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Abstract
In this study, we analyze the performance of stochastic coverage controllers inspired 
by the chemotaxis of bacteria. The control algorithm of bacteria to generate the 
chemotaxis switches between forward movement and random rotation based on the 
difference between the current and previous concentration of a chemical. The con-
sidered coverage controllers mimic this algorithm, where bacteria and the chemical 
concentration are regarded as agents and the achieved degree of coverage, respec-
tively. Because the coverage controllers operate similar to the control algorithm of 
bacteria, they are potentially suitable for molecular robots. Molecular robots, which 
consist of biomolecules, are recognized as a key component in the development 
of future medical systems based on micro-robots working inside the human body. 
However, the performance of the controllers has not yet been analyzed, and no theo-
retical guarantee of coverage completion has been provided. We address this prob-
lem by determining whether a performance index that quantifies the achieved degree 
of coverage increases over time for the feedback system. We first show that the per-
formance index is characterized by the distance between agents under certain condi-
tions. Using this result, we prove that the performance index increases with proba-
bility 1 under some conditions although the controllers are stochastic. This provides 
partial evidence for coverage completion, which makes the controllers more reliable. 
The analysis result is validated by numerical experiments.
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1 Introduction

Coverage by multi-agent systems, where agents cover a given space in some sense 
via a distributed algorithm, has become a popular research topic in the area of multi-
agent control. The reason for this popularity lies in its wide range of applications, 
including the exploration of hazardous environments using vehicles and environ-
mental monitoring for pollution detection using a mobile sensor network.

To date, many researchers have studied control for coverage. Cortes et al. [5] con-
sidered a coverage control problem and presented a solution based on the Voronoi 
partition. This work was extended to agents described as hybrid systems [9], agents 
with constant speeds [11], and dynamic unicycle-type agents [17]. Moreover, Oye-
kan et al. [14] developed bio-inspired coverage controllers to achieve a desired dis-
tribution of agents. Atınç et  al. [2] proposed a swarm-based approach to dynamic 
coverage control. Gao and Kan [6] considered a coverage control problem for heter-
ogeneous driftless control affine systems. In other related studies, algorithms to gen-
erate the flocking behavior of agents were developed. Virágh et al. [16] proposed a 
flocking algorithm for flying agents inspired by animal collective motion. Yang et al. 
[18] proposed an algorithm to achieve V-shape formations inspired by the swarm 
behavior of birds. Liu et al. [10] addressed the problem of finite-time flocking and 
collision avoidance for second-order multi-agent systems.

In [8], our group presented coverage controllers based on biomimetics, i.e., 
inspired by the chemotaxis [1, 3, 15] of bacteria. Chemotaxis is a biological phe-
nomenon wherein each organism moves to the highest (or lowest) concentration 
point of a chemical in an environment by sensing the concentration, as illustrated 
in Fig. 1. If the chemical is an attractant such as food, each organism aims to reach 
the highest concentration point; if the chemical is a repellent such as a toxin, it aims 
to reach the lowest concentration point. In [8], we regarded each agent as a bacte-
rium in chemotaxis and the achieved degree of coverage as the concentration of an 
attractant. Subsequently, using a controller for chemotaxis to maximize the achieved 
degree, we obtained chemotaxis-inspired controllers for coverage.

Our coverage controllers have two potential applications that are different from 
those of artificial coverage controllers [5, 6, 9, 11, 17]. One application is cost 
reduction in the production of swarm robotic systems. As will be explained later, the 
controllers provide only two movement commands for agents, i.e., forward move-
ment and random rotation. Fewer movement commands reduce the required reso-
lution of signals and actuators. Therefore, the controllers are suitable for low-cost 

Fig. 1  Chemotaxis for an attractant. An organism reaches the highest concentration point of an attractant 
by sensing the concentration
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robots with limited computational power and mobility. Reducing the cost of each 
robot in the production of swarm robotic systems leads to substantial cost reduction. 
The other application is to generate the coordinated behavior of molecular robots 
[13] comprising biomolecules. Molecular robots are a key component in the devel-
opment of future medical systems based on micro-robots working inside the human 
body. However, because the components of molecular robots are biomolecules, tra-
ditional controllers, which assume implementation as computer programs, are not 
directly applicable. Our controllers have the potential for solving this problem. The 
controllers mimic a control algorithm of bacteria, i.e., living things; therefore, they 
can be implemented in biomolecular devices.

