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Abstract
Card-based protocols allow to evaluate an arbitrary fixed Boolean function f  on a 
hidden input to obtain a hidden output, without the executer learning anything about 
either of the two (e.g., [12]). We explore the case where f  implements a univer-
sal function, i.e., f  is given the encoding ⟨P⟩ of a program P and an input x and 
computes f (⟨P⟩, x) = P(x) . More concretely, we consider universal circuits, Turing 
machines, RAM machines, and branching programs, giving secure and conceptually 
simple card-based protocols in each case. We argue that card-based cryptography 
can be performed in a setting that is only very weakly interactive, which we call the 
“surveillance” model. Here, when Alice executes a protocol on the cards, the only 
task of Bob is to watch that Alice does not illegitimately turn over cards and that she 
shuffles in a way that nobody knows anything about the total permutation applied to 
the cards. We believe that because of this very limited interaction, our results can be 
called program obfuscation. As a tool, we develop a useful sub-protocol 𝗌𝗈𝗋𝗍

�
X↑Y  

that couples the two equal-length sequences X, Y  and jointly and obliviously per-
mutes them with the permutation � ∈ � that lexicographically minimizes �(X) . We 
argue that this generalizes ideas present in many existing card-based protocols. In 
fact, AND, XOR, bit copy [37], coupled rotation shuffles [30] and the “permutation 
division” protocol of [22] can all be expressed as “coupled sort protocols”.
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Introduction

Secure multiparty computation (MPC) allows multiple players to jointly compute 
a function, without giving away anything about their inputs, except what can be 
deduced from the output. An important special case is when the function to be eval-
uated constitutes an input itself and should remain hidden, called Private Function 
Evaluation (PFE). This has been considered in the standard cryptographic setting, 
e.g., using universal circuits [45] in [5, 19, 32, 38].

Secure multiparty computation, and hence also PFE (by choosing a universal 
function to be executed), can also be done with a deck of physical cards, as first 
shown in [8, 12, 41]. In this area of card-based cryptography, one designs tangible 
protocols using a deck of cards with information-theoretic privacy features. There 
is already a wealth of literature on how to jointly and securely compute an arbitrary 
(fixed) circuit on the players’ inputs, see, e.g., [12, 37, 41]. Moreover, similar but 
different physical assumptions have been exploited in other settings, in particular in 
the cryptographic voting community, cf. Scantegrity, PunchScan, and Oblivious vot-
ing [2, 10, 11, 43] (see [28] for a survey on physical assumptions in cryptography).

Motivation. Card-based protocols are often used in educational and recreational 
settings. For an illustration of PFE, we stretch the usual motivation for card-based 
AND protocols a bit, namely the dating problem where players want to find out 
whether there is mutual love.

We assume a predefined set of binary attributes A such as A = {LikesCats, 
HasPhD, IsGeeky,…} . Alice implicitly specifies (by providing a circuit or pro-
gram) which combinations P ⊆ 2A of attributes she likes and Bob specifies which 
attributes B ⊆ A he has. The task is to determine whether Bob’s secret attributes 
satisfy Alice’s secret preferences, i.e., whether B ∈ P . Here, we want to ensure 
that both Alice’s and Bob’s input remains hidden, i.e., nothing about the input is 
revealed, except what can be deduced from the output of the protocol.

In the same vein, PFE is useful for the game Skipjack [16]1, where a game master 
invents a rule and the other players take turns querying whether a chosen code words 
satisfies the rule or not—to deduce/guess the rule in this process. Applying our PFE 
protocol would allow to prevent the game master from cheating by changing the 
rule mid-game, or even to play the game in absence of a game master, assuming 
an encoding of a rule is available or can be obtained at random. (Moreover, as PFE 
even hides the code words that the player is testing, we can derive a competitive 
multi-player mode where questions of other players do not help the others.)

Look and Feel of Our Protocols. Imagine a room with a table, where Alice puts 
an encoding of a function f  in a sequence on the table, each bit of the description 
as two face-down cards encoding 0 via ♣,♡ and 1 via ♡ ♣. Next to Alice’s cards, 
Bob will put his input x as a bit string using the same encoding. The game then pro-
ceeds according to a protocol (described in more detail later) that may prescribe to 
(i) shuffle the cards in certain controlled ways and (ii) turn over cards (the observed 

1  a follow-up on a game by Abbott [1] from 1956. Skipjack was given as a present to all participants of 
ASIACRYPT 2015.
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symbols may affect the future course of the protocol). The protocol terminates with 
output f (x) encoded as face-down cards. The output can then be revealed to both 
players or used obliviously in further computations.

The Sort Sub-protocol. The protocols proposed in this paper—and actually a large 
subset of the protocols from the literature—can be regarded as a sequence of sub-
protocols with basically the same functionality, which we capture under the name 
“sort protocol”. We believe this observation is of independent interest. We also show 
that, under weak assumptions, protocols obtained as compositions of sort-protocols 
are secure. This elegantly re-proves the security of existing protocols and greatly 
simplifies the security proofs of our own protocols. (As we are in a simpler and fully 
information-theoretic setting, this is much easier than in the common universal com-
posability framework [9]).

On Interaction in Card-Based Protocols. We point out that card-based cryptog-
raphy can be assumed secure in a rather non-interactive physical model: it suffices 
to have one protocol executer, who is under surveillance by the other players. For 
example, when the protocol description specifies that a certain shuffle is to be per-
formed, this step can be implemented by this one player, the executer, who uses 
envelopes (or helping cards) and completely random shuffles or uniform random 
cuts in a manner that ensures that not even he himself can keep track of concrete 
permutation done on the cards. (We could also use shuffling machines, such as the 
wheel-of-fortune-esque device in [46].)

