
Vol.:(0123456789)

New Generation Computing (2022) 40:95–113
https://doi.org/10.1007/s00354-022-00153-7

123

Secure Computation for Threshold Functions with Physical
Cards: Power of Private Permutations

Takeshi Nakai1 · Satoshi Shirouchi1 · Yuuki Tokushige1 · Mitsugu Iwamoto1 ·
Kazuo Ohta1,2

Received: 2 September 2021 / Accepted: 9 January 2022 / Published online: 8 February 2022
© The Author(s) 2022

Abstract
Card-based cryptography is a variant of multi-party computation using physical
cards like playing cards. There are two models on card-based cryptography, called
public and private models. The public model assumes that all operations are exe-
cuted publicly, while the private model allows the players private operations called
private permutations (PP, for short). Much of the existing card-based protocols were
developed under the public model. Under the public model, 2n cards are necessary
for every protocol with n-bit input since at least two cards are required to express a
bit. In this paper, we propose n-bit input protocols with fewer than 2n cards by uti-
lizing PP, which shows the power of PP. In particular, we show that a protocol for
(n-bit input) threshold function can be realized with only n + 1 cards by reducing the
threshold function to the majority voting. Toward this end, we first offer that two-bit
input protocols for logic gates can be realized with fewer than four cards. Further-
more, we construct a new protocol for three-input majority voting with only four
cards by observing the relationship between AND/OR operations. This protocol can
be easily extended to more participants, and to the protocol for threshold functions.

Keywords Secure computation · Card-based cryptography · Threshold functions

A preliminary version of this article appears in proceedings of International Conference on
Information Theoretic Security (ICITS 2017) [7].
This work was supported by JSPS KAKENHI Grant numbers JP21H03395, JP20J21248,
JP18K19780, and JP18H05289.

 * Takeshi Nakai
 t-nakai@uec.ac.jp

Extended author information available on the last page of the article

http://orcid.org/0000-0002-8181-8968
http://orcid.org/0000-0003-1092-8489
http://orcid.org/0000-0003-3658-0409
http://crossmark.crossref.org/dialog/?doi=10.1007/s00354-022-00153-7&domain=pdf

96 New Generation Computing (2022) 40:95–113

123

Introduction

Background and Motivation

It is known that multi-party computation can be realized by a deck of physical cards
[2], referred to as card-based cryptography. Card-based cryptography realizes
secure computation with simple manual operations, such as permuting and reversing
cards, which are used in ordinary card games. Hence, it attracts attention from the
viewpoint of education because it is easier to understand and implement than gen-
eral cryptographic protocols. In this paper, we handle card-based cryptography that
is constructed with two types of cards, ♣ and ♡ .

Much of the existing protocols in card-based cryptography assume a model that
all operations are performed in a public area, such as on a table. We call such a
model public. In the public model, using face-back cards is the only way to express
a player’s input value privately. Since two cards are required for the arbitrary rep-
resentation of a Boolean value, 2n cards are necessary to construct an n-bit input
protocol.

On the other hand, Marcedone et al. [3] and Nakai et al. [6, 8] independently
proposed a new operating model that allows private permutations (PP), which is an
operation to permute cards privately, such as by hiding the cards on her/his back. We
call this model private. In particular, Marcedone et al. [3] proposed two-bit input
AND protocol with three cards, i.e., less than the lower bound of the number of
cards in the public model, by utilizing PP.1 This result implies that PP has the power
to break the lower bound in the public model. However, it is not obvious whether PP
can break the lower bound other than the AND protocol.

Our Contributions and Ideas

In this paper, we propose several protocols with fewer number of cards than the
lower bound of the public model by utilizing PPs. We summarize our contributions

Table 1 Comparison between previous works and our results

Protocol References # of PPs # of Comm. # of Cards

OR [4] 5 3 4
Section "Three-Card OR Protocol" 2 1 3

XOR [5] 3 2 4
Section "Two-Card XOR Protocol" 2 1 2

Three-input [15] 18 9 6
majority voting Section 4 3 2 4
(t, n)-threshold [9] 4n

2
2n

2 2n + 2

function Section 5 n n − 1 n + 1

1 After the earlier version of this paper [7], the millionaires’ protocols are proposed with less than the
lower bound of the number of cards in the public model [6, 10].

97New Generation Computing (2022) 40:95–113

123

in Table 1. We first propose the following two-bit input protocols with less than four
cards by utilizing PP:

• three-card OR (in "Three-Card OR Protocol"), and
• two-card XOR (in "Two-Card XOR Protocol").

