
Vol.:(0123456789)

New Generation Computing (2023) 41:5–24
https://doi.org/10.1007/s00354-022-00197-9

123

Robustifying Vision Transformer Without Retraining
from Scratch Using Attention‑Based Test‑Time Adaptation

Takeshi Kojima1 · Yusuke Iwasawa1 · Yutaka Matsuo1

Received: 2 September 2022 / Accepted: 24 November 2022 / Published online: 27 December 2022
© The Author(s) 2022, Corrected publication 2023

Abstract
Vision Transformer (ViT) is becoming more and more popular in the field of image
processing. This study aims to improve the robustness against the unknown pertur-
bations without retraining the ViT model from scratch. Since our approach does not
alter the training phase, it does not need to repeat computationally heavy pretraining
of ViT. Specifically, we use test-time adaptation (TTA) for this purpose, which cor-
rects its prediction during test-time by itself. The representative test-time adaptation
method, Tent, is recently found to be applicable to ViT by modulating parameters
and gradient clipping. However, we observed that Tent sometimes catastrophically
fails, especially under severe perturbations. To stabilize the adaptation, we propose
a new loss function called Attent, which minimizes the distributional differences of
the attention entropy between the source and target. Experiments of image classifi-
cation task on CIFAR-10-C, CIFAR-100-C, and ImageNet-C show that both Tent
and Attent are effective on a wide variety of corruptions. The results also show that
by combining Attent and Tent, the classification accuracy on corrupted data is fur-
ther improved.

Keywords Vision transformer (ViT) · Test-time adaptation (TTA) · CIFAR-10-C ·
CIFAR-100-C · ImageNet-C · Attent

1 Introduction

Inspired by the success in natural language processing, e.g., BERT [1] and GPT [2,
3], transformer is becoming more and more popular in various image processing
tasks including recognition [4, 5], object detection [6], and video processing [7, 8].

Notably, Dosovitskiy et al. [4] propose Vision Transformer (ViT), which adapts
a pure transformer for image classification, shows that it achieves comparable or

 * Takeshi Kojima
 t.kojima@weblab.t.u-tokyo.ac.jp

1 Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
113-8656 Tokyo, Japan

http://orcid.org/0000-0002-4081-7854
http://crossmark.crossref.org/dialog/?doi=10.1007/s00354-022-00197-9&domain=pdf

6 New Generation Computing (2023) 41:5–24

123

superior performance to the conventional convolutional neural networks (CNN).
Follow-up studies also show that ViT is more robust against the common cor-
ruptions and perturbations than convolution-based model (e.g., ResNet) [9, 10],
which is an important property for safety-critical applications.

This paper seeks to answer the following question: can we further improve the
robustness of ViT without retraining from scratch? Using heavy data augmenta-
tion during training is a natural way to improve the robustness, and prior works
demonstrate that several data augmentation can indeed improve robustness of
CNN [11, 12]. Another study empirically shows that sharpness-aware optimizer
improves the robustness of ViT [13]. However, retraining ViT from scratch is
not desirable, since it requires huge computational burden. Moreover, the dataset
for the pretraining is sometimes not publicly available, making it impossible to
retrain the model.

Test-time adaptation is a recently proposed approach for improving the robust-
ness of the model [14–16]. In test-time adaptation, a model corrects its prediction
of test data without looking at the label during test-time by modulating the small
portion of model’s parameters [typically parameters of Batch Normalization (BN)
and/or its statistics]. For example, Wang et al. [16] proposes Tent, which modulates
the parameters of Batch Normalization (BN) by minimizing prediction entropy, and
shows that it can significantly improve the robustness of ResNet. This approach is
favorable for our case as it does not alter the training phase and thus does not need
to repeat the computationally heavy training of ViT. Recently, Kojima et al. [17]
have shown that the existing representative TTA methods, including Tent, are also
effective on ViT by modulating parameters in ViT. Specifically, the study demon-
strated that, for each TTA method, updating only the affine transformation param-
eters within layer-normalization layers in ViT boosts the performance on target data-
sets including common corruptions and domain shift. Besides the parameter choice,
Kojima et al. [17] found gradient clipping [18], which is not used in the original
Tent paper [16], is essential for applying Tent to ViT to mitigate catastrophic failure.
However, we observed that just minimizing prediction entropy of ViT, as with Tent,
often causes catastrophic failure especially under severe distribution shifts.

In this paper, we design a new loss function, called Attent, to stabilize the test-
time adaptation of ViT. Attent adapts to target data by minimizing distributional dif-
ference of attention entropy between source data and target data. Optimization is
performed for each layer, head, and token on the target data to make their distribu-
tions go back to the source data. The distributional statistics of attention entropy on
the source dataset are calculated and stored in memory beforehand. Therefore, we
can use this approach without source dataset during adaptation.

In summary, our main contributions are as follows.

• This paper proposes a new test-time adaptation method for ViT. To mitigate the
catastrophic failure of existing TTA method (Tent) on ViT, we introduce a new
loss function called Attent. Attent minimizes the distributional differences of the
attention entropy between the source and target in an online manner.

• Using multiple standard datasets to benchmark the robustness against common
corruption and perturbations, namely CIFAR-10-C, CIFAR-100-C, and Ima-

7New Generation Computing (2023) 41:5–24

123

geNet-C, we validate that robustness of ViT (ViT-B16 and ViT-L16) is improved
by Attent without retraining the model from scratch.

• We show that the robustness is further improved by combining Attent and other
TTA methods that do not require source information, e.g., Tent or SHOT-IM.
Especially, the improvement is significant for more severe corruption that Tent
alone cannot recover. In addition, Attent is less sensitive to hyperparameters,
which is a favorable property in practical setting.

2 Related Works

2.1 Robustness of ViT

2.1.1 Transformer Architecture

Models based on Transformer architecture [19] achieve great performance not only
in NLP but also in image processing as Vision Transformer [4]. Self-attention is one
of the building blocks in Transformer. Let zl∈ℝT×D be the input to lth self-attention
layer, where T is the number of tokens, and D is the number of features in each
token. For each layer l and head h, the attention block takes zl as input and compute
attention weight matrix Alh∈ℝT×T . Specifically, the attention weights between posi-
tion i and j, Alh

ij
 are calculated based on the inner dot product between their respec-

tive query Qlh
i

 and key Klh
j

 representations as follows:

where Wlh is a learnable parameters. Dh is typically set to D/H to keep the number of
parameters constant even when the number of head H is changed.

2.1.2 Inherent Robustness of ViT

Recent studies verify by experiments that ViT already has robustness without any
adaptation or any additional data augmentation. Several studies empirically show
that ViT is inherently more robust than CNNs using several benchmark datasets [9,
10]. The datasets include ImageNet-C (corruption), ImageNet-P (perturbations),
ImageNet-R (semantic shifts), ImageNet-O (out-of-domain distribution), and Ima-
geNet-9 (background dependence) [12, 20–22]. Other studies show that the robust-
ness of ViT is further improved by changing the training strategy, such as using
larger data set for pretraining phase [9, 23] or sharpness-aware optimizer for training
phase [13].

