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Abstract This paper shows that the disparity between an agent’s willingness-to-pay
and willingness-to-accept for a nonmarket good becomes small and the two values
converge to the same limit only if the agent’s initial consumption level of the numéraire
is large enough. A necessary and sufficient condition for convergences is provided,
and a formula is provided to compute the limit value directly from a utility function.
These convergence results are derived when the nonmarket goods are indivisible and
qualitatively differentiated, and then extended for the divisible case.

1 Introduction

For an agent and a public good in a community, the agent’s willingness-to-pay (WTP)
is the maximum amount of money the agent will pay in exchange for the public good,
and the willingness-to-accept (WTA) is the minimum amount of money the agent will
accept to forgo the public good. Since the two concepts are generally applicable for
a large class of nonmarket goods, including not only conventional public goods but
also services of environmental resources or amenities, the two concepts are applied in
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a standard cost–benefit analysis for evaluating alternative public projects of supplying
nonmarket goods in a community.1

However, smallness of the disparity between WTP and WTA is crucial for the
consistent evaluation of nonmarket goods on the list of public projects, even when
the public projects do not influence a market price vector. Namely, if the disparity is
very small, since the individual monetary value of a nonmarket good is well-defined
almost uniquely, we can derive a total benefit of a nonmarket good by aggregating
all the individual values and the two aggregated measures result in the same rankings
for the nonmarket goods;2 otherwise, it is possible that the two aggregated measures
result in the opposite rankings for some nonmarket goods, even if the individual welfare
rankings are well defined, independent of the choice of measure.

More specifically, let us consider a community with agent 1 and agent 2, where
no public facility is constructed initially. We assume that both agents hold three units
of money and their utility functions are defined on the public facilities and the per-
sonal consumption levels of money. Agent i’s utility function is denoted by Ui for
i = 1, 2, and the initial state of public facility in the community is denoted by q0,
i.e., q0 means no public facility. Now, the community has two alternative projects
for constructing new public facilities; one is constructing a swimming pool (P) and
the other is constructing an archaeology museum (M). For simplicity, we assume that
the cost for constructing each facility is 0 units of money. Hence, the best facility
is the one which maximizes the total (aggregated) benefits over the two agents. For
agent i(i = 1, 2), WTP for the swimming pool (P) is defined by the amount of money
ci such that Ui (P, 3 − ci ) = Ui (q0, 3), and WTA for P is defined by the amount
of money ei such that Ui (P, 3) = Ui (q0, 3 + ei ). The willingness-to-pay and WTA
for P are denoted by WTPi(P) and WTAi(P), respectively. We can similarly define
WTPi(M) and WTAi(M) for the museum.

As a benchmark case, let us consider quasi-linear utility functions U 1 and U 2 such
that

U 1(q0, x) = x, U 1(P, x) = x + 1.3 and U 1(M, x) = x + 3;
U 2(q0, x) = x, U 2(P, x) = x + 2 and U 2(M, x) = x + 1,

where x is an amount of money. In the quasi-linear case, there is no disparity between
WTP and WTA, and thus the individual (monetary) values of nonmarket goods are
well-defined exactly.3 Hence, we can derive the total benefits of a nonmarket good by
aggregating all the individual values, and we have that

1 For comprehensive surveys, see Bockstael and Freeman (2005) and Carson and Hanemann (2005).
2 In the neo-classical setting, it is well known that the aggregated measures are consistent with the
Hicks–Kaldor compensation tests only when all utility functions are Gorman-type. See Blackorby and
Donaldson (1985).
3 Concretely, we have that WTP1(P) = WTA1(P) = 1.3 < WTP1(M) = WTA1(M) = 3.0, and that
WTP2(P) = WTA2(P) = 2.0 > WTP2(M) = WTA2(M) = 1.0. These values are independent of
agents’ initial holdings of money.
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WTP1(P) + WTP2(P) = 3.3 < WTP1(M) + WTP2(M) = 4.0;
WTA1(P) + WTA2(P) = 3.3 < WTA1(M) + WTA2(M) = 4.0.

Namely, both of the welfare measures conclude that the archaeology museum is better
than the swimming pool, i.e., the archaeology museum is the best facility in this case.

Let us consider the next case: supposing that the agent 2 will go to swimming
pool every day and agent 2’s health condition will be improved if the pool is con-
structed. Consequently, agent 2’s utility function U 2(P, x) = x + 2 is replaced with
U 2(P, x) = x + 2 + (1 − e−x ) = x − e−x + 3 in which (1 − e−x ) represents the
health effect. This effect can be recognized as a (positive) income effect in Mäler
(1974) definition of normal good,4 which ensures generally that WTP < WTA. In this
case, it holds that WTP2(P) = 2.43 < WTA2(P) = 2.95 as shown in Fig. 1, and
that the pool is better than the museum in agent 2’s welfare ranking independent of
the choice of measure, i.e., WTP2(P) > WTP2(M) and WTA2(P) > WTA2(M).
Although all the individual rankings are well-defined, we have that

WTP1(P) + WTP2(P) = 3.73 < WTP1(M) + WTP2(M) = 4.0;
WTA1(P) + WTA2(P) = 4.25 > WTA1(M) + WTA2(M) = 4.0,

which implies that the two aggregated welfare measures result in opposite rankings: the
values of aggregate WTP indicate that the archaeology museum is better than the swim-
ming pool, but the values of aggregate WTA indicate that the swimming pool is better
than the archaeology museum. Thus, the smallness of the disparity between WTP and
WTA is necessary for the consistent evaluation of nonmarket goods in this example.

Next, let us suppose that agent i’s initial holdings of money is a variable and denote
it by xi

0 for i = 1, 2. Since WTPi (P) and WTAi (P) depend on agent i’s initial state
(q0, xi

0), we denote them by WTPi (P; q0, xi
0) and WTAi (P; q0, xi

0). Similarly, we
use the notation WTPi (M; q0, xi

0) and WTAi (M; q0, xi
0) in case of M. When x2

0 is 5,
it holds approximately that WTP2(P; q0, 5) = 2.88 < WTA2(P; q0, 5) = 3.00, and
that

WTP1(P; q0, 3) + WTP2(P; q0, 5) = 4.18 > WTP1(M; q0, 3) + WTP2(M; q0, 5) = 4.0;
WTA1(P; q0, 3) + WTA2(P; q0, 5) = 4.30 > WTA1(M; q0, 3) + WTA2(M; q0, 5) = 4.0.

