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Abstract
One of the most difficult research areas in today’s healthcare industry to combat the 
coronavirus pandemic is accurate COVID-19 detection. Because of its low infec-
tion miss rate and high sensitivity, chest computed tomography (CT) imaging has 
been recommended as a viable technique for COVID-19 diagnosis in a number of 
recent clinical investigations. This article presents an Internet of Medical Things 
(IoMT)-based platform for improving and speeding up COVID-19 identification. 
Clinical devices are connected to network resources in the suggested IoMT platform 
using cloud computing. The method enables patients and healthcare experts to work 
together in real time to diagnose and treat COVID-19, potentially saving time and 
effort for both patients and physicians. In this paper, we introduce a technique for 
classifying chest CT scan images into COVID, pneumonia, and normal classes that 
use a Sugeno fuzzy integral ensemble across three transfer learning models, namely 
SqueezeNet, DenseNet-201, and MobileNetV2. The suggested fuzzy ensemble tech-
niques outperform each individual transfer learning methodology as well as train-
able ensemble strategies in terms of accuracy. The suggested MobileNetV2 fused 
with Sugeno fuzzy integral ensemble model has a 99.15% accuracy rate. In the pre-
sent research, this framework was utilized to identify COVID-19, but it may also be 
implemented and used for medical imaging analyses of other disorders.
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Introduction

In several countries, IoMT has been used in parallel with other techniques to 
restrict the spread of COVID-19, enhance the safety of front-line staff, placing 
greater emphasis by lowering the impact of the illness on human lives, and reduce 
fatality rates. Specifically, the extensive adoption of IoMT in healthcare facilities 
may assist in gathering huge medical and healthcare data, which can be utilized 
by medical practitioners to detect and identify disorders, subsequently proposing 
suitable therapies. Patients may extend their health status to an IoMT ecosystem 
through the Internet on a regular basis, and the data is shared with nearby clin-
ics and municipal health agencies [1]. Hospitals could provide eHealth therapies 
based on the client’s health status, and the authorities should provide equipment 
and allocate quarantine venues such as theaters and hotels. Users may monitor 
their illness severity and get appropriate medical care with the help of IoMT plat-
form’s deployment. It reduces national health expenditures, relieves strain on 
medical equipment, and provides a complete database that allows the government 
to avoid disease spread, allocate resources, and implement rapid regulation [2].

This research presents an IoMT-based platform to allow a speedy and safe 
detection of COVID-19. The potential of IoMT includes more accurate diagno-
sis, less errors, and reduced costs of treatment. Paired with smartphone apps, the 
technology enables users to communicate their healthcare information to physi-
cians to better monitor diseases and track and avoid chronic illnesses [3]. This 
paper describes a COVID-19 diagnostic system based on IoMT that uses several 
transfer learning methods. First, data from patients is collected via IoT devices 
and then the sent to the cloud. Image augmentation and preprocessing are done 
initially once the data has been collected by IoMT devices and transferred to the 
cloud.

COVID-19 has spread over the globe, and the identification of COVID-19 using 
CT scans of the lungs has been clinically confirmed. Due to its capacity to detect 
lung structures, radiological imaging using computed tomography (CT) has emerged 
as a possible alternative approach of diagnosis. According to relevant research [4], 
CT scans of the lungs may play a role in the early diagnosis of COVID-19. CT 
image interpretation and diagnosis is a very complex procedure that requires physi-
cians’ professional expertise and experience. The physician’s manual experience is 
a labor-intensive and time-consuming technique. Because RT-PCR test has a poor 
sensitivity and a high false-negative rate [5], many COVID-19-positive individuals 
are mistakenly identified as negative. Several deep learning-based techniques for 
automating the process of identifying COVID-19 infection from lung CT scan pic-
tures have been created recently. However, for the ultimate judgment, the majority of 
them depend on a single model forecast; this may or may not be right. We employed 
the Sugeno fuzzy integral technique in this article, which combines the strength of 
multiple transfer learning models before making a final judgment. Using lung CT 
scan pictures, we employ several transfer learning models such as SqueezeNet, 
DenseNet-201, and MobileNetV2. All of these trained models are then combined to 
form a powerful ensemble classifier, which provides the final prediction.