In [8], we demonstrated the effectiveness of our coverage controllers through 
simulation and experiment but provided no theoretical guarantee of coverage com-
pletion. Providing such a guarantee makes the controllers more reliable, which fur-
ther motivates their usage. This is especially important for our controllers because 
they are stochastic controllers whose outputs are randomly determined under some 
conditions owing to the random rotation command described above. Stochastic con-
trollers make the behavior of the resulting feedback systems uncertain. Although 
bio-inspired stochastic controllers for coverage were reported in [14], the theoretical 
analysis of their stochastic properties was not performed.

Thus, the aim of this paper is to analyze the performance of the coverage control-
lers presented in [8] in a theoretical manner. To this end, we investigate the time 
evolution of a performance index that quantifies the achieved degree of coverage for 
the feedback system. The performance index is described using integrals over sets 
and its direct calculation is difficult, which makes the analysis difficult. However, we 
reveal that the performance index is characterized by the distance between agents 
under certain conditions, from which we show an increase in the performance index 
with probability 1 and conditions for it. This clarifies some properties of the con-
trollers on coverage completion. The analysis result is verified through numerical 
experiments.

This paper is an extension of the conference version [7]. The conference version 
is a one-page abstract that briefly describes the purpose of the study. By contrast, 
this paper presents a complete explanation, including problem formulation, the main 
result and its proof, and the results of numerical experiments.

2  Preliminary

This section summarizes the basic notation and formula used in this paper.
Let ℝ and ℝ+ denote the real number field and the set of positive real numbers, 

respectively. Both the zero scalar and the zero vector are represented by 0. For the 
vector x, we denote by x⊤ and ‖x‖ its transpose and Euclidean norm, respectively. 
The cardinality of the set � is represented by |�| . Let �(c, r) denote a closed disk in 
ℝ2 with the center c and the radius r, i.e., 𝔹(c, r) ∶= {x ∈ ℝ2 � ‖x − c‖ ≤ r} . For the 
vectors x1, x2,… , xn ∈ ℝ2 and the set � ∶= {i1, i2,… , im} ⊆ {1, 2,… , n} , we define 
[xi]i∈𝕀 ∶= [x⊤

i1
x⊤
i2
⋯ x⊤

im
]⊤ ∈ ℝ2m . For instance, x1, x2,… , x6 and � ∶= {2, 3, 6} yield 
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[xi]i∈� ∶= [x⊤
2
x⊤
3
x⊤
6
]⊤ . For the vector x that contains the vector xi as its element, 

x(i, z) represents the vector obtained by replacing xi with z. Examples for this are 
x(2, z) ∶= [x⊤

1
z⊤ x⊤

3
]⊤ for x ∶= [x⊤

1
x⊤
2
x⊤
3
]⊤ and [xi]i∈�(4, z) ∶= [x⊤

2
z⊤]⊤ for 

x1, x2,… , x5 and � ∶= {2, 4}.
In addition, the following property of trigonometric functions is used in this 

paper:

where a, b, � ∈ ℝ and � is the angle satisfying

3  Chemotaxis‑inspired coverage control

This section briefly introduces the chemotaxis-inspired coverage controllers pre-
sented in [8]. We first introduce the problem addressed in [8], the coverage control-
lers to solve it, and an existing result regarding the controllers. Based on these, we 
point out that some questions remain unaddressed.

3.1  Problem formulation

Consider the multi-agent system depicted in Fig. 2. This system is composed of n 
agents, and each agent incorporates a controller.

(1)a sin � + b cos � =
√
a2 + b2 sin(� + �),

(2)sin� =
b√

a2 + b2
, cos� =

a√
a2 + b2

.

Fig. 2  Multi-agent system. There are n agents and each agent incorporates a controller, where xi is the 
position of agent i, and ui1 and ui2 are the control inputs to determine the translational and rotational 
velocities, respectively
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Agent i is expressed as a discrete-time model of a two-wheeled mobile robot, 
i.e.,

where i ∈ {1, 2,… , n} , [xi1(t) xi2(t)]⊤ ∈ ℝ2 (denoted by xi(t) ) is the position, 
�i(t) ∈ ℝ is the orientation, and ui1(t), ui2(t) ∈ ℝ are the control inputs to determine 
the translational and rotational velocities, respectively. Note that xi(t) is a vector but 
xi1(t) and xi2(t) are scalar.