This implies that the two welfare measures result in the same rankings. Mathemati-
cally, we can prove that both of the two values WTP2(P; q0, x2

0 ) and WTA2(P; q0, x2
0 )

converge to 3, when x2
0 is sufficiently large, since U 2(P, x) = x + 3 is an asymptote

of U 2(P, x) = x − e−x + 3 as shown in Fig 1. This example tells us that the disparity
is negligibly small and consistent evaluations of nonmarket goods are derived when
the initial holdings of money (or the initial consumption level of money) is sufficiently
large, even though the utility function is not quasi-linear. As the main objective of this
paper, we derive the utility condition under which WTP and WTA converge to the
same limit when the initial holdings of money is sufficiently large in a single-agent

4 Mäler (1974, Ch. 4, Section 10, (Eq. 26)) introduces this concept, but he names it convexity.
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setting, assuming that the nonmarket goods are normal as assumed for the swimming
pool in the above example.

In the next section, we show that WTP and WTA for indivisible nonmarket goods
are well defined under two standard conditions for a non-linear utility function.5 Then
we introduce the formal definition of a normal good due to Mäler (1974) and show that
the normal good condition implies the inequality WTP < WTA, and that the neutral
good condition, or equivalently the quasi-linearity condition, implies WTP = WTA as
shown in above example.

Assuming the normal good condition, Sect. 3 shows that the magnitude of disparity
between WTP and WTA is larger than a positive number on any compact subset of the

5 Mäler (1974, Ch. 4, Section 10) defines WTP and WTA for indivisible nonmarket goods as well as divis-
ible nonmarket goods, since the indivisibility is an intrinsic property of some nonmarket goods as in case of
a park or national defense. More on the indivisibility, see Samuelson and Nordhaus (1998, Ch.18, Section
C). Even for (potential) public goods on a planning process of local government, the indivisibility is also
an intrinsic property, since the size of a public good is pre-determined by the population of community. For
the population aspect of nonmarket goods including the income distribution, see Ebert (2003, Sect. 2). The
formal analysis for the disparity of WTP and WTA has not been done under the indivisibility with general
non-linear utility functions. Exceptionally, Hanemann (1999b); Erlander (2005) and Dagsvik et al. (2006)
analyze the welfare properties of the discrete choice model, but their approaches are essentially different
from ours.
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consumption set (Proposition 2), which implies that a limiting operation is necessary
for deriving the small disparity of WTP and WTA or the convergence of WTP and
WTA. Then, we examine the relation between WTP and WTA, letting the initial hold-
ings of money be large. A necessary and sufficient condition for the convergence is
given in terms of utilities under the normality condition (Theorem 1). The condition
for the convergence is that the nonmarket good can be replaced with some amount of
money, independent of the initial holdings of money. More concretely, when an agent
initially consumes a nonmarket good and an amount of money, the condition requires
that the agent should prefer the state where the nonmarket good is replaced with an
additional amount of money to the initial state and that the additional amount of money
should be determined independent of the initial consumption level of money. In the
case that U 2(P, x) = x − e−x + 3 and U 2(q0, x) = x , P is replaceable with three
units of money in this sense, since U 2(P, x2

0) < U 2(q0, x2
0 + 3) = x2

0 + 3 for all
x2

0 ≥ 0 as shown in Fig. 1.6

Consequently, for the convergence of WTP and WTA, or the smallness of income
effects, it is not sufficient to let the initial holdings of money be large: we have to addi-
tionally assume the replaceability condition on the utility function, although replace-
ability is weaker than neutrality. Once the replaceability condition is included, WTP
and WTA converge to the same limit value, and hence the well-definedness of the
economic value of nonmarket good is obtained, when the initial holdings of money is
sufficiently large.

Assuming that the utility function is smooth, Sect. 4 provides a formula for comput-
ing the limit values of WTP and WTA directly from the utility function (Theorem 2).
Using this formula, some numerical examples are presented. These examples reveal
that the convergence theorem (Theorem 1) is not vacuous, i.e., there exist utility func-
tions satisfying all the conditions of the theorem. In Sect. 5, the convergence results
are extended for Mäler’s (1974, Ch. 4, Section 10) original case where the quality
of indivisible nonmarket goods is measured by one variable (Theorem 3). This case
can be recognized as the standard neo-classical case where there is just one type of a
nonmarket good and the nonmarket good is homogeneous and perfectly divisible.

2 Willingness-to-pay and willingness-to-accept for indivisible nonmarket goods

This section introduces a single-agent setting with indivisible nonmarket goods and
perfectly divisible money (a numéraire or composite commodity), and the two mea-
sures for evaluating the individual benefits for nonmarket goods in terms of the money.
We assume that the set of (potential) nonmarket goods is a finite set containing a specific
member q0 which corresponds to “status quo”. In this paper, the member q0 is called the
null nonmarket good. Denote the set of all nonmarket goods by Q = {q0, q1, . . . , qn},7

6 The monotonicity condition and Archimedean condition imply that U2(P, x2
0) < U2(q0, x2

0 + δ) for
some δ > 0, which is weaker than the replaceability condition. See Footnote 10 in Sect. 3. A condition
like the replaceability condition has been introduced by Cook and Graham (1977), but their definition of
replaceability is different from ours, see Hanemann (1999a, footnote 24, p. 65).
7 The nonmarket goods in Q can be anything—levels of output of a specific public good, vectors of output
levels of many different public goods, or alternative public goods as in the previous section.
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and denote the set of non-null nonmarket goods by Q+ = {q1, . . . , qn}. We consider
an agent who initially holds an amount of money x0 ≥ 0. The pair (q0, x0) is called
initial situation and (q0, x0) is the reference point of the two welfare measures which
will be defined below. The agent’s utility function U is defined on all the pairs (q, x)
where q ∈ Q is a nonmarket good and x ∈ [0,+∞) is an amount of money. The
consumption set is denoted by Q × X where X ≡ [0,+∞), and the utility function
U(q, x) is assumed to be a real-valued function on Q × X satisfying the following
standard conditions:

A1(Continuity and monotonicity): For each q ∈ Q, U (q, x) is continuous and
increasing in x.

A2(Archimedean with desirability): For each (q, x) ∈ Q+ × X , there exists some
δ > 0 such that U (q, x) = U (q0, x + δ).

A2 is an Archimedean condition, and along with A1 it implies that q0 is the least
desirable member of Q, which follows from U (q, x) = U (q0, x + δ) > U (q0, x).
Although A1 and A2 are always assumed for a utility function in the main part of this
paper, the desirability condition in A2 is not crucial for our main results. In fact, the
results are applied for some undesirable nonmarket goods such as pollutants in Sect. 5.