1127New Generation Computing (2022) 40:1125–1141 

123

The article is organized as follows. The Sect.  2 provides a literature review, 
Sect.  3 discusses the description of the materials and methods in the subsequent 
Sect. 4 “Result Analysis” contains the experimental data and analyses. The conclu-
sion and future efforts are all mentioned in the concluding Sect. 5.

Literature Review

In the majority of investigations, CT scans were used as imaging modalities for 
COVID-19 diagnosis. In this sense, the study comprises a number of studies on 
different transfer learning algorithms for detecting coronavirus using CT imag-
ing. InceptionNet was used by Wang et al. [6] to detect abnormalities linked with 
COVID-19 in lung CT scan images. InspectionNet was tested on 1065 CT images 
and found 325 COVID-19-positive patients with an accuracy of 85.20%. Zhao 
et al. [7] developed a dataset called COVID-CT consisting of 397 and 349 COVID-
19-positive and -negative CT scans available for academic usage. Using 3D CT 
scans, Zheng et al. [8] proposed a poorly supervised DL technique for diagnosing 
COVID-19 patients. They used a pre-trained UNet technique to segment 3D lung 
pictures and achieved a 95.9% accuracy rate. In CT scan imaging, Xu et  al. [9] 
used 3D CNN models to detect coronavirus infection from influenza. The author 
employed the ResNet CNN model and achieved an accuracy of 86.70%. Chen et al. 
[10] used the UNet design to find coronavirus pneumonia. The authors trained their 
model on 106 examples and achieved a classification accuracy of 98.85%. COVID-
19 detection neural network (COVNet) was developed by Li et al. [11] to recover 
features from chest CT scans for detection of coronavirus infection in patients, with 
a 95% accuracy. Angelov et al. [12] achieved 94.96% accuracy on a SAR-CoV-2 CT 
scan dataset using VGG16, but only for models trained upon unaugmented imagery. 
Shah et al. [13] employed VGG-19 model and attained an accuracy of 94.52%. Peru-
mal et  al. [14] suggested AlexNet paired with SVM model to identify COVID-19 
using chest CT scan pictures with an accuracy of 96.69%. Further, a few research 
[15–36, 46] employed multiple transfer learning models to identify COVID-19 
patients.

According to a study of related literature, few researchers have worked on fuzzy 
ensemble techniques linked with transfer learning models. The fundamental benefit 
of ensemble learning is that it evaluates and integrates all the choices by multiple 
models rather than depending on a single classifier [37]. An ensemble will be suc-
cessful only if individual classifiers exhibit diversity while producing the prediction. 
Merging deep transfer learning models with fuzzy ensemble techniques may boost 
the accuracy and durability of a detection system. Our suggested work’s originality 
and key contributions are as follows.

1. The current study leverages the ensemble learning approach for classifier fusion.
2. We have used SqueezeNet, DenseNet-201, and MobileNetV2 transfer learning 

models as foundation models. To aggregate the basic models’ predictions and to 
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provide superior outcomes, we employed trainable ensemble and Sugeno fuzzy 
integral ensemble techniques.

3. In this work, the Sugeno fuzzy integral was used to assemble the aforesaid clas-
sifiers to overcome the drawbacks of using the simple fusion technique.

Fuzzy integrals [38] are efficient aggregators that use the level of unpredictabil-
ity in evaluation scores as extra info for classifier fusion. It may be considered of 
as a generalization of aggregation procedures on a collection of confidence scores 
with some weighting assigned to each source of data, referred to as fuzzy meas-
ures. Unlike the fundamental fusion techniques in the literature, which use fixed pre-
determined weights, the Sugeno fuzzy integral uses the confidence of base learners’ 
predictions to add adaptive weights to each input to the model.

