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Abstract
Vision Transformer (ViT) is becoming more and more popular in the field of image 
processing. This study aims to improve the robustness against the unknown pertur-
bations without retraining the ViT model from scratch. Since our approach does not 
alter the training phase, it does not need to repeat computationally heavy pretraining 
of ViT. Specifically, we use test-time adaptation (TTA) for this purpose, which cor-
rects its prediction during test-time by itself. The representative test-time adaptation 
method, Tent, is recently found to be applicable to ViT by modulating parameters 
and gradient clipping. However, we observed that Tent sometimes catastrophically 
fails, especially under severe perturbations. To stabilize the adaptation, we propose 
a new loss function called Attent, which minimizes the distributional differences of 
the attention entropy between the source and target. Experiments of image classifi-
cation task on CIFAR-10-C, CIFAR-100-C, and ImageNet-C show that both Tent 
and Attent are effective on a wide variety of corruptions. The results also show that 
by combining Attent and Tent, the classification accuracy on corrupted data is fur-
ther improved.

Keywords  Vision transformer (ViT) · Test-time adaptation (TTA) · CIFAR-10-C · 
CIFAR-100-C · ImageNet-C · Attent

1  Introduction

Inspired by the success in natural language processing, e.g., BERT [1] and GPT [2, 
3], transformer is becoming more and more popular in various image processing 
tasks including recognition [4, 5], object detection [6], and video processing [7, 8].

Notably, Dosovitskiy et al. [4] propose Vision Transformer (ViT), which adapts 
a pure transformer for image classification, shows that it achieves comparable or 
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superior performance to the conventional convolutional neural networks (CNN). 
Follow-up studies also show that ViT is more robust against the common cor-
ruptions and perturbations than convolution-based model (e.g., ResNet) [9, 10], 
which is an important property for safety-critical applications.

This paper seeks to answer the following question: can we further improve the 
robustness of ViT without retraining from scratch? Using heavy data augmenta-
tion during training is a natural way to improve the robustness, and prior works 
demonstrate that several data augmentation can indeed improve robustness of 
CNN [11, 12]. Another study empirically shows that sharpness-aware optimizer 
improves the robustness of ViT [13]. However, retraining ViT from scratch is 
not desirable, since it requires huge computational burden. Moreover, the dataset 
for the pretraining is sometimes not publicly available, making it impossible to 
retrain the model.

Test-time adaptation is a recently proposed approach for improving the robust-
ness of the model [14–16]. In test-time adaptation, a model corrects its prediction 
of test data without looking at the label during test-time by modulating the small 
portion of model’s parameters [typically parameters of Batch Normalization (BN) 
and/or its statistics]. For example, Wang et al. [16] proposes Tent, which modulates 
the parameters of Batch Normalization (BN) by minimizing prediction entropy, and 
shows that it can significantly improve the robustness of ResNet. This approach is 
favorable for our case as it does not alter the training phase and thus does not need 
to repeat the computationally heavy training of ViT. Recently, Kojima et  al. [17] 
have shown that the existing representative TTA methods, including Tent, are also 
effective on ViT by modulating parameters in ViT. Specifically, the study demon-
strated that, for each TTA method, updating only the affine transformation param-
eters within layer-normalization layers in ViT boosts the performance on target data-
sets including common corruptions and domain shift. Besides the parameter choice, 
Kojima et  al. [17] found gradient clipping [18], which is not used in the original 
Tent paper [16], is essential for applying Tent to ViT to mitigate catastrophic failure. 
However, we observed that just minimizing prediction entropy of ViT, as with Tent, 
often causes catastrophic failure especially under severe distribution shifts.

In this paper, we design a new loss function, called Attent, to stabilize the test-
time adaptation of ViT. Attent adapts to target data by minimizing distributional dif-
ference of attention entropy between source data and target data. Optimization is 
performed for each layer, head, and token on the target data to make their distribu-
tions go back to the source data. The distributional statistics of attention entropy on 
the source dataset are calculated and stored in memory beforehand. Therefore, we 
can use this approach without source dataset during adaptation.

In summary, our main contributions are as follows.

•	 This paper proposes a new test-time adaptation method for ViT. To mitigate the 
catastrophic failure of existing TTA method (Tent) on ViT, we introduce a new 
loss function called Attent. Attent minimizes the distributional differences of the 
attention entropy between the source and target in an online manner.

•	 Using multiple standard datasets to benchmark the robustness against common 
corruption and perturbations, namely CIFAR-10-C, CIFAR-100-C, and Ima-
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geNet-C, we validate that robustness of ViT (ViT-B16 and ViT-L16) is improved 
by Attent without retraining the model from scratch.

•	 We show that the robustness is further improved by combining Attent and other 
TTA methods that do not require source information, e.g., Tent or SHOT-IM. 
Especially, the improvement is significant for more severe corruption that Tent 
alone cannot recover. In addition, Attent is less sensitive to hyperparameters, 
which is a favorable property in practical setting.

2 � Related Works

2.1 � Robustness of ViT

2.1.1 � Transformer Architecture

Models based on Transformer architecture [19] achieve great performance not only 
in NLP but also in image processing as Vision Transformer [4]. Self-attention is one 
of the building blocks in Transformer. Let zl∈ℝT×D be the input to lth self-attention 
layer, where T is the number of tokens, and D is the number of features in each 
token. For each layer l and head h, the attention block takes zl as input and compute 
attention weight matrix Alh∈ℝT×T . Specifically, the attention weights between posi-
tion i and j, Alh

ij
 are calculated based on the inner dot product between their respec-

tive query Qlh
i

 and key Klh
j

 representations as follows:

where Wlh is a learnable parameters. Dh is typically set to D/H to keep the number of 
parameters constant even when the number of head H is changed.