Note that in this surveillance model where players watch that the protocol is 
done correctly, many protocols can be argued secure with almost no interaction. For 
example, ([21], Protocol 3) is a nice physical zero-knowledge proof system for prov-
ing that there is a solution to a Sudoku puzzle, where the verifier chooses one of 
three cards in each cells of the Sudoku to be assigned to piles for rows, columns and 
subgrids to be able to later verify that all numbers are present. In our model, we can 
plausibly argue that the randomness chosen by the verifier can also be directly gen-
erated by the prover himself on an additional deck of helping cards. If he is watched 
to perform the shuffle in a way that generates high entropy not under his control, he 
can use this generated randomness to assign the cards to the piles. This is actually a 
general observation regarding protocols using public coins, where this shuffling pro-
duces an output that can be interpreted to be like the Random Oracle output in the 
Fiat–Shamir heuristic. The possibility of secure shuffling in this way is a common 
assumption that people make when playing card games with others.

Using the PFE protocols introduced in this paper, this immediately leads to 
a direct way to obtain cryptographic obfuscation in this card-based surveillance 
model: assuming that the encoded protocol is lying on the table using cards, the 
executer can add cards encoding the inputs and then execute a universal protocol, 
such as the ones proposed in this paper, with the only interaction being guards that 
watch out for publicly observable deviations from the protocol.

However, note that because of the very different setting, there are no implications 
for the usual non-physical (strictly non-interactive) cryptographic world, where gen-
eral (virtual black-box) obfuscation is impossible, cf. [7].

Universal Protocols and Their Qualities. We implement four different univer-
sal card-based protocols with varying degrees of abstraction, based on branching 
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programs, circuits, Turing machines and RAM machines. Our primary focus is on 
simplicity and elegance of the protocols, but we also consider efficiency in terms of 
runtime and required cards.

The benefit of providing several solutions is that depending on the nature of the 
task, a certain computational model may be particularly suitable. For example, in 
the generalized dating game described above, using universal circuits is a natural 
option, while a rule in Skipjack might most naturally be described as a program using 
loops and thus benefit from the possibilities available in Turing machines and RAM 
machines. For didactic settings, all options are interesting in itself, as they demonstrate 
the computational models and the implemented privacy properties in a palpable way.

Contribution.
–	 We show how to encode and execute circuits, Turing machines, RAM machines 

and branching programs with cards and specify protocols for executing these on 
hidden inputs so that nothing about the machine description (except the length, 
etc.) or the inputs is leaked. We achieve this using envelopes and only very natu-
ral shuffle operations, namely random cuts and Sn-shuffles (i.e., ordinary shuf-
fling, where all card reorderings are equally likely).

–	 Given the weakly interactive nature of card-based cryptography in the “surveil-
lance model” (see above), we thereby obtain what may be called cryptographic 
obfuscation in a card-based setting.

–	 We identify and generalize a primitive that is the basis for many protocols and 
operations in cards-based cryptography, namely coupled sorting, cf. Sect. 3.

Related Work. Regarding our branching program construction, let us mention that 
there are several card-based protocols to randomly generate a permutation with 
specific, prescribed properties. For example, the secret santa game asks for random 
permutations on the player indices (encoding who gives a present to whom) that 
are fixed-point free to ensure that nobody receives their own present, and has been 
implemented with cards in [12, 23]. Moreover, they also give protocols for gener-
ating permutations with cycles of a certain minimal length. Moreover, Hashimoto 
et  al. [22] give a protocol for generating permutations with a prespecified cycle 
structure, and show how to obliviously execute the inverse of a permutation encoded 
with cards on another card sequence, which is a special case of our sorting opera-
tions. In general, we make use of card decks that not only feature heart or clubs 
cards, a line of research that was pursued in, e.g., [29, 35, 42].

Note that cryptographic obfuscation has been performed in other models. For 
example, Goyal et  al. [18] make use of tamper-proof hardware tokens (such as 
smart cards) introduced by Katz [24]. Moreover, [36] allows to execute many cryp-
tographic primitives (albeit not obfuscation) using scratch-off cards. They have a 
slightly weaker setting, as they do not gather players around a table, but use sealed 
(tamper-evident) envelopes that are sent between the players via mail, getting out-of-
sight from the other players.

Physical computation is also described in [13] (as “Physical GMW proto-
col”) to achieve security in the framework of Universal Composability with Local 
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Adversaries (LUC). However, they make very strong assumptions on available 
“machines”, which we do not need.

Crépeau and Kilian [12] also discuss playing games against a card-encoded 
(probabilistic) circuit opponent. However, they do not aim to hide this circuit to the 
player as it is given by the player himself.

Recently, Dvorák and Koucký [14] formulate a similar mechanism to execute 
Turing machines and branching programs using cards to classify a certain class of 
card-based protocols that compute functions that are specified by their complexity. 
This constitutes independent and concurrent work.

Outline. Section 2 gives the necessary preliminaries, including the computational 
model used in card-based cryptography. Section 3 introduces sorting protocols as a 
main and versatile building block in card-based cryptography and interprets many 
results in the field as a single application of such a protocol. We describe concrete 
protocols for executing universal circuits (Sect.  4), Turing machines (Sect.  5), 
(word-)RAM machines (Sect. 6) and branching programs (Sect. 7).