For simplicity, a member in the set of all non-null nonmarket goods Q+ is called
a non-null good in the remainder of this paper. At the initial situation (q0, x0), the
willingness-to-pay (WTP) for a non-null good q ∈ Q+ is defined by the amount of
money c ∈ X such that

U (q0, x0) = U (q, x0 − c), (1)

and the willingness-to-accept (WTA) compensation required for a non-null good q ∈
Q+ is defined by the amount of money e ∈ X such that

U (q0, x0 + e) = U (q, x0). (2)

The willingness-to-pay and willingness-to-accept for q ∈ Q+ at (q0, x0) are denoted
by WTP(q; q0, x0) and WTA(q; q0, x0), respectively. Under the conditions of A1
and A2, which are assumed throughout in this paper except for Sect. 5, we have the
following lemma:

Lemma 1 For each non-null good q ∈ Q+, the following five assertions hold:

(i) There exists a unique amount of money λq > 0 such that U (q0, λq) = U (q, 0).
(ii) WTP(q; q0, x0) exists uniquely and WTP(q; q0, x0) > 0 is continuous for

x0 ∈ [λq ,+∞).
(iii) WTA(q; q0, x0) exists uniquely and WTA(q; q0, x0) > 0 is continuous for

x0 ∈ X.
(iv) WTA(q; q0, x0)=WTP(q; q0, x0 + WTA(q; q0, x0)) for all x0 ∈ [λq ,+∞).

(v) Let V be an equivalent utility function of U, i.e., V is a utility function satisfying
the condition: V (q, x) ≥ V (q∗, x∗) ⇔ {U (q, x)} ≥ U (q∗, x∗) for all (q, x),

(q∗, x∗) ∈ Q × X. Then the two values, WTP(q; q0, x0) and WTA(q; q0, x0)

are invariant if they are re-computed by V.
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Fig. 2 Indifference map of normal good

Lemma 1 is proved in the Appendix. Assertion (ii) states that the well-definedness
of WTP(q; q0, x0) is ensured on domain x0 ∈ [λq ,+∞), and it has positiveness and
continuity properties on the domain, and Assertion (iii) states that the well-definedness
of WTA(q; q0, x0) is ensured for all x0 ∈ X and it also has positiveness and continuity
properties. Hence, we can apply the limit operation x0 → +∞ for WTP(q; q0, x0) and
WTA(q; q0, x0), since both values are well defined for all x0 ∈ [λq ,+∞). Assertion
(iv) is a restatement of Cook and Graham (1977, (2)) in our setting,8 and Assertion (v)
means that WTP and WTA are determined by the ordinal properties of utility function.
Let us consider some numerical examples.

Example 1 Suppose that Q = {q0, q1} and x0 = 10,000, and define a utility function
U by U (q0, x) = √

x and U (q1, x) = √
x + 40 for all x ∈ X . Then it holds that

λ1 = 1,600 and that WTP(q1; q0, x0) = 6,400 < WTA(q1; q0, x0) = 9,600. The
indifference map is given in Fig. 2.

Example 2 Suppose that Q = {q0, q1} and x0 = 10,000, and define a utility function
U by U (q0, x) = x and U (q1, x) = x + 3,000 for all x ∈ X . Then it holds that
λ1 = 3,000 and that WTP(q1; q0, x0) = WTA(q1; q0, x0) = 3,000. See Fig. 3 for the
indifference map.

Example 3 Suppose that Q = {q0, q1} and x0 = 10,000, and define a utility function
U by U (q0, x) = x

√
x and U (q1, x) = x

√
x + 10,000 for all x ∈ X . Then it holds

that λ1 ≈ 464 and that WTP(q1; q0, x0) ≈ 66.78 > WTA(q1; q0, x0) ≈ 66.56. See
Fig. 4.

Depending on the utility function, WTP can be larger than, smaller than, or equal
to WTA. The next proposition provides a sufficient condition for each case. In order
to state the proposition, we need some definitions:

Normality of non-null good A non-null good q ∈ Q+ is defined to be a normal
good if and only if the following condition holds: If U (q, x∗) = U (q0, x), then
U (q, x∗ + δ) > U (q0, x + δ) for all δ > 0.

8 See also Hanemann (1999a, Proposition 3.6).
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Fig. 3 Indifference map of neutral good
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Fig. 4 Indifference map of inferior good

This definition is introduced by Mäler (1974, Ch. 4, Section 10, (26)). If the nor-
mal nonmarket goods are sold in a hypothetical competitive market, and if the agent
attempts to buy at most one good, then the agent’s demand shifts from q0 to q, or
remains the same whenever the agent’s initial holdings of money (income) is increased,
and hence our definition of normality is the discrete counterparts of Hicksian definition
of normal good in a neo-classical setting with continuum variables.

Neutrality of non-null good A non-null good q ∈ Q+ is defined to be a neutral good
if and only if the following condition holds: If U (q, x∗) = U (q0, x), then U (q, x∗ +
δ) = U (q0, x + δ) for all δ > 0.

This condition means that the indifference curves are parallel as shown in Fig. 3, and
we can easily show that there exists a quasi-linear utility function which is equivalent
to U. (For a proof, see Mas-Colell et al. (1995, Definition 3.B.7 and Exercise 3.C.5.)
Hence, our definition of neutrality is the discrete counterpart of Hicksian definition
of neutrality, which is a direct consequence of the quasi-linearity.
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Inferiority of non-null good A non-null good q ∈ Q+ is defined to be an inferior good
if and only if the following condition holds: If U (q, x∗) = U (q0, x), then U (q, x∗ +
δ) < U (q0, x + δ) for all δ > 0.

Then we can state the proposition as follows:9

Proposition 1 Let q be a non-null good in Q+, and suppose that x0 is greater than
λq .

(A) If q is normal, then the following assertions hold:
(i) WTP(q; q0, x0 + δ) > WTP(q; q0, x0) for all δ > 0,

(ii) WTA(q; q0, x0 + δ) > WTA(q; q0, x0) for all δ > 0,

(iii) WTA(q; q0, x0) > WTP(q; q0, x0).

(B) If q is neutral, then the two measures, WTP and WTA in Assertions (i–iii) have
the same value, i.e., all the inequalities in Assertions (i–iii) are replaced with
equalities.

(C) If q is inferior, then the opposite inequalities in Assertions (i–iii) hold.

Proposition 1 is proved in Sect. 6. Assertions (i) and (ii) mean that WTP(q; q0, x0) and
WTA(q; q0, x0) are increasing functions of the initial holdings of money x0, respec-
tively. Assertion (iii) means that WTA(q; q0, x0) is always larger than
WTP(q; q0, x0) as shown in Fig. 1, and then the economic value for q in terms of
money is not determined exactly for U under the normality. Hence, Proposition 1
implies that the primal source of disparity WTA > WTP is the normality of nonmar-
ket good, and the disparity is equivalent to the monotonicity of WTP and WTA with
respect to the initial holdings of money.

3 Convergence of WTP and WTA under normality

In this section, we assume additionally that nonmarket goods in Q+ are normal as
defined above, which is a sufficient condition for the inequality WTA > WTP, and
then we investigate the magnitude of that disparity.