The controller of each agent i is of the form

where �i(t) ∈ ℝm is the state, [xj(t)]j∈ℕi(t)
∈ ℝ2|ℕi(t)| is the input, ui(t) ∈ ℝ2 is 

the output, that is, ui(t) ∶= [ui1(t) ui2(t)]
⊤ , and f1 ∶ ℝm ×ℝ2|ℕi(t)| → ℝm and 

f2 ∶ ℝm ×ℝ2|ℕi(t)| → ℝ2 are functions specifying the behavior of the controller. The 
set ℕi(t) ⊆ {1, 2,… , n} is the index set of the neighboring agents, i.e., the agents 
whose positions can be observed by agent i. The controller Ki is distributed in the 
sense that its input is restricted to [xj(t)]j∈ℕi(t)

 . We assume that the functions f1 and f2 
and the initial state �i(0) are the same for every i ∈ {1, 2,… , n} . This implies that no 
agent is distinguishable from the others, ensuring the scalability of the entire system. 
We further assume �i(0) ∶= 0 to simplify the discussion.

The agents are supposed to be connected through an r-disk proximity network 
[4]; that is, each agent can obtain the positional information of itself and the 
agents within the radius r. In this case, the neighbor set ℕi(t) is given by

Next, we explain the coverage problem. Coverage is to spread agents in a given 
space for purposes such as exploring and monitoring environments. To this end, we 
consider the following performance index [12]:

where x ∶= [x⊤
1
x⊤
2
⋯ x⊤

n
]⊤ , q ∈ ℝ2 is the integration variable, and ℚ ⊂ ℝ2 is a 

space that n agents cover. We suppose that the boundary of ℚ is indicated by, for 
example, lines, and there are no walls around the agents. The performance index 
J represents the area of the union of the disks �(xi, r∕2) with i = 1, 2,… , n in the 
space ℚ . Hence, by maximizing J, we can achieve coverage in the sense that the 
distance between every pair of agents is larger than a certain value, as illustrated in 
Fig. 3. With this notation, our problem is stated as follows:

(3)
⎡
⎢⎢⎣

xi1(t + 1)

xi2(t + 1)

�i(t + 1)

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

xi1(t)

xi2(t)

�i(t)

⎤
⎥⎥⎦
+

⎡
⎢⎢⎣

cos(�i(t) + ui2(t))ui1(t)

sin(�i(t) + ui2(t))ui1(t)

ui2(t)

⎤
⎥⎥⎦
,

(4)Ki ∶

{
�i(t + 1) = f1(�i(t), [xj(t)]j∈ℕi(t)

),

ui(t) = f2(�i(t), [xj(t)]j∈ℕi(t)
),

(5)ℕi(t) ∶= {j ∈ {1, 2,… , n} | xj(t) ∈ 𝔹(xi(t), r)}.

(6)J(x) ∶= ∫
ℚ∩(∪n

i=1
𝔹(xi,r∕2))

1 dq,
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Problem 1 For the multi-agent system depicted in Fig. 2, suppose that a coverage 
space ℚ ⊂ ℝ2 is given. Find controllers K1,K2,… ,Kn (i.e., functions f1 and f2 ) 
satisfying

for every initial state (xi(0), �i(0)) ∈ ℚ ×ℝ with i = 1, 2,… , n.

Remark 1 The reason for considering the disk �(xi, r∕2) of the radius r/2 in J in (6) 
is that the system is with the r-disk proximity network. In this setting, each agent 
cannot observe the positions of other agents at distances larger than r. Therefore, a 
possible configuration of the agents for coverage is that each agent is located at dis-
tances larger than r from the others, as shown in Fig. 3. To achieve such a configura-
tion, we introduce the disk �(xi, r∕2) of the radius r/2 and maximize J.

Remark 2 As can be seen from Fig. 3, the configuration of the agents maximizing J 
in (6) is not necessarily unique. Hence, better configurations may exist depending on 
the mission of the agents even if J is maximized.

Remark 3 Problem 1 can be solved using the gradient-based approach [12]. How-
ever, we focus on the chemotaxis-inspired solution because of its potential applica-
tions explained in Sect. 1. In addition, the flocking algorithms developed in [10, 16, 
18] cannot be directly applied to Problem 1. This is because they are aimed at form-
ing a swarm of agents in some sense and do not consider the coverage space ℚ.