Materials and Methods

Proposed Framework

Figure 1 depicts the suggested IoMT-based framework for COVID-19 classification 
from CT images. Smart IoT sensors are used to send CT scan images. Low-range 
networking equipment constitutes the local area network (LAN). From the intelli-
gent IoT sensor and the device, this layer communicates the obtained signals to the 
next layer called the hosting layer. Various intelligent devices, such as portable mul-
timedia or computers that can store and transfer signals, constitute the hosting layer. 
The intelligent devices are linked to a wide area network (WAN), which sends data 
from the devices to the cloud. The WAN layer sends information to the cloud in 
real time via specialized networks such as Cellular LAN, 4G, or 5G. Patient infor-
mation is authenticated and sent to the transfer learning cognitive module via the 
cloud manager. Data is sent through intelligent IoT sensors. Any of these sensors 
may be included into the patient’s environment. This gadget can also communicate 
with other IoT devices. The LAN is made up of short-range networking technologies 
such as Bluetooth and Zigbee.

The hosting layer supports smart devices such as tablets, mobiles, human digi-
tal assistants, and laptops. These gadgets have specific programs that compute the 
signals received and save data locally. These compact processing tools allow users 
to acquire generic and provisional health assessments. The data is sent to the cloud 

Fig. 1  Proposed IoMT architecture for COVID-19 detection
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processing unit over the WAN layer. A cloud manager and a transfer learning cog-
nitive module make up the cloud layer. The cloud manager is in charge of data 
flow and ensures that all authentication mechanisms are in place to ensure that all 
intelligent city actors’ identities are verified. After patient verification, the transfer 
learning cognitive module analyzes the data and evaluates the patient’s condition. It 
makes informed judgments based on CT scan images to detect COVID-19. Finally, 
medical specialists will analyze the data and keep track of the patients. Potential 
care may be assessed if the patient requires emergency treatment.

The cognitive system checks the patient’s state and sends the CT scan image to 
the cloud, where the transfer learning cognitive module may evaluate it. Using chest 
CT scan images, the suggested automated framework achieves excellent classifi-
cation sensitivity and accuracy while also being a considerably quicker technique. 
The suggested technique may be utilized with fresh test pictures being sent through 
the model to provide ensemble predictions. The complementary nature of the data 
obtained by the multiple transfer learning models is proven by examining the statis-
tical dissimilarities from the decision values for each transfer learning model. The 
transfer learning classifiers are combined using the trainable ensemble and the Sug-
eno fuzzy integral. To extract features and classify them accurately, the CT scan 
images in this study must be suitable with the pre-trained transfer learning mod-
els. As a result, the first step is to scale the images to their original proportions, 
which is the standard form employed in neural networks. The COVID-19 is detected 
by the transfer learning module, which then returns the three-classification effects. 
The cognitive system anticipates future tasks based on these discoveries. These 
findings are shared with health specialists in the form of medical reports for a full 
examination. In the case of an emergency, the cognitive gadget generates alerts and 
messages, and a smart ambulance can quickly identify and meet the patient. The 
smart traffic technology also enables emergency vehicles to get to their destination 
in the quickest possible time by using the shortest route. Transfer learning mod-
els fused with fuzzy ensemble technique cognitive module is depicted in Fig. 2. A 
224 × 224 × 3 input image was used, as well as a dense layer with 4096 nodes and a 
softmax layer with three output nodes.

Transfer Learning Models

SqueezeNet SqueezeNet is a CNN that uses design tactics to minimize the number 
of parameters, particularly via the use of fire modules, which squeeze parameters 

Fig. 2  Transfer learning models fused with fuzzy ensemble techniques cognitive module
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using 1 × 1 convolutions. It is an 18-layer deep CNN. With 50 times less parameters, 
it can attain an accuracy equivalent to AlexNet [39]. SqueezeNet’s Fire module is a 
critical component for efficiently reducing the amount of parameters. SqueezeNet 
starts with a single convolution layer, then eight fire modules, and a final convolu-
tion layer. From the beginning to the conclusion of the network, we progressively 
expand the number of filters per fire module. After layers conv1, fire4, fire8, and 
conv10, SqueezeNet executes max-pooling with a stride of 2; these pooling loca-
tions are rather late (Fig. 3).