(1)[Qlh,Klh,Vlh] = zlW
lh, Wlh ∈ ℝ

D×3Dh

(2)Alh = softmax

�
QlhKlhT

√
Dh

�
,

8 New Generation Computing (2023) 41:5–24

123

2.2 Improving Robustness of CNN

2.2.1 Test‑Time Adaptation

Test-time adaptation (TTA) is an online adaptation approach. Our proposal belongs
to this category. Test-time adaptation does not require altering training process, so
that this approach is generally applicable to wide variety of training method. This
approach can adapt the model to the target data in a real-time mini-batch level to
boost the accuracy in an online manner. Test-time batch normalization [14, 15] rees-
timates the statistics of the batch normalization [24] on the target dataset. Test-time
entropy minimization (Tent) [16] adapts to the target unlabelled online data by mini-
mizing the Shannon entropy [25] of its prediction by updating only the affine trans-
formation parameters of batch normalization. Tent was proven to be effective when
the model is CNN that has batch normalization, e.g., ResNet50 [26], while recent
study [17] has demonstrated that Tent is also applicable to ViT (see Sect. 3.1 for the
details). One can also use different loss functions for updating parameters, such as
pseudo-label (PL) [27], diversity regularization (SHOT-IM) [28], feature alignment
(TFA [29] and CFA [17]), or contrastive learning [30]. A recent study of Iwasawa
et al. [31] has proposed gradient-free procedures to update only the classifier param-
eter of model (T3A). Our approach is categorized as a feature alignment approach,
which minimizes the statistical distance between source and target dataset. It is
worth noting that feature alignment approaches for test-time adaptation assume that
one can access to the statistics on the source dataset during the test phase but does
not need to access to the source dataset itself and to repeat the computationally
heavy training [17]. Test-time adaptation generally assumes that the model would be
distributed without source data due to bandwidth, privacy, or profit reasons [16]. We
argue that the statistics of source data would be distributed even in such a situation,
since it could drastically compress data size and eliminate sensitive information. In
fact, some layers often used in typical neural networks contain statistics of source
data (e.g., batch normalization) [17].

2.2.2 Data Augmentation

Several studies show that adding data augmentation naturally increases the robust-
ness of model. For example, Hendrycks et al. [11] show that randomly selected
noise operations and their compositions can improve the robustness against corrup-
tions (AugMix). Hendrycks et al. [12] propose to make a variety of noises by pass-
ing training images into image-to-image network and introducing several perturba-
tions during the forward pass, the output of which can be used as noisy training
dataset (DeepAug). However, changing data augmentation usually needs to retrain
the model from scratch, which is computationally heavy for the ViT.

2.2.3 Unsupervised Domain Adaptation

Several recent studies use unsupervised domain adaptation (UDA) [32–34]
to improve the robustness of the CNN. For example, Xie et al. [35] propose

9New Generation Computing (2023) 41:5–24

123

Noisy-Student, which trained the model with pseudo-labeled data [27] that come
from the target distribution. Similarly, Rusak et al. [36] propose to use pseudo-
label technique with robust classification loss, which is called Generalized Cross
Entropy (GCE) [37], as an objective function. These works prove the usefulness
of UDA to robustify the model; however, this approach needs to preassume the
type of corruption, so that the unlabeled data from the target domain need to be
available at the training time. Unlike UDA, our approach does not need to preas-
sume the corruption type, which is a more practical setting.

2.3 Central Moment Discrepancy

To stabilize the adaptation, our method uses central mean discrepancy (CMD)
[38] to measure the discrepancy between source and target. Let X and Y be
bounded random samples with respective probability distributions p and q on the
interval [a;b]N . Formally, CMD is defined by

where �(X) = 1

�X�
∑

x∈X x is the empirical expectation vector computed on the sam-
ple X. Here, |X| is denoted as the total number of samples following the annotation in
[38]. �k(X) = �((x − �(X))k) is the vector that consists of kth-order central moments
for each element of X. Y follows the same idea. Previous works focus on using CMD
in the field of UDA to reduce the distributional gaps between source representations
and target ones. However, CMD can also be potentially used for test-time adapta-
tion, because CMD does not need to store the source dataset itself; instead, we store
central moment statistics of source data in memory, and use it during online adapta-
tion for moment matching between source and target.

3 Methodology

3.1 Tent for ViT

Recently, Kojima et al. [17] study applying existing TTA methods including Tent
to ViT. Assume that we have pretrained model whose parameters are denoted by
� . The model is trained on clean source data, and need to predict the data with
unknown corruption. Given the input image x, the model outputs the conditional
probability P(y ∣ x;�) . During test-time, Tent [16] minimizes the following predic-
tion entropy using the stochastic gradient decent (SGD):

(3)

CMDk =
1

�b − a�
‖�(X) − �(Y)‖2

+
1

�b − a�k

K�

k=2

‖�k(X) −�k(Y)‖2,

10 New Generation Computing (2023) 41:5–24

123

where C is the number of class, and Pc is the estimated probability that x belongs to
y confidence of class c.

While updating entire � is technically possible, it is known to be ineffective in
the test-time adaptation. A key feature of Tent is that it does not alter the entire
parameters � , but it alters a small portion of the parameters � ∈ � . Specifically, Tent
[16] updates a set of parameters related to affine transformation of batch normaliza-
tion. However, recent large models including ViT do not have batch normalization.
Therefore, we do not have trivial answer to the question: which parameters should
we update when applying Tent to ViT models? According to Wang et al. [16], updat-
ing only feature modulations that are linear and low-dimensional leads to stability
and efficiency for adaptation.

[17] has found that, to boost the performance of ViT on target datasets, it is stably
effective to update only the affine transformation parameters within layer-normali-
zation layers in ViT for each TTA method. The layer normalization in ViT reesti-
mates the mean and standard deviation of the input across the dimensions of inputs
itself, followed by the affine transformation for each dimension. The notable differ-
ence between the modulation of layer normalization and batch normalization is that
LayerNorm does not need to calculate the mean and standard deviation across mul-
tiple samples for normalization, i.e., layer normalization automatically reestimates
the mean and standard deviation across dimensions on every single target data itself.
Therefore, we only need to update the affine transformation parameters in layer nor-
malization for adaptation. In addition, Kojima et al. [17] demonstrated that all the
parameters can be updated with the best performance improvement when we use
appropriate loss function, such as SHOT-IM or CFA. We experimentally find the
best set of parameters for our case (Attent) in Sect. 4.5.