3.2  Stochastic coverage controllers inspired by chemotaxis

Izumi et al. [8] proposed the following solution to Problem 1:

(7)lim
t→∞

J(x(t)) = max
x∈ℝ2n

J(x)

(8)f1(�i(t), [xj(t)]j∈ℕi(t)
) ∶= Ji([xj(t)]j∈ℕi(t)

),

Fig. 3  Coverage. The left and right figures display the initial and final configurations of the agents, 
respectively, where each gray area indicates �(xi, r∕2) for each agent i. In this case, the maximization of 
J in (6) implies that the gray areas do not overlap with each other as in the final configuration. This cor-
responds to the situation that each agent is located at distances larger than r from the others
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where �i(t) is scalar (i.e., m ∶= 1 ), v ∈ ℝ+ is a constant, and wi(t) ∈ {−1, 1} is a Ber-
noulli random variable that takes −1 or 1 with equal probability. The function Ji is 
the local performance index defined as

where i ∈ {1, 2,… , n} . By the definition (5) of the neighbor set ℕi(t) , Ji represents 
the area of the region that only agent i covers. Because Ji is a function of [xj]j∈ℕi

 as 
shown in (10), the resulting controller Ki is distributed.

The controller Ki constructed by (4) and (8)–(10) operates as follows. It follows 
from (4) and (8) that the state �i(t) memorizes the previous value of the local per-
formance index as �i(t) = Ji([xj(t − 1)]j∈ℕi(t−1)

) . Therefore, �i(t) ≤ Ji([xj(t)]j∈ℕi(t)
) 

implies that the current position of agent i is better than or equal to the previous 
one in the sense of Ji . In this case, Ki drives agent i straight because the current 
movement direction might be favorable. Conversely, 𝜉i(t) > Ji([xj(t)]j∈ℕi(t)

) implies 
that the current position of agent i is worse than the previous one in the sense of Ji . 
In this case, Ki drives agent i in another direction by commanding a rotation of 2�∕3 
radians and a straight movement because the current movement direction might be 
unfavorable. The direction of the rotation is randomly determined by wi(t) . This con-
troller was inspired by a controller for the chemotaxis of bacteria, as described in 
Sect. 1, where agent i and Ji correspond to each bacterium and the concentration of 
an attractant in the environment, respectively, and agent i moves to a location with a 
higher value of Ji via the controller.

Regarding this controller, Izumi et al. [8] obtained the following result:

Lemma 1 The performance index J defined by (6) and the local performance index 
Ji defined by (10) satisfy

for every i ∈ {1, 2,… , n} , where x(i, z) ∈ ℝ2n and [xj]j∈ℕi

(i, z) ∈ ℝ2|ℕi| are as defined 
in Sect. 2.

Lemma 1 indicates that, when only agent i moves, the magnitude of the change in 
the performance index J is the same as that in the local performance index Ji . In this 

(9)f2(𝜉i(t), [xj(t)]j∈ℕi(t)
) ∶=

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�
v

0

�
if 𝜉i(t) ≤ Ji([xj(t)]j∈ℕi(t)

),

�
v
2

3
𝜋

�
if 𝜉i(t) > Ji([xj(t)]j∈ℕi(t)

), wi(t) = 1,

�
v

−
2

3
𝜋

�
if 𝜉i(t) > Ji([xj(t)]j∈ℕi(t)

), wi(t) = −1,

(10)Ji([xj]j∈ℕi
) ∶= ∫

ℚ∩(∪j∈ℕi
𝔹(xj,r∕2))

1 dq − ∫
ℚ∩(∪j∈ℕi⧵{i}

𝔹(xj,r∕2))

1 dq,

(11)J(x(i, z)) − J(x) = Ji([xj]j∈ℕi

(i, z)) − Ji([xj]j∈ℕi
)
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sense, the increase in Ji corresponds to that in J, and thus we would achieve cover-
age by increasing each Ji via the aforementioned controller. The reason for using not 
J but Ji in (8) and (9) is that the resulting controller Ki must be distributed as in (4). 
The direct application of J yields a centralized Ki because J depends on the positions 
of all the agents from (6).

Lemma 1 only states the relation between J and Ji , and the controller Ki con-
structed by (4) and (8)–(10) was not theoretically analyzed in [8]. As a result, the 
following two questions remain open: 

(a) Can we theoretically guarantee that Ki operates to increase Ji?
(b) If (a) is possible, what are the conditions under which Ji increases?