Since a continuous real-valued function on a compact set has its minimizer within
the compact set, we have the following proposition as a direct consequence of
Proposition 1(Aiii) and Lemma 1(ii, iii):

Proposition 2 Suppose that a non-null good q ∈ Q+ is normal. For any compact
interval [z1, z2] in X with z1 ≥ λq , there exists ε > 0 such that

WTA(q; q0, x0) − WTP(q; q0, x0) > ε f orall x0 ∈ [z1, z2].

Proposition 2 states that, for any normal good q ∈ Q+, the difference between
WTP(q; q0, x0) and WTA(q; q0, x0) is uniformly bounded from below whenever

9 These assertions are the discrete counterparts of well-known assertions in the perfect divisible case
as shown by Cook and Graham (1977), Loehman (1991, Theorem 2), Ebert (1993), Hanemann (1999a,
Proposition 3.6) and Latham (1999, Proposition 3). See Kaneko et al. (2006, Assumption E and Lemma
2.3(2)) for further discussion of the normal good condition.
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x0 belongs to a compact interval [z1, z2] in X. This proposition implies that we must
introduce a limit operation on x0 to eliminate the disparity between WTP and WTA.

Fixing a normal good q ∈ Q+, let us investigate the asymptotic behaviors of
WTP(q; q0, x0) and WTA(q; q0, x0) when x0 → +∞. Since WTP(q; q0, x0) is
increasing with respect to x0 by Proposition 1(Ai), there are just two possible cases:
0 < limx0→+∞WTP(q; q0, x0) < +∞, or limx0→+∞WTP(q; q0, x0) = +∞. Since
WTA(q; q0, x0) also has the monotonicity property, there are the same two cases for
WTA, i.e., convergence or divergence. Hence, there are four possible cases:

(I) 0 < lim
x0→+∞ WTP(q; q0, x0) < +∞ and 0 < lim

x0→+∞ WTA(q; q0, x0) <

+∞;
(II) 0 < lim

x0→+∞ WTP(q; q0, x0)<+∞ and lim
x0→+∞ WTA(q; q0, x0)=+∞;

(III) lim
x0→+∞ WTP(q; q0, x0)=+∞ and 0 < lim

x0→+∞ WTA(q; q0, x0)<+∞;
(IV) lim

x0→+∞ WTP(q; q0, x0) = +∞ and lim
x0→+∞ WTA(q; q0, x0) = +∞.

However, we have the following proposition which tells us that there are just two
possible cases, (I) or (IV):

Proposition 3 If a non-null good q ∈ Q+ is normal, then it holds that

lim
x0→+∞ WTP(q; q0, x0) = lim

x0→+∞ WTA(q; q0, x0).

The equality above includes the case that limx0→+∞WTP(q; q0, x0) = limx0→+∞
WTA(q; q0, x0) = +∞.

The proof of Proposition 3 is given in Sect. 6. For example, let us reconsider the utility
function U in Example 1. This U satisfies the normality condition on q1, but it holds
that

lim
x0→+∞ WTA(q1; q0, x0) = lim

x0→+∞(80
(√

x0 + 1, 600
) = +∞,

which implies that U satisfies all the conditions for Case (IV). Consider another exam-
ple:

Example 4 As in the example of Sect. 1, setting Q = {q0, q1}, the utility function U∗
is defined by

U∗(q0, x) = x and U∗(q1, x) = x + 3 − e−x for all x ≥ 0.

One can easily show that U∗ satisfies the normality condition on q1, and the graph of
U∗(q1, x) can be drawn as U 2(P, x) on Fig. 1. It holds by the definition of WTA that

WTA∗(q1; q0, x0) = U∗(q1, x0) − U∗(q0, x0) = 3 − e−x0 ,
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i.e., WTA∗(q1; q0, x0) coincides with the difference of utility values, U∗(q1, x0) and
U∗(q0, x0). Hence, it holds that

lim
x0→+∞ WTA∗(q1; q0, x0) = lim

x0→+∞(3 − e−x0) = 3, (3)

and that U∗ satisfies all the conditions for Case (I).

For example, given q ∈ Q+, one may infer from Example 4 that WTA(q; q0, x0)

converges to a limit when x0 → +∞, if WTA(q; q0, x0) is bounded from above.
Because WTA(q; q0, x0) > 0 is an increasing function of x0 by Proposition 1 (Aii),
we can prove the convergence by applying the following well-known theorem:

Theorem of the monotone limit (See Howie 2001, Theorem 3.1, p. 74, or Simon and
Blume 1994, Theorem 29.2, p. 805): If a function f : [0,+∞) → [0,+∞) is increas-
ing and bounded from above, then f has a limit as x → +∞, i.e., lim

x→+∞ f(x) < +∞.

If additionally f(x) > 0 for some x ≥ 0, then 0 < lim
x→+∞f(x) < +∞.

Practically, in order to ensure the boundedness of WTA(q; q0, x0), one can assume
the following condition on the utility function U:

Replaceability of non-null good q ∈ Q+ There exists Kq ≥ 0 such that U (q0, x +
Kq) ≥ U (q, x) for all x ≥ 0.

Replaceability means that q is replaceable for some amount of money, Kq , independent
of the initial holdings of money.10 Since U (q0, x0 + WTA(q; q0, x0)) = U (q, x0) by
the definition of WTA, it holds under the replaceability condition that

U (q0, x0 + WTA(q; q0, x0)) = U (q, x0) ≤ U (q0, x0 + Kq) for all x0.

By this and the contrapositive of monotonicity condition in A1 we have that
WTA(q; q0, x0) ≤ Kq for all x0 and that WTA(q; q0, x0) is bounded. Hence, it follows
from the theorem of the monotone limit that 0 < limx0→+∞WTA(q; q0, x0) < +∞.
Thus, we observe that the replaceability condition is sufficient for the convergence of
WTA under the normality condition.

Conversely, suppose that 0 < limx0→+∞WTA(q; q0, x0) < +∞, and set Kq =
1+limx0→+∞WTA(q; q0, x0). Since limx0→+∞WTA(q; q0, x0) < Kq impliesWTA
(q; q0, x) < Kq for sufficiently large x , it holds by Proposition 1(Aiii) that Kq >

WTA(q; q0, x) for all x . Hence it holds by the definition of WTA and the monoto-
nicity in A1 that U (q0, x) = U (q0, x + WTA(q; q0, x)) < U (q0, x + Kq), which
implies that the replaceability condition is necessary for the convergence of WTA.
Thus, the replaceability condition is necessary and sufficient for the convergence of
WTA under the normality condition.

