentioned
in the theorem. From Theorem 3, it follows that F is the communication feasible set
of a cycle-free communication graph (N , G). Suppose that (N , G) is not connected.
Then there are at least two components T 1, T 2 in (N , G). Taking i ∈ T 1 and j ∈ T 2,
every S ⊆ N with {i, j} ⊆ S is not feasible, yielding a contradiction with F = FG

being connected. �
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5 Concluding remarks

In this article, we characterized the communication feasible sets that can be the set
of connected coalitions in a communication graph network and compared the charac-
terizing properties to those of a hierarchical structure represented by an antimatroid
(including permission structures). We showed that these sets differ with respect to
the accessibility and union property they satisfy, where communication feasible sets
satisfy a stronger accessibility property, while hierarchies (i.e., antimatroids) satisfy
a stronger union property. We also characterized communication feasible sets of spe-
cial subclasses of communication networks, in particular, line, cycle-free, tree, and
cycle-complete graphs. From the literature, sufficient conditions for the existence of
Core-stable payoff vectors on these communication structures can be found which we
summarize in Table 1 (where the second column says which properties additional to
those of Theorem 1 characterize that structure and the third column gives sufficient
conditions on the game to have a nonempty Core given a communication graph with
those properties).

Demange (2004) considers restricted cooperation in a model where the players in a
TU-game belong to a hierarchy represented by a rooted or directed tree. In that article,
the feasible coalitions (or teams) in this hierarchy are those coalitions S ⊆ N such that
for every pair of players i, j ∈ S either (i) there is a directed path from i to j , or (ii)
there is a directed path from j to i , or (iii) there is another player h ∈ S\{i, j} such that
there is a directed path from h to i and from h to j . But this implies that the feasible
coalitions are exactly the connected coalitions in the underlying undirected communi-
cation graph (N , G D) with G D = {{i, j} ⊆ N | i 
= j and {(i, j), ( j, i)} ∩ D 
= ∅},
where the communication graph is a tree. Equivalently, we now can verify that the
corresponding sets of feasible coalitions satisfy the properties of Theorem 5.

We conclude that characterizations of sets of feasible coalitions arising from hier-
archies and communication networks is important to build a consistent theory of such
networks and compare them in economic and political organizations. Combining game
theory with studying relational structures by looking at properties of their sets of fea-
sible coalitions provides useful tools for this purpose. We agree with Chwe (2000)
that although “collective action depends on both social structure and individual incen-
tives, these integral aspects have been formalized separately, in the fields of social
network theory and game theory.” Whereas Chwe (2000) considers these integral
aspects together in a noncooperative model, in this article, we took a step to consider
communication and hierarchy together in a cooperative framework.

Table 1 Properties on networks
and games

Characterizing properties Properties on v

Line Path union stability Linear-convexity

Cycle-free Weak path union stability Superadditivity

Cycle-complete Path property Convexity

Tree Weak path union stability, Superadditivity
connectedness
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