Our three-card OR protocol has the symmetric form of the thee-card AND protocol
proposed by Marcedone et al. [3]. The symmetric form enables us to unify these
protocols to a protocol that realize simultaneously AND and OR operations with
four cards. As we can see in the following idea, this simultaneous realization ena-
bles us to implement a three-input majority voting protocol that determines which
of 0 and 1 is more dominant with three-bit values as inputs while keeping the input
values privately.

Idea of three-input majority voting protocol Our main idea of the three-input
majority voting protocol is to utilize the simultaneous realization of AND and OR
operations. Observing the relations for a, b ∈ {0, 1},

it seems that a ∧ b and a ∨ b can be interpreted as the interim result of the majority
voting between two players, called Alice and Bob. Here, we consider the strategy
that a ∧ b and a ∨ b are given to the third player, called Carol who holds c ∈ {0, 1} .
As we can see in the following simple relations, the desired value to learn the
majority voting result is different whether a ∧ b or a ∨ b depending on c from the
following:

From (1) to (4), Carol should choose a ∧ b if c = 0 and a ∨ b if c = 1 to determine
the three-input majority voting. We note that Carol does not use any card to input c
since she plays only the role of selecting a ∧ b or a ∨ b . Thus, we can obtain a proto-
col for the three-input majority voting without adding any cards from the simultane-
ous AND and OR protocol, i.e., we can construct it using only four cards.2

We show that our three-input majority voting protocol can be extended for more
participants, i.e., it can be generalized to an n-input majority voting. We propose
an efficient protocol for the (t, n)-threshold function based on the n-input majority

(1)a ∧ b = 1 ⟺ a + b ≥ 2

(2)a ∨ b = 1 ⟺ a + b ≥ 1,

(3)c = 0 ∶ a + b + c ≥ 2 ⟺ a + b ≥ 2,

(4)c = 1 ∶ a + b + c ≥ 2 ⟺ a + b ≥ 1.

2 After the earlier version of this paper [7] was published, it was proposed how to realize three-input
majority voting with only three cards [16]. In addition, in [17], it was shown that three-input majority
could be achieved with six cards using a private selection instead of the private permutation.

98 New Generation Computing (2022) 40:95–113

123

voting protocol. Our (t, n)-threshold function protocol requires only n + 1 cards;
nevertheless, at least 2n cards are required in the public model.

Organization

The remaining part of this paper is organized as follows: in the next section, we
introduce operations used in this paper and explain the public and private models.
In the third section, we describe the three-card AND protocol [3] and propose two-
card XOR and three-card OR protocols. In the fourth section, we first show how to
obtain AND and OR results with four cards simultaneously, and we propose a three-
input majority voting protocol based on this protocol. Furthermore, we show that the
three-input majority voting protocol can be extended to a threshold function proto-
col in the fifth section, which is the main difference from the earlier version [7]. We
conclude this paper in the last section.

Operating Models in Card‑Based Cryptography

This paper uses two kinds of cards, ♣ and ♡ . We assume that the same type of
cards are indistinguishable and the backs of all cards are the same, which are repre-
sented as ? . We do not use card orientation information such as .

Public Model

Much of previous works in card-based cryptography adopt the public model that
assumes all operations to be performed publicly. In the public model, the following
operations are used:

• Permutation permuting card order publicly.
• Reverse turning over a card publicly.
• Shuffle probabilistic permutation performed in public.

Efficiency is evaluated by the number of cards and the number of shuffles. In par-
ticular, the shuffle is a crucial operation to ensure privacy while making all opera-
tions public. The shuffle is a probabilistic permutation performed in public, and we
assume that the result cannot be identified by all players, including the player who
performed the operation. Many of the shuffles used in card-based cryptography do
not completely randomize the order in the deck of cards but are defined as randomly
selecting a permutation from a subset of all permutations. One of the shuffles is a
random bisection cut [5]. We describe the procedure below.

For a positive integer v, suppose that there is a sequence of 2v face-down cards.
Denote the left and right halves by �0 and �1 , respectively. Namely, we define

99New Generation Computing (2022) 40:95–113

123

Then, a player repeats the operation of interchanging �0 and �1 in a public area until
all the players (including the player him/herself) cannot identify the order. Depicting
this using figures, one of either

is selected with a probability 1/2, and all the players cannot distinguish the two
cases. In other words, when the result is (�r,�1−r) , no player can identify the random
value r ∈ {0, 1}.

In this public model, since we do not use oriental information of cards, two cards are
necessary to express a bit, such as 0 ↦ ♣ ♡ and 1 ↦ ♣ ♡ . Hence, only we can do
to conceal an input is using a pair of face-down cards ? ? . The expression of a bit using
two face-down cards is called commitment. The committed-format protocol has the advan-
tage that it can be executed without parties knowing their own input values. On the other
hand, all our proposed protocols assume that parties know the value of their own input.

