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Abstract
Card-based cryptography is a variant of multi-party computation using physical 
cards like playing cards. There are two models on card-based cryptography, called 
public and private models. The public model assumes that all operations are exe-
cuted publicly, while the private model allows the players private operations called 
private permutations (PP, for short). Much of the existing card-based protocols were 
developed under the public model. Under the public model, 2n cards are necessary 
for every protocol with n-bit input since at least two cards are required to express a 
bit. In this paper, we propose n-bit input protocols with fewer than 2n cards by uti-
lizing PP, which shows the power of PP. In particular, we show that a protocol for 
(n-bit input) threshold function can be realized with only n + 1 cards by reducing the 
threshold function to the majority voting. Toward this end, we first offer that two-bit 
input protocols for logic gates can be realized with fewer than four cards. Further-
more, we construct a new protocol for three-input majority voting with only four 
cards by observing the relationship between AND/OR operations. This protocol can 
be easily extended to more participants, and to the protocol for threshold functions.
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Introduction

Background and Motivation

It is known that multi-party computation can be realized by a deck of physical cards 
[2], referred to as card-based cryptography. Card-based cryptography realizes 
secure computation with simple manual operations, such as permuting and reversing 
cards, which are used in ordinary card games. Hence, it attracts attention from the 
viewpoint of education because it is easier to understand and implement than gen-
eral cryptographic protocols. In this paper, we handle card-based cryptography that 
is constructed with two types of cards, ♣  and ♡ .

Much of the existing protocols in card-based cryptography assume a model that 
all operations are performed in a public area, such as on a table. We call such a 
model public. In the public model, using face-back cards is the only way to express 
a player’s input value privately. Since two cards are required for the arbitrary rep-
resentation of a Boolean value, 2n cards are necessary to construct an n-bit input 
protocol.

On the other hand, Marcedone et  al. [3] and Nakai et  al. [6, 8] independently 
proposed a new operating model that allows private permutations (PP), which is an 
operation to permute cards privately, such as by hiding the cards on her/his back. We 
call this model private. In particular, Marcedone et  al. [3] proposed two-bit input 
AND protocol with three cards, i.e., less than the lower bound of the number of 
cards in the public model, by utilizing PP.1 This result implies that PP has the power 
to break the lower bound in the public model. However, it is not obvious whether PP 
can break the lower bound other than the AND protocol.

Our Contributions and Ideas

In this paper, we propose several protocols with fewer number of cards than the 
lower bound of the public model by utilizing PPs. We summarize our contributions 

Table 1   Comparison between previous works and our results

Protocol References # of PPs # of Comm. # of Cards

OR [4] 5 3  4
Section "Three-Card OR Protocol" 2 1  3

XOR [5] 3 2  4
Section "Two-Card XOR Protocol" 2 1  2

Three-input [15] 18 9  6
majority voting Section 4 3 2  4
(t, n)-threshold [9] 4n

2
2n

2  2n + 2

function Section 5 n n − 1  n + 1

1  After the earlier version of this paper [7], the millionaires’ protocols are proposed with less than the 
lower bound of the number of cards in the public model [6, 10].
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in Table 1. We first propose the following two-bit input protocols with less than four 
cards by utilizing PP:

•	 three-card OR (in "Three-Card OR Protocol"), and
•	 two-card XOR (in "Two-Card XOR Protocol").

Our three-card OR protocol has the symmetric form of the thee-card AND protocol 
proposed by Marcedone et  al. [3]. The symmetric form enables us to unify these 
protocols to a protocol that realize simultaneously AND and OR operations with 
four cards. As we can see in the following idea, this simultaneous realization ena-
bles us to implement a three-input majority voting protocol that determines which 
of 0 and 1 is more dominant with three-bit values as inputs while keeping the input 
values privately.