The answer to question (a) provides partial evidence for the completion of coverage 
by the controllers Ki with i = 1, 2,… , n from the above discussion on Lemma 1. 
This makes the controllers more reliable, which further motivates their usage. The 
answer to question (b) reveals the conditions under which the controllers work well. 
Knowing these conditions is important for the safe and efficient operation of the 
resulting feedback system.

4  Performance analysis

In this section, we analyze the performance of the coverage controllers described 
in Sect. 3.2 to answer questions (a) and (b). We first explain the analysis problem 
addressed here. Subsequently, we show a solution to the problem and the results of 
numerical experiments to validate the solution.

4.1  Analysis problem

Consider the feedback system given by (3), (4), and (8)–(10). For this system, the 
following assumption is imposed:

Assumption 1 At a time t, there exists an agent i satisfying the following two 
conditions: 

(C1) The neighbor of agent i is only agent k, and it is more than r + v away from 
the agents other than agent k.
(C2) Agent i is more than r∕2 + v away from the boundary of the coverage space 
ℚ.

Assumption 1 implies that at a time t, there exists an agent such that the number of 
its neighbors is one and its distance from the boundary of ℚ is large, as depicted in 
Fig. 4, where v in (9) is added to allow the agent to take one action. This situation 
appears when the number n of agents and the range r of the connection are not too 
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large for the size of ℚ . We focus on this simple situation as the first step of the study 
and address the following problem:

Problem  2 For the feedback system given by (3), (4), and (8)–(10), assume that 
Assumption 1 holds and the state �i(t) is given. Then, check whether 
Ji([xj(t)]j∈ℕi(t)

(i, xi(t + 1))) > Ji([xj(t)]j∈ℕi(t)
) holds or not.

In Problem 2, Ji([xj(t)]j∈ℕi(t)
(i, xi(t + 1))) > Ji([xj(t)]j∈ℕi(t)

) indicates that the local 
performance index Ji increases when only agent i moves at time t. Hence, if 
Ji([xj(t)]j∈ℕi(t)

(i, xi(t + 1))) > Ji([xj(t)]j∈ℕi(t)
) holds for the feedback system given by 

(3), (4), and (8)–(10), we can conclude that the incorporated controller Ki operates 
to increase Ji in the same situation as that considered in Lemma 1. Meanwhile, Ki is 
stochastic owing to the random variable wi(t) in (9); therefore, the agent position 
xi(t + 1) under consideration is a random variable. In addition, Ji is composed of two 
integrals over sets, as shown in (10), and its direct calculation is difficult. These fac-
tors make the problem difficult.

4.2  Main result

To solve Problem 2, we present the following result:

Lemma 2 For an agent i satisfying (C1) and (C2) in Assumption 1, the following 
statements hold: 

 (i) The following equality holds: 

(12)

Ji([xj]j∈ℕi
) =

�r2

4
−

r2

2
cos−1

�‖xi − xk‖
r

�
+

‖xi − xk‖
2

�
r2 − ‖xi − xk‖2.

Fig. 4  Situation considered in Assumption 1. The black dots and rectangle and the gray circle indicate 
agents, ℚ , and �(xi, r) , respectively. There exists an agent i such that its neighbor is only agent k and the 
distances from the agents other than agent k and that from the boundary of ℚ are large
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 (ii) The function Ji([xj]j∈ℕi
) is monotonically increasing with respect to 

‖xi − xk‖ < r and takes the maximum value when ‖xi − xk‖ ≥ r.

Proof 

 (i) From (10), (C1), and (C2), we only need to consider the positions xi and xk of 
agents i and k to prove the statement. Fig. 5 illustrates the relationship between 
xi and xk . Let as, at ∈ ℝ+ ∪ {0} denote the areas of the gray sector and the tri-
angle with the vertices xi , p1 , and p2 in Fig. 5, respectively. Then, geometric 
computation provides 

  
where we use the fact that Fig. 5 is symmetric with respect to the line with p1 
and p2 because r is the same for agents i and k. The definition of Ji and Fig. 5 
imply 

Substituting (13) and (14) into (15) gives (12), which proves the statement.
 (ii) This is a straightforward consequence of the definition of Ji and Fig. 5.

  ◻

Lemma 2 implies that for an agent i satisfying (C1) and (C2), the local perfor-
mance index Ji is characterized by the distance ‖xi − xk‖ . In particular, statement 
(ii) means that an increase or decrease in Ji corresponds to that in ‖xi − xk‖ sub-
ject to ‖xi − xk‖ < r . Therefore, we investigate whether ‖xi − xk‖ increases via the 
controller Ki given by (4) and (8)–(10) or not.