10 Since the Archimedean condition in A2 implies that q is replaceable for some amount of money depend-
ing on the initial holdings of money, the replaceability is not implied by A2. In fact, the utility function U
in Example 1 satisfies A2, but it does not satisfy the replaceability.
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The arguments above and Proposition 3 together imply the following theorem:

Theorem 1 [Convergence of WTP and WTA] If a non-null good q ∈ Q+ is normal,
then the following four statements are mutually equivalent:

(i) q is a replaceable good;
(ii) 0 < lim

x0→+∞ WTA(q; q0, x0) < +∞;
(iii) 0 < lim

x0→+∞ WTP(q; q0, x0) < +∞; 11

(iv) 0 < lim
x0→+∞ WTP(q; q0, x0) = lim

x0→+∞ WTA(q; q0, x0) < +∞.

Theorem 1 implies that the necessary and sufficient condition for the convergence
of WTP and WTA is that the nonmarket good is replaceable with money under the
normality condition. Thus, for the convergence of WTP and WTA, it is not suf-
ficient to let the initial holdings of money be large, and we have to additionally
assume the replaceability condition on the utility function; otherwise, it holds that
limx0→+∞WTA(q; q0, x0) = +∞. More formally, as a direct consequence of Theo-
rem 1 and Proposition 3, we have the following corollary:

Corollary 1 [Divergences of WTP and WTA] If a non-null good q ∈ Q+ is normal,
then the following three statements are mutually equivalent:

(i) q is an irreplaceable good, i.e., for each x ≥ 0 there exists some Lx ≥ 0 such
that U (q, Lx ) > U (q0, x + Lx ); 12

(ii) lim
x0→+∞ WTA(q; q0, x0) = +∞;

(iii) lim
x0→+∞ WTP(q; q0, x0) = +∞.

4 Direct computation of the limit values

This section provides formulas to compute the limit values of WTP and WTA
directly from the utility function U, without employing the formulas that defining
WTP(q; q0, x0) and WTA(q; q0, x0) for all x0, respectively. In order to state the for-
mulas we need a definition and a lemma. For a given utility function U(q, x) on Q× X ,
denoting f (x) ≡ U (q0, x) for all x, the normalized utility function V of U is defined
by

11 Furthermore, under the normality condition, the statement (iii) implies that the marginal values of
WTP(q; q0, x0) with respect to x0 converges to 0 as x0 → +∞, i.e.,

lim
x0→+∞

∣∣WTP(q; q0, x0 + 1) − WTP(q; q0, x0)
∣∣ = 0.

Hence, the implausible phenomenon in Milgrom (1993, p. 430) does not occur as long as (iii) holds.
12 By the definition of irreplaceable good, a non-null good q is irreplaceable if and only if q is not replace-
able. Suppose that q is irreplaceable for an agent who owns q in a hypothetical competitive market of q.
Then, no matter how large price x > 0 is given, the agent does not sell q if the agent’s initial holdings of
money is Lx . In Example 1, q1 is irreplaceable and Lx can be set by Lx = [(x − 1, 600)/80]2 + 1 for all
x > 0.
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V (q, x) = f −1(U (q, x)) for all (q, x) ∈ Q × X, (4)

where the well-definedness of f −1 is ensured by A1 and A2. Then we have a lemma:

Lemma 2 Let U a and U b be two utility functions on Q × X, and let V a and V b be
the normalized utility functions of U a and U b, respectively. If U a is equivalent to U b,
then V a coincides with V b.

Lemma 2 is proved in the Appendix. By Lemma 2, we can consistently assume a
cardinal property on the normalized utility function, since it is a representative of an
equivalent class of utility functions. Specifically, we consider the following properties:

Concavity A smooth utility function V (q, x) on Q × X is concave if and only if
d2V (q, x)/dx2 < 0 for all q ∈ Q+ and all x > 0;13

Uniformly boundedness of the differences V (q, x) satisfies the uniformly bound-
edness of the differences at q ∈ Q+ if and only if there exists Mq > 0 such that
V (q, x) − V (q0, x) < Mq for all x > Mq .

The main result of this section is the following theorem:

Theorem 2 Suppose that U(q, x) is a smooth utility function on Q × X, and that the
normalized utility function V(q, x) of U(q, x) is concave and satisfies the uniformly
boundedness of the differences at all q ∈ Q+. Then U and V satisfy all the conditions
in Theorem1 for all q ∈ Q+, and the following two assertions hold:

(i) 0 < lim
x0→+∞ WTP(q; q0, x0) = lim

x0→+∞WTA(q; q0, x0)

= lim
x→+∞[V (q, x) − x] < +∞ for all q ∈ Q+,

(ii) for any ε > 0 there exists δ > 0 such that

max
(q,x)∈Q+×[δ,+∞)

|v(q) + x − V (q, x)| < ε,

where v(q) = limx0→+∞WTP(q; q0, x0) = limx0→+∞WTA(q; q0, x0). Namely, set-
ting v(q0) = 0, the utility function V*(q, x) defined by V ∗(q, x) = v(q) + x is the
limit function of the utility function V(q, x) when x → +∞.

Theorem 2 is proved in Sect. 6. For a given utility function in an elementary func-
tion form, we can easily check whether the two conditions hold or not, and then we
can construct an example which satisfies all the conditions of Theorem 2. The utility
function U* in Example 4 satisfies all the conditions in Theorem 2, which implies that
the convergence theorem (Theorem 1) is non-void, i.e., there exist utility functions
satisfying all the conditions in the theorem. In Example 4, a linear utility function V*
such that

V ∗(qi, x) = v(qi ) + x,

13 A real-valued function V (q, x) on Q × X is smooth if V (q, x) is C2 with respect to x for all q, i.e., V (q,
x) is continuous and continuously second differentiable for x .
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where v(q0) = 0 and v(q1) = 3, is derived as a limit function of the non-linear util-
ity function U* when x → +∞. Hence, a linear utility function (as introduced in
Example 2) used in the discrete choice model or random utility model14 can be inter-
preted as the limit utility function of some non-linear utility function V in Theorem 2.15

However, there is a non-linear utility function which does not satisfy the replace-
ability condition in Theorem 1. See the next example:

Example 5 (A Box–Cox type utility function)16 Define a utility function U on {q0, q1}
× X by

U (q0, x) = 2(
√

x − 1) and U (q1, x) = 1 + 2(
√

x − 1) for all x ∈ X.

This U is equivalent to V (q, x) = f −1(U (q, x)) where f (x) = U (q0, x) =
2(

√
x − 1). By a simple computation, we have that

V (q0, x) = x and V (q1, x) = x + √
x + 1/4 for all x ∈ X.

Hence, U and V satisfy the normality condition on q1. Since we can prove by almost
the same arguments in deriving (3) in Example 4 that

lim
x0→+∞ WTA(q1; q0, x0) = lim

x→+∞[V (q1, x) − x] = lim
x→+∞(

√
x + 1/4) = +∞,

Assertion (ii) of Theorem 1 does not hold, and hence we have by Theorem 1 (i ⇔ i i)
that U and V do not satisfy the replaceability condition.