Besides the parameter choice, Kojima et al. [17] found that gradient clipping [18],
which is not used in the original paper [16], is essential for applying Tent into ViT.
Specifically, Kojima et al. [17] clip the gradients whose norm is greater than 1.0 in
the entire experiments. Whether these techniques are unique to ViT (or huge mod-
els) needs further investigation, but without these techniques, Tent often gave cata-
strophic failure (significant drop of classification accuracy). See Sect. 4.7 for details.

3.2 Attent

Tent is sometimes unstable during adaptation even when we implement several tech-
niques described in Sect. 3.1 (see Table 4 for details). The reason why Tent is unsta-
ble is that the objective function is just minimizing the entropy of classification. One
of the extreme solution to this function is always assigning 100% probability to only
one class, which indicates catastrophic failure of adaptation.

To alleviate this problem, we propose a new approach for test-time adaptation called
Attent. In this approach, we focus on attention mechanism in ViT, which is one of the
critical architectures for correct prediction [9, 39]. We hypothesize that the inner dot

(4)Ltent = �

[
C∑

c=1

−Pc(x;�) logPc(x;�)

]
,

11New Generation Computing (2023) 41:5–24

123

product between Q and K for the attention (Eq. 2) is shifted if ViT takes target data as
input whose distribution is different from that of source data. Consequently, the atten-
tion weight distribution is shifted in an unexpected way. Our concept idea is to make
the anomalous distribution goes back to normal by distribution matching of attention
entropy between source and target data (see Fig. 1 for method overview). Simply mini-
mizing attention entropy would fail, which may lead to paying attention to extremely
narrow areas (see Sect. 4.5 for the experiment result). Similar to the most prior works,
our method uses stochastic gradient decent to adapt the model during test-time.
Unlike the prior methods, such as Tent [16], PL [27], and T3A [31] that modulate the

Statistics of
Attention Entropy
on source (Fixed)

1. Training

Supervised Training

Distribution
Matching

2. Summarization

ViT

ViT

3. Test-Time Adaptation by Attent

ViT

Statistics of
Attention Entropy

on target

Fig. 1 Overview of our method (Attent). Similar to Liu et al. [29], our method consists of three stages:
model training, offline statistics summarization, and online test-time adaptation. (1) ViT is trained in
a supervised manner on a labeled source dataset. (2) After training, statistics (mean and higher order
moments) of attention entropy on source dataset is calculated and stored in memory as fixed value. (3)
During test-time, label is predicted, while partial parameters in ViT are updated by distribution matching
of attention entropy between source and target dataset

12 New Generation Computing (2023) 41:5–24

123

parameters only using the data available at test-time, our method aligns the statistics of
features between source and target. In other words, we leverage the source statistics as
an auxiliary information regarding the source distribution to avoid catastrophic failure.

Let L, H, T be the number of layer, the number of head, and the number of tokens in
transformer. Given a sample data from Source dataset xS

n
∈XS , attention entropy can be

calculated for each layer l∈L , head h∈H , and tokens i∈T . Specifically, following some
annotations from Sect. 2.1.1, we define Alh(xS

n
;�̄�)∈ℝT×T as the attention weight matrix

parameterized by parameters �̄� . �̄� are the parameters just after the training on source
dataset, i.e., before adaptation. The attention entropy on source data sample is defined
as follows:

The mean and kth-order central moments of the entropy for source data are calcu-
lated by the following form and stored in memory as fixed values:

where k = 2,… ,K . Attent uses these statistics to adapt the model during test phase.
During test-time phase, assume that a sequence of test data drawn from target dis-

tribution arrives at our model one after another. A set of test samples in mth batch is
denoted as XT

m
⊂ XT , m = 1,… ,M . For each sample in each batch xT

mn
∈XT

m
 , the atten-

tion entropy on target data is calculated like the first phase

The mean and higher order central moments of the entropy are calculated for each
target batch data

Note that for online adaptation, we can only use real-time batch data at hand. Let
�(Hlh) be the concatenation of {�(Hlhi) ∣ i ∈ T} alongside the last dimension. Simi-
larly, Let �k(Hlh) be the concatenation of {�k(Hlhi) ∣ i ∈ T} alongside the last

(5)H
Sn
lhi

=

T∑

j=1

−Alh
ij
(xS

n
;�̄�) logAlh

ij
(xS

n
;�̄�).

(6)�(HS

lhi
) =

1

|XS|
∑

xS
n
∈XS

H
Sn
lhi
,

(7)�k(H
S

lhi
) =

1

|XS|
∑

xS
n
∈XS

(HSn
lhi

− �(HS

lhi
))k,

(8)H
Tmn
lhi

=

T∑

j=1

−Alh
ij
(xT

mn
;�) logAlh

ij
(xT

mn
;�).

(9)�(HTm
lhi
) =

1

|XT
m
|

∑

xT
mn
∈XT

m

H
Tmn
lhi

,

(10)�k(H
Tm
lhi
) =

1

|XT
m
|

∑

xT
mn
∈XT

m

(HTmn
lhi

− �(HTm
lhi
))k.

13New Generation Computing (2023) 41:5–24

123

dimension. A loss function for test-time adaptation is defined by applying the afore-
mentioned central moments to CMD formula (Eq. 3)

The maximum and minimum values of the attention entropy with T tokens are cal-
culated as logT and 0. Therefore, |b − a| = log T in Eq. 11. Like Tent, we update
only few parameters in ViT by SGD to stabilize adaptation, which is detailed in
Sect. 4.5.

Finally, this objective function (Eq. 12) can be used alone or in combination with
Tent (Eq. 4). We can optionally combine Attent and Tent loss functions as follows:

where � is a balancing hyperparameter. Following Wang et al. [16], the parameter
update follows the prediction for the current batch. Therefore, the parameter update
only affects the next batch. The adaptation procedure is summarized in Algorithm 1.

Algorithm 1 Online Adaptation using Attent
Input: Fine-tuned DNN model with parameters θ, and partial parameters to
be updated during adaptation ψ ⊂ θ, Target test dataset XT , m-th ordered
batch data XT m ⊂ XT , Statistics of Eq. 6 and Eq. 7 calculated from the
source training dataset.
Output:
1: for m = 1 to M do
2: Predict labels Ŷ T ,m for XT ,m

3: Calculate statistics of Eq. 9 and Eq. 10 for XT ,m

4: Update ψ ⊂ θ based on Eq. 12
5: end for
6: return (Ŷ T ,1, .., Ŷ T ,M)

4 Experiment

We show that our approach is effective for corruption using CIFAR-10-C, CIFAR-
100-C, and ImageNet-C datasets, respectively. We run all the experiments three
times with different seeds for different data order shuffling. A mean and unbiased

(11)

L
lh
attn

=
1

log T
‖�(HTm

lh
) − �(HS

lh
)‖2

+
1

(log T)k

K�

k=2

‖�k(H
Tm
lh
) −�k(H

S

lh
)‖2,

(12)Lattn =
1

LH

L∑

l=1

H∑

h=1

L
lh
attn

.