2.1.2 � Inherent Robustness of ViT

Recent studies verify by experiments that ViT already has robustness without any 
adaptation or any additional data augmentation. Several studies empirically show 
that ViT is inherently more robust than CNNs using several benchmark datasets [9, 
10]. The datasets include ImageNet-C (corruption), ImageNet-P (perturbations), 
ImageNet-R (semantic shifts), ImageNet-O (out-of-domain distribution), and Ima-
geNet-9 (background dependence) [12, 20–22]. Other studies show that the robust-
ness of ViT is further improved by changing the training strategy, such as using 
larger data set for pretraining phase [9, 23] or sharpness-aware optimizer for training 
phase [13].

(1)[Qlh,Klh,Vlh] = zlW
lh, Wlh ∈ ℝ

D×3Dh

(2)Alh = softmax

�
QlhKlhT

√
Dh

�
,
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2.2 � Improving Robustness of CNN

2.2.1 � Test‑Time Adaptation

Test-time adaptation (TTA) is an online adaptation approach. Our proposal belongs 
to this category. Test-time adaptation does not require altering training process, so 
that this approach is generally applicable to wide variety of training method. This 
approach can adapt the model to the target data in a real-time mini-batch level to 
boost the accuracy in an online manner. Test-time batch normalization [14, 15] rees-
timates the statistics of the batch normalization [24] on the target dataset. Test-time 
entropy minimization (Tent) [16] adapts to the target unlabelled online data by mini-
mizing the Shannon entropy [25] of its prediction by updating only the affine trans-
formation parameters of batch normalization. Tent was proven to be effective when 
the model is CNN that has batch normalization, e.g., ResNet50 [26], while recent 
study [17] has demonstrated that Tent is also applicable to ViT (see Sect. 3.1 for the 
details). One can also use different loss functions for updating parameters, such as 
pseudo-label (PL) [27], diversity regularization (SHOT-IM) [28], feature alignment 
(TFA [29] and CFA [17]), or contrastive learning [30]. A recent study of Iwasawa 
et al. [31] has proposed gradient-free procedures to update only the classifier param-
eter of model (T3A). Our approach is categorized as a feature alignment approach, 
which minimizes the statistical distance between source and target dataset. It is 
worth noting that feature alignment approaches for test-time adaptation assume that 
one can access to the statistics on the source dataset during the test phase but does 
not need to access to the source dataset itself and to repeat the computationally 
heavy training [17]. Test-time adaptation generally assumes that the model would be 
distributed without source data due to bandwidth, privacy, or profit reasons [16]. We 
argue that the statistics of source data would be distributed even in such a situation, 
since it could drastically compress data size and eliminate sensitive information. In 
fact, some layers often used in typical neural networks contain statistics of source 
data (e.g., batch normalization) [17].

2.2.2 � Data Augmentation

Several studies show that adding data augmentation naturally increases the robust-
ness of model. For example, Hendrycks et  al. [11] show that randomly selected 
noise operations and their compositions can improve the robustness against corrup-
tions (AugMix). Hendrycks et al. [12] propose to make a variety of noises by pass-
ing training images into image-to-image network and introducing several perturba-
tions during the forward pass, the output of which can be used as noisy training 
dataset (DeepAug). However, changing data augmentation usually needs to retrain 
the model from scratch, which is computationally heavy for the ViT.

2.2.3 � Unsupervised Domain Adaptation

Several recent studies use unsupervised domain adaptation (UDA) [32–34] 
to improve the robustness of the CNN. For example, Xie et  al. [35] propose 
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Noisy-Student, which trained the model with pseudo-labeled data [27] that come 
from the target distribution. Similarly, Rusak et al. [36] propose to use pseudo-
label technique with robust classification loss, which is called Generalized Cross 
Entropy (GCE) [37], as an objective function. These works prove the usefulness 
of UDA to robustify the model; however, this approach needs to preassume the 
type of corruption, so that the unlabeled data from the target domain need to be 
available at the training time. Unlike UDA, our approach does not need to preas-
sume the corruption type, which is a more practical setting.

2.3 � Central Moment Discrepancy

To stabilize the adaptation, our method uses central mean discrepancy (CMD) 
[38] to measure the discrepancy between source and target. Let X and Y be 
bounded random samples with respective probability distributions p and q on the 
interval [a;b]N . Formally, CMD is defined by

where �(X) = 1

�X�
∑

x∈X x is the empirical expectation vector computed on the sam-
ple X. Here, |X| is denoted as the total number of samples following the annotation in 
[38]. �k(X) = �((x − �(X))k) is the vector that consists of kth-order central moments 
for each element of X. Y follows the same idea. Previous works focus on using CMD 
in the field of UDA to reduce the distributional gaps between source representations 
and target ones. However, CMD can also be potentially used for test-time adapta-
tion, because CMD does not need to store the source dataset itself; instead, we store 
central moment statistics of source data in memory, and use it during online adapta-
tion for moment matching between source and target.

3 � Methodology

3.1 � Tent for ViT

Recently, Kojima et al. [17] study applying existing TTA methods including Tent 
to ViT. Assume that we have pretrained model whose parameters are denoted by 
� . The model is trained on clean source data, and need to predict the data with 
unknown corruption. Given the input image x, the model outputs the conditional 
probability P(y ∣ x;�) . During test-time, Tent [16] minimizes the following predic-
tion entropy using the stochastic gradient decent (SGD):

(3)

CMDk =
1

�b − a�
‖�(X) − �(Y)‖2

+
1

�b − a�k

K�

k=2

‖�k(X) −�k(Y)‖2,
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where C is the number of class, and Pc is the estimated probability that x belongs to 
y confidence of class c.