Idea of three-input majority voting protocol Our main idea of the three-input 
majority voting protocol is to utilize the simultaneous realization of AND and OR 
operations. Observing the relations for a, b ∈ {0, 1},

it seems that a ∧ b and a ∨ b can be interpreted as the interim result of the majority 
voting between two players, called Alice and Bob. Here, we consider the strategy 
that a ∧ b and a ∨ b are given to the third player, called Carol who holds c ∈ {0, 1} . 
As we can see in the following simple relations, the desired value to learn the 
majority voting result is different whether a ∧ b or a ∨ b depending on c from the 
following:

From (1) to (4), Carol should choose a ∧ b if c = 0 and a ∨ b if c = 1 to determine 
the three-input majority voting. We note that Carol does not use any card to input c 
since she plays only the role of selecting a ∧ b or a ∨ b . Thus, we can obtain a proto-
col for the three-input majority voting without adding any cards from the simultane-
ous AND and OR protocol, i.e., we can construct it using only four cards.2

We show that our three-input majority voting protocol can be extended for more 
participants, i.e., it can be generalized to an n-input majority voting. We propose 
an efficient protocol for the (t, n)-threshold function based on the n-input majority 

(1)a ∧ b = 1 ⟺ a + b ≥ 2

(2)a ∨ b = 1 ⟺ a + b ≥ 1,

(3)c = 0 ∶ a + b + c ≥ 2 ⟺ a + b ≥ 2,

(4)c = 1 ∶ a + b + c ≥ 2 ⟺ a + b ≥ 1.

2  After the earlier version of this paper [7] was published, it was proposed how to realize three-input 
majority voting with only three cards [16]. In addition, in [17], it was shown that three-input majority 
could be achieved with six cards using a private selection instead of the private permutation.
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voting protocol. Our (t,  n)-threshold function protocol requires only n + 1 cards; 
nevertheless, at least 2n cards are required in the public model.

Organization

The remaining part of this paper is organized as follows: in the next section, we 
introduce operations used in this paper and explain the public and private models. 
In the third section, we describe the three-card AND protocol [3] and propose two-
card XOR and three-card OR protocols. In the fourth section, we first show how to 
obtain AND and OR results with four cards simultaneously, and we propose a three-
input majority voting protocol based on this protocol. Furthermore, we show that the 
three-input majority voting protocol can be extended to a threshold function proto-
col in the fifth section, which is the main difference from the earlier version [7]. We 
conclude this paper in the last section.

Operating Models in Card‑Based Cryptography

This paper uses two kinds of cards, ♣  and ♡  . We assume that the same type of 
cards are indistinguishable and the backs of all cards are the same, which are repre-
sented as ?  . We do not use card orientation information such as  .

Public Model

Much of previous works in card-based cryptography adopt the public model that 
assumes all operations to be performed publicly. In the public model, the following 
operations are used:

•	 Permutation permuting card order publicly.
•	 Reverse turning over a card publicly.
•	 Shuffle probabilistic permutation performed in public.

Efficiency is evaluated by the number of cards and the number of shuffles. In par-
ticular, the shuffle is a crucial operation to ensure privacy while making all opera-
tions public. The shuffle is a probabilistic permutation performed in public, and we 
assume that the result cannot be identified by all players, including the player who 
performed the operation. Many of the shuffles used in card-based cryptography do 
not completely randomize the order in the deck of cards but are defined as randomly 
selecting a permutation from a subset of all permutations. One of the shuffles is a 
random bisection cut [5]. We describe the procedure below.

For a positive integer v, suppose that there is a sequence of 2v face-down cards. 
Denote the left and right halves by �0 and �1 , respectively. Namely, we define
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Then, a player repeats the operation of interchanging �0 and �1 in a public area until 
all the players (including the player him/herself) cannot identify the order. Depicting 
this using figures, one of either

is selected with a probability 1/2, and all the players cannot distinguish the two 
cases. In other words, when the result is (�r,�1−r) , no player can identify the random 
value r ∈ {0, 1}.

In this public model, since we do not use oriental information of cards, two cards are 
necessary to express a bit, such as 0 ↦ ♣ ♡  and 1 ↦ ♣ ♡  . Hence, only we can do 
to conceal an input is using a pair of face-down cards ? ?  . The expression of a bit using 
two face-down cards is called commitment. The committed-format protocol has the advan-
tage that it can be executed without parties knowing their own input values. On the other 
hand, all our proposed protocols assume that parties know the value of their own input.

Private Model

Marcedone et al. [3] and Nakai et al. [6, 8] independently proposed a new operating 
model that allows players to use private operations. This paper adopts the private 
model, where we use the following operations3:

•	 (Public) permutation: permuting card order publicly.
•	 Private permutation (PP) permuting card order privately.
•	 Reverse turning over a card publicly.
•	 Communication handing over cards to another player.