Private Model

Marcedone et al. [3] and Nakai et al. [6, 8] independently proposed a new operating
model that allows players to use private operations. This paper adopts the private
model, where we use the following operations3:

• (Public) permutation: permuting card order publicly.
• Private permutation (PP) permuting card order privately.
• Reverse turning over a card publicly.
• Communication handing over cards to another player.

Efficiency is evaluated by the number of cards, the number of PPs, and
communications.

When comparing the efficiencies between protocols based on public and private
models, we interpret shuffles in the public model as two PPs and one communica-
tion in the private model. For instance, the following procedure in the private model
simulates the effect of a random bisection cut [5] in the public model.

For a positive integer v, suppose that Alice holds 2v face-down cards.

1. Alice determines rA ∈ {0, 1} with a probability of 1/2, and privately swaps the
card order rA times.

(5)

(6)

3 In this paper, we follow the operation model in [6, 8]. There are some operation models that allow the
other private operations, such as the private reveal [12, 13].

100 New Generation Computing (2022) 40:95–113

123

2. Alice sends the result (�rA ,�1−rA) to Bob.
3. Bob determines rB ∈ {0, 1} with a probability of 1/2, and privately swaps the card

order rB times.

As a result of the above operations, the card order becomes (�rA⊕rB
,�1−rA⊕rB

) . Then,
no player can tell the value of rA ⊕ rB since rA (resp. rB) is kept secret for Bob (resp.
Alice). Thus, we obtain the same result of a random bisection cut.

A shuffle can be realized by combining two PPs and one communication. Thus,
we can convert a protocol based on the public model to one based on the private
model by converting each shuffle to two PPs and one communication. When we
compare the efficiency between the two models, a protocol based on the public
model is converted to the private model.

In the private model, it is possible to express inputs with PP itself instead of using
the commitment. This observation enables us to construct an n-bit protocol with less
than 2n cards. In Sect. 3.1, we introduce three-card AND protocol [3] that succeeds
in reducing the number of cards by the technique of expressing an input with PP.

In the public model, players’ malicious behaviors need not be considered since all
operations are monitored by players. On the other hand, PP enables players’ mali-
cious behaviors.4 Our protocols suppose the semi-honest model, which assumes all
players follow the protocols.

Proposed Protocols for Logic Gates

Starting from the three-card AND protocol [3], this section proposes three-card OR and
2-card XOR protocols, which break the lower bound of the number of cards in the pub-
lic model. In this section, let a and b be binary inputs of Alice and Bob, respectively.

Basic Idea: Inputs by Utilizing PPs

In the Epilogue in [3] (Solution B), the three-card AND protocol is proposed as
shown in Protocol 1.5 See step 2) in Protocol 1. Bob does not use the commitment to
express his input, but he represents his input by PP. He uses only one card to input,

Table 2 The relation between
the result of step 2) and the
output in Protocol 1

a b Step 2) Output

0 0 ♣Bob ♣Alice 0 (♣Bob)
0 1 ♣Alice ♣Bob 0 (♣Alice)
1 0 ♣Bob ♡Alice 0 (♣Bob)
1 1 ♡Alice ♣Bob 1 (♡Alice)

4 Abe et al. [1], Ono and Manabe [11] and Shimizu et al. [14] showed how to prevent malicious behav-
iors in the private model.
5 Slightly modified for later discussion, but essentially the same as the protocol in [3].

101New Generation Computing (2022) 40:95–113

123

and the protocol is realized with fewer than four cards, which is the lower bound of
the public model. Namely, Protocol 1 succeeds in breaking the lower bound by uti-
lizing PP to express inputs.

Security Proof of three-card AND protocol: We present a brief overview of the
security proof for Protocol 1, which will be useful to understand the security of the
protocols proposed hereafter.

Table 2 shows the card order at the end of step 2) and the output of the protocol.
Subscripts of ♣ and ♡ indicate the player who had the card originally.6 Since we
compute AND, the player who inputs 1 can uniquely determine the other player’s
input at the end of the protocol. Meanwhile, for the player who inputs 0, no infor-
mation must leak out to him/her. When Alice inputs a = 0 (♣), the output is either
♣Alice or ♣Bob , which is opened by Bob and is indistinguishable from Alice. When
Bob inputs b = 0 , he places his ♣Bob on the left, and he simply shows this card to
Alice. Hence, he obtains no information on Alice’s input.