While updating entire � is technically possible, it is known to be ineffective in 
the test-time adaptation. A key feature of Tent is that it does not alter the entire 
parameters � , but it alters a small portion of the parameters � ∈ � . Specifically, Tent 
[16] updates a set of parameters related to affine transformation of batch normaliza-
tion. However, recent large models including ViT do not have batch normalization. 
Therefore, we do not have trivial answer to the question: which parameters should 
we update when applying Tent to ViT models? According to Wang et al. [16], updat-
ing only feature modulations that are linear and low-dimensional leads to stability 
and efficiency for adaptation.

[17] has found that, to boost the performance of ViT on target datasets, it is stably 
effective to update only the affine transformation parameters within layer-normali-
zation layers in ViT for each TTA method. The layer normalization in ViT reesti-
mates the mean and standard deviation of the input across the dimensions of inputs 
itself, followed by the affine transformation for each dimension. The notable differ-
ence between the modulation of layer normalization and batch normalization is that 
LayerNorm does not need to calculate the mean and standard deviation across mul-
tiple samples for normalization, i.e., layer normalization automatically reestimates 
the mean and standard deviation across dimensions on every single target data itself. 
Therefore, we only need to update the affine transformation parameters in layer nor-
malization for adaptation. In addition, Kojima et al. [17] demonstrated that all the 
parameters can be updated with the best performance improvement when we use 
appropriate loss function, such as SHOT-IM or CFA. We experimentally find the 
best set of parameters for our case (Attent) in Sect. 4.5.

Besides the parameter choice, Kojima et al. [17] found that gradient clipping [18], 
which is not used in the original paper [16], is essential for applying Tent into ViT. 
Specifically, Kojima et al. [17] clip the gradients whose norm is greater than 1.0 in 
the entire experiments. Whether these techniques are unique to ViT (or huge mod-
els) needs further investigation, but without these techniques, Tent often gave cata-
strophic failure (significant drop of classification accuracy). See Sect. 4.7 for details.

3.2 � Attent

Tent is sometimes unstable during adaptation even when we implement several tech-
niques described in Sect. 3.1 (see Table 4 for details). The reason why Tent is unsta-
ble is that the objective function is just minimizing the entropy of classification. One 
of the extreme solution to this function is always assigning 100% probability to only 
one class, which indicates catastrophic failure of adaptation.

To alleviate this problem, we propose a new approach for test-time adaptation called 
Attent. In this approach, we focus on attention mechanism in ViT, which is one of the 
critical architectures for correct prediction [9, 39]. We hypothesize that the inner dot 

(4)Ltent = �

[
C∑

c=1

−Pc(x;�) logPc(x;�)

]
,
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product between Q and K for the attention (Eq. 2) is shifted if ViT takes target data as 
input whose distribution is different from that of source data. Consequently, the atten-
tion weight distribution is shifted in an unexpected way. Our concept idea is to make 
the anomalous distribution goes back to normal by distribution matching of attention 
entropy between source and target data (see Fig. 1 for method overview). Simply mini-
mizing attention entropy would fail, which may lead to paying attention to extremely 
narrow areas (see Sect. 4.5 for the experiment result). Similar to the most prior works, 
our method uses stochastic gradient decent to adapt the model during test-time. 
Unlike the prior methods, such as Tent [16], PL [27], and T3A [31] that modulate the 

Statistics of
Attention Entropy
on source (Fixed)

1. Training

Supervised Training

Distribution
Matching

2. Summarization

ViT

ViT

3. Test-Time Adaptation by Attent

ViT

Statistics of
Attention Entropy

on target

Fig. 1   Overview of our method (Attent). Similar to Liu et al. [29], our method consists of three stages: 
model training, offline statistics summarization, and online test-time adaptation. (1) ViT is trained in 
a supervised manner on a labeled source dataset. (2) After training, statistics (mean and higher order 
moments) of attention entropy on source dataset is calculated and stored in memory as fixed value. (3) 
During test-time, label is predicted, while partial parameters in ViT are updated by distribution matching 
of attention entropy between source and target dataset
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parameters only using the data available at test-time, our method aligns the statistics of 
features between source and target. In other words, we leverage the source statistics as 
an auxiliary information regarding the source distribution to avoid catastrophic failure.

Let L, H, T be the number of layer, the number of head, and the number of tokens in 
transformer. Given a sample data from Source dataset xS

n
∈XS , attention entropy can be 

calculated for each layer l∈L , head h∈H , and tokens i∈T . Specifically, following some 
annotations from Sect. 2.1.1, we define Alh(xS

n
;𝜃̄)∈ℝT×T as the attention weight matrix 

parameterized by parameters 𝜃̄ . 𝜃̄ are the parameters just after the training on source 
dataset, i.e., before adaptation. The attention entropy on source data sample is defined 
as follows:

The mean and kth-order central moments of the entropy for source data are calcu-
lated by the following form and stored in memory as fixed values:

where k = 2,… ,K . Attent uses these statistics to adapt the model during test phase.
During test-time phase, assume that a sequence of test data drawn from target dis-

tribution arrives at our model one after another. A set of test samples in mth batch is 
denoted as XT

m
⊂ XT  , m = 1,… ,M . For each sample in each batch xT

mn
∈XT

m
 , the atten-

tion entropy on target data is calculated like the first phase

The mean and higher order central moments of the entropy are calculated for each 
target batch data

Note that for online adaptation, we can only use real-time batch data at hand. Let 
�(Hlh) be the concatenation of {�(Hlhi) ∣ i ∈ T} alongside the last dimension. Simi-
larly, Let �k(Hlh) be the concatenation of {�k(Hlhi) ∣ i ∈ T} alongside the last 

(5)H
Sn
lhi

=

T∑

j=1

−Alh
ij
(xS

n
;𝜃̄) logAlh

ij
(xS

n
;𝜃̄).