Efficiency is evaluated by the number of cards, the number of PPs, and 
communications.

When comparing the efficiencies between protocols based on public and private 
models, we interpret shuffles in the public model as two PPs and one communica-
tion in the private model. For instance, the following procedure in the private model 
simulates the effect of a random bisection cut [5] in the public model.

For a positive integer v, suppose that Alice holds 2v face-down cards. 

1.	 Alice determines rA ∈ {0, 1} with a probability of 1/2, and privately swaps the 
card order rA times.

(5)

(6)

3  In this paper, we follow the operation model in [6, 8]. There are some operation models that allow the 
other private operations, such as the private reveal [12, 13].
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2.	 Alice sends the result (�rA ,�1−rA) to Bob.
3.	 Bob determines rB ∈ {0, 1} with a probability of 1/2, and privately swaps the card 

order rB times.

As a result of the above operations, the card order becomes (�rA⊕rB
,�1−rA⊕rB

) . Then, 
no player can tell the value of rA ⊕ rB since rA (resp. rB ) is kept secret for Bob (resp. 
Alice). Thus, we obtain the same result of a random bisection cut.

A shuffle can be realized by combining two PPs and one communication. Thus, 
we can convert a protocol based on the public model to one based on the private 
model by converting each shuffle to two PPs and one communication. When we 
compare the efficiency between the two models, a protocol based on the public 
model is converted to the private model.

In the private model, it is possible to express inputs with PP itself instead of using 
the commitment. This observation enables us to construct an n-bit protocol with less 
than 2n cards. In Sect. 3.1, we introduce three-card AND protocol [3] that succeeds 
in reducing the number of cards by the technique of expressing an input with PP.

In the public model, players’ malicious behaviors need not be considered since all 
operations are monitored by players. On the other hand, PP enables players’ mali-
cious behaviors.4 Our protocols suppose the semi-honest model, which assumes all 
players follow the protocols.

Proposed Protocols for Logic Gates

Starting from the three-card AND protocol [3], this section proposes three-card OR and 
2-card XOR protocols, which break the lower bound of the number of cards in the pub-
lic model. In this section, let a and b be binary inputs of Alice and Bob, respectively.

Basic Idea: Inputs by Utilizing PPs

In the Epilogue in [3] (Solution B), the three-card AND protocol is proposed as 
shown in Protocol 1.5 See step 2) in Protocol 1. Bob does not use the commitment to 
express his input, but he represents his input by PP. He uses only one card to input, 

Table 2   The relation between 
the result of step 2) and the 
output in Protocol 1

a b Step 2) Output

0 0 ♣Bob ♣Alice 0 ( ♣Bob)
0 1 ♣Alice ♣Bob 0 ( ♣Alice)
1 0 ♣Bob ♡Alice 0 ( ♣Bob)
1 1 ♡Alice ♣Bob 1 ( ♡Alice)

4  Abe et al. [1], Ono and Manabe [11] and Shimizu et al. [14] showed how to prevent malicious behav-
iors in the private model.
5  Slightly modified for later discussion, but essentially the same as the protocol in [3].
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and the protocol is realized with fewer than four cards, which is the lower bound of 
the public model. Namely, Protocol 1 succeeds in breaking the lower bound by uti-
lizing PP to express inputs.

Security Proof of three-card AND protocol: We present a brief overview of the 
security proof for Protocol 1, which will be useful to understand the security of the 
protocols proposed hereafter.

Table 2 shows the card order at the end of step 2) and the output of the protocol. 
Subscripts of ♣ and ♡ indicate the player who had the card originally.6 Since we 
compute AND, the player who inputs 1 can uniquely determine the other player’s 
input at the end of the protocol. Meanwhile, for the player who inputs 0, no infor-
mation must leak out to him/her. When Alice inputs a = 0 ( ♣ ), the output is either 
♣Alice or ♣Bob , which is opened by Bob and is indistinguishable from Alice. When 
Bob inputs b = 0 , he places his ♣Bob on the left, and he simply shows this card to 
Alice. Hence, he obtains no information on Alice’s input.