5 Extensions

We extend the convergence results (Theorems 1 and 2) to the case where the quality
of an indivisible nonmarket good is measured by one real variable q ∈ [0,+∞) such
as the size of a public facility. This case corresponds to Mäler’s (1974, Ch. 4, Section
10) original case. Specifically, the consumption set, Q × X is [0,+∞) × [0,+∞),
and we assume that the initial level of the quality is fixed and denoted by q0 ≥ 0. In
order to state the next theorem, we need some definitions for a smooth utility function
U on Q × X :17

Monotonicity: Uq(q, x) > 0 and Ux (q, x) > 0 for all (q, x) ∈ Q × X,

14 Moreover, a piece-wise linear approximation for U also satisfies all the conditions in the theorem, and
the piece-wise linear utility function is applicable for the logit models, see Morey et al. (2003).
15 In Example 4, the economic value v(q1) consists of not only the generic value U∗(q1, 0), but also the
accumulated marginal values

∫ +∞
0 U∗′(q1, x)dx , i.e., v(q1) = U∗(q1, 0) + ∫ +∞

0 U∗′(q1, x)dx . In the
case of park or public library, the first and second terms are recognized as the existence value and use value,
respectively, and Theorem 2 simply provides the intergrability condition for the use value.
16 For the Box–Cox type utility function, see Carson and Hanemann (2005).
17 A real-valued function f on [0, +∞) ×[0, +∞) is smooth if f is C2, i.e., f is continuous on [0,+∞) ×
[0, +∞) and all second partial derivatives: fxy(x, y), fyx (x, y), fxx (x, y), and fyy(x, y) are continuous
on (0, +∞) × (0, +∞)
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Hicksian normality of q : Ux (q, x) · Uqx (q, x) − Uq(q, x) · Uxx (q, x) > 0 for
all (q, x) � (0, 0),

Existence of positive limit marginal utility: 0 < limx→+∞Ux (q0, x) < +∞.

As a main result of this section, we have the following theorem:

Theorem 3 Suppose that a smooth utility function U(q, x) on Q × X satisfies the
following conditions:

(i) Monotonicity;
(ii) Hicksian normality of q;

(iii) Existence of positive limit marginal utility;
(iv) Uniformly boundedness of the differences at any q > q0 as defined in Sect.4.

Then U satisfies all the conditions in Theorem1 for any q > q0, and it holds that

0 < lim
x0→+∞WTP(q; q0, x0) = lim

x0→+∞WTA(q; q0, x0)

=
lim

x→+∞[U (q, x) − U (q0, x)]
lim

x→+∞ Ux (q0, x)
< +∞ for any q > q0. (5)

Theorem 3 is proved in Sect. 6. The leading two conditions are ordinal ones, but lat-
ter two conditions state cardinal properties of a utility function as the conditions in
Theorem 2. Now, suppose that a smooth utility function U satisfies the monotonic-
ity and Hicksian normality conditions. Then we can prove easily that U satisfies the
replaceability condition if and only if there exists some equivalent utility function U*
of U satisfying the two cardinal conditions such as the normalized utility function in
Theorem 2,18 although it does not hold that all equivalent utility functions satisfy the
two cardinal conditions. Moreover, we can prove, using Theorem 3 and Lemma 1(vi),
that the limit values of WTP and WTA are well defined, independent of the selection
of the utility function U*, i.e., it holds that

lim
x→+∞[U (q, x) − U (q0, x)]

lim
x→+∞Ux (q0, x)

= lim
x0→+∞WTP(q; q0, x0)

= lim
x0→+∞WTA(q; q0, x0) =

lim
x→+∞[U∗(q, x) − U∗(q0, x)]

lim
x→+∞U∗

x (q0, x)
.

Hence we can consistently derive the limit values, although we utilize some cardinal
properties of a utility function. Some examples are given as follows:19

18 We can prove easily that a smooth equivalent utility function U* of U satisfies all the conditions in
Theorem 3 if and only if there is a smooth and increasing real-valued function g on U (Q × X) such that
U∗(q, x) = g(U (q, x)) for all (q, x) ∈ Q × X with 0 < lim

y→+∞g′(y) < +∞, where U (Q × X) = {u :
u = U (q, x) for some (q, x) ∈ Q × X}.
19 A Cobb–Douglas type function satisfies A1 and A2 on the interior of Q × X , but it does not when the
boundary is included. Even in the interior, there is no Cobb–Douglas utility function which satisfies all the
conditions in Theorem 3.
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Example 6 (additively separable utility function) A utility function

U (q, x) = √
q + √

x + log(x + 1) + x for all (q, x) ∈ Q × X

satisfies all conditions in Theorem 3, and then it holds that

lim
x0→+∞WTP(q; q0, x0) = lim

x0→+∞WTA(q; q0, x0) = √
q − √

q0 for all q > q0.

Example 7 (non-separable utility function) A utility function

U (q, x) = √
q(2 − e−x ) + √

x + x for all (q, x) ∈ Q × X

satisfies all conditions in Theorem 3, and then it holds that

lim
x0→+∞WTP(q; q0, x0) = lim

x0→+∞WTA(q; q0, x0) = 2(
√

q − √
q0) for all q >q0.

Example 8 (CES-like utility function) Let us consider a utility function

U (q, x) = [α(q + a)ρ + β(x + b)ρ]1/ρ + δq + εx for all (q, x) ∈ Q × X

where α > 0, β > 0, a > 0, b > 0, ρ < 0, δ ≥ 0 and ε > 0. This U satisfies all
conditions in Theorem 3, and then it holds that

lim
x0→+∞WTP(q; q0, x0)= lim

x0→+∞WTA(q; q0, x0)= α1/ρ +δ

ε
(q − q0) for all q >q0.

Interpreting q ∈ Q as a quantity variable, this case can be recognized as a standard
neo-classical case where there is just one type of nonmarket good and the nonmarket
good is homogeneous and perfectly divisible.

Finally, let us consider the case of undesirable nonmarket goods such as a pollutant
in the discrete setting.20 Let q be an undesirable nonmarket good. The condition A2
should be replaced with the following condition:

A∗
2 (Archimedean and undesirability): There exists some δ > 0 such that U (q, x +

δ) = U (q0, x).
Although this condition implies that WTP and WTA are always negative, we can
directly apply Theorems 1 and 2 for these goods under A1 and A∗

2, as long as these
goods are inferior as defined in Sect. 2. For example, define a utility function U on
{q0, q1} × X by U (q0, x) = x and U (q1, x) = x − 3 + e−x . Then it holds that

lim
x0→+∞WTP(q1; q0, x0)= lim

x0→+∞WTA(q1; q0, x0)= lim
x0→+∞[U (q1, x0) − x0]=−3.