(6)�(HS

lhi
) =

1

|XS|
∑

xS
n
∈XS

H
Sn
lhi
,

(7)�k(H
S

lhi
) =

1

|XS|
∑

xS
n
∈XS

(HSn
lhi

− �(HS

lhi
))k,

(8)H
Tmn
lhi

=

T∑

j=1

−Alh
ij
(xT

mn
;�) logAlh

ij
(xT

mn
;�).

(9)�(HTm
lhi
) =

1

|XT
m
|

∑

xT
mn
∈XT

m

H
Tmn
lhi

,

(10)�k(H
Tm
lhi
) =

1

|XT
m
|

∑

xT
mn
∈XT

m

(HTmn
lhi

− �(HTm
lhi
))k.
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dimension. A loss function for test-time adaptation is defined by applying the afore-
mentioned central moments to CMD formula (Eq. 3)

The maximum and minimum values of the attention entropy with T tokens are cal-
culated as logT  and 0. Therefore, |b − a| = log T  in Eq. 11. Like Tent, we update 
only few parameters in ViT by SGD to stabilize adaptation, which is detailed in 
Sect. 4.5.

Finally, this objective function (Eq. 12) can be used alone or in combination with 
Tent (Eq. 4). We can optionally combine Attent and Tent loss functions as follows:

where � is a balancing hyperparameter. Following Wang et al. [16], the parameter 
update follows the prediction for the current batch. Therefore, the parameter update 
only affects the next batch. The adaptation procedure is summarized in Algorithm 1.

Algorithm 1 Online Adaptation using Attent
Input: Fine-tuned DNN model with parameters θ, and partial parameters to
be updated during adaptation ψ ⊂ θ, Target test dataset XT , m-th ordered
batch data XT m ⊂ XT , Statistics of Eq. 6 and Eq. 7 calculated from the
source training dataset.
Output:
1: for m = 1 to M do
2: Predict labels Ŷ T ,m for XT ,m

3: Calculate statistics of Eq. 9 and Eq. 10 for XT ,m

4: Update ψ ⊂ θ based on Eq. 12
5: end for
6: return (Ŷ T ,1, .., Ŷ T ,M )

4 � Experiment

We show that our approach is effective for corruption using CIFAR-10-C, CIFAR-
100-C, and ImageNet-C datasets, respectively. We run all the experiments three 
times with different seeds for different data order shuffling. A mean and unbiased 

(11)

L
lh
attn

=
1

log T
‖�(HTm

lh
) − �(HS

lh
)‖2

+
1

(log T)k

K�

k=2

‖�k(H
Tm
lh
) −�k(H

S

lh
)‖2,

(12)Lattn =
1

LH

L∑

l=1

H∑

h=1

L
lh
attn

.

(13)Lmix = Ltent + �Lattn,



14	 New Generation Computing (2023) 41:5–24

123

standard deviation of the metric is reported. Our implementation is in PyTorch [40], 
and every experiment is run on cloud A100 × 1GPU instance except for ViT-L16 on 
A100 × 2GPU instance.

4.1 � Dataset and Preprocess

CIFAR-10/CIFAR-100 [41] and ImageNet [42] are used as source datasets. CIFAR-
10/CIFAR-100 are, respectively, 10-class/100-class color image datasets includ-
ing 50,000 training data and 10,000 test data with 32×32 resolution. ImageNet is a 
1000-class image dataset with more than 1.2 million training data and 50,000 vali-
dation data with various resolution.

CIFAR-10-C/CIFAR-100-C and ImageNet-C are used as target datasets for 
test-time adaptation [20]. These datasets, respectively, contain data with 15 types 
of corruption with 5-level severity. Therefore each dataset has 75 varieties of cor-
ruptions in total. Each corrupted image is created based on image from original 
CIFAR-10 and CIFAR-100 test images, and ImageNet validation images. Therefore, 
the CIFAR-10-C/CIFAR-100-C consists 10,000 images for each corruption/type and 
ImageNet-C dataset consists 50,000 images for each corruption/type.

For this experiment, images of all the datasets are preprocessed, so that the 
images are resized uniformly to 224×224 . As for ImageNet, some images are rec-
tangle, so all the images are resized to 256 and center-cropped with 224×224 size. 
ImageNet-C data have been already preprocessed the same way and publicly avail-
able. For ViT models, the pixels are first rescaled from [0,  255] to [0,  1]. Then, 
they are further rescaled to [−1, 1] by normalization with mean and std specified as 
[0.5, 0.5, 0.5] and [0.5, 0.5, 0.5].