It is clear that no information is obtained by the players other than Alice and Bob
(if such players exist) because the only information they can get is the output. ◻

Three‑Card OR Protocol

Since Marcedone et al. [3] only concentrated on the construction of card-based
AND protocols, no protocol was shown for the other logic gates using PP. Hereafter,
we show card-based protocols for computing OR and XOR based on PPs, which are
realized with three and two cards, respectively.

To construct card-based OR protocols, we should recall De Morgan’s law:
a ∨ b = ¬(¬a ∧ ¬b) . The card-based OR protocol can be obtained from this iden-
tity by negating Alice’s input, Bob’s input, and the output. Specifically, when Alice
inputs a = 0 , she should use ♡ (otherwise ♣), and when Bob inputs b = 0 , he should
place ♣ to the right of the card he received. Finally, the output should be negated.
Then, we have Protocol 2, where the different parts from Protocol 1 are underlined.

The relationships among the inputs, the card order at the end of step 2), and the
output are shown in Table 3. The security proof is not necessary since this protocol
is essentially the same as Protocol 1.

Table 3 The relation between
the result of step 2) and the
output in Protocol 2

a b Step 2) Output

0 0 ♡Alice ♣Bob 0 (♡Alice

)
0 1 ♣Bob ♡Alice 1 (♣Bob)
1 0 ♣Alice ♣Bob 1 (♣Alice

)
1 1 ♣Bob ♣Alice 1 (♣Bob)

6 Hereafter, we remove the frame of cards for simplicity.

102 New Generation Computing (2022) 40:95–113

123

103New Generation Computing (2022) 40:95–113

123

Two‑Card XOR Protocol

The proposed 2-card XOR protocol is shown in Protocol 3. In this protocol, PPs are
used in steps 1) and 2). The relationships among the inputs, the pair of cards at the
end of step 2), and the output are shown in Table 4.

Security of Two-card XOR Protocol: For Alice and Bob, they have no information
to be kept secret because, if the value of XOR and one of the two inputs are given,
the other input is uniquely determined. Furthermore, no information except for the
output is known to the players other than Alice and Bob.

It is clear that no information is obtained by the players other than Alice and Bob
(if such players exist) because they can get only the output. ◻

Three‑Input Majority Voting Protocol with Four Cards

Based on the observations on the AND and the OR protocols in the previous sec-
tion, we propose a three-input majority voting protocol that uses only four cards.
Consider the scenario where Alice, Bob, and Carol have binary values a, b, and c,
respectively. They want to know the result of majority voting without revealing their
individual inputs.

Formally, we want to compute the following function ���(a, b, c) ∈ {0, 1}
securely:

Idea Behind Our Three‑Input Majority Voting Protocol

Suppose that Alice, Bob, and Carol vote a, b, and c, respectively, in this order. We
focus on the Carol’s vote c ∈ {0, 1}.

In the case of c = 0 , the following equivalences hold:

This relationship implies that a ∧ b is the result of the majority voting when c = 0.
Meanwhile, in the case of c = 1 , we have the following equivalences:

(7)���3(a, b, c) =

{
0, if a + b + c ≤ 1

1, if a + b + c ≥ 2.

(8)a + b + c ≥ 2 ⟺ a + b ≥ 2 ⟺ a ∧ b = 1.

Table 4 The relation between
the result of step 1) and the
output in Protocol 3

a b Step 1) Output

0 0 ♣ ♡ 0 (♣♡)
0 1 ♣ ♡ 1 (♡♣)
1 0 ♡ ♣ 1 (♡♣)
1 1 ♡ ♣ 0 (♣♡)

104 New Generation Computing (2022) 40:95–113

123

Hence, a ∨ b is the result of the majority voting when c = 1.
Summarizing, we have

From this relationship, we obtain the following strategy for realizing the three-
input majority voting: (1) Alice and Bob make two face-down cards representing
a ∧ b and a ∨ b , (2) they send the cards to Carol, and (3) Carol picks up one of the
received cards according to her input using PP.7 For realizing (1), we construct a
four-card AND/OR protocol that computes AND and OR simultaneously by unify-
ing Protocols 1 and 2.

Unifying AND and OR Operations

Since the three-card AND and OR protocols in Protocols 1 and 2, respectively, are
essentially the same based on the De Morgan’s law, and hence, they have a symmet-
ric form. From this observation, we design a unified AND/OR protocol where a ∧ b
and a ∨ b result in the left and right cards, respectively, for inputs a, b ∈ {0, 1}.