(13)Lmix = Ltent + �Lattn,

14 New Generation Computing (2023) 41:5–24

123

standard deviation of the metric is reported. Our implementation is in PyTorch [40],
and every experiment is run on cloud A100 × 1GPU instance except for ViT-L16 on
A100 × 2GPU instance.

4.1 Dataset and Preprocess

CIFAR-10/CIFAR-100 [41] and ImageNet [42] are used as source datasets. CIFAR-
10/CIFAR-100 are, respectively, 10-class/100-class color image datasets includ-
ing 50,000 training data and 10,000 test data with 32×32 resolution. ImageNet is a
1000-class image dataset with more than 1.2 million training data and 50,000 vali-
dation data with various resolution.

CIFAR-10-C/CIFAR-100-C and ImageNet-C are used as target datasets for
test-time adaptation [20]. These datasets, respectively, contain data with 15 types
of corruption with 5-level severity. Therefore each dataset has 75 varieties of cor-
ruptions in total. Each corrupted image is created based on image from original
CIFAR-10 and CIFAR-100 test images, and ImageNet validation images. Therefore,
the CIFAR-10-C/CIFAR-100-C consists 10,000 images for each corruption/type and
ImageNet-C dataset consists 50,000 images for each corruption/type.

For this experiment, images of all the datasets are preprocessed, so that the
images are resized uniformly to 224×224 . As for ImageNet, some images are rec-
tangle, so all the images are resized to 256 and center-cropped with 224×224 size.
ImageNet-C data have been already preprocessed the same way and publicly avail-
able. For ViT models, the pixels are first rescaled from [0, 255] to [0, 1]. Then,
they are further rescaled to [−1, 1] by normalization with mean and std specified as
[0.5, 0.5, 0.5] and [0.5, 0.5, 0.5].

4.2 Model and Training Setting

Vision Transformer (ViT) is used as a model for this experiment. For CIFAR-10
and CIFAR-100, we use ViT-B16 as initial parameters for fine-tuning. ViT-B16 is
already pretrained on ImageNet-21K [43], which is a large dataset with 21k classes
and 14M images. For fine-tuning hyperparameters, following [4], we use batch size
of 512, set optimizer as SGD with momentum 0.9 and gradient clipping at global
norm 1.0. We choose a learning rate of 0.03. We apply cosine schedule of 200
warmup steps and the total number of iteration as 1000 for CIFAR-10. We apply
a cosine schedule of 500 warmup steps and the total number of iterations as 2000
for CIFAR-100. The fine-tuning result is 1.1% Top-1 error for CIFAR-10, 6.8% for
CIFAR-100, respectively. For ImageNet, we use parameters of ViT-B16 and ViT-
L16 that are already pretrained for ImageNet-21K and also fine-tuned for ImageNet
(-2012). Therefore, fine-tuning on ImageNet is not needed. The top-1 error on Ima-
geNet is 18.6% by ViT-B16 and 17.1% by ViT-L16, respectively, in our setting. ViT-
B16 has 12 layers and 12 heads. ViT-L16 has 24 layers and 16 heads [4]. Both mod-
els have input patch size of 16, so that the number of tokens for ViT is defined as
196 (= 14 × 14) in this experiment.

15New Generation Computing (2023) 41:5–24

123

4.3 Adaptation Setting

Before adaptation, we need to calculate the central moments of attention entropies
for source data (Eqs. 6 and 7) to store them in memory. For this purpose, we use all
the training data in source and set the dropout [44] off during the calculation.

As default hyperparameters for adaptation on target data, batch size is set to 64,
optimization is SGD with constant learning rate 0.001 and momentum 0.9 with gra-
dient clipping 1.0, and the maximum central moments’ order K is set to 3 across all
the experiments. Dropout is set off during both forward and backward pass. We set
� = 1.0 in Eq. 13 to balance Tent and Attent losses. The detailed hyperparameter
sweeping results are found at Sect. 4.7.

Top-1 error of classification is used as evaluation metric across all the
experiments.

4.4 Baseline Methods

We compare Attent with some existing baseline test-time adaptation methods that
do not need to alter training phase: Tent [16], PL [27], TFA(-) [29]1 , T3A [31],
SHOT-IM [28], and CFA [17]. In addition, we report the performance of the model
on target datasets without any adaptation as Source. T-BN [14, 15] is excluded from
the baseline, because ViT does not have a batch normalization layer. For a fair com-
parison, we use the same hyperparameter values across all the methods as described
in Sect. 4.3. The detailed setting for each method is described in Appendix 1.

Table 1 Modulation parameter
study

Evaluation metric is top-1 error on ImageNet-C for Gaussian Noise
with the highest severity. ViT-B16 is used as a model. As a refer-
ence, the performance without any adaptation (“Source”) was
61.9 ± 0.0
CLS CLS token (CLS token is a parameterized vector and proven
to be efficient for fine-tuning large models for downstream tasks in
NLP [45]), LN LayerNorm, ALL all the parameters of ViT

Tent Attent Attent + Tent

LN 50.6 ± 0.5 51.7 ± 0.0 47.6 ± 0.8
CLS 59.4 ± 0.0 61.4 ± 0.0 59.2 ± 0.0
ALL 59.1 ± 1.0 50.1 ± 0.0 51.2 ± 1.5

1 Original TFA [29] needs to alter training phase (add contrastive learning), while this study focuses on
robustifying large-scale models without retraining them from scratch. Therefore, we have changed some
of the settings from the original TFA, so that the model does not need to alter training phase. The modi-
fied version of TFA is denoted as TFA(-) in our experiments. See Appendix 1 for details.

16 New Generation Computing (2023) 41:5–24

123

4.5 Quantitative Result

Table 1 answers the question about which modulation parameters are the most suit-
able for improving the performance of Attent. The results indicate that layer-normal-
ization parameters can stably reduce top-1 error for both Attent and Tent. Therefore,
in all the subsequent experiments, layer-normalization parameters are updated for
adaptation across all the methods for fair comparison.