20 In a continuum setting with detrimental goods, Ebert (1993, Sect. 5) has derived characterizing results
of WTP and WTA for the detrimental goods.
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6 Proofs

Proof of Proposition1 (A) (i) Fix any δ > 0. It holds by (1) that U (q, x0−WTP
(q; q0, x0)) = U (q0, x0). Then it holds by the normality condition that U (q, x0 −
WTP(q; q0, x0)+ δ) > U (q0, x0 + δ). Moreover, it holds by (1) that U (q0, x0 + δ) =
U (q, x0 +δ− WTP(q; q0, x0 +δ)). Hence, we have that U (q, x0 −WTP(q; q0, x0)+
δ) > U (q, x0 + δ − WTP(q; q0, x0 + δ)). It follows from this and A1 that x0 −
WTP(q; q0, x0) + δ > x0 + δ − WTP(q; q0, x0 + δ) and WTP(q; q0, x0 + δ) >

WTP(q; q0, x0).
(ii) We can prove Assertion (ii) by almost the same manner as in the proof of
Assertion (i).
(iii) It holds by Lemma 1(iv) that WTA(q; q0, x0) = WTP(q; q0, x0 + WTA
(q; q0, x0)). Hence, we have by Lemma 1(ii, iii) that WTA(q; q0, x0) = WTP
(q; q0, x0 + WTA(q; q0, x0)) > WTP(q; q0, x0). (B, C) We can prove (B, C) by
almost the same manner as in the proof of (A). �
Proof of Proposition3 Suppose that Case (II) holds, i.e.,

0 < lim
x0→+∞WTP(q; q0, x0) < +∞, (6)

and lim
x0→+∞WTA(q; q0, x0) = +∞. (7)

Since lim
x0→+∞[x0 + WTA(q; q0, x0)] = +∞, it holds by (6) that

lim
x0→+∞WTP(q; q0, x0 + WTA(q; q0, x0)) < +∞.

Hence it holds by Lemma 1(iv) that

lim
x0→+∞WTA(q; q0, x0) = lim

x0→+∞WTP(q; q0, x0 + WTA(q; q0, x0)) < +∞,

which contradicts (7). Hence, Case (II) does not hold.
If limx0→+∞WTA(q; q0, x0) < +∞, then it holds by Proposition 1(Aiii) that

limx0→+∞WTP(q; q0, x0) < +∞. Hence Case (III) does not hold. �
Proof of Theorem2 (i) We need the following lemma proved in the Appendix:

Lemma 3 U and V satisfy the normality condition on all q ∈ Q+.

Fix any q ∈ Q+. It holds by Lemma 1(iii), Lemma 3 and Proposition 1(Aii) that
WTA(q; q0, x0) > 0 is increasing in x0. Moreover, we have by the uniformly bound-
edness condition that WTA(q; q0, x0) is uniformly bounded from above when x0 >

Mq . Thus, it holds by the theorem of the monotone limit that 0 < limx0→+∞WTA
(q; q0, x0) < +∞. It holds by this, (2) and (4) that

0 < lim
x0→+∞WTA(q; q0, x0) = lim

x0→+∞[V (q, x) − V (q0, x)]
= lim

x0→+∞[V (q, x0) − x0] < +∞.
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Moreover, it holds by Lemma 3 and Theorem 1 that

0 < lim
x0→+∞WTP(q; q0, x0) = lim

x0→+∞WTA(q; q0, x0) = lim
x0→+∞[V (q, x0) − x0] < + ∞.

(ii) Assertion (ii) is a direct consequence of Assertion (i). �
Proof of Theorem3 Fix any q > q0. On {q, q0} × X we can easily prove that U satis-
fies A1 and the desirability in A2. It holds by the existence of positive limit marginal
utility that U satisfies Archimedean in A2. We need the following lemma proved in
the Appendix:

Lemma 4 U satisfies the normality condition on q.

Define a utility function V by V (q, x) = f −1(U (q, x)) for all (q, x) ∈ {q, q0}×X
where f (x) = U (q0, x). By the existence of positive limit marginal utility, we have
that

0 < lim
x→+∞ f ′(x) = lim

x→+∞Ux (q0, x) < +∞. (8)

Then it holds by Mean Value Theorem that

lim
x→+∞ f ′′(x) = 0. (9)

By (2) and the definition of V, it holds that WTA(q; q0, x0) = V (q, x0) − x0 for all
x0. Then it follows from Taylor’s Formula and Inverse Function Theorem that

WTA(q; q0, x0) = V (q, x0) − x0 = f −1(U (q, x0)) − x0

= f −1([U (q, x0) − U (q0, x0)] + U (q0, x0)) − x0

= f −1(U (q0, x0)) + [U (q, x0) − U (q0, x0)]/ f ′(x0)

+[U (q, x0) − U (q0, x0)]2 f ′′(x0 + ξ)/2[ f ′(x0)]3 − x0

= [U (q, x0) − U (q0, x0)]/ f ′(x0)

+ [U (q, x0) − U (q0, x0)]2 f ′′(x0 + ξ)/2[ f ′(x0)]3 (10)

where ξ ∈ [0, U (q, x0) − U (q0, x0)]. It holds by (8), (9) and the boundedness condi-
tion that

lim
x0→+∞[U (q, x0) − U (q0, x0)]2 f ′′(x0 + ξ)/2[ f ′(x0)]3 = 0, (11)

and hence there exists M∗ > 0 such that WTA(q; q0, x0) is uniformly bounded
from above when x0 > M∗. Moreover, it holds by Lemma 1(iii), Lemma 4 and
Proposition 1(Aii) that WTA(q; q0, x0) > 0 is increasing in x0. Thus, it holds by
the theorem of the monotone limit, (8), (10) and (11) that

0< lim
x0→+∞WTA(q; q0, x0) = lim

x0→+∞[U (q, x0) − U (q0, x0)]/ f ′(x0)

= lim
x→+∞[U (q, x) − U (q0, x)]/ lim

x→+∞Ux (q0, x) < +∞.