Notation (Permutations). For distinct elements x1,… , xk ∈ X the cycle 
(x1 x2 … xk) denotes the cyclic permutation � with �(xi) = xi+1 for 1 ≤ i < k , 
�(xk) = x1 , and �(x) = x for all x ∈ X not occurring in the cycle. For multiple cycles 
on pairwise disjoint sets, we write them next to one another to denote their composi-
tion, e.g., (1 2)(3 4 5) maps 1 ↦ 2 , 2 ↦ 1 , 3 ↦ 4 , 4 ↦ 5 , 5 ↦ 3.

Computational Model of Card‑Based Cryptography

Card-based protocols operate on a deck of cards, which is specified by a multiset D 
of symbols, e.g., from { ♡, ♣ } or from numbered cards {1,… , n} . It uses four opera-
tions, namely i) turning over cards to reveal their hidden symbols, ii) deterministi-
cally permuting the cards, iii) shuffling the cards in some controlled way to introduce 
randomness, and iv) terminating and outputting a list of card positions encoding the 
protocol output. The formal model is given in [39].

While many protocols in the literature only use { ♡, ♣ } as a deck alphabet, Niemi 
and Renvall [42] and Mizuki [35] introduce card-based protocols using the (multi-)
set [1,… , n] , and an encoding rule, where a bit given by two face-down cards is 0 if 
the former card has a smaller value, and 1 otherwise.

More formally, a protocol P is a quadruple (D,U,Q,A) , where D is a deck, U 
is a set of input sequences over D , Q is a set of states with q0 ∈ Q and qfin ∈ Q , 
being the initial and the final state. Moreover, we have an action function 
A ∶ (Q⧵{qfin}) × 𝖵𝗂𝗌

D
→ Q × 𝖠𝖼𝗍𝗂𝗈𝗇, depending on the current state and visible 

sequence (i.e., the sequence of the card symbols, with face-down cards specified as 
a special back symbol ‘ ? ’, and face-up cards showing their symbol; the set of vis-
ible sequences on deck D is denoted by ���D ), which specifies the next state and an 
operation on the sequence. These actions, constituting the set ������ are as follows, 
performed on a sequence � = (� [1],… ,� [n]) : 
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i)	 (����,T) , for a set T ⊆ {1,… , n} , flips the cards at positions specified by the 
turn set T  . Formally, for a card c = a

b
 we define ����(c) ∶= b

a
 and transform Γ 

into ����T (� ) , where ����T (Γ)[i] ∶= ����(Γ[i]) if i ∈ T  , and ����T (� )[i]∶=� [i] , 
otherwise.

ii)	 (����,�) , for a permutation � ∈ Sn , permutes �  according to � , i.e., it yields the 
sequence �(� ) = (� [�−1(1)],… ,� [�−1(n)]).

iii)	 (����� ��,�) , for a permutation set 𝛱 ⊆ Sn , draws a permutation � ∈ � uniformly 
at random and obliviously applies it to � .

iv)	 (������, p1,… , pr) , for a list of distinct positions p1,… , pr ∈ {1,… , n} , halts the 
protocol and specifies O = (� [p1],… ,� [pr]) as the output.

See [26, 39] for more details. Then, a sequence trace of a finite protocol run is a list 
(�0,�1,… ,�t) of sequences such that �0 ∈ U and �i+1 arises from �i by the speci-
fied action. Moreover, mapping this to a trace where not the cards themselves, but 
only what is visible about the cards, is called the corresponding visible sequence 
trace.

Card-based protocols are secure if input and output are perfectly hidden, i.e., 
from the outside the execution of a protocol has the same distribution, regardless of 
what input and output are.

Definition 2.1  (Security, cf. [30, 31]2) Let P = (D,U,Q,A) be a protocol. It is 
(input- and output-)secure if for any random variable I with values in the set of 
input sequences U, the following holds. A protocol run starting with random ini-
tial sequence �0 = I , and taking random choices for the shuffling actions, terminates 
almost surely (i.e., with probability 1). Further, if V and O are random variables 
denoting the visible sequence trace and the output of the run, then the pair (I, O) is 
stochastically independent of V.

Boolean Circuits A Boolean circuit with l input variables v1,… , vl is a directed 
acyclic graph C = (V ,E) . The nodes are called gates and are labeled with ∨ , ∧ , ¬ , an 
input variable, or one of the constants 1 or 0. In the cases of ∨ , ∧ , ¬ , the in-degree 
must be 2, 2 or 1, respectively, otherwise it is 0. The output node is the unique node 
with out-degree 0. The depth of C is the maximum number of ∧ and ∨ gates on a 
path in C.

The value C(v⃗) ∈ {0, 1} that a circuit outputs on input v⃗ = (v1,… , vl) ∈ {0, 1}l 
is defined in the natural way. For this paper, it is convenient to transform all ∨-gates 
into ∧-gates using de Morgan’s rule (x∨y) = ¬(¬x∧¬y) . Note that this transformation 
does not affect the depth of the circuit.

Group Actions. In Sect. 3, we make use of group actions and their orbits, which 
can be found, e.g., in ( [15], Sect. 1.3). For a definition, let X be a nonempty set, G 
a group, and � ∶ G × X → X a function implicit in the notation g(x)∶=�(g, x) for 
g ∈ G, x ∈ X . G acts on X, or � is a group action on X if

2  Note that this notion also captures security against players that have partial information about input and 
output, cf. ([30], Sect. 6 (Delegated Computation)).
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–	 ��(x) = x for all x ∈ X , where �� denotes the neutral element in G,
–	 (g◦h)(x) = g(h(x)) for all x ∈ X and all g, h ∈ G.