Modification of Three‑Card OR Protocol

To obtain the unified protocol, the formats of the outputs of Protocols 1 and 2 must
be the same. Then, we exchange ♣ and ♡ in Protocol 2. Moreover, we swap the left
and right cards in the step 2) of Protocol 2 to make a ∨ b place on the right. Then,
we obtain Protocol 4 from Protocol 2. The relationships among the inputs, the pair
of cards at the end of step 2), and the output are shown in Table 5.

Four‑Card AND/OR Protocol

Observe that the right card and the left card are discarded at the end of the protocol
in both Protocols 1 and 4, respectively. We also observe that Bob has ♣ and ♡ at step
1) in both Protocols 1 and 4, respectively. From these observations, we can unify
Protocols 1 and 4 by letting Bob have ♣ and ♡ in the initial setup. Then, we can
implement the results of AND and OR simultaneously in one card-based protocol,
as shown in Protocol 5.

(9)a + b + c ≥ 2 ⟺ a + b ≥ 1 ⟺ a ∨ b = 1.

(10)���3(a, b, c) =

{
a ∧ b, if c = 0

a ∨ b, if c = 1.

7 More formally, Carol privately makes (a ∧ b, a ∨ b) if c = 0 and (a ∨ b, a ∧ b) otherwise using PP. The
left card is the picked out card in the procedure (3).

105New Generation Computing (2022) 40:95–113

123

We show in the next subsection that the four-card AND/OR protocol is useful in
calculating the three-input majority voting with only four cards.

Three‑Input Majority Voting Protocol with Four Cards

Based on the four-card AND/OR protocol, it is easy to obtain the majority vot-
ing protocol. First, Alice and Bob jointly compute a ∧ b and a ∨ b simultaneously
without opening the result. Then, Carol chooses either a ∧ b or a ∨ b depending
on c = 0 or c = 1 , respectively, behind her back. See Protocol 6 for the detail.
Table 6 shows the pair of cards at the end of step 2) and the output.

Note that the third player, Carol, has no card throughout the protocol for her
input since her role is to choose a ∧ b or a ∨ b . Thus, our protocol for the three-
input majority voting does not require any additional cards from the four-card
AND/OR protocol.

Table 5 The relation between
the result of step 2) and the
output in Protocol 4

a b Step 2) Output

0 0 ♡Bob ♣Alice 0 (♣Alice)
0 1 ♣Alice ♡Bob 1 (♡Bob)
1 0 ♡Bob ♡Alice 1 (♡Alice

)
1 1 ♡Alice ♡Bob 1 (♡Bob)

Table 6 The relation between
the result of step 2) and the
output in Protocol 6

a b c Step 2) Output

0 0 0 ♣Bob ♣Alice 0 (♣Bob)
0 1 0 ♣Alice ♡Bob 0 (♣Alice

)
1 0 0 ♣Bob ♡Alice 0 (♣Bob)
1 1 0 ♡Alice ♡Bob 1 (♡Alice

)
0 0 1 ♣Bob ♣Alice 0 (♣Alice

)
0 1 1 ♣Alice ♡Bob 1 (♡Bob)
1 0 1 ♣Bob ♡Alice 1 (♡Alice

)
1 1 1 ♡Alice ♡Bob 1 (♡Bob)

106 New Generation Computing (2022) 40:95–113

123

107New Generation Computing (2022) 40:95–113

123

Card‑Based Threshold Function Protocol

In this section, we propose a protocol for the threshold functions by generalizing our
three-input majority voting protocol. Let x1, x2,… , xn be Boolean inputs of n play-
ers P1,P2,… ,Pn , respectively. Then, our (t, n)-threshold function protocol aims to
compute the following function without revealing inputs.

Before describing our threshold function protocol, we extend Protocol 6 to an
n-input majority voting protocol. The idea of this extension is useful to construct a
threshold function protocol.

Extention to n‑Input Majority Voting Protocol

We first show that Protocol 6 can be extended to an n-input majority voting protocol.
Here, we define the function for n-input majority voting as follows:8

Idea of Extension

To obtain an n-input majority voting protocol, we provide another look at Protocol
6. Recall that Alice and Bob express their inputs by placing cards, whereas Carol
does not. Carol inputs her vote by selecting either the left or right card from the
cards she receives.

Table 7 summarizes the relation between the cards she receives and she outputs
(depending on her input). In Protocol 6, Carol’s operation was “selecting an output
card,” but we interpret it as “removing cards” as opposed to Alice and Bob for gen-
eralization. Specifically, we interpret Carol’s behavior as removing the right card if
c = 0 and removing the left card if c = 1.

For generalizing the discussion above, suppose that m ∈ ℕ players place m cards
according to their inputs. Then, it is natural to remove m − 1 cards depending on
their inputs to remain one card that expresses the output. Hence, we assume that
the number n of players is odd and consider the protocol in which (n + 1)∕2 players
place cards and (n − 1)∕2 players remove the cards. We will discuss the protocol
when n is even in Sect. 5.1 later.