4.2 � Model and Training Setting

Vision Transformer (ViT) is used as a model for this experiment. For CIFAR-10 
and CIFAR-100, we use ViT-B16 as initial parameters for fine-tuning. ViT-B16 is 
already pretrained on ImageNet-21K [43], which is a large dataset with 21k classes 
and 14M images. For fine-tuning hyperparameters, following [4], we use batch size 
of 512, set optimizer as SGD with momentum 0.9 and gradient clipping at global 
norm 1.0. We choose a learning rate of 0.03. We apply cosine schedule of 200 
warmup steps and the total number of iteration as 1000 for CIFAR-10. We apply 
a cosine schedule of 500 warmup steps and the total number of iterations as 2000 
for CIFAR-100. The fine-tuning result is 1.1% Top-1 error for CIFAR-10, 6.8% for 
CIFAR-100, respectively. For ImageNet, we use parameters of ViT-B16 and ViT-
L16 that are already pretrained for ImageNet-21K and also fine-tuned for ImageNet 
(-2012). Therefore, fine-tuning on ImageNet is not needed. The top-1 error on Ima-
geNet is 18.6% by ViT-B16 and 17.1% by ViT-L16, respectively, in our setting. ViT-
B16 has 12 layers and 12 heads. ViT-L16 has 24 layers and 16 heads [4]. Both mod-
els have input patch size of 16, so that the number of tokens for ViT is defined as 
196 (= 14 × 14) in this experiment.
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4.3 � Adaptation Setting

Before adaptation, we need to calculate the central moments of attention entropies 
for source data (Eqs. 6 and 7) to store them in memory. For this purpose, we use all 
the training data in source and set the dropout [44] off during the calculation.

As default hyperparameters for adaptation on target data, batch size is set to 64, 
optimization is SGD with constant learning rate 0.001 and momentum 0.9 with gra-
dient clipping 1.0, and the maximum central moments’ order K is set to 3 across all 
the experiments. Dropout is set off during both forward and backward pass. We set 
� = 1.0 in Eq. 13 to balance Tent and Attent losses. The detailed hyperparameter 
sweeping results are found at Sect. 4.7.

Top-1 error of classification is used as evaluation metric across all the 
experiments.

4.4 � Baseline Methods

We compare Attent with some existing baseline test-time adaptation methods that 
do not need to alter training phase: Tent [16], PL [27], TFA(-) [29]1 , T3A [31], 
SHOT-IM [28], and CFA [17]. In addition, we report the performance of the model 
on target datasets without any adaptation as Source. T-BN [14, 15] is excluded from 
the baseline, because ViT does not have a batch normalization layer. For a fair com-
parison, we use the same hyperparameter values across all the methods as described 
in Sect. 4.3. The detailed setting for each method is described in Appendix 1.

Table 1   Modulation parameter 
study

Evaluation metric is top-1 error on ImageNet-C for Gaussian Noise 
with the highest severity. ViT-B16 is used as a model. As a refer-
ence, the performance without any adaptation (“Source”) was 
61.9 ± 0.0
CLS CLS token (CLS token is a parameterized vector and proven 
to be efficient for fine-tuning large models for downstream tasks in 
NLP [45]), LN LayerNorm, ALL all the parameters of ViT

Tent Attent Attent + Tent

LN 50.6   ±  0.5 51.7  ±  0.0 47.6  ±  0.8
CLS 59.4  ±  0.0 61.4  ±  0.0 59.2  ±  0.0
ALL 59.1  ±  1.0 50.1  ±  0.0 51.2  ±  1.5

1  Original TFA [29] needs to alter training phase (add contrastive learning), while this study focuses on 
robustifying large-scale models without retraining them from scratch. Therefore, we have changed some 
of the settings from the original TFA, so that the model does not need to alter training phase. The modi-
fied version of TFA is denoted as TFA(-) in our experiments. See Appendix 1 for details.
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4.5 � Quantitative Result

Table 1 answers the question about which modulation parameters are the most suit-
able for improving the performance of Attent. The results indicate that layer-normal-
ization parameters can stably reduce top-1 error for both Attent and Tent. Therefore, 
in all the subsequent experiments, layer-normalization parameters are updated for 
adaptation across all the methods for fair comparison.

Table 2 summarizes the adaptation result (top-1 error) on CIFAR-10-C, CIFAR-
100-C, and ImageNet-C for our method and other existing test-time adaptation base-
lines. We measure the top-1 error on each dataset with the highest severity (= 5). It 
is verified that Attent can stably reduce the error across all the datasets. Tent alone 
also has the stronger improvement gain than Attent. However, it is found that Tent is 
sometimes unstable on some of the corruptions with higher severity, while Attent is 
not. See Table 4 for details. For example, in Table 4, Tent on ViT-B16 fails to adapt 
to “snow” corruption on ImageNet-C, causing the significant performance drop from 
60.9 to 75.7% top-1 error rate. Interestingly, combining Tent and Attent improves 
the performance more while preventing the aforementioned significant performance 
drop (See “Attent + Tent” at Table 2). We observe similar performance gains when 
combining Attent with other existing high-performance methods, such as SHOT-IM 
(whose objective is classifier entropy minimization + diversity regularizer), TFA(-) 
and CFA (whose objectives are minimizing distribution differences of the hidden 

Table 2   Method comparison

Top-1 error on CIFAR-10-C/CIFAR-100-C/ImageNet-C averaged 
over 15 corruption types for the highest severity. ViT-B16 is used 
as a model. TFA(-) *1 uses hyperparameters of �1 = 1, �2 = 1 , while 
TFA(-) *2 uses �1 = 1, �2 = 0 . See Appendix 1 for the details of the 
hyperparameters
Bold values indicate points to be highlighted in the table