Let G be a group acting on a set X . Then, the orbit of an x ∈ X is 
G(x)∶={g(x) ∶ g ∈ G} , i.e., all elements in X that are reachable from x via some 
g ∈ G . Note that orbits G(x),G(y) of x, y ∈ X are either disjoint or equal. Hence the 
orbits form a partition of X , called the orbit partition of X through G. For an appli-
cation of this to proving lower bounds on the number of cards in card protocols, see 
[25]. In our setting, G = 𝛱 ⊆ Sn is a permutation subgroup used in a shuffle and 
X is the set of sequences over a deck D . Then, � acts on X by permuting the card 
sequences x ∈ X via � ∈ � , i.e., �((x1,… , xn)) = (x

�−1(1),… , x
�−1(n)).

The Coupled Sorting Sub‑protocol

In this section, we introduce our main, versatile building block, namely “sorting pro-
tocols”, and later show how to interpret many protocols from the literature as such a 
protocol. We use the term “coupled” to indicate that a same permutation is applied 
to multiple card subsequences by forming piles (e.g., to be placed in envelopes) and 
then permuting them, cf. Fig. 2.

Notation. Let � ∈ Sn , A = (a1,… , an) a sequence of distinct natural numbers and 
B a sequence of length n . We define the lift �↑A of � to A via

for m with 1 ≤ m ≤ max {a1,… , an} . For instance, the permutation 
� = (1 3)(2 4) ∈ S4 lifted to the sequence A = (5, 2, 7, 8) yields the permutation 
�↑A = (5 7)(2 8) . We define the lift of a permutation to a sequence of same-length 
sequences B = ((b1

1
,… , bk

1
),… , (b1

n
,… , bk

n
)) as

(�↑A)(m)∶=

{
a
�(i), if m = ai for some i,

m, otherwise,

�↑B∶=(�↑(b1
1
,… , b1

n
))◦⋯◦(�↑(bk

1
,… , bk

n
)).

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 1   Effect of the permutation (1 2 3)↑((1, 2, 3, 4), (5, 6, 7, 8), (12, 11, 10, 9)) when applied to a sequence 
(1,… , 12) of cards. The idea is to permute the three card sequences in positions (1, 2, 3, 4), (5, 6, 7, 8) 
and (12, 11, 10, 9) (all of same length) cyclically (as in (1 2 3) ), taking the groups of four cards “as a 
whole”. To illustrate the possibility of given the sequences in the operation in another order, we reversed 
the third sequence with the effect that when (5, 6, 7, 8) is “mapped” to (12, 11, 10, 9), the card at the 5th 
position is mapped to the 12th position, and so on (as displayed in the figure)
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Random Shuffle

4

1

3

2

1

3

2

4

1 2 3 4

A = (3, 1, 4, 2) B = ((♥,♣), (♣,♣), (♣,♣), (♥,♥))

πA(B) = ((♣,♣), (♥,♥), (♥,♣), (♣,♣))πA(A) is sorted

arrange
in piles

shuffle piles
with random τ ∈ S4,

here τ = (1 2 3)

turn red cards,
reveals τ(A)

sort piles w.r.t.
turned cards

split piles

Fig. 2   Application of 𝗌𝗈𝗋𝗍
S
4

A↑B where A denotes the four positions of the red cards and B the four pairs 
of positions of the blue cards, in canonical ordering. Since the current sequence is � = (3, 1, 4, 2) , the 
permutation �(3,1,4,2) = {1 ↦ 3, 2 ↦ 1, 3 ↦ 4, 4 ↦ 2} = (1 3 4 2) is applied to A and B, leaving the red 
cards sorted and the pairs of blue cards permuted by �(3,1,4,2) as shown. Note that the encoding of the 
permutation through card sequences is as in Sect. 3.2, and that the revealed sequence (4, 3, 1, 2) is inde-
pendent of the input sequences and the output sequence. (The different back colors are for illustration and 
to avoid errors in handling the cards, but are not necessary in theory.)
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Note that for each i ∈ {1,… , k} , the (bi
1
,… , bi

n
) are again assumed to be distinct. We 

permit that the bj
i
 are sequences again. In this sense, this definition is recursive. Fig-

ure 1 illustrates the simple intuition behind these more complex lifts.
We naturally extend this definition to permutation sets 𝛱 ⊆ Sn and, for conveni-

ence, a lift to two sequences A, B as

The Family of Sort (Sub-)protocols. For each combination of a group of permuta-
tions 𝛱 ⊆ Sn , a sequence of (card) positions A = (a1,… , an) and another sequence 
B = (b1,… , bn) , we will define a “protocol” 𝗌𝗈𝗋𝗍

�
A↑B . However, to avoid a larger 

and unnecessary technical exposition of sequential compositions of card-based pro-
tocols, we will use the symbol 𝗌𝗈𝗋𝗍

�
A↑B just as a shorthand or syntactic sugar for 

the sequence of four actions as stated in Protocol 1 (which is explained below). As 
this behaves like an inlined function in programming languages, we chose to call it 
“(sub-)protocol” in the following.

Note that � , A and B are a public part of the action specification, not inputs. To 
describe the intended behavior of the shorthand, assume it is executed on a sequence 
�  of cards. Let �∶=� [A]∶=(� [a1],… ,� [an]) be the sequence of cards in positions 
A, and �∶=� [B] the sequence of cards in positions B. We assume that these card 
(symbol) sequences � and � are secret.

Let �
�
∈ � be the permutation that sorts � , i.e., �

�
(�) is the lexicographi-

cal minimum of {�(�) ∣ � ∈ �} w.r.t. a given order on the deck symbols3. The 
overall effect of 𝗌𝗈𝗋𝗍

�
A↑B should be that �

�
 is applied to both � and � , yielding 

a sequence � ′ with � �[A] = �
�
(�) , � �[B] = �

�
(�) and � ′ equal to �  everywhere 

else. We permit B, and correspondingly � , to be a sequence of k-element sequences 
B = ((b1

1
… , bk

1
),… , (b1

n
,… , bk

n
)) for k ∈ ℕ , in which case applying �

�
 to � means 

applying �
�
 to each of the k sequences �1 = � [(b1

1
,… , b1

n
)] , ..., �k = � [(bk

1
,… , bk

n
)].