It is clear that no information is obtained by the players other than Alice and Bob 
(if such players exist) because the only information they can get is the output. 	�  ◻

Three‑Card OR Protocol

Since Marcedone et  al. [3] only concentrated on the construction of card-based 
AND protocols, no protocol was shown for the other logic gates using PP. Hereafter, 
we show card-based protocols for computing OR and XOR based on PPs, which are 
realized with three and two cards, respectively.

To construct card-based OR protocols, we should recall De Morgan’s law: 
a ∨ b = ¬(¬a ∧ ¬b) . The card-based OR protocol can be obtained from this iden-
tity by negating Alice’s input, Bob’s input, and the output. Specifically, when Alice 
inputs a = 0 , she should use ♡ (otherwise ♣ ), and when Bob inputs b = 0 , he should 
place ♣ to the right of the card he received. Finally, the output should be negated. 
Then, we have Protocol 2, where the different parts from Protocol 1 are underlined.

The relationships among the inputs, the card order at the end of step 2), and the 
output are shown in Table 3. The security proof is not necessary since this protocol 
is essentially the same as Protocol 1. 

Table 3   The relation between 
the result of step 2) and the 
output in Protocol 2

a b Step 2) Output

0 0 ♡Alice ♣Bob  0 ( ♡Alice

)
0 1 ♣Bob ♡Alice  1 ( ♣Bob)
1 0 ♣Alice ♣Bob  1 ( ♣Alice

)
1 1 ♣Bob ♣Alice  1 ( ♣Bob)

6  Hereafter, we remove the frame of cards for simplicity.
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Two‑Card XOR Protocol

The proposed 2-card XOR protocol is shown in Protocol 3. In this protocol, PPs are 
used in steps 1) and 2). The relationships among the inputs, the pair of cards at the 
end of step 2), and the output are shown in Table 4.

Security of Two-card XOR Protocol: For Alice and Bob, they have no information 
to be kept secret because, if the value of XOR and one of the two inputs are given, 
the other input is uniquely determined. Furthermore, no information except for the 
output is known to the players other than Alice and Bob.

It is clear that no information is obtained by the players other than Alice and Bob 
(if such players exist) because they can get only the output. 	�  ◻

Three‑Input Majority Voting Protocol with Four Cards

Based on the observations on the AND and the OR protocols in the previous sec-
tion, we propose a three-input majority voting protocol that uses only four cards. 
Consider the scenario where Alice, Bob, and Carol have binary values a, b, and c, 
respectively. They want to know the result of majority voting without revealing their 
individual inputs.

Formally, we want to compute the following function ���(a, b, c) ∈ {0, 1} 
securely:

Idea Behind Our Three‑Input Majority Voting Protocol

Suppose that Alice, Bob, and Carol vote a, b, and c, respectively, in this order. We 
focus on the Carol’s vote c ∈ {0, 1}.

In the case of c = 0 , the following equivalences hold:

This relationship implies that a ∧ b is the result of the majority voting when c = 0.
Meanwhile, in the case of c = 1 , we have the following equivalences:

(7)���3(a, b, c) =

{
0, if a + b + c ≤ 1

1, if a + b + c ≥ 2.

(8)a + b + c ≥ 2 ⟺ a + b ≥ 2 ⟺ a ∧ b = 1.

Table 4   The relation between 
the result of step 1) and the 
output in Protocol 3

a b Step 1) Output

0 0 ♣ ♡ 0 ( ♣♡)
0 1 ♣ ♡ 1 ( ♡♣)
1 0 ♡ ♣ 1 ( ♡♣)
1 1 ♡ ♣ 0 ( ♣♡)



104	 New Generation Computing (2022) 40:95–113

123

Hence, a ∨ b is the result of the majority voting when c = 1.
Summarizing, we have

From this relationship, we obtain the following strategy for realizing the three-
input majority voting: (1) Alice and Bob make two face-down cards representing 
a ∧ b and a ∨ b , (2) they send the cards to Carol, and (3) Carol picks up one of the 
received cards according to her input using PP.7 For realizing (1), we construct a 
four-card AND/OR protocol that computes AND and OR simultaneously by unify-
ing Protocols 1 and 2.