Furthermore, it holds by Lemma 4 and Theorem 1 that (5) in Theorem 3 holds. �
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Appendix

Proof of Lemma1 (i) For any q ∈ Q+, it follows from A1 and A2 that there uniquely
exists λq ≥ 0 such that U (q0, λq) = U (q, 0), in which the uniqueness is ensured
by A1.
(ii) Since x0 ≥ λq , it holds by A1 and A2 that U (q, x0) > U (q0, x0) ≥ U (q0, λq) =
U (q, 0). It follows from the Intermediate Value Theorem and A1 that there uniquely ex-
ists z ≥ 0 such that U (q0, x0) = U (q, z) and x0 > z, which implies that
WTP(q; q0, x0) > 0 exists uniquely. Set f (x) = U (q0, x) and g(x) = U (q, x).
Since f and g are continuous and increasing by A1, it holds by (1) that f (x0) =
g(x0 − WTP(q; q0, x0)), which implies that WTP(q; q0, x0) = x0 − g−1( f (x0)) and
that WTP(q; q0, x0) is continuous in x0,
(iii) It holds by A1 that U (q, x0) > U (q0, x0). It follows from A1and A2 that there
exists uniquely e > 0 such that U (q, x0) = U (q0, x0 + e), which implies that
WTA(q; q0, x0) > 0 exists uniquely. The continuity can be shown by almost the
same manner as in Case (ii).
(iv) Since WTA(q; q0, x0) > 0 by lemma 1(iii), it holds by the desirability in A2,
the monotonicity in A1 and (1) that U (q, x0 + WTA(q; q0, x0)) > U (q0, x0 + WTA
(q; q0, x0)) > U (q0, x0) = U (q, x0 − WTP(q; q0, x0)). Then it holds by A1 that
there uniquely exists α ∈ (0, WTA(q; q0, x0) + WTP(q; q0, x0)) such that

U (q0, x0 + WTA(q; q0, x0)) = U (q, x0 + WTA(q; q0, x0) − α). (12)

We have by (12) and (1) that

WTP(q; q0, x0 + WTA(q; q0, x0)) = α. (13)

Hence, it holds by (2) and (12) that U (q, x0) = U (q0, x0 + WTA(q; q0, x0)) =
U (q, x0+WTA(q; q0, x0)−α), which implies that x0 = x0+ WTA(q; q0, x0)−α and
WTA(q; q0, x0) = α. Thus, we have by (13) that WTA(q; q0, x0) = WTP(q; q0, x0+
WTA (q; q0, x0)).
(v) We can easily prove Assertion (v). �

Proof of Lemma2 Set f (x) ≡ U a(q0, x) and g(x) ≡ U b(q0, x) for all x ≥ 0. Since
f −1 and g−1 are increasing by A1, U a and U b are equivalent to V a = f −1 ◦ U a and
V b = g−1 ◦ U b, respectively, Since U a is equivalent to U b, we have that

V a is equivalent to V b. (14)
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Moreover, it holds by (4) that

V a(q0, x) = f −1(U a(q0, x)) = f −1( f (x)) = x = g−1(g(x))

= g−1(U b(q0, x)) = V b(q0, x) for all x (15)

Now, suppose that V a �= V b. By (15), we can assume without loss of generality that

V a(q1, x∗) > V b(q1, x∗) for some x∗ > 0.

Set z∗ = [V a(q1, x∗) − V b(q1, x∗)]/2. Then we have by (15) that z∗ = V a(q0, z∗) =
V b(q1, z∗). Thus, V a(q1, x∗) > V a(q0, z∗) and V b(q1, z∗) < V b(q0, x∗), which con-
tradicts with (14). �
Proof of Lemma3 At first, we will prove that

V ′(q, x) ≡ dV (q, x)/dx ≥ 1 for all (q, x) ∈ Q+ × X. (16)

Suppose that V ′(q∗, x∗) < 1 for some (q∗, x∗) ∈ Q+ × X . Define y* by

y∗ = x∗ + [(V (q∗, x∗) − x∗)/(1 − V ′(q∗, x∗))]. (17)

By A2, we have that V (q∗, x∗) > V (q0, x∗) = x∗ and y∗ > x∗. Since V (q∗, x) is
concave with respect to x , it holds by V ′(q∗, x∗) < 1 and (17) that

V (q∗, y∗) = V (q∗, x∗) +
y∗∫

x∗
V ′(q∗, x)dx < V (q∗, x∗) + V ′(q∗, x)

y∗
∫

x∗
1 dx

= V (q∗, x∗) + V ′(q∗, x∗)[(V (q∗, x∗) − x∗)/(1 − V ′(q∗, x∗))]
= (V (q∗, x∗) − x∗V ′(q∗, x∗))/(1 − V ′(q∗, x∗))

= (V (q∗, x∗) − x∗V ′(q∗, x∗))/(1 − V ′(q∗, x∗)) + (x∗ − x∗)/(1 − V ′(q∗, x∗))

= x∗ + [(V (q∗, x∗) − x∗)/(1 − V ′(q∗, x∗))] = y∗ = V (q0, y∗).

This contradicts A2. Hence (16) holds. Now, fix any q ∈ Q+, and suppose that

V (q, z∗) = V (q0, z). (18)

Fix any δ > 0. It holds by (16) and the concavity of V (q, x) that

V (q, z∗ + δ) = V (q, z∗) +
z∗+δ∫

z∗
V ′(q, x)dx > V (q, z∗) +

z∗+δ∫

z∗
1 dx

= V (q, z∗) + δ.
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Hence, it holds by (18) and (4) that

V (q, z∗ + δ) > V (q, z∗) + δ = V (q0, z) + δ = V (q0, x + δ),

which means that V satisfies the normality condition on q. Since V is equivalent to U,
U also satisfies the normality condition on q. �
Proof of Lemma4 Suppose that U (q, z) = U (q0, x) for z, x ∈ X , and fix any δ > 0.
Since U satisfies A2, U (q, z + δ) = U (q0, x + ε) for some ε > 0. There remains to
show ε > δ. Since U is smooth, there is a smooth indifference path I : [q0, q] → X
connecting (q0, X ) and (q, z), i.e., I (q0) = x and I(q) = z. Similarly, there is a smooth
indifference path J : [q0, q] → X connecting (q0, x + ε) and (q, z + δ). It holds by
the monotonicity that x > z and x + ε > (z + δ). Then we have that

x − z =
q∫

q0

|I (t)/dt | dt =
q∫

q0

MRS(t, I (t))dt; (19)

x + ε − (z + δ) =
q∫

q0

|J (t)/dt | dt =
q∫

q0

MRS(t, J (t))dt, (20)

where MRS(r, s) ≡ Uq(r, s)/Ux (r, s). Since it holds by the Hicksian normality that

∂MRS(r, s)/∂x = [Ux (r, s)]−2 · [Ux (r, s) · Uq x(r, s) − Uq(r, s) · Uxx (r, s)]
> 0 for all (r, s) � (0, 0),

and since I(t) < J(t) by the monotonicity and δ > 0, we have that

MRS(t, I (t)) < MRS(t, J (t)) for all t ∈ (q0, q).

This implies that
∫ q

q0 MRS(t, I (t)) dt <
∫ q

q0 MRS(t, J (t)). Hence, we have by (19)
and (20) that x − z < x + ε − (z + δ) and ε > δ. Thus, U satisfies the normality
condition on q. �
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