Implementation of Sort Protocols

An example for a practical implementation is given in Fig. 2 and a formal specifica-
tion in Protocol 1. The first step applies a randomly chosen permutation � ∈ � to A 

�↑A∶={�↑A ∶ � ∈ �}, �↑A,B∶={(�↑A)◦(�↑B) ∶ � ∈ �}.

3  We use the order from ℕ on cards with natural numbers, and ♣<♡.
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and B. Then, the cards in positions A are turned over, revealing �(�) where � is the 
sequence of cards that was previously in positions A.

This allows us to recognize which permutation �
�(�) would sort �(�) and apply it 

to the sequences in positions A and B. Clearly, the overall effect is that � and � have 
both been permuted by the same permutation �

�(�)◦� . Moreover, this permutation 
sorted the cards in positions A as desired.

If we only want to reset the sequence in A to a sorted one, i.e., without applying it 
to cards at positions B, (as in Protocols 11 and 12) we write ����

�
A.

Definition 3.1  Let i be a index/step number of an action (or action sequence denoted 
by a shorthand, if you wish) in an execution of a protocol, and A a sequence of 
card positions of the protocol. Let ���� (A, i)∶={� [A] ∶ �  is possible when reaching 
step i} be the set of possibilities for � when the protocol reaches the action at step i 
(before executing this step). We say an sub-protocol/shorthand 𝗌𝗈𝗋𝗍

�
A↑B at a step i 

is valid in a protocol if ���� (A, i) is contained in an orbit O of the group action of � 
on sequences, and |O| = |�|.

The rationale behind this definition is that if ���� (A, i) is subset of O w.r.t. � , 
then shuffling � with � destroys all information that is held in the sequence � prior 
to turning it. Thus, no information is leaked. The condition |O| = |�| ensures that 
the permutation �

�
∈ � that sorts � is uniquely defined.4

Note that this slightly involved criterion is necessary to ensure security in the 
case that the permutation is chosen at random from a proper subset of Sn (on all n 
cards of the deck). An important example for this is a random cut, which we later 
use to apply a rotation encoded in a sequence. Assume for instance � = ⟨(1 2 3)⟩ 
and � ∈ � uniformly random. Moreover, let X be the six-element set of permuta-
tions of (♡,♣,♠), and s ∈ X be arbitrary. Revealing �(s) to be, say, �(s) = (♣,♡,♠) 
reveals, e.g., that s is not (♡,♣,♠). The reason is that � has two orbits when acting 
on sequences of length 3 with symbols ♡,♣,♠ and we learn in which orbit we have 
been, excluding all sequences of the other orbit. This criterion is also suitable for 
achieving security, as shown by the following lemma.

Lemma 3.1  If an shorthand/sub-protocol 𝗌𝗈𝗋𝗍
�
A↑B at step i is valid in a protocol, 

then the sequence revealed in the sub-protocol’s turn step is independent of the ran-
dom variable �  denoting the card sequence before step i, and the random variable 
�

′ denoting the sequence directly after the sub-protocol.

Proof  By definition, ���� (A, i) for the sub-protocol 𝗌𝗈𝗋𝗍
�
A↑B at step i is subset of an 

orbit O. Whatever the distribution of � is, if � ∈ � is chosen uniformly at random, 
then the sequence �� = �(�) revealed in the turn step is uniformly distributed on O. 

4  We could drop this condition without affecting security. The effect of sort would be that among all per-
mutations that sort � , one is chosen uniformly at random and applied to the cards in A and B.
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It is thus independent of �  . Since � ′ is a function of �  , we conclude that �′ is inde-
pendent of (� ,� �) . 	�  ◻

Corollary 3.1  If a protocol P contains no turn operations outside of valid instances 
of sort sub-protocols, then P is secure.

Encoding Permutations

A sequence (s1,… , sn) ∈ {1,… , n}n of card symbols encodes a permutation � if 
si = �(i) for 1 ≤ i ≤ n . Let us denote D5∶=[1, 2, 3, 4, 5] and D2∶= [♣, ♡], and give 
a short example.

Example 3.1  The 5-cycle permutation � = (1 2 3 4 5) is represented via D5 by 
�
�
= (2, 3, 4, 5, 1) . The (self-inverse) transposition � = (1 2) is represented via D2 as 

�
�
= (♡, ♣).

Useful Specializations. Two subclasses of sort protocols will be particularly 
useful. The first will be useful, e.g., to apply an encoded permutation to another 
sequence of cards, the second to rotate a sequence by a specified offset.

•	 Apply a permutation encoded in A to the sequence in B . Assume that in a pro-
tocol, � = � [A] is known to always be a permutation of a fixed set M of n dis-
tinct cards, say of M = {1, 2,… , n} . Then, 𝗌𝗈𝗋𝗍SnA↑B is valid at this point i as 
���� (A, i) is a subset of all permutations of M, which is an orbit w.r.t. � = Sn . 
The effect is that the permutation encoded in A is applied to � [B] . Whenever 
� = Sn , we omit � as an index of 𝗌𝗈𝗋𝗍

�
A↑B.