Table 2 summarizes the adaptation result (top-1 error) on CIFAR-10-C, CIFAR-
100-C, and ImageNet-C for our method and other existing test-time adaptation base-
lines. We measure the top-1 error on each dataset with the highest severity (= 5). It
is verified that Attent can stably reduce the error across all the datasets. Tent alone
also has the stronger improvement gain than Attent. However, it is found that Tent is
sometimes unstable on some of the corruptions with higher severity, while Attent is
not. See Table 4 for details. For example, in Table 4, Tent on ViT-B16 fails to adapt
to “snow” corruption on ImageNet-C, causing the significant performance drop from
60.9 to 75.7% top-1 error rate. Interestingly, combining Tent and Attent improves
the performance more while preventing the aforementioned significant performance
drop (See “Attent + Tent” at Table 2). We observe similar performance gains when
combining Attent with other existing high-performance methods, such as SHOT-IM
(whose objective is classifier entropy minimization + diversity regularizer), TFA(-)
and CFA (whose objectives are minimizing distribution differences of the hidden

Table 2 Method comparison

Top-1 error on CIFAR-10-C/CIFAR-100-C/ImageNet-C averaged
over 15 corruption types for the highest severity. ViT-B16 is used
as a model. TFA(-) *1 uses hyperparameters of �1 = 1, �2 = 1 , while
TFA(-) *2 uses �1 = 1, �2 = 0 . See Appendix 1 for the details of the
hyperparameters
Bold values indicate points to be highlighted in the table

Method C10→C10-C C100→C100-C IN→IN-C

Source 14.6 ± 0.0 35.1 ± 0.0 61.9 ± 0.0
T3A 13.7 ± 0.0 34.0 ± 0.0 61.2 ± 0.0
TFA(-) *1 8.8 ± 0.0 32.2 ± 0.2 57.8 ± 0.1
PL 11.9 ± 0.0 30.1 ± 0.5 55.7 ± 1.4
Tent 10.9 ± 0.2 27.4 ± 0.5 50.6 ± 0.5
Attent 10.3 ± 0.0 28.8 ± 0.0 51.7 ± 0.0
Attent + Tent 9.6 ± 0.1 26.5 ± 0.0 47.6 ± 0.8
Attent – CMD 25.7 ± 0.2 51.5 ± 0.2 88.7 ± 0.1
Tent + CMD 11.4 ± 0.3 29.8 ± 0.3 51.9 ± 0.6
SHOT-IM 8.9 ± 0.0 25.6 ± 0.0 45.7 ± 0.0
Attent + SHOT-IM 8.9 ± 0.0 25.5 ± 0.0 45.1 ± 0.0
TFA(-) *2 8.7 ± 0.0 25.4 ± 0.0 46.7 ± 0.0
Attent + TFA(-) *2 8.6 ± 0.0 25.3 ± 0.0 46.5 ± 0.0
CFA 8.4 ± 0.0 24.6 ± 0.1 43.9 ± 0.0
Attent + CFA 8.4 ± 0.0 24.5 ± 0.1 43.4 ± 0.0

17New Generation Computing (2023) 41:5–24

123

representation just before the classifier of a model between the source and target).
See “Attent + SHOT-IM”, “Attent + TFA(-)”, and “Attent + CFA” in Table 2.

To investigate the effectiveness of our approach, we introduce the following
two analyses focusing on CMD. As a first analysis, instead of optimizing attention
entropy in Attent by CMD, we simply minimize the attention entropy in the same
way that Tent minimizes prediction entropy. This approach is described as “Attent
- CMD” in Table 2. The result shows that this approach significantly deteriorates
the performance. It indicates that matching distribution is necessary for attention
entropy control instead of minimization. As a second analysis, we optimize the
classification entropy distribution in Tent using CMD to make it go back to that of
source dataset. This approach is described as “Tent + CMD” in Table 2. The result
shows that the performance slightly deteriorates compared to the original Tent. It
indicates that CMD is not appropriate for the classifier entropy.

Table 3 summarizes the adaptation results on ImageNet-C with severity from 1
to 5 based on various backbone networks: ResNet50, ViT-B16, and ViT-L16. The
ResNet50 result is included as a reference to see the performance difference between
a regular ResNet model and ViT models. Following [16], Tent for ResNet50 updates
batch normalization parameters and reestimates the statistics. It is verified that both
Tent and Attent consistently improve the performance across all the models for var-
ious degree of corruption severity. This indicates that Tent and Attent are model
agnostic. The experiment also demonstrated that Attent + Tent further boosts the
performance regardless of network backbones and corruption severity.

Table 3 Model and corruption severity study

Top-1 error based on ImageNet-C averaged over 15 corruption types for each severity
S severity
Bold values indicate points to be highlighted in the table

Model S Source Tent Attent Attent +Tent

ResNet50 1 39.4 ± 0.0 31.6 ± 0.1 – –
2 50.2 ± 0.0 37.1 ± 0.1 – –
3 60.2 ± 0.0 41.7 ± 0.0 – –
4 72.3 ± 0.0 49.3 ± 0.1 – –
5 82.0 ± 0.0 59.0 ± 0.0 – –

ViT-B16 1 26.0 ± 0.0 22.8 ± 0.0 25.1 ± 0.0 22.6 ± 0.0
2 32.3 ± 0.0 27.1 ± 0.0 30.1 ± 0.0 26.8 ± 0.0
3 37.6 ± 0.0 30.5 ± 0.1 33.9 ± 0.0 30.0 ± 0.0
4 47.9 ± 0.0 38.4 ± 0.2 41.3 ± 0.0 37.2 ± 0.5
5 61.9 ± 0.0 50.6 ± 0.5 51.7 ± 0.0 47.6 ± 0.8

ViT-L16 1 23.5 ± 0.0 21.2 ± 0.0 23.2 ± 0.0 21.2 ± .0
2 28.8 ± 0.0 25.3 ± 0.0 28.1 ± 0.0 25.2 ± 0.0
3 32.8 ± 0.0 27.9 ± 0.0 31.6 ± 0.0 27.8 ± 0.0
4 41.0 ± 0.0 33.6 ± 0.1 38.5 ± 0.0 33.5 ± 0.0
5 53.4 ± 0.0 42.3 ± 0.0 48.8 ± 0.0 42.1 ± 0.0

18 New Generation Computing (2023) 41:5–24

123

4.6 Attention Map Reconstruction

We quantitatively analyze how close the attention map gets after adaptation com-
pared to the before. Specifically, for each sample, we measure cross entropy of atten-
tion maps between corrupted image xT in ImageNet-C and the corresponding clean
image xS←T in ImageNet by the following formulas:

where �m is a set of parameters at the time of mth batch during test-time adaptation.
Note that 𝜃m = �̄� if without adaptation (Source). Intuitively, Eq. 14 gives us a higher
penalty if the attention does not focus on correct locations, while Eq. 15 gives us
a higher penalty if the attention focuses on wrong locations. We combine the two

(14)H
mn
Forward

=
1

LHT

∑

l,h,i,j

−Alh
ij
(xS←T

mn
;�̄�) logAlh

ij
(xT

mn
;𝜃m),

(15)H
mn
Reverse

=
1

LHT

∑

l,h,i,j

−Alh
ij
(xT

mn
;𝜃m) logA

lh
ij
(xS←T

mn
;�̄�),

Table 4 Detail experiment results of method comparison

Evaluation metric is top-1 error based on ImageNet-C for each corruption type with the highest severity.
ViT-B16 is used as a model
Bold values indicate points to be highlighted in the table