Method C10→C10-C C100→C100-C IN→IN-C

Source 14.6 ± 0.0 35.1 ± 0.0 61.9 ± 0.0
T3A 13.7 ± 0.0 34.0 ± 0.0 61.2 ± 0.0
TFA(-) *1 8.8 ± 0.0 32.2 ± 0.2 57.8 ± 0.1
PL 11.9 ± 0.0 30.1 ± 0.5 55.7 ± 1.4
Tent 10.9 ± 0.2 27.4 ± 0.5 50.6 ± 0.5
Attent 10.3 ± 0.0 28.8 ± 0.0 51.7 ± 0.0
Attent + Tent 9.6 ± 0.1 26.5 ± 0.0 47.6 ± 0.8
Attent – CMD 25.7 ± 0.2 51.5 ± 0.2 88.7 ± 0.1
Tent + CMD 11.4 ± 0.3 29.8 ± 0.3 51.9 ± 0.6
SHOT-IM 8.9 ± 0.0 25.6 ± 0.0 45.7 ± 0.0
Attent + SHOT-IM 8.9 ± 0.0 25.5 ± 0.0 45.1 ± 0.0
TFA(-) *2 8.7 ± 0.0 25.4 ± 0.0 46.7 ± 0.0
Attent + TFA(-) *2 8.6 ± 0.0 25.3 ± 0.0 46.5 ± 0.0
CFA 8.4 ± 0.0 24.6 ± 0.1 43.9 ± 0.0
Attent + CFA 8.4 ± 0.0 24.5 ± 0.1 43.4 ± 0.0
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representation just before the classifier of a model between the source and target). 
See “Attent + SHOT-IM”, “Attent + TFA(-)”, and “Attent + CFA” in Table 2.

To investigate the effectiveness of our approach, we introduce the following 
two analyses focusing on CMD. As a first analysis, instead of optimizing attention 
entropy in Attent by CMD, we simply minimize the attention entropy in the same 
way that Tent minimizes prediction entropy. This approach is described as “Attent 
- CMD” in Table 2. The result shows that this approach significantly deteriorates 
the performance. It indicates that matching distribution is necessary for attention 
entropy control instead of minimization. As a second analysis, we optimize the 
classification entropy distribution in Tent using CMD to make it go back to that of 
source dataset. This approach is described as “Tent + CMD” in Table 2. The result 
shows that the performance slightly deteriorates compared to the original Tent. It 
indicates that CMD is not appropriate for the classifier entropy.

Table 3 summarizes the adaptation results on ImageNet-C with severity from 1 
to 5 based on various backbone networks: ResNet50, ViT-B16, and ViT-L16. The 
ResNet50 result is included as a reference to see the performance difference between 
a regular ResNet model and ViT models. Following [16], Tent for ResNet50 updates 
batch normalization parameters and reestimates the statistics. It is verified that both 
Tent and Attent consistently improve the performance across all the models for var-
ious degree of corruption severity. This indicates that Tent and Attent are model 
agnostic. The experiment also demonstrated that Attent + Tent further boosts the 
performance regardless of network backbones and corruption severity.

Table 3   Model and corruption severity study

Top-1 error based on ImageNet-C averaged over 15 corruption types for each severity
S severity
Bold values indicate points to be highlighted in the table

Model S Source Tent Attent Attent +Tent

ResNet50 1 39.4 ± 0.0 31.6  ± 0.1 – –
2 50.2 ± 0.0 37.1 ± 0.1 – –
3 60.2 ± 0.0 41.7 ± 0.0 – –
4 72.3 ± 0.0 49.3 ± 0.1 – –
5 82.0 ± 0.0 59.0 ± 0.0 – –

ViT-B16 1 26.0 ± 0.0 22.8 ± 0.0 25.1 ± 0.0 22.6 ± 0.0
2 32.3 ± 0.0 27.1 ± 0.0 30.1 ± 0.0 26.8 ± 0.0
3 37.6 ± 0.0 30.5 ± 0.1 33.9 ± 0.0 30.0 ± 0.0
4 47.9 ± 0.0 38.4 ± 0.2 41.3 ± 0.0 37.2 ± 0.5
5 61.9 ± 0.0 50.6 ± 0.5 51.7 ± 0.0 47.6 ± 0.8

ViT-L16 1 23.5 ± 0.0 21.2 ± 0.0 23.2 ± 0.0 21.2 ± .0
2 28.8 ± 0.0 25.3 ± 0.0 28.1 ± 0.0 25.2 ± 0.0
3 32.8 ± 0.0 27.9 ± 0.0 31.6 ± 0.0 27.8 ± 0.0
4 41.0 ± 0.0 33.6 ± 0.1 38.5 ± 0.0 33.5 ± 0.0
5 53.4 ± 0.0 42.3 ± 0.0 48.8 ± 0.0 42.1 ± 0.0
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4.6 � Attention Map Reconstruction

We quantitatively analyze how close the attention map gets after adaptation com-
pared to the before. Specifically, for each sample, we measure cross entropy of atten-
tion maps between corrupted image xT  in ImageNet-C and the corresponding clean 
image xS←T  in ImageNet by the following formulas:

where �m is a set of parameters at the time of mth batch during test-time adaptation. 
Note that 𝜃m = 𝜃̄ if without adaptation (Source). Intuitively, Eq. 14 gives us a higher 
penalty if the attention does not focus on correct locations, while Eq. 15 gives us 
a higher penalty if the attention focuses on wrong locations. We combine the two 
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Table 4   Detail experiment results of method comparison

Evaluation metric is top-1 error based on ImageNet-C for each corruption type with the highest severity. 
ViT-B16 is used as a model
Bold values indicate points to be highlighted in the table