•	 Apply a rotation encoded in A to the sequence in B . Assume that in a proto-
col � = � [A] is known to always be a permutation of a multiset M with n − 1 
copies of one symbol and one copy of another symbol, say M = [ (n − 1)⋅♡,♣]. 
Let ♣ < ♡ by convention. Then, for � = ⟨(1 2 … n)⟩ , an sort sub-protocol 
𝗌𝗈𝗋𝗍

�
A↑B is clearly valid at this point i, as ���� (A, i) ⊆ {(♣,♡,…,♡),(♡,♣,♡,…

,♡), … , (♡,…,♡,♣)} and the latter is an orbit w.r.t. � . The effect is that the 
rotation encoded in A is applied to � [B] . In this case, we also write 𝗋𝗈𝗍A↑B for 
𝗌𝗈𝗋𝗍

�
A↑B . (Note that this is similar to a part of the coupled rotation protocols 

given in [30].)

Note that for n = 2 , the two cases are the same.
Non-destructive Variant ����∗ . We define a variation ����∗ of ���� that differs 

only in so far as it should make no net change to the cards in positions A. For 
this, a sequence of helping cards is assumed to be available in (otherwise unused) 
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positions H = (h1,… , hn) . We implement ����∗ in Protocol 2 by two applications 
of ���� , where the latter restores � from the helping “register”.

We say an application of ����∗ is valid whenever an application of ���� would be 
valid and ℍ∶=� [H] = (1,… , n) is guaranteed, i.e., H contains cards with numbers 
in ascending order. Note that ����∗ is defined as a shorthand or syntactic sugar via 
Protocol 2 in the same way as ����.

It is easy to see that under these conditions, if � is applied to the cards in posi-
tions A and H in the first sorting step, then �−1 is applied to the cards in positions 
A and H in the second sorting step, as this is the unique permutation that sorts the 
cards in positions H. Thus, one complete valid application of ����∗ makes no net 
changes to A and H. It is also easy to check that both applications of ���� are valid 
in the original sense, therefore, Lemma 3.1 and Corollary 3.1 extend naturally to 
����∗ . We use ���∗ for the variant using cyclic rotations.

Stating Classical Protocols in Terms of ����

The standard and, or, xor and copy protocols due to Mizuki and Sone [37] can all 
be stated as single application of our ���� sub-protocol as shown in Protocols 3 to 6 
in Fig. 3. We also provide a permutation application protocol that takes the encod-
ing of a permutation and a sequence as input and outputs the permuted sequence. 
This is in essence the permutation division protocol by Hashimoto et al. [22] (the 
only change being that we encode the inverse permutation). It has been suggested 
to us that more complex protocols, such as zero-knowledge protocols for Sudoku 
[44] and Makaro [6], as well as for the Millionaire’s problem [34] can be interpreted 
to implicitly utilize our sort protocol. Moreover, the eight-card AND protocol for 
standard decks (where all card symbols are distinct) from [35] and the eight-card 
3-bit majority protocol of [40] can be implemented using two sorts, the latter is 
given in Protocol 8. 
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Fig. 3   The classical protocols and, or, xor and copy as well as a permutation application protocol, all 
stated as sort protocols
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Securely Evaluating a Universal Circuit

Let us start with the most direct case, namely implementing PFE using universal 
circuits, first constructed by Valiant [45]. We do not want to go into the details 
of the construction and just import facts about the general structure of the circuit 
and how it is used. In our examples, Alice provides her private function, here as a 
circuit C , and Bob his private input to the function, and it should hold that neither 
party learns anything about the other’s respective secrets. The universal circuit Un 
for circuits of size n takes as input an encoding ⟨C⟩ of C , where C has size n , and 
an input I ∈ {0, 1}l of length l . We assume C to have fan-out and fan-in at most 2 , 
i.e., each gate has at most two inputs and at most two outputs.

In the constructions by Valiant, Un is described via a directed acyclic graph 
with O(n log n) vertices, where each vertex represents a logic gate taking values 
on its incoming edges as well as certain “configuration” (or programming) bits 
as input and computes outputs emitted to its outgoing edges. More concretely, Un 
contains the following types of nodes:

–	 n universal gates with in- and out-degree exactly two and four configuration 
bits c1,… , c4 that compute 

where c1,… , c4 determine the Boolean operation performed at this gate, e.g., 
AND corresponds to (c1,… , c4) = (0, 0, 0, 1).
–	 O(n log n) X-switches with a configuration bit c and in- and out-degree two, 

that compute 

where ac is forwarded on one outgoing edge and a1−c on the other.

–	 O(n) Y-switches computing 

 where Alice’s configuration bit c decides which of the two inputs is forwarded as 
the output.
–	 O(n) forks (or “ �-switches”) where the signal on one wire is forwarded to both 

outgoing wires, i.e., �(a) = (a, a).
–	 l input nodes with out-degree 1 and in-degree 0, and one output node with in-

degree 1 and out-degree 0 with their natural interpretation.

��(c1, c2, c3, c4, x, y) = (z, z), where z = c1x̄ȳ + c2x̄y + c3xȳ + c4xy

�(c, a0, a1) = (ac, a1−c),

�(c, a0, a1) = ac,
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The universal gates correspond to the gates of Alice’s circuit with the configuration 
bits determining what kind of gate it is, and the configuration of X and Y-switches 
ensures that the intermediate results are routed correctly to the relevant gates. For 
us, it suffices that there is an (efficient) way to obtain ⟨C⟩ from C , which Alice 
applies beforehand. Valiant [45] describes such a general mapping from circuits C to 
a string of O(n log n) configuration bits for Un , such that Un configured with ⟨C⟩ (in 
canonical order) implements C.

We describe in Protocol 9 and Theorem 4.1 how, given Un , encodings of ⟨C⟩ and 
Bob’s input I in sequences of cards, we can compute C(I) securely.