(11)f(t,n)(x1, x2,… , xn) =

�
0, if

∑n

i=1
xi < t

1, otherwise.

(12)���n(x1, x2,… , xn) =

�
0, if

∑n

i=1
xi < n∕2

1, otherwise.

8 Note that the output is 1 if n is even and the numbers of inputs of 0 and 1 is the same.

108 New Generation Computing (2022) 40:95–113

123

Case 1: n is Odd

Noticing that n is odd, we divide n players into (n + 1)∕2 and (n − 1)∕2 players,
which we call the first and the second halves, respectively.

The first half of players Pi (1 ≤ i ≤ (n + 1)∕2) performs the following operations
with PP, like Alice and Bob.

• If xi = 0 , then Pi places face-down ♣ on the leftmost of the received cards, and
sends the cards after processing to Pi+1.

• If xi = 1 , then Pi places face-down ♡ on the rightmost of the received cards, and
sends the cards after processing to Pi+1.

On the other hand, the second half of players Pj ((n + 1)∕2 < j ≤ n) performs the
following operations with PP, like Carol.

• If xj = 0 , then Pj removes the rightmost card of the received cards, and sends
the cards to Pj+1.

• If xj = 1 , then Pj removes the leftmost card of the received cards, and sends the
cards to Pj+1.

Finally, Pn opens the remaining card as the output.
For instance, in the case where n = 5 , we can obtain Table 8 by applying this

protocol. This is an extension of Table 7, and we can see that the output is correct.
This protocol achieves n-input majority voting if n is odd. We show that cor-

rectness and security are satisfied in this case.
Correctness: Let � and � be the numbers of players who input 0 among the

first half players and the second half players, respectively. Then, the card order
received by P(n+1)∕2+1 , who is the first player in the second half players, is as
follows:

We consider the case where � + � is less than (n + 1)∕2 or not.

• 𝛼 + 𝛽 < (n + 1)∕2

 In this case, it holds that 𝛽 < (n + 1)∕2 − 𝛼 . Namely, the number of players
� that remove the rightmost card is less than (n + 1)∕2 − � . Furthermore, one

Table 7 The relation between
the card sequence Carol receives
and the output in Protocol 6

a + b Card sequence
Carol receives

Output (c = 0) Output (c = 1)

0 ♣♣ ♣ ♣
1 ♣♡ ♣ ♡
2 ♡♡ ♡ ♡

109New Generation Computing (2022) 40:95–113

123

card is remained in the end since n is odd. Therefore, the final remaining card
is ♡ representing 1, which is the correct result, as shown as follows:

 It is confirmed that output is correct.
• � + � ≥ (n + 1)∕2

 The number of players � to remove the rightmost card is (n + 1)∕2 − � or
more. Furthermore, one card is remained in the end since n is odd. Therefore,
the final remaining card is ♣ representing 0, which is the correct result, as
shown below.

 It is confirmed that the correct output can be obtained.
 ◻

Security: It is trivial that no information beyond the output leaks since only the out-
put card is opened and players’ operations are hidden by the assumption of PP. ◻

Case 2: n is Even

If we apply the protocol described in Sect. 5.1 directly to the case where n is even,
the protocol does not work because no card remains at the end of the protocol.

To remove this obstacle, we use the following equivalence relation:

This relation suggests using a dummy player P′

1
 who always inputs 1 for (n + 1)-

input majority voting for computing n-input majority voting.
Note that P′

1
 is sufficient to have ♡ only since the dummy player always inputs 1.

Hence, our majority voting protocol can be realized with n + 1 cards in this case. We
also note that we should choose the dummy player from the first half of the players,
i.e., from the players who use cards for the inputs. If we choose the dummy player

(13)���n(x1,… , xn) = 1 ⟺ ���n+1(1, x1,… , xn) = 1.

Table 8 The relation between
the card sequence P

4
 receives

and the output (Case of n = 5)

x
1
+ x

2
+ x

3
Card
sequence P

4

receives

Output
(x
4
+ x

5
= 0

)

Output
(x
4
+ x

5
= 1

)

Output
(x
4
+ x

5
= 2

)

0 ♣♣♣ ♣ ♣ ♣

1 ♣♣♡ ♣ ♣ ♡

2 ♣♡♡ ♣ ♡ ♡

3 ♡♡♡ ♡ ♡ ♡

110 New Generation Computing (2022) 40:95–113

123

from the second half of players, i.e., from the players who do not use cards for the
inputs, the protocol needs n + 2 cards since all the first half players, i.e., (n + 2)∕2
players, have to hold two cards for the input. This is why we assign the dummy
player to P1.