Unifying AND and OR Operations

Since the three-card AND and OR protocols in Protocols 1 and 2, respectively, are 
essentially the same based on the De Morgan’s law, and hence, they have a symmet-
ric form. From this observation, we design a unified AND/OR protocol where a ∧ b 
and a ∨ b result in the left and right cards, respectively, for inputs a, b ∈ {0, 1}.

Modification of Three‑Card OR Protocol

To obtain the unified protocol, the formats of the outputs of Protocols 1 and 2 must 
be the same. Then, we exchange ♣ and ♡ in Protocol 2. Moreover, we swap the left 
and right cards in the step 2) of Protocol 2 to make a ∨ b place on the right. Then, 
we obtain Protocol 4 from Protocol 2. The relationships among the inputs, the pair 
of cards at the end of step 2), and the output are shown in Table 5.

Four‑Card AND/OR Protocol

Observe that the right card and the left card are discarded at the end of the protocol 
in both Protocols 1 and 4, respectively. We also observe that Bob has ♣ and ♡ at step 
1) in both Protocols 1 and 4, respectively. From these observations, we can unify 
Protocols 1 and 4 by letting Bob have ♣ and ♡ in the initial setup. Then, we can 
implement the results of AND and OR simultaneously in one card-based protocol, 
as shown in Protocol 5.

(9)a + b + c ≥ 2 ⟺ a + b ≥ 1 ⟺ a ∨ b = 1.

(10)���3(a, b, c) =

{
a ∧ b, if c = 0

a ∨ b, if c = 1.

7  More formally, Carol privately makes (a ∧ b, a ∨ b) if c = 0 and (a ∨ b, a ∧ b) otherwise using PP. The 
left card is the picked out card in the procedure (3).
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We show in the next subsection that the four-card AND/OR protocol is useful in 
calculating the three-input majority voting with only four cards.

Three‑Input Majority Voting Protocol with Four Cards

Based on the four-card AND/OR protocol, it is easy to obtain the majority vot-
ing protocol. First, Alice and Bob jointly compute a ∧ b and a ∨ b simultaneously 
without opening the result. Then, Carol chooses either a ∧ b or a ∨ b depending 
on c = 0 or c = 1 , respectively, behind her back. See Protocol 6 for the detail. 
Table 6 shows the pair of cards at the end of step 2) and the output.

Note that the third player, Carol, has no card throughout the protocol for her 
input since her role is to choose a ∧ b or a ∨ b . Thus, our protocol for the three-
input majority voting does not require any additional cards from the four-card 
AND/OR protocol. 

Table 5   The relation between 
the result of step 2) and the 
output in Protocol 4

a b Step 2) Output

0 0 ♡Bob ♣Alice 0 ( ♣Alice)
0 1 ♣Alice ♡Bob 1 ( ♡Bob)
1 0 ♡Bob ♡Alice  1 ( ♡Alice

)
1 1 ♡Alice ♡Bob  1 ( ♡Bob)

Table 6   The relation between 
the result of step 2) and the 
output in Protocol 6

a b c Step 2) Output

0 0 0 ♣Bob ♣Alice  0 ( ♣Bob)
0 1 0 ♣Alice ♡Bob  0 ( ♣Alice

)
1 0 0 ♣Bob ♡Alice  0 ( ♣Bob)
1 1 0 ♡Alice ♡Bob  1 ( ♡Alice

)
0 0 1 ♣Bob ♣Alice  0 ( ♣Alice

)
0 1 1 ♣Alice ♡Bob  1 ( ♡Bob)
1 0 1 ♣Bob ♡Alice  1 ( ♡Alice

)
1 1 1 ♡Alice ♡Bob  1 ( ♡Bob)
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Card‑Based Threshold Function Protocol

In this section, we propose a protocol for the threshold functions by generalizing our 
three-input majority voting protocol. Let x1, x2,… , xn be Boolean inputs of n play-
ers P1,P2,… ,Pn , respectively. Then, our (t, n)-threshold function protocol aims to 
compute the following function without revealing inputs.

Before describing our threshold function protocol, we extend Protocol 6 to an 
n-input majority voting protocol. The idea of this extension is useful to construct a 
threshold function protocol.