Method Gaussian Shot Impulse Defocus

Source 77.7 ± 0.0 75.1 ± 0.0 77.0 ± 0.0 66.9 ± 0.0
Tent 66.3 ± 8.8 77.8 ± 1.6 59.3 ± 0.2 50.9 ± 0.2
Attent 62.7 ± 0.1 60.4 ± 0.1 61.5 ± 0.1 56.1 ± 0.0
Attent + Tent 59.0 ± 0.1 63.8 ± 6.9 58.1 ± 0.0 50.2 ± 0.1
 Method Glass Motion Zoom Snow
 Source 69.1 ± 0.0 58.5 ± 0.0 62.8 ± 0.0 60.9 ± 0.0
Tent 49.8 ± 0.2 46.7 ± 0.0 50.9 ± 0.2 75.7 ± 2.0
Attent 57.0 ± 0.1 51.2 ± 0.1 53.3 ± 0.0 53.9 ± 0.1
Attent + Tent 48.8 ± 0.1 45.9 ± 0.0 49.1 ± 0.2 62.5 ± 5.5
 Method Frost Fog Brightness Contrast
 Source 57.6 ± 0.0 62.9 ± 0.0 31.6 ± 0.0 88.9 ± 0.0
Tent 48.2 ± 0.4 44.3 ± 0.3 26.1 ± 0.1 58.5 ± 0.3
Attent 50.8 ± 0.0 51.2 ± 0.1 29.7 ± 0.0 62.8 ± 0.2
Attent + Tent 46.7 ± 0.0 43.2 ± 0.2 25.8 ± 0.1 57.8 ± 0.2
 Method Elastic Pixelate Jpeg Average
 Source 51.9 ± 0.0 45.3 ± 0.0 42.9 ± 0.0 61.9 ± 0.0
Tent 37.6 ± 0.3 32.7 ± 0.1 34.7 ± 0.1 50.6 ± 0.5
Attent 44.8 ± 0.1 39.7 ± 0.1 40.1 ± 0.1 51.7 ± 0.0
Attent + Tent 36.8 ± 0.2 32.1 ± 0.1 34.5 ± 0.1 47.6 ± 0.8

19New Generation Computing (2023) 41:5–24

123

cross entropies and take the average across all the test data, making it the evaluation
metric

The lower score of Eq. 16 indicates the better attention map reconstruction.
Table 5 summarizes the result of measuring the metric using images from Ima-

geNet and ImageNet-C of 15 corruptions with highest severity. The result dem-
onstrates that Attent has the most tendency of reconstructing the attention map to
the original one. This tendency may cause the improvement of image classification
accuracy. Tent also has a tendency of reconstructing attention map, but not as much
as Attent, which implies that the performance improvement by Tent is related to
other latent variables as well as attention map. The score of Attent + Tent is between
Tent and Attent. It can be assumed that attention map and other latent variables are
optimized at the same time. In the case of Snow corruption, Tent fails in Adaptation
and performance deteriorates substantially (see Table 4), but at the same time, the
score of attention map reconstruction also deteriorates significantly (see Table 5),
indicating the importance of attention map.

4.7 Hyperparameter Sensitivity

For online adaptation, hyperparameter tuning is a challenging issue. Figure 2 shows
the results for each hyperparameter sensitivity on ImageNet-C with highest sever-
ity averaged over 15 corruption types. We check the following hyperparameters
by changing one of the values from the default described at Sect. 4.3: (a) learning
rate, (b) batch size, (c) maximum number of central moments K in Eq. 11, and (d)
whether to enable gradient clipping for SGD optimization. K = 1 denotes first-order
moment (mean) matching only, which ignores higher order moment matching, i.e.,
Eqs. 7 and 10.

The important finding is that Tent is more sensitive to some hyperparameters
described above than Attent. Especially, enabling gradient clipping is essential for
applying Tent into ViT models for avoiding catastrophic failure of adaptation. Fur-
thermore, large learning rate also leads to catastrophic failure of Tent. In contrast,
Attent is quite insensitive to each hyperparameters. This indicates that we can use
Attent safely in the unknown environment with rough hyperparameter tuning. It is
also shown that the order of central moments K improves the performance of Attent,
but the gain decreases as K gets larger. This is consistent with the original CMD
study [38], which states that the performance is similar when K ≥ 3.

(16)H =
1

|XT|
∑

xT
mn
∈XT

(
H

mn
Forward

+ Hmn
Reverse

)
.

20 New Generation Computing (2023) 41:5–24

123

5 Conclusion and Future Work

This study proposed a novel method of test-time adaptation for ViT, called Attent,
which adapts ViT by minimizing the distributional differences of the attention
entropy between the source and target during test-time. Experiments on CIFAR-
10-C, CIFAR-100-C, and ImageNet-C show that Attent is effective on various ViT
models. By combining Attent and other TTA methods, the robustness is further
improved. As a limitation, Attent is not effective for some of the domain adapta-
tion benchmarks, such as digits style shift; e.g., from SVHN to MNIST/MNIST-M.
Future work includes improving our method to adapt well on these tasks. We hope
that research of test-time adaptation on ViT will be further encouraged by this study.

Table 5 The result of measuring attention map reconstruction metric based on Eq. 16

The value indicates how close the attention map is between clean and corresponding corrupted image.
Images are used from ImageNet and ImageNet-C of 15 corruptions with highest severity. ViT-B16 is
used as a model
Bold values indicate points to be highlighted in the table

Method Gaussian Shot Impulse Defocus

Source 10.92 ± 0.00 10.79 ± 0.00 10.93 ± 0.00 10.22 ± 0.00
Tent 10.69 ± 0.00 10.68 ± 0.02 10.73 ± 0.03 10.08 ± 0.00
Attent 10.64 ± 0.00 10.54 ± 0.00 10.64 ± 0.00 9.92 ± 0.00
Attent + Tent 10.66 ± 0.00 10.56 ± 0.00 10.66 ± 0.00 9.94 ± 0.00
 Method Glass Motion Zoom Snow
 Source 10.05 ± 0.00 10.20 ± 0.00 10.20 ± 0.00 10.30 ± 0.00
Tent 9.92 ± 0.00 10.15 ± 0.00 10.25 ± 0.00 10.43 ± 0.01
Attent 9.79 ± 0.00 10.03 ± 0.00 10.10 ± 0.00 10.16 ± 0.00
Attent + Tent 9.81 ± 0.01 10.05 ± 0.00 10.14 ± 0.00 10.2 ± 0.01
 Method Frost Fog Brightness Contrast
 Source 10.09 ± 0.00 10.28 ± 0.00 9.22 ± 0.00 11.14 ± 0.00
Tent 10.14 ± 0.02 10.06 ± 0.00 9.20 ± 0.01 10.58 ± 0.00
Attent 10.02 ± 0.00 10.11 ± 0.00 9.13 ± 0.00 10.39 ± 0.00
Attent + Tent 10.03 ± 0.00 10.00 ± 0.00 9.12 ± 0.00 10.43 ± 0.00
 Method Elastic Pixelate Jpeg Average
 Source 9.55 ± 0.00 9.20 ± 0.00 9.54 ± 0.00 10.18 ± 0.00
Tent 9.59 ± 0.00 9.05 ± 0.00 9.44 ± 0.00 10.06 ± 0.00
Attent 9.54 ± 0.00 9.06 ± 0.00 9.46 ± 0.00 9.97 ± 0.00
Attent + Tent 9.55 ± 0.00 9.01 ± 0.00 9.44 ± 0.00 9.97 ± 0.00