Card‑Based (t, n)‑Threshold Function Protocol

The idea to construct the threshold function protocol is similar to the n-input major-
ity voting protocol when n is even. In this case, we use the following equivalence
relation:

Thanks to this equivalence, we can realize the threshold function protocol by select-
ing an integer d such that f(t+d,n+d) can be regarded as a majority voting function with
n + d inputs. Then, n + d should be odd, and 2(t + d) − 1 = n + d must hold, which
yields d = n − 2t + 1 . Then, f(t,n) can be computed by the protocol for f(n−t+1,2n−2t+1)
= ���2n−2t+1 . Note that d = n − 2t + 1 is the number of dummy players in the first
half. Hence, d ≥ 0 , i.e., t ≤ ⌈n∕2⌉ must hold. We can assume t ≤ ⌈n∕2⌉ without loss
of generality since inputs 0 and 1 can be reversed if t > ⌈n∕2⌉.9 .

In summary, in computing f(t,n) , we construct a protocol for f(n−t+1,2n−2t+1)
= ���2n−2t+1 with n − 2t + 1 dummy players who input 1. The specific procedure is
shown in Protocol 7. This protocol is constructed with t ♣ s and n − t + 1 ♡ s, i.e.,
n + 1 cards are used in total.

Conclusion

In this paper, we showed that PP has the power to break the lower bound of the num-
ber of cards in the public model. Actually, we proposed several protocols in the pri-
vate model with fewer cards than the lower bound 2n, where n is the total bit length
of inputs. In particular, we proposed a threshold function protocol with only n + 1
cards, which is the main result of this paper. It was not known that PP could break
the lower bound except for the protocol for computing AND [3].

In the public model, the players must use a pair of face-down cards, called com-
mitment, to input. Our main idea to break the lower bound was using PPs to input
instead of commitment. The players can input without using cards by deciding the
permutation depending on their input.

This idea helped us construct (two-bit input) OR and XOR protocols with three
and two cards, respectively. The OR protocol was based on the AND protocol [3].
Furthermore, we showed that AND and OR operations could be simultaneously

(14)f(t,n)(x1,… , xn) = 1 ⟺ f(t+1,n+1)(1, x1,… , xn) = 1.

9 The other way to realize the protocol when t > ⌈n∕2⌉ is to fix the dummy input to 0.

111New Generation Computing (2022) 40:95–113

123

realized with four cards, i.e., we could simultaneously obtain two cards expressing
a ∧ b and a ∨ b given a, b ∈ {0, 1} . Based on this, we proposed a protocol for three-
input majority voting with four cards. The three-input majority voting protocol can
be extended to an n-input majority voting protocol with n + 1 cards.

By fixing inputs of dummy players, a threshold function protocol can be realized
by computing a majority voting. We showed that a protocol for f(t,n) could be realized
by executing a protocol for ���2n−2t+1 with n − 2t + 1 dummy players who input 1.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Abe, Y., Iwamoto, M., Ohata, K.: How to detect malicious behaviors in a card-based majority voting
protocol with three inputs. In: 2020 International Symposium on Information Theory and Its Appli-
cations (ISITA), pp. 377–381 (2020)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

112 New Generation Computing (2022) 40:95–113

123

 2. den Boer, B.: More efficient match-making and satisfiability: the five card trick. In: Advances in
Cryptology—EUROCRYPT ’89, Workshop on the Theory and Application of of Cryptographic
Techniques, Houthalen, Belgium, April 10–13, 1989, Proceedings, pp. 208–217 (1989)

 3. Marcedone, A., Wen, Z., Shi, E.: Secure dating with four or fewer cards. Cryptology ePrint Archive,
Report 2015/1031 (2015). https:// eprint. iacr. org/ 2015/ 1031

 4. Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four cards. In: Advances
in Cryptology—ASIACRYPT 2012—18th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Beijing, China, December 2–6, 2012. Proceedings, pp.
598–606 (2012)

 5. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Frontiers in Algorith-
mics, Third International Workshop, FAW 2009, Hefei, China, June 20–23, 2009. Proceedings, pp.
358–369 (2009)

 6. Nakai, T., Misawa, Y., Tokushige, Y., Iwamoto, M., Ohta, K.: How to solve millionaires’ problem
with two kinds of cards. New Gener. Comput. 39, 73–96 (2021)