DenseNet-201 The DenseNet-201 is a 201-layer CNN. DenseNet201 utilizes the 
condensed network, giving simple to train and extremely parameterized effective 
methods [40]. This is due to the possibility for feature reusing by multiple layers, 
which enhances variance in the subsequent layer input and improves performance. 
DenseNet201 has performed well on a variety of datasets, including ImageNet and 
CIFAR-100. In DenseNet-201, the network links each layer to the next in a feed-
forward fashion. Each subsequent layer uses the feature maps from the previous lev-
els as input. Each layer in this network receives a cumulative knowledge from all the 
levels before it. Every preceding layer’s connection is added to the DenseNet-201. 
The DenseNet has the benefit of reducing the disappearing issue since it incorpo-
rates feature maps from all previous levels. It improves feature propagation while 
reducing the number of parameters (Fig. 4).

MobileNetV2 One of the most lightweight network architectures is MobileNetV2. 
The inverted residual with linear bottleneck layer module in MobileNetV2 greatly 
minimizes the amount of memory required for processing. MobileNetV2 expands on 
MobileNetV1’s concepts by using depth-wise separable convolution as an efficient 
building element. As shown in Fig. 1, the MobileNetV2 design [41] has two kinds 
of blocks: a residual block with a stride of 1 and a shrinking block with a stride of 
2. Both kinds of blocks feature three layers, with the first layer including an 11 con-
volution with ReLU6, the second layer containing depth-wise convolution, and the 
third layer containing another 11 convolution without non-linearity. Figure 4 depicts 
the input, operator, and output of each layer (Fig. 5).

Data Set

The China National Center for Bio-information provided the CT chest imaging data-
set that we utilized in our investigation. Three groups of photos have been labeled. 
The collection contains CT images of 999 COVID-19 patients, 1468 pneumonia 
patients, and 1,687 healthy individuals. From the whole dataset, we utilized an equal 
number of pneumonia, COVID-19-positive, and normal CT scans. There are 650 
images in each class. The CT image provided to the system is 224 × 224 × 3 pixels 
in size. To assess whether or not a person has breast cancer, Tensor Flow and Keras 
deep learning models were developed. The data was split into 70% and 30% ratio 
for the training and test set, with the same groups being used for all models. Few 
pre-trained model layers were utilized to extract the characteristics from the training 
images. The pre-trained models were able to classify lung CT images based on class 
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Fig. 3  SqueezeNet
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Fig. 4  DenseNet201
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labels given to the training dataset. In this paper, we have used the balance dataset 
and the learning curve is shown in Fig. 6.

Experimental Environment

The suggested architecture was developed in Python 3.6 with PyCharm in a Win-
dows 10 environment, employing several AI and image-processing packages to 
improve training efficiency and speed. Numpy, scipy, openCV, and fastai libraries 
were used in our testing setup, which was accelerated by a GPU with 8 GB dedi-
cated memory running the Keras deep learning framework backend. We utilized 25 
epochs and a learning rate of 0.0001 for training, which were both small enough to 
prevent overfitting the transfer learning models. We utilized the SDG optimizer for 
compilation, and after extracting features from pre-trained models, employed dense 

Fig. 5  MobileNetV2

Fig. 6  Learning curve
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layers with 4096 neurons each as part of the classifier, using Rectified Linear Unit 
(ReLU) as the activation function. The accuracy curves produced by the three mod-
els after training are presented in Fig. 7.

Ensemble Technologies

Ensemble learning is a method of combining the most important characteristics of 
two or more base learners. Because ensembling minimizes the variation in the pre-
diction errors, such a framework performs better than its component models.

Trainable ensemble In this scenario, we utilized a different classifier to combine 
the scores of all the basic models. All of the basis models’ class scores were sam-
ple-wise flattened into a single feature vector. Then we chose a classifier that pro-
vided excellent results when we compared the flattened test and train data scores to 
the outcomes of the train and test. Here, we used a multilayer perceptron (MLP) in 
our research. Nodes are the primary components of a neural network (NN). These 
nodes are frequently grouped together as layers. In NN, data is sent from one layer to 
the next. The flow of information in the feed-forward neural network (FNN) [42] is 
fixed in one direction, from the input layer to the output layer. Assume the preceding 
layer has m nodes, with each node i forwarding the value xi to a specific node j in 
the current layer. The output z of node j will then be

where wi is the weight allocated to the route from node i to node j , and � is the acti-
vation function present in the current layer. The basic goal of FNNs is to improve wi.