(13)as =
r2

4
cos−1

�‖xi − xk‖
r

�
,

(14)at =
‖xi − xk‖

2

��
r

2

�2

−

�‖xi − xk‖
2

�2

,

(15)Ji([xj]j∈ℕi
) =

�r2

4
− 2(as − at).

Fig. 5  Relationship between xi 
and xk . This and the defini-
tion of Ji imply that Ji can be 
calculated from the areas of 
�(xi, r∕2) , the gray sector, and 
the triangle with the vertices xi , 
p1 , and p2
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Based on this idea, we obtain the following theorem:

Theorem  1 For the feedback system given by (3), (4), and (8)–(10), assume that 
Assumption 1 holds and the state �i(t) is given. Then,

holds with probability 1 if either of the following two conditions holds:

where �s,�c ∶ ℝ2 ×ℝ2 ×ℝ → ℝ are the functions defined by

for the angle �(xi(t), xk(t)) ∈ (−�,�] satisfying

Proof From Lemma 2, we can prove (16) by showing that ‖xi(t) − xk(t)‖ increases 
when only agent i moves, i.e., ‖xi(t + 1) − xk(t)‖ > ‖xi(t) − xk(t)‖ . In the following, 
we assume xk(t) = 0 without loss of generality and show ‖xi(t + 1)‖ > ‖xi(t)‖.

First, we consider the condition (17). From (4) and (9), the inequality 
�i(t) ≤ Ji([xj(t)]j∈ℕi(t)

) indicates that ui(t) = [v 0]⊤ holds. This and (3) yield

Thus, ‖xi(t + 1)‖ > ‖xi(t)‖ holds if

Applying (1) and v > 0 to (23) yields

Hence, ‖xi(t + 1)‖ > ‖xi(t)‖ holds under �i(t) ≤ Ji([xj(t)]j∈ℕi(t)
) and (24). By consider-

ing the case of xk(t) ≠ 0 and replacing ‖xi(t)‖ and �(xi(t), 0) in (24) with ‖xi(t) − xk(t)‖ 

(16)Ji([xj(t)]j∈ℕi(t)
(i, xi(t + 1))) > Ji([xj(t)]j∈ℕi(t)

)

(17)𝜉i(t) ≤ Ji([xj(t)]j∈ℕi(t)
),𝜙s(xi(t), xk(t), 𝜃i(t)) > −

v

2
,

(18)

𝜉i(t) > Ji([xj(t)]j∈ℕi(t)
),

− (v − 𝜙s(xi(t), xk(t), 𝜃i(t))) <
√
3𝜙c(xi(t), xk(t), 𝜃i(t))

< v − 𝜙s(xi(t), xk(t), 𝜃i(t)),

(19)�s(xi(t), xk(t), �i(t)) ∶= ‖xi(t) − xk(t)‖ sin(�i(t) + �(xi(t), xk(t))),

(20)�c(xi(t), xk(t), �i(t)) ∶= ‖xi(t) − xk(t)‖ cos(�i(t) + �(xi(t), xk(t)))

(21)sin(�(xi(t), xk(t))) =
xi1(t) − xk1(t)

‖xi(t) − xk(t)‖ , cos(�(xi(t), xk(t))) =
xi2(t) − xk2(t)

‖xi(t) − xk(t)‖ .

(22)
‖xi(t + 1)‖ =

�
(xi1(t) + v cos �i(t))

2 + (xi2(t) + v sin �i(t))
2

=

�
‖xi(t)‖2 + v2 + 2v(xi1(t) cos �i(t) + xi2(t) sin �i(t)).

(23)v2 + 2v(xi1(t) cos 𝜃i(t) + xi2(t) sin 𝜃i(t)) > 0.

(24)v + 2‖xi(t)‖ sin(𝜃i(t) + 𝛼(xi(t), 0)) > 0.
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and �(xi(t), xk(t)) , respectively, we can derive 𝜙s(xi(t), xk(t), 𝜃i(t)) > −v∕2 , where 
�s(xi(t), xk(t), �i(t)) is defined in (19). This and the discussion at the beginning of the 
proof indicate that (16) holds under (17).