 7. Nakai, T., Shirouchi, S., Iwamoto, M., Ohta, K.: Four cards are sufficient for a card-based three-
input voting protocol utilizing private permutations. In: Information Theoretic Security—10th Inter-
national Conference, ICITS 2017, Hong Kong, China, November 29–December 2, 2017, Proceed-
ings, pp. 153–165 (2017)

 8. Nakai, T., Tokushige, Y., Misawa, Y., Iwamoto, M., Ohta, K.: Efficient card-based cryptographic
protocols for millionaires’ problem utilizing private permutations. In: Cryptology and Network
Security—15th International Conference, CANS 2016, Milan, Italy, November 14–16, 2016, Pro-
ceedings, pp. 500–517 (2016)

 9. Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols for any Boolean function. In:
Theory and Applications of Models of Computation—12th Annual Conference, TAMC 2015, Sin-
gapore, May 18–20, 2015, Proceedings, pp. 110–121 (2015)

 10. Ono, H., Manabe, Y.: Efficient card-based cryptographic protocols for the millionaires’ problem
using private input operations. In: 2018 13th Asia Joint Conference on Information Security (AsiaJ-
CIS), pp. 23–28 (2018)

 11. Ono, H., Manabe, Y.: Card-based cryptographic protocols with the minimum number of cards using
private operations. In: Zincir-Heywood, N., Bonfante, G., Debbabi, M., Garcia-Alfaro, J. (eds.)
Foundations and Practice of Security, pp. 193–207. Springer International Publishing, Cham (2019)

 12. Ono, H., Manabe, Y.: Card-based cryptographic logical computations using private operations. New
Gener. Comput. 39, 10 (2020)

 13. Ono, H., Manabe, Y.: Minimum round card-based cryptographic protocols using private operations.
Cryptography 5(3), 17 (2021)

 14. Shimizu, Y., Kishi, Y., Sasaki, T., Fujioka, A.: Card-based cryptographic protocols with private
operations which can prevent malicious behaviors. In: IEICE Technical Report ISEC2017-113, pp.
129–135 (2018) (in Japanese)

 15. Toyoda, K., Miyahara, D., Mizuki, T., Sone, H.: Secure computation of three-input majority func-
tion using six cards. In: Computer Security Symposium (CSS), pp. 4D1–4 (2020)

 16. Watanabe, Y., Kuroki, Y., Suzuki, S., Koga, Y., Iwamoto, M., Ohta, K.: Card-based majority voting
protocols with three inputs using three cards. In: 2018 International Symposium on Information
Theory and Its Applications (ISITA), pp. 218–222 (2018)

 17. Yasunaga, K.: Practical card-based protocol for three-input majority. In: Communications and Com-
puter Sciences, advpub, IEICE Transactions on Fundamentals of Electronics (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://eprint.iacr.org/2015/1031

113New Generation Computing (2022) 40:95–113

123

Authors and Affiliations

Takeshi Nakai1 · Satoshi Shirouchi1 · Yuuki Tokushige1 · Mitsugu Iwamoto1 ·
Kazuo Ohta1,2

 Satoshi Shirouchi
 s.shirouchi@uec.ac.jp

 Yuuki Tokushige
 yuuki.tokushige@uec.ac.jp

 Mitsugu Iwamoto
 mitsugu@uec.ac.jp

 Kazuo Ohta
 kazuo.ohta@uec.ac.jp

1 Graduate School of Informatics and Engineering, The University of Electro-Communications,
1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan

2 Cyber Physical Security Research Center, National Institute of Advanced Industrial Science
and Technology, 2-3-26 Aomi, Koto-Ku, Tokyo 135-0064, Japan

http://orcid.org/0000-0002-8181-8968
http://orcid.org/0000-0003-1092-8489
http://orcid.org/0000-0003-3658-0409

	Secure Computation for Threshold Functions with Physical Cards: Power of Private Permutations
	Abstract
	Introduction
	Background and Motivation
	Our Contributions and Ideas
	Organization

	Operating Models in Card-Based Cryptography
	Public Model
	Private Model

	Proposed Protocols for Logic Gates
	Basic Idea: Inputs by Utilizing PPs
	Three-Card OR Protocol
	Two-Card XOR Protocol

	Three-Input Majority Voting Protocol with Four Cards
	Idea Behind Our Three-Input Majority Voting Protocol
	Unifying AND and OR Operations
	Modification of Three-Card OR Protocol
	Four-Card ANDOR Protocol

	Three-Input Majority Voting Protocol with Four Cards

	Card-Based Threshold Function Protocol
	Extention to n-Input Majority Voting Protocol
	Idea of Extension
	Case 1: n is Odd
	Case 2: n is Even

	Card-Based (t, n)-Threshold Function Protocol

	Conclusion
	References