The FNN must include at least one hidden layer between the input and output lay-
ers in any MLP [43] design. We used a basic MLP architecture with just one hidden 
layer and 16 features in our research. The MLP took a total of k.l score features as 
inputs and returned k score values for all classes, allowing the ensemble model to 
utilize the deep learning network as an aggregator.

Sugeno fuzzy integral Tahani et  al. [44] introduced the Sugeno fuzzy-λ measures. 
Assume an accumulation of decision scores D =

{

d1, d2, d3,… , dn
}

,  where M is 

y = �

(

∑

i

(wi.xi)

)

,

Fig. 7  Accuracy graph for a SqueezeNet b DenseNet-201, and c MobileNetV2
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the number of information sources (in this example, M = 3). The function fλ ∶ 2D is 
the Sugeno-λ measure. D is a number that spans from 0 to 1 and meets the following 
criteria:

1. fλ(D) = 1.

If ei ∩ ej = φ , Eq. (1) holds truth value if and only if λ > −1.

As a result, as shown in Eq. (2), λ is the real root.

The Sugeno integral [45] definition is stated as: If ( Z, μ ) is a measurable (Borel) 
space,f ∶ Y → [0, 1] is a μ-measurable function, Eq. (3) shows the Sugeno integral of 
the measurable function D in terms of fuzzy measure ψ.

∫ f (y)dψ = max
(

min(f (yi
)

,ψ(Zi))), 1 ≤ i ≤ n, where �
(

Zi
)

= �
{

yi, yi+1, yi+2,… , yn
}

 
and  

{

f (y1), f (y2),… , f (yn)
}

 are the ranges specified as f (y1) ≤ f (y2),≤ … ,≤ f (yn) . 
The detailed Sugeno integral algorithm is mentioned below.

Algorithm: Sugeno Fuzzy Integral

Input: D represented as set of decision scores, n represented as set of base learners, c represented as 
number of classes, F represented as set of fuzzy measures
Output: Final Predictions: Â represented as final predictions

1. Initialize by solving Eq. (2)
predictions – create an empty list of final predictions
for class index ∈ (0,1,… − 1) do

= sort array D in decreasing order
= Permutation of F according to Dπ

= [0]
pred [0] × [0]
for ∈ (1,2, 3… ) do

a. = [ ] + + × . [ ]
= ( – ) × +
=

2. end for
3. [ ] =

end for
4. Â = ( [ ])

(1)f�(ei ∩ ej) = f�(ei) + fλ(ej) + � ⋅ f�(ei(ej)...

� + 1 =

M
∏

m=1

(λ.f
(

em
)

+ 1.
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Result Analysis

The fuzzy logic-based ensemble works particularly well when assigning weights 
to the predictions for reaching an ultimate decision on an image’s class since the 
confidence in a classifier’s prediction is taken into consideration for each sample 
when allocating weights to the predictions. Table 1 shows the results of an ensemble 
formed using three transfer learning models, demonstrating that the Sugeno integral 
greatly outperforms the others. The trainable ensemble approach is also very effec-
tive. Each model’s accuracy, F1-score, sensitivity, and specificity were assessed, 
with the results shown in Table 1. Figures 8, 9, and 10 demonstrate the confusion 
matrices of the SqueezeNet, DenseNet-201, and MobileNetV2 using fuzzy ensem-
ble approaches. Table 2 compares the results of several transfer learning methodolo-
gies to the suggested CT imaging methodology.