Next, we consider the condition (18). Equations (4) and (9) imply that 
ui(t) = [v 2𝜋∕3]⊤ or [v − 2𝜋∕3]⊤ holds when 𝜉i(t) > Ji([xj(t)]j∈ℕi(t)

) . In the case of 
ui(t) = [v 2𝜋∕3]⊤ , a calculation similar to the above yields

which indicates that ‖xi(t + 1)‖ > ‖xi(t)‖ holds if

Using (1) and v > 0 for (26), we obtain

From the formula for trigonometric addition, (27) is calculated as

Hence, ‖xi(t + 1)‖ > ‖xi(t)‖ holds under 𝜉i(t) > Ji([xk(t)]k∈ℕi(t)
) and (28). By 

considering the case of xk(t) ≠ 0 and replacing ‖xi(t)‖ and �(xi(t), 0) in (28) with 
‖xi(t) − xk(t)‖ and �(xi(t), xk(t)) , respectively, we obtain

where �c(xi(t), xk(t), �i(t)) is defined in (20). Similarly, in the case of 
ui(t) = [v − 2𝜋∕3]⊤ , a condition corresponding to (29) is derived as

Combining (29) and (30) yields the second inequality in (18). Consequently, 
from the discussion at the beginning of the proof, (16) holds in both cases of 
ui(t) = [v 2𝜋∕3]⊤ and [v − 2𝜋∕3]⊤ , i.e., wi(t) = 1 and −1 , under (18). This com-
pletes the proof.   ◻

Theorem 1 indicates that under Assumption 1 and (17) or (18), the local perfor-
mance index Ji increases with probability 1 when only agent i moves, although the 

(25)

‖xi(t + 1)‖
=

�
(xi1(t) + v cos(�i(t) + 2�∕3))2 + (xi2(t) + v sin(�i(t) + 2�∕3))2

=

�
‖xi(t)‖2 + v2 + 2v(xi1(t) cos(�i(t) + 2�∕3) + xi2(t) sin(�i(t) + 2�∕3)),

(26)v2 + 2v(xi1(t) cos(𝜃i(t) + 2𝜋∕3) + xi2(t) sin(𝜃i(t) + 2𝜋∕3)) > 0.

(27)v + 2‖xi(t)‖ sin(𝜃i(t) + 2𝜋∕3 + 𝛼(xi(t), 0)) > 0.

(28)

v + 2‖x
i
(t)‖ sin(𝜃

i
(t) + 2𝜋∕3 + 𝛼(x

i
(t), 0))

= v + 2‖x
i
(t)‖(sin(𝜃

i
(t) + 𝛼(x

i
(t), 0)) cos(2𝜋∕3)

+ cos(𝜃
i
(t) + 𝛼(x

i
(t), 0)) sin(2𝜋∕3))

= v − ‖x
i
(t)‖ sin(𝜃

i
(t) + 𝛼(x

i
(t), 0)) +

√
3‖x

i
(t)‖ cos(𝜃

i
(t) + 𝛼(x

i
(t), 0))

> 0.

(29)v − 𝜙s(xi(t), xk(t), 𝜃i(t)) +
√
3𝜙c(xi(t), xk(t), 𝜃i(t)) > 0,

(30)v − 𝜙s(xi(t), xk(t), 𝜃i(t)) −
√
3𝜙c(xi(t), xk(t), 𝜃i(t)) > 0.
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controller Ki given by (4) and (8)–(10) is stochastic. This result provides answers to 
questions (a) and (b) in Sect. 3.2.

In addition, the following corollary is directly obtained from Lemma 1 and 
Theorem 1.

Corollary 1 In the same situation as that of Theorem 1,

holds with probability 1 if either (17) or (18) holds.

This result extends Theorem 1 to the performance index J. Namely, in the same situ-
ation as that of Theorem 1, J increases with probability 1 when only agent i moves.

Remark 4 The above results do not guarantee that the agents always spread via the 
controllers given by (4) and (8)–(10). However, Corollary 1 indicates that the perfor-
mance index J increases under certain conditions, which provides partial evidence 
for the spread of the agents in the sense of the increase in J. Such theoretical evi-
dence was not provided in the previous study [8].

4.3  Numerical experiments

Consider the multi-agent system with n ∶= 2 and r ∶= 0.5 . The coverage space 
is chosen as ℚ ∶= [0, 2]2 . We employ the controllers K1 and K2 given by (4) and 
(8)–(10) with v ∶= 0.1.