Theorem 4.1  For any l, n ≥ 1 , there exists a secure card-based protocol P with the 
following properties: 

	 (i)	 The input sequences are all sequences (V, P) where

–	 V encodes the values of l Boolean variables (v1,… , vl) ∈ {0, 1}l using the 
deck l⋅[♣,♡].

–	 P encodes a circuit C of size n , via k = O(n log n) programming bits, i.e., 
via deck k⋅ [♣, ♡].

	 (ii)	 The output is two cards encoding C(v1,… , vl).
	 (iii)	 In addition to the input cards, we use the helping deck (m + 1)⋅ [♣, ♡], where 

m = O(n) is the number of forks in Un . (The additional pair is used for the ����∗ 
command.)

	 (iv)	 The protocol uses xn + yn + 2fn + 3un shuffles, where xn is the number of 
X-switches, yn is the number of Y-switches, fn is the number of forks and un is 
the number of universal gates in Un.

Proof  P is given as Protocol 9. All nodes of Un are considered in some topological 
order s1,… , sN , allowing us to compute the bits “flowing” along each edge of Un in 
a systematic way. The message at an edge e is stored in positions Ve = (Ve[0],Ve[1]) . 
Note that the bit on each edge is only used in one subsequent computation: After 
processing si , only the bits on the edges crossing the cut ({s1,… , si}, {si+1,… , sN}) 
are needed in future computations. When processing si+1 we may, therefore, when 
storing the bits for the outgoing edges of si+1 , reuse the now freed up cards that 
stored the bits on the incoming edges of si+1 . In Protocol 9, this is reflected by iden-
tifying Ve and Ve′ for some pairs (e, e�) of edges. We only need a new pair of cards in 
the case of a fork.

To verify correctness, let us interpret the main sort commands in the protocol. 

1.	 In the X-switch case, 𝗌𝗈𝗋𝗍 Cv↑(Ve,Vf ) swaps the positions encoding the incoming 
input values at edges e and f  , if the configuration bit of the X-switch equals 1 and 
leaves them unchanged, if it equals 0 . This is exactly what we wanted.

2.	 In the Y-switch case, the command is exactly the same, with the difference that 
afterwards only the output bit that ends up in the first position ( Ve ) is used after-
wards.
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3.	 In the fork case, we (non-destructively, i.e., with restoring) copy the bit to another 
position, used as an additional output wire value.

4.	 The universal gate case is the most interesting. Recall that we want to evaluate 
��(c1, c2, c3, c4, x, y) = (z, z) with z = c1x̄ȳ + c2x̄y + c3xȳ + c4xy . For this, first 
observe that exactly one of the terms x̄ȳ , x̄y , xȳ , xy equals one. Essentially, the 
values of x and y select which configuration bit constitutes the output. If x = 0 
then only c1 and c2 are relevant. If x = 1 only c3 and c4 are. Therefore, in the first 
sorting step, we obliviously swap (C1,C2) for (C3,C4) if x = 1 and leave things 
as is, if x = 0 . The interesting two configuration bits end up in positions C1,C2 , 
without us knowing which they are.

	   Now, we do the same with C1,C2 , based on the value of y , so that the only 
relevant configuration bit is now in C1 . In the last step, we write this value in both 
Vg and Vh (recall the fan-out two requirement).

To see that P is secure, we use Corollary 3.1 and the fact that no turn opera-
tions are performed outside of sorting steps. 	�  ◻

Dependent on the topological ordering used in Protocol 9, the helping deck we 
use to implement forks is not fully required. Instead of using a “fresh“ pair of cards 
to store a copy of the incoming value whenever a fork is encountered, we can reuse 
cards that have already served their function and will not be used in the remainder of 
the protocol. This includes, for instance, the cards that encoded configuration bits of 
universal circuits or X-switches that have already been executed.

Remark 4.1  (Reusability of the Circuit) If we would like to be able to execute the cir-
cuit multiple times, we want that the programming bits of Alice’s program are not 
destroyed during the execution. Here, we have to take a little care to ensure that the 
relevant bits are written back and that conditionally swapped cards are “unswapped” 
again. For this variant of our algorithm, we replace all sort operations in Protocol 9 by 
their starred variants. In the case of v being a universal gate, we additionally need to 
take extra care: in the penultimate line of the case, instead of reusing Ve and Vf  (which 
are now in temporary use to swap back the relative positions of the cards containing 
the configuration bits), we set Vg and Vh as the positions of two new cards, contain-
ing ♣♡ as in the fork case. To undo the swaps, we perform 𝗌𝗈𝗋𝗍 Vf↑(C1

,C
2

) and then 
𝗌𝗈𝗋𝗍 Ve↑((C1

,C
2

), (C
3

,C
4

)) at the very end of the procedure in the universal gate case. 
Afterwards, the cards in Ve and Vf  may be reused again. Hence, this variant uses uses 
2xn + 2yn + 2fn + 8un shuffles, where xn is the number of X-switches, yn is the number 
of Y-switches, fn is the number of forks and un is the number of universal gates in Un.
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Securely Simulating a Turing Machine

Assume we wish to execute a Turing machine (TM) with a secret encoding pro-
vided by one player, Alice, on a secret input provided by another player, Bob. As 
any secure card protocol uses a fixed number of cards and has a runtime which is 
independent of the input, there must be known bounds on certain parameters of 
the Turing machine. Let M be a bound on the number of states, N a bound on the 
number of accessed tape cells and t a bound on the execution time. For simplicity, 
assume Alice’s TM has precisely M states (it can be padded with dummy states), 
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runs t steps (“halting” can be achieved by staying in one state, writing the current 
tape symbol and not moving) and think of the tape as a cycle of length N (which 
makes no difference for a TM only ever accessing N memory cells).