21New Generation Computing (2023) 41:5–24

123

Appendix A: Detail Settings of Baseline Methods

A.1. TFA(‑)

Test-time feature alignment (TFA) [29] aligns the hidden representation on tar-
get data by minimizing the distance of the mean vector �s,�t ∈ ℝ

D and covari-
ance matrix Σs,Σt ∈ ℝ

D×D between source and target. D is the dimension size
of the hidden representation. We focus only on the ”Online Feature Alignment”
part in TTT++ [29]. Original TFA [29] aligns the distributions at both the hid-
den representation and the output of the self-supervised head. However, in our
experiment, TFA(-) does not employ self-supervised learning, so we only focus
on distribution matching of the hidden representation. Specifically, in this exper-
iment, the hidden representation to align is defined as the one before the clas-
sifier head h(x) = f (x;�) . The loss function is L = �1‖�s − �t‖2

2
+ �2‖Σs − Σt‖2

F
 ,

where ‖ ⋅ ‖2 is the Euclidean norm and ‖ ⋅ ‖F is the Frobenius norm. � and Σ
are, respectively, mean vector and covariance matrix. �1 and �2 are balancing
hyperparameters. Like CFA [17], TFA(-) calculates the statistics on source data-
set and store them in memory before adaptation. Note that ”Online Dynamic
Queue” [29] is not used in TFA(-) in our experiment. Table 6 describes the pre-
liminary experiment results of TFA(-) on ImageNet-C datasets with severity = 5
by changing the balancing hyperparameters �1, �2 . For the main experiment in
Table 2, we use default hyperparameter �1 = 1, �2 = 1 based on [29], as well as
the best performance hyperparameter �1 = 1, �2 = 0.

Fig. 2 The effect of sweeping hyperparameters on each method. The evaluation metric is top-1 error on
ImageNet-C averaged over 15 corruption types with highest severity. ViT-B16 is used as model. Either
one of the hyperparameter values is changed from the default described in Sect. 4.3

22 New Generation Computing (2023) 41:5–24

123

A.2. T3A

T3A [31] updates only the classifier module by the centroid of each class aver-
aged over the pseudo-labeled samples’ feature vectors in an online manner. This
is a gradient-free approach and there is no loss function. The hyperparameter
filter size K is set to 100 in our experiment.

A.3. CFA

CFA [17] minimizes both the class-conditional distribution differences and the
whole distribution differences of the hidden representation just before the classifier
of a model between the source and target in an online manner. The hyperparameters
of CFA are the same as the default described in [17]. Specifically, the balancing
hyperparameter between the whole distribution loss and class-conditional loss is set
as 1. The maximum central moments’ order K is set as 3.

Data Availability Statement The experiment code for this study is not publicly available. The datasets
used for the experiments in this study are publicly available through the Internet.

Declarations

Conflict of interest The authors declare no conflicts of interest associated with this manuscript.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

Table 6 Preliminary
experiment results of TFA(-)
on ImageNet-C by changing
the balancing hyperparameters
�1, �2 . Evaluation metric is
Top-1 error on ImageNet-C
averaged over 15 corruption
types with severity level=5.
ViT-B16 is used as a model

Method ImageNet-C

TFA(-) (�1 = 1, �2 = 1) 57.7 ± 0.1
TFA(-) (�1 = 1, �2 = 1∕D) 48.8 ± 0.0
TFA(-) (�1 = 1, �2 = 0) 46.7 ± 0.0
TFA(-) (�1 = 0, �2 = 1∕D) 65.5 ± 0.4
TFA(-) (�1 = 1∕D, �2 = 1∕D) 61.0 ± 0.1
TFA(-) (�1 = 1∕D, �2 = 1∕D2) 51.8 ± 0.0
TFA(-) (�1 = 1∕D, �2 = 0) 51.8 ± 0.0
TFA(-) (�1 = 0, �2 = 1∕D2) 62.0 ± 0.0

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

23New Generation Computing (2023) 41:5–24

123

References

 1. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional trans-
formers for language understanding. In: Proceedings of NAACL, pp. 4171–4186 (2019). https:// doi.
org/ 10. 18653/ v1/ N19- 1423

 2. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language models are
unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)

 3. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R.,
Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S.,
Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D.: Language
models are few-shot learners. In: Advances in NeurIPS, vol. 33, pp. 1877–1901 (2020). https:// proce
edings. neuri ps. cc/ paper/ 2020/ file/ 1457c 0d6bf cb496 7418b fb8ac 142f6 4a- Paper. pdf

 4. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,
M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16 words: transformers for
image recognition at scale. In: ICLR (2020)

 5. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient
image transformers & distillation through attention. In: ICML, pp. 10347–10357, PMLR (2021)

 6. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object
detection with transformers. In: European Conference on Computer Vision, pp. 213–229, Springer
(2020)

 7. Zhou, L., Zhou, Y., Corso, J.J., Socher, R., Xiong, C.: End-to-end dense video captioning with
masked transformer. In: Proceedings of the IEEE Conference on CVPR, pp. 8739–8748 (2018)

 8. Zeng, Y., Fu, J., Chao, H.: Learning joint spatial-temporal transformations for video inpainting. In:
European Conference on Computer Vision, pp. 528–543, Springer (2020).

 9. Paul, S., Chen, P.-Y.: Vision transformers are robust learners (2021)
 10. Morrison, K., Gilby, B., Lipchak, C., Mattioli, A., Kovashka, A.: Exploring corruption robustness:

inductive biases in vision transformers and MLP-mixers (2021)
 11. Hendrycks, D., Mu, N., Cubuk, E.D., Zoph, B., Gilmer, J., Lakshminarayanan, B.: Augmix: a sim-

ple data processing method to improve robustness and uncertainty. arXiv preprint arXiv: 1912. 02781
(2019)

 12. Hendrycks, D., Basart, S., Mu, N., Kadavath, S., Wang, F., Dorundo, E., Desai, R., Zhu, T., Parajuli,
S., Guo, M., et al.: The many faces of robustness: a critical analysis of out-of-distribution generali-
zation. arXiv preprint arXiv: 2006. 16241 (2020)

 13. Chen, X., Hsieh, C.-J., Gong, B.: When vision transformers outperform ResNets without pretraining
or strong data augmentations (2021)

 14. Schneider, S., Rusak, E., Eck, L., Bringmann, O., Brendel, W., Bethge, M.: Improving robustness
against common corruptions by covariate shift adaptation. In: Advances in NeurIPS (2020)