Fig. 6 (a) shows the position x1(t) of agent 1 (corresponding to agent i) at a time t 
such that (C1) and (C2) in Assumption 1 and either (17) or (18) in Theorem 1 are 

(31)J(x(t)(i, xi(t + 1))) > J(x(t))

Fig. 6  Examples for Theorem  1. a Position x1(t) of agent 1 (corresponding to agent i) at a time 
t such that (C1) and (C2) in Assumption 1 and either (17) or (18) in Theorem  1 are satisfied, where 
�1(t) = �∕4 and the position x2(t) of agent 2 (corresponding to agent k) is set as x2(t) = [1 1]⊤ . The 
black and gray dots indicate x1(t) such that (17) and (18) are satisfied, respectively. The blue triangle 
represents x2(t) , and the black circle represents �(x2(t), r) . The state �1(t) is determined by calculating 
the previous positions x1(t − 1) and x2(t − 1) from (3) and u

�1(t − 1) = v for every � ∈ {1, 2} and using 
�1(t) = J1([xj(t − 1)]j∈ℕ1(t−1)

) , where �2(t) = �∕2 . b Possible x1(t + 1) resulting from the controller K1 . 
The black and gray dots correspond to those in (a). Agent 1 moves away from agent 2



884 New Generation Computing (2022) 40:871–887

123

satisfied. We observe that there exist regions where the conditions for increasing J1 
are satisfied. In addition, Fig. 6 (b) shows the possible x1(t + 1) resulting from the 
controller K1 . It turns out that agent 1 moves away from agent 2. For all of the posi-
tions shown in Fig.  6  (a) and (b), we can numerically confirm that 
J1([xj(t)]j∈ℕ1(t)

(1, x1(t + 1))) > J1([xj(t)]j∈ℕ1(t)
) holds, which validates Theorem 1.

Fig. 7  Time series of the agent positions for coverage. The numbers 1–7 denote the agent indices, the 
small circles and the line segments represent the translational and rotational positions of the agents, 
respectively, and the large circles represent �(x

�
(t), r∕2) for � = 1, 2,… , 7 . The agents move so that the 

large circles do not overlap with each other
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Next, we present an example for coverage1. Consider the case of n ∶= 7 and 
r ∶= 0.65 . The coverage space ℚ and the controllers K

�
 with � = 1, 2,… , 7 are the 

same as above, except for v ∶= 0.04 . Fig.  7 displays snapshots of the agent posi-
tions at several time steps. Fig.  8 illustrates the change in the performance index 
J(x(t)) over time. These results demonstrate that coverage is achieved. We further 
show in Fig.  9 the change in the local performance indices J

�
([xj(t)]j∈ℕ

�
(t)) with 

� = 1, 2,… , 7 over time. We can confirm that each controller K
�
 steers agent � so 

that J
�
 increases.

5  Conclusion

In this study, we theoretically analyzed the performance of stochastic coverage con-
trollers inspired by bacterial chemotaxis. More precisely, we addressed the problem 
of determining whether a performance index quantifying the achieved degree of 

Fig. 8  Time evolution of the performance index J. The thin line indicates the maximum value of J that 
is calculated as the sum of the areas of seven circles of the radius r/2. The performance index J increases 
over time and reaches values close to the maximum value

Fig. 9  Time evolution of the local performance indices J
�
 with � = 1, 2,… , 7 . The thin line indicates the 

maximum value of J
�
 with � = 1, 2,… , 7 that is calculated as the area of a circle of the radius r/2. Each 

J
�
 increases over time, similar to J 

1 Although similar results can be found in [8], we present this different example to ensure that the paper 
is self-contained.
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coverage increases over time for the feedback system. For this problem, we showed 
that the performance index increases with probability 1 under certain conditions by 
focusing on the distance between agents.

The results of this study partially indicate that the controllers mimicking a control 
algorithm of bacteria achieve coverage from a theoretical point of view. The major 
difference between the controllers and the original bacteria algorithm is that, in the 
controllers, the concentration of a chemical attractant is replaced by the value of the 
local performance index. Hence, we can expect the application of the controllers to 
coverage by molecular robots if each robot can obtain information corresponding to 
the local performance index.

Finally, we discuss the future work. Because this study focused on the case of two 
agents for the simplicity of the analysis, we should consider the case of more agents 
in the future. In addition, our chemotaxis-inspired controllers can handle other tasks 
(e.g., rendezvous) [8], and thus we plan to extend the results of this study to such 
tasks.
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