Method Gaussian Shot Impulse Defocus

Source 77.7  ±   0.0 75.1  ±  0.0 77.0  ±  0.0 66.9  ±  0.0
Tent 66.3  ±  8.8 77.8  ±  1.6 59.3  ±  0.2 50.9  ±  0.2
Attent 62.7  ±  0.1 60.4  ±  0.1 61.5  ±  0.1 56.1  ±  0.0
Attent + Tent 59.0  ±  0.1 63.8  ±  6.9 58.1  ±  0.0 50.2  ±  0.1
 Method Glass Motion Zoom Snow
 Source 69.1  ±  0.0 58.5  ±  0.0 62.8  ±  0.0 60.9  ±  0.0
Tent 49.8  ±  0.2 46.7  ±  0.0 50.9  ±  0.2 75.7  ±  2.0
Attent 57.0  ±  0.1 51.2  ±  0.1 53.3  ±  0.0 53.9  ±  0.1
Attent + Tent 48.8  ±  0.1 45.9  ±  0.0 49.1  ±  0.2 62.5  ±  5.5
 Method Frost Fog Brightness Contrast
 Source 57.6  ±  0.0 62.9  ±  0.0 31.6  ±  0.0 88.9  ±  0.0
Tent 48.2  ±  0.4 44.3  ±  0.3 26.1  ±  0.1 58.5  ±  0.3
Attent 50.8  ±  0.0 51.2  ±  0.1 29.7  ±  0.0 62.8  ±  0.2
Attent + Tent 46.7  ±  0.0 43.2  ±  0.2 25.8  ±  0.1 57.8  ±  0.2
 Method Elastic Pixelate Jpeg Average
 Source 51.9  ±  0.0 45.3  ±  0.0 42.9  ±  0.0 61.9  ±  0.0
Tent 37.6  ±  0.3 32.7  ±  0.1 34.7  ±  0.1 50.6  ±  0.5
Attent 44.8  ±  0.1 39.7  ±  0.1 40.1  ±  0.1 51.7  ±  0.0
Attent + Tent 36.8  ±  0.2 32.1  ±  0.1 34.5  ±  0.1 47.6  ±  0.8
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cross entropies and take the average across all the test data, making it the evaluation 
metric

The lower score of Eq. 16 indicates the better attention map reconstruction.
Table 5 summarizes the result of measuring the metric using images from Ima-

geNet and ImageNet-C of 15 corruptions with highest severity. The result dem-
onstrates that Attent has the most tendency of reconstructing the attention map to 
the original one. This tendency may cause the improvement of image classification 
accuracy. Tent also has a tendency of reconstructing attention map, but not as much 
as Attent, which implies that the performance improvement by Tent is related to 
other latent variables as well as attention map. The score of Attent + Tent is between 
Tent and Attent. It can be assumed that attention map and other latent variables are 
optimized at the same time. In the case of Snow corruption, Tent fails in Adaptation 
and performance deteriorates substantially (see Table 4), but at the same time, the 
score of attention map reconstruction also deteriorates significantly (see Table 5), 
indicating the importance of attention map.

4.7 � Hyperparameter Sensitivity

For online adaptation, hyperparameter tuning is a challenging issue. Figure 2 shows 
the results for each hyperparameter sensitivity on ImageNet-C with highest sever-
ity averaged over 15 corruption types. We check the following hyperparameters 
by changing one of the values from the default described at Sect. 4.3: (a) learning 
rate, (b) batch size, (c) maximum number of central moments K in Eq. 11, and (d) 
whether to enable gradient clipping for SGD optimization. K = 1 denotes first-order 
moment (mean) matching only, which ignores higher order moment matching, i.e., 
Eqs. 7 and 10.

The important finding is that Tent is more sensitive to some hyperparameters 
described above than Attent. Especially, enabling gradient clipping is essential for 
applying Tent into ViT models for avoiding catastrophic failure of adaptation. Fur-
thermore, large learning rate also leads to catastrophic failure of Tent. In contrast, 
Attent is quite insensitive to each hyperparameters. This indicates that we can use 
Attent safely in the unknown environment with rough hyperparameter tuning. It is 
also shown that the order of central moments K improves the performance of Attent, 
but the gain decreases as K gets larger. This is consistent with the original CMD 
study [38], which states that the performance is similar when K ≥ 3.
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5 � Conclusion and Future Work

This study proposed a novel method of test-time adaptation for ViT, called Attent, 
which adapts ViT by minimizing the distributional differences of the attention 
entropy between the source and target during test-time. Experiments on CIFAR-
10-C, CIFAR-100-C, and ImageNet-C show that Attent is effective on various ViT 
models. By combining Attent and other TTA methods, the robustness is further 
improved. As a limitation, Attent is not effective for some of the domain adapta-
tion benchmarks, such as digits style shift; e.g., from SVHN to MNIST/MNIST-M. 
Future work includes improving our method to adapt well on these tasks. We hope 
that research of test-time adaptation on ViT will be further encouraged by this study.