 15. Nado, Z., Padhy, S., Sculley, D., D’Amour, A., Lakshminarayanan, B., Snoek, J.: Evaluating predic-
tion-time batch normalization for robustness under covariate shift (2021)

 16. Wang, D., Shelhamer, E., Liu, S., Olshausen, B., Darrell, T.: Tent: fully test-time adaptation by
entropy minimization. In: ICLR (2020)

 17. Kojima, T., Matsuo, Y., Iwasawa, Y.: Robustifying vision transformer without retraining from
scratch by test-time class-conditional feature alignment. In: Proceedings of the Thirty-First Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-22, pp. 1009–1016 (2022). https:// doi. org/
10. 24963/ ijcai. 2022/ 141

 18. Zhang, J., He, T., Sra, S., Jadbabaie, A.: Why gradient clipping accelerates training: A theoretical
justification for adaptivity. In: ICLR (2020). https:// openr eview. net/ forum? id= BJgnX pVYwS

 19. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin,
I.: Attention is all you need. In: Advances in NeurIPS, pp. 5998–6008 (2017)

 20. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common corruptions and
perturbations. In: Proceedings of the ICLR (2019)

 21. Hendrycks, D., Zhao, K., Basart, S., Steinhardt, J., Song, D.: Natural adversarial examples. In: Pro-
ceedings of the IEEE/CVF Conference on CVPR, pp. 15262–15271 (2021)

 22. Xiao, K., Engstrom, L., Ilyas, A., Madry, A.: Noise or signal: the role of image backgrounds in
object recognition (2020)

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://arxiv.org/abs/1912.02781
http://arxiv.org/abs/2006.16241
https://doi.org/10.24963/ijcai.2022/141
https://doi.org/10.24963/ijcai.2022/141
https://openreview.net/forum?id=BJgnXpVYwS

24 New Generation Computing (2023) 41:5–24

123

 23. Bhojanapalli, S., Chakrabarti, A., Glasner, D., Li, D., Unterthiner, T., Veit, A.: Understanding
robustness of transformers for image classification (2021)

 24. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal
covariate shift. In: ICML, pp. 448–456, PMLR (2015).

 25. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)
 26. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of

the IEEE Conference on CVPR, pp. 770–778 (2016)
 27. Lee, D.-H., et al.: Pseudo-label: The simple and efficient semi-supervised learning method for deep

neural networks. In: Workshop on Challenges in Representation Learning, ICML, p. 896 (2013)
 28. Liang, J., Hu, D., Feng, J.: Do we really need to access the source data? source hypothesis transfer

for unsupervised domain adaptation. In: ICML, pp. 6028–6039, PMLR (2020)
 29. Liu, Y., Kothari, P., van Delft, B.G., Bellot-Gurlet, B., Mordan, T., Alahi, A.: TTT++: when does

self-supervised test-time training fail or thrive? In: Advances in NeurIPS (2021). https:// openr eview.
net/ forum? id= 86NHK__ yFDl

 30. Chen, D., Wang, D., Darrell, T., Ebrahimi, S.: Contrastive test-time adaptation. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 295–305 (2022)

 31. Iwasawa, Y., Matsuo, Y.: Test-time classifier adjustment module for model-agnostic domain gener-
alization. In: Advances in NeurIPS (2021). https:// openr eview. net/ forum? id=e_ yvNqk JKAW

 32. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–
1359 (2010). https:// doi. org/ 10. 1109/ TKDE. 2009. 191

 33. Patel, V.M., Gopalan, R., Li, R., Chellappa, R.: Visual domain adaptation: a survey of recent
advances. IEEE Signal Process. Mag. 32(3), 53–69 (2015)

 34. Wilson, G., Cook, D.J.: A survey of unsupervised deep domain adaptation. ACM Trans. Intell. Syst.
Technol. (TIST) 11(5), 1–46 (2020)

 35. Xie, Q., Luong, M.-T., Hovy, E., Le, Q.V.: Self-training with noisy student improves imagenet clas-
sification. In: Proceedings of the IEEE/CVF Conference on CVPR (CVPR) (2020)

 36. Rusak, E., Schneider, S., Gehler, P., Bringmann, O., Brendel, W., Bethge, M.: Adapting imagenet-
scale models to complex distribution shifts with self-learning. arXiv preprint arXiv: 2104. 12928
(2021)

 37. Zhang, Z., Sabuncu, M.R.: Generalized cross entropy loss for training deep neural networks with
noisy labels. In: NeurIPS (2018)

 38. Zellinger, W., Grubinger, T., Lughofer, E., Natschläger, T., Saminger-Platz, S.: Central moment dis-
crepancy (CMD) for domain-invariant representation learning. In: 5th ICLR (2017)

 39. Zhou, D., Yu, Z., Xie, E., Xiao, C., Anandkumar, A., Feng, J., Alvarez, J.M.: Understanding the
robustness in vision transformers. In: International Conference on Machine Learning, pp. 27378–
27394, PMLR (2022)

 40. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., et al.: Pytorch: an imperative style, high-performance deep learning
library. Adv. NeurIPS 32, 8026–8037 (2019)

 41. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical
Report 0, University of Toronto, Toronto, Ontario (2009)

 42. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla,
A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge. IJCV 115(3), 211–252
(2015)

 43. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical
image database. In: 2009 IEEE Conference on CVPR, pp. 248–255, IEEE (2009)

 44. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way
to prevent neural networks from overfitting. JMLR 15(1), 1929–1958 (2014)

 45. Lester, B., Al-Rfou, R., Constant, N.: The power of scale for parameter-efficient prompt tuning
(2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://openreview.net/forum?id=86NHK__yFDl
https://openreview.net/forum?id=86NHK__yFDl
https://openreview.net/forum?id=e_yvNqkJKAW
https://doi.org/10.1109/TKDE.2009.191
http://arxiv.org/abs/2104.12928

	Robustifying Vision Transformer Without Retraining from Scratch Using Attention-Based Test-Time Adaptation
	Abstract
	1 Introduction
	2 Related Works
	2.1 Robustness of ViT
	2.1.1 Transformer Architecture
	2.1.2 Inherent Robustness of ViT

	2.2 Improving Robustness of CNN
	2.2.1 Test-Time Adaptation
	2.2.2 Data Augmentation
	2.2.3 Unsupervised Domain Adaptation

	2.3 Central Moment Discrepancy

	3 Methodology
	3.1 Tent for ViT
	3.2 Attent

	4 Experiment
	4.1 Dataset and Preprocess
	4.2 Model and Training Setting
	4.3 Adaptation Setting
	4.4 Baseline Methods
	4.5 Quantitative Result
	4.6 Attention Map Reconstruction
	4.7 Hyperparameter Sensitivity

	5 Conclusion and Future Work
	Appendix A: Detail Settings of Baseline Methods
	A.1. TFA(-)
	A.2. T3A
	A.3. CFA

	References