Extention to n‑Input Majority Voting Protocol

We first show that Protocol 6 can be extended to an n-input majority voting protocol. 
Here, we define the function for n-input majority voting as follows:8

Idea of Extension

To obtain an n-input majority voting protocol, we provide another look at Protocol 
6. Recall that Alice and Bob express their inputs by placing cards, whereas Carol 
does not. Carol inputs her vote by selecting either the left or right card from the 
cards she receives.

Table 7 summarizes the relation between the cards she receives and she outputs 
(depending on her input). In Protocol 6, Carol’s operation was “selecting an output 
card,” but we interpret it as “removing cards” as opposed to Alice and Bob for gen-
eralization. Specifically, we interpret Carol’s behavior as removing the right card if 
c = 0 and removing the left card if c = 1.

For generalizing the discussion above, suppose that m ∈ ℕ players place m cards 
according to their inputs. Then, it is natural to remove m − 1 cards depending on 
their inputs to remain one card that expresses the output. Hence, we assume that 
the number n of players is odd and consider the protocol in which (n + 1)∕2 players 
place cards and (n − 1)∕2 players remove the cards. We will discuss the protocol 
when n is even in Sect. 5.1 later.

(11)f(t,n)(x1, x2,… , xn) =

�
0, if

∑n

i=1
xi < t

1, otherwise.

(12)���n(x1, x2,… , xn) =

�
0, if

∑n

i=1
xi < n∕2

1, otherwise.

8  Note that the output is 1 if n is even and the numbers of inputs of 0 and 1 is the same.
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Case 1: n is Odd

Noticing that n is odd, we divide n players into (n + 1)∕2 and (n − 1)∕2 players, 
which we call the first and the second halves, respectively.

The first half of players Pi (1 ≤ i ≤ (n + 1)∕2) performs the following operations 
with PP, like Alice and Bob.

•	 If xi = 0 , then Pi places face-down ♣ on the leftmost of the received cards, and 
sends the cards after processing to Pi+1.

•	 If xi = 1 , then Pi places face-down ♡ on the rightmost of the received cards, and 
sends the cards after processing to Pi+1.

On the other hand, the second half of players Pj ((n + 1)∕2 < j ≤ n) performs the 
following operations with PP, like Carol.

•	 If xj = 0 , then Pj removes the rightmost card of the received cards, and sends 
the cards to Pj+1.

•	 If xj = 1 , then Pj removes the leftmost card of the received cards, and sends the 
cards to Pj+1.

Finally, Pn opens the remaining card as the output.
For instance, in the case where n = 5 , we can obtain Table 8 by applying this 

protocol. This is an extension of Table 7, and we can see that the output is correct.
This protocol achieves n-input majority voting if n is odd. We show that cor-

rectness and security are satisfied in this case.
Correctness: Let � and � be the numbers of players who input 0 among the 

first half players and the second half players, respectively. Then, the card order 
received by P(n+1)∕2+1 , who is the first player in the second half players, is as 
follows:

We consider the case where � + � is less than (n + 1)∕2 or not.

•	 𝛼 + 𝛽 < (n + 1)∕2

	   In this case, it holds that 𝛽 < (n + 1)∕2 − 𝛼 . Namely, the number of players 
� that remove the rightmost card is less than (n + 1)∕2 − � . Furthermore, one 

Table 7   The relation between 
the card sequence Carol receives 
and the output in Protocol 6

a + b Card sequence 
Carol receives

Output ( c = 0) Output ( c = 1)

0          ♣♣     ♣     ♣
1          ♣♡     ♣     ♡
2          ♡♡     ♡     ♡
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card is remained in the end since n is odd. Therefore, the final remaining card 
is ♡ representing 1, which is the correct result, as shown as follows: 

 It is confirmed that output is correct.
•	 � + � ≥ (n + 1)∕2

	   The number of players � to remove the rightmost card is (n + 1)∕2 − � or 
more. Furthermore, one card is remained in the end since n is odd. Therefore, 
the final remaining card is ♣ representing 0, which is the correct result, as 
shown below. 

 It is confirmed that the correct output can be obtained.
	�  ◻

Security: It is trivial that no information beyond the output leaks since only the out-
put card is opened and players’ operations are hidden by the assumption of PP. 	�  ◻

Case 2: n is Even

If we apply the protocol described in Sect. 5.1 directly to the case where n is even, 
the protocol does not work because no card remains at the end of the protocol.