Table 1  Performance indicators for various transfer learning models using fuzzy ensemble technologies

Models Class Recall Precision Specificity F1-score Accuracy (%)

SqueezeNet Positive 0.964 0.974 0.987 0.969 97.09
Normal 0.979 0.965 0.982 0.972
Pneumonia 0.969 0.974 0.987 0.972

SqueezeNet + trainable ensem-
ble

Positive 0.969 0.984 0.992 0.977 97.44
Normal 0.979 0.970 0.985 0.974
Pneumonia 0.974 0.969 0.985 0.972

SqueezeNet + Sugeno fuzzy 
integral

Positive 0.974 0.979 0.990 0.977 97.78
Normal 0.979 0.979 0.990 0.979
Pneumonia 0.979 0.974 0.987 0.977

DenseNet-201 Positive 0.974 0.974 0.987 0.974 97.61
Normal 0.979 0.979 0.990 0.979
Pneumonia 0.974 0.974 0.987 0.974

DenseNet-201 + trainable 
ensemble

Positive 0.979 0.970 0.985 0.974 97.95
Normal 0.979 0.985 0.992 0.982
Pneumonia 0.979 0.985 0.992 0.982

DenseNet-201 + Sugeno fuzzy 
integral

Positive 0.985 0.980 0.990 0.982 98.29
Normal 0.979 0.985 0.992 0.982
Pneumonia 0.985 0.985 0.992 0.985

MobileNetV2 Positive 0.985 0.975 0.987 0.980 98.12
Normal 0.979 0.990 0.995 0.985
Pneumonia 0.979 0.979 0.990 0.979

MobileNetV2 + trainable 
ensemble

Positive 0.985 0.990 0.995 0.987 98.80
Normal 0.990 0.985 0.992 0.987
Pneumonia 0.990 0.990 0.995 0.990

MobileNetV2 + Sugeno fuzzy 
integral

Positive 0.990 0.990 0.995 0.990 99.15
Normal 0.990 0.990 0.995 0.990
Pneumonia 0.995 0.995 0.997 0.995
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Conclusion

For COVID-19 patient recognition using CT scans, this research provides an 
IoMT-based technique combined with fuzzy ensemble and transfer learning 

Fig. 8  SqueezeNet, SqueezeNet + trainable ensemble, and SqueezeNet + Sugeno fuzzy integral confusion 
matrix representation

Fig. 9  DenseNet-201, DenseNet-201 + trainable ensemblec and DenseNet-201 + Sugeno fuzzy integral 
confusion matrix representation

Fig. 10  MobileNetV2, MobileNetV2 + trainable ensemble, and MobileNetV2 + Sugeno fuzzy integral 
confusion matrix representation
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models. Early identification of pneumonia is critical for deciding the best course 
of therapy and preventing the illness from posing a life-threatening hazard to 
the patient. This work created an IoMT-based system that combines deep trans-
fer learning models combined with a fuzzy ensemble technique to categorize CT 
images into three classes: normal, COVID-19 positive and pneumonia. The sug-
gested approach assembles the characteristics of three pre-trained models using 
deep transfer learning methods and Sugeno integral. The accuracy rate of the 
recommended MobileNetV2 fused with trainable ensemble and Sugeno fuzzy 
ensemble model is 98.80% and 99.15%, respectively. In the future, this research 
might be expanded to enable the identification of a range of lung infections using 
CT scan image. The suggested model may be modified to include picture fusion 
methods in future study. The implementation of IoMT may alleviate the con-
straints placed on healthcare systems, yet IoMT also has security and privacy 
flaws. Blockchain technologies, on the other hand, have the potential to improve 
the privacy and security of IoMT systems.
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Table 2  The comparison of the performance of several transfer learning models with the suggested mod-
els for COVID-19 detection using CT imaging

Authors Technology Accuracy (%)

Wang et al. [6] InceptionNet 85.20
Polsinelli et al. [17] Light SqueezeNet CNN 85.03
Santa et al. [16] Two-stage transfer with stacked ensemble 86.70
Angelov et al. [12] VGG16 94.96
Shah et al. [13] VGG-19 94.52
Yu et al. [18] DenseNet-201 with cubic SVM model 95.34
Zheng et al. [8] UNet technique 95.9
Perumal et al. [14] AlexNet combined with SVM model 96.69
Krishnaswamy et al. [20] Fused lightweight CNN model 97
Halder et al. [15] DenseNet201 97
Yan et al. [19] AI-based multi-scale convolutional neural network 97.7
Chen et al. [10] UNetþþ architecture 98.85
Alquzi et al. [21] EfficientNet-B3 CNN 99
Proposed model MobileNetV2 fused with Sugeno fuzzy integral 99.15
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