Table 5   The result of measuring attention map reconstruction metric based on Eq. 16

The value indicates how close the attention map is between clean and corresponding corrupted image. 
Images are used from ImageNet and ImageNet-C of 15 corruptions with highest severity. ViT-B16 is 
used as a model
Bold values indicate points to be highlighted in the table

Method Gaussian Shot Impulse Defocus

Source 10.92 ± 0.00 10.79 ± 0.00 10.93 ± 0.00 10.22 ± 0.00
Tent 10.69 ± 0.00 10.68 ± 0.02 10.73 ± 0.03 10.08 ± 0.00
Attent 10.64 ± 0.00 10.54 ± 0.00 10.64 ± 0.00 9.92 ± 0.00
Attent + Tent 10.66 ± 0.00 10.56 ± 0.00 10.66 ± 0.00 9.94 ± 0.00
 Method Glass Motion Zoom Snow
 Source 10.05 ± 0.00 10.20 ± 0.00 10.20 ± 0.00 10.30 ± 0.00
Tent 9.92 ± 0.00 10.15 ± 0.00 10.25 ± 0.00 10.43 ± 0.01
Attent 9.79 ± 0.00 10.03 ± 0.00 10.10 ± 0.00 10.16 ± 0.00
Attent + Tent 9.81 ± 0.01 10.05 ± 0.00 10.14 ± 0.00 10.2 ± 0.01
 Method Frost Fog Brightness Contrast
 Source 10.09 ± 0.00 10.28 ± 0.00 9.22 ± 0.00 11.14 ± 0.00
Tent 10.14 ± 0.02 10.06 ± 0.00 9.20 ± 0.01 10.58 ± 0.00
Attent 10.02 ± 0.00 10.11 ± 0.00 9.13 ± 0.00 10.39 ± 0.00
Attent + Tent 10.03 ± 0.00 10.00 ± 0.00 9.12 ± 0.00 10.43 ± 0.00
 Method Elastic Pixelate Jpeg Average
 Source 9.55 ± 0.00 9.20 ± 0.00 9.54 ± 0.00 10.18 ± 0.00
Tent 9.59 ± 0.00 9.05 ± 0.00 9.44 ± 0.00 10.06 ± 0.00
Attent 9.54 ± 0.00 9.06 ± 0.00 9.46 ± 0.00 9.97 ± 0.00
Attent + Tent 9.55 ± 0.00 9.01 ± 0.00 9.44 ± 0.00 9.97 ± 0.00
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Appendix A: Detail Settings of Baseline Methods

A.1. TFA(‑)

Test-time feature alignment (TFA) [29] aligns the hidden representation on tar-
get data by minimizing the distance of the mean vector �s,�t ∈ ℝ

D and covari-
ance matrix Σs,Σt ∈ ℝ

D×D between source and target. D is the dimension size 
of the hidden representation. We focus only on the ”Online Feature Alignment” 
part in TTT++ [29]. Original TFA [29] aligns the distributions at both the hid-
den representation and the output of the self-supervised head. However, in our 
experiment, TFA(-) does not employ self-supervised learning, so we only focus 
on distribution matching of the hidden representation. Specifically, in this exper-
iment, the hidden representation to align is defined as the one before the clas-
sifier head h(x) = f (x;�) . The loss function is L = �1‖�s − �t‖2

2
+ �2‖Σs − Σt‖2

F
 , 

where ‖ ⋅ ‖2 is the Euclidean norm and ‖ ⋅ ‖F is the Frobenius norm. � and Σ 
are, respectively, mean vector and covariance matrix. �1 and �2 are balancing 
hyperparameters. Like CFA [17], TFA(-) calculates the statistics on source data-
set and store them in memory before adaptation. Note that ”Online Dynamic 
Queue” [29] is not used in TFA(-) in our experiment. Table 6 describes the pre-
liminary experiment results of TFA(-) on ImageNet-C datasets with severity = 5 
by changing the balancing hyperparameters �1, �2 . For the main experiment in 
Table 2, we use default hyperparameter �1 = 1, �2 = 1 based on [29], as well as 
the best performance hyperparameter �1 = 1, �2 = 0.

Fig. 2   The effect of sweeping hyperparameters on each method. The evaluation metric is top-1 error on 
ImageNet-C averaged over 15 corruption types with highest severity. ViT-B16 is used as model. Either 
one of the hyperparameter values is changed from the default described in Sect. 4.3
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A.2. T3A

T3A [31] updates only the classifier module by the centroid of each class aver-
aged over the pseudo-labeled samples’ feature vectors in an online manner. This 
is a gradient-free approach and there is no loss function. The hyperparameter 
filter size K is set to 100 in our experiment.

A.3. CFA

CFA [17] minimizes both the class-conditional distribution differences and the 
whole distribution differences of the hidden representation just before the classifier 
of a model between the source and target in an online manner. The hyperparameters 
of CFA are the same as the default described in [17]. Specifically, the balancing 
hyperparameter between the whole distribution loss and class-conditional loss is set 
as 1. The maximum central moments’ order K is set as 3.

Data Availability Statement  The experiment code for this study is not publicly available. The datasets 
used for the experiments in this study are publicly available through the Internet.
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Table 6   Preliminary 
experiment results of TFA(-) 
on ImageNet-C by changing 
the balancing hyperparameters 
�1, �2 . Evaluation metric is 
Top-1 error on ImageNet-C 
averaged over 15 corruption 
types with severity level=5. 
ViT-B16 is used as a model

Method ImageNet-C

TFA(-) ( �1 = 1, �2 = 1) 57.7 ± 0.1
TFA(-) ( �1 = 1, �2 = 1∕D) 48.8 ± 0.0
TFA(-) ( �1 = 1, �2 = 0) 46.7 ± 0.0
TFA(-) ( �1 = 0, �2 = 1∕D) 65.5 ± 0.4
TFA(-) ( �1 = 1∕D, �2 = 1∕D) 61.0 ± 0.1
TFA(-) ( �1 = 1∕D, �2 = 1∕D2) 51.8 ± 0.0
TFA(-) ( �1 = 1∕D, �2 = 0) 51.8 ± 0.0
TFA(-) ( �1 = 0, �2 = 1∕D2) 62.0 ± 0.0
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