To remove this obstacle, we use the following equivalence relation:

This relation suggests using a dummy player P′

1
 who always inputs 1 for (n + 1)-

input majority voting for computing n-input majority voting.
Note that P′

1
 is sufficient to have ♡ only since the dummy player always inputs 1. 

Hence, our majority voting protocol can be realized with n + 1 cards in this case. We 
also note that we should choose the dummy player from the first half of the players, 
i.e., from the players who use cards for the inputs. If we choose the dummy player 

(13)���n(x1,… , xn) = 1 ⟺ ���n+1(1, x1,… , xn) = 1.

Table 8   The relation between 
the card sequence P

4
 receives 

and the output (Case of n = 5)

x
1
+ x

2
+ x

3
Card 
sequence P

4
 

receives

Output 
( x
4
+ x

5
= 0

)

Output 
( x
4
+ x

5
= 1

)

Output 
( x
4
+ x

5
= 2

)

0 ♣♣♣ ♣ ♣ ♣

1 ♣♣♡ ♣ ♣ ♡

2 ♣♡♡ ♣ ♡ ♡

3 ♡♡♡ ♡ ♡ ♡
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from the second half of players, i.e., from the players who do not use cards for the 
inputs, the protocol needs n + 2 cards since all the first half players, i.e., (n + 2)∕2 
players, have to hold two cards for the input. This is why we assign the dummy 
player to P1.

Card‑Based (t, n)‑Threshold Function Protocol

The idea to construct the threshold function protocol is similar to the n-input major-
ity voting protocol when n is even. In this case, we use the following equivalence 
relation:

Thanks to this equivalence, we can realize the threshold function protocol by select-
ing an integer d such that f(t+d,n+d) can be regarded as a majority voting function with 
n + d inputs. Then, n + d should be odd, and 2(t + d) − 1 = n + d must hold, which 
yields d = n − 2t + 1 . Then, f(t,n) can be computed by the protocol for f(n−t+1,2n−2t+1) 
= ���2n−2t+1 . Note that d = n − 2t + 1 is the number of dummy players in the first 
half. Hence, d ≥ 0 , i.e., t ≤ ⌈n∕2⌉ must hold. We can assume t ≤ ⌈n∕2⌉ without loss 
of generality since inputs 0 and 1 can be reversed if t > ⌈n∕2⌉.9 .

In summary, in computing f(t,n) , we construct a protocol for f(n−t+1,2n−2t+1) 
= ���2n−2t+1 with n − 2t + 1 dummy players who input 1. The specific procedure is 
shown in Protocol 7. This protocol is constructed with t ♣ s and n − t + 1 ♡ s, i.e., 
n + 1 cards are used in total.

Conclusion

In this paper, we showed that PP has the power to break the lower bound of the num-
ber of cards in the public model. Actually, we proposed several protocols in the pri-
vate model with fewer cards than the lower bound 2n, where n is the total bit length 
of inputs. In particular, we proposed a threshold function protocol with only n + 1 
cards, which is the main result of this paper. It was not known that PP could break 
the lower bound except for the protocol for computing AND [3].

In the public model, the players must use a pair of face-down cards, called com-
mitment, to input. Our main idea to break the lower bound was using PPs to input 
instead of commitment. The players can input without using cards by deciding the 
permutation depending on their input.

This idea helped us construct (two-bit input) OR and XOR protocols with three 
and two cards, respectively. The OR protocol was based on the AND protocol [3]. 
Furthermore, we showed that AND and OR operations could be simultaneously 

(14)f(t,n)(x1,… , xn) = 1 ⟺ f(t+1,n+1)(1, x1,… , xn) = 1.

9  The other way to realize the protocol when t > ⌈n∕2⌉ is to fix the dummy input to 0.
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realized with four cards, i.e., we could simultaneously obtain two cards expressing 
a ∧ b and a ∨ b given a, b ∈ {0, 1} . Based on this, we proposed a protocol for three-
input majority voting with four cards. The three-input majority voting protocol can 
be extended to an n-input majority voting protocol with n + 1 cards.

By fixing inputs of dummy players, a threshold function protocol can be realized 
by computing a majority voting. We showed that a protocol for f(t,n) could be realized 
by executing a protocol for ���2n−2t+1 with n − 2t + 1 dummy players who input 1. 
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