All cards (and names for them occurring in the following description) used 
for our protocol, with the exception of a few helping cards used for ����∗ and ���∗ 
operations, are given in Fig. 4. The encoding of a Turing machine consists of the 
encoding of its M states. The encoding of each state q ∈ {0,… ,M − 1} consists of 
the encoding of two transitions, one for each of the two tape symbols ♡♣ and ♣♡. 
Take for instance the positions W0, SHIFT0 = (L, N, R) and Q′

0
 encoding the transition 

from state q = 0 if the tape symbol is ♣♡. The two cards in positions W0 contain the 
tape symbol to be written. The three cards in positions SHIFT0 specify the move-
ment of the Turing machine head, ♣♡♡ for “left”, ♡♡♣ for “right”, ♡♣♡ for “no 
movement” / “halt”. Lastly, the M cards in positions Q′

0
 contain a unary encoding 

of q − q� (mod M) where q� ∈ {0,… ,M − 1} is the index of the state to be entered 
next (♣♡… ♡ encodes 0, ♡♣♡… ♡ encodes 1, etc.).

The input to the TM, provided by Bob, is encoded in the first l bits of the tape. 
When executing the Turing machine, the current tape cell will always be in position 
TAPE[0] and the current state in position Q[0] . Instead of having an explicit moving 
head we simply rotate the entire tape. Moreover, instead of having an explicit value 
encoding the current state, we rotate the sequence of states. This is also the reason 
we encode state index differences in the state transitions instead of absolute indices. 
The protocol is given as Protocol 10 and consists of a loop that does t times the 
following:

–	 “read” the tape symbol in position TAPE[0] by conditionally swapping the two 
transitions in state Q[0] such that the transition that should be done is available 

Bob’s input
︷ ︸︸ ︷

︸ ︷︷ ︸

tape[0]
︸ ︷︷ ︸

tape[1]

· · ·
︸ ︷︷ ︸

tape[�−1]

♣ ♥
︸ ︷︷ ︸

tape[�]

· · · ♣ ♥
︸ ︷︷ ︸

tape[N−1]

♣
rot[0]

♥
rot[1]

· · · ♥
rot[�−1]

♥
rot[�]

· · · ♥
rot[N−1]

Tape mechanism: ♣
sav[0]

♥
sav[1]

︸ ︷︷ ︸

w0

l n r

︸ ︷︷ ︸

shift0

· · ·
︸ ︷︷ ︸

q′
0

︸ ︷︷ ︸

w1

︸ ︷︷ ︸

shift1

· · ·
︸ ︷︷ ︸

q′
1

q[0]:

· · · · · ·q[1]:

...... ...
· · · · · ·q[M−1]:

♣ next[0]

♥ next[1]

♥ next[M−1]
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Fig. 4   Overview of a run of the universal TM
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in the positions W0 , SHIFT0 and Q′
0
 . To undo this operation later, the value of 

TAPE[0] is also stored temporarily in (SAV[0], SAV[1]).
–	 the content of TAPE[0] , which was reset to 0 in the previous step, is now over-

written with the symbol in position W0.
–	 The cards in positions (L, N, R) are used to rotate the ♣ of ROT[0] into the posi-

tions ROT[0] , ROT[1] or ROT[N−1] depending on whether the ♣-card among 
SHIFT0 is in position N , R or L , respectively. Then, the TAPE and ROT cards are 
rotated together such that the tape cell whose corresponding ROT card is ♣ comes 
to rest in position TAPE[0] (and such that one does not learn which rotation has 
been performed.)

–	 The same idea is used to first copy the information about the next state into 
NEXT[0…M−1] and then rotate the sequence of all states accordingly. Note that 
we need to undo the conditional swap of the two transitions in Q[0] before the 
rotation of the states (using a coupled sorting with (SAV[0], SAV[1])).

 Using this protocol idea, we obtain the following theorem.
Theorem 5.1  For any l ≥ 0,N,M, t ≥ 1 , there exists a secure card-based protocol 
P with the following properties: 

	 (i)	 The input sequences are all sequences (V, P) where

–	 V encodes the values of l Boolean variables (v1,… , vl) ∈ {0, 1}l using the 
deck l⋅ [♣,♡].

–	 P encodes a Turing machine T with a state set of size M , using the deck 
2M⋅ [ 3⋅ ♣,(M + 2)⋅ ♡].

	 (ii)	 The output is a sequence of cards encoding the output of T after running t steps 
on a cyclic tape of length N initially containing the input (v1,… , vl).

	 (iii)	 In addition to the cards encoding the inputs, the helping deck [ (N − l + 3)⋅ 
♣, (M + 2N − l − 1)⋅ ♡] ∪ [ ♣, min{2,M − 1}⋅ ♡] is used. (The latter part is 
implicit in the use of the starred ���∗ commands and not shown in Fig. 4.)

	 (iv)	 The protocol uses 10t shuffles.
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Proof  The protocol is given in Protocol 10 and Fig. 4. For security, observe that the 
protocol consists only of sort sub-protocols; we can thus use Corollary 3.1.

For the cards needed, we just count the number of cards depicted in Fig. 4. In a 
bit more detail, for the helping cards needed, note that we need N − l pairs of ♣♡ for 
the empty tape cells, which are placed next to Bob’s input string. We have one ♣ for 
each of the registers ROT , SAV and NEXT , and N − 1 , 1 and M − 1 ♡s, respectively. 
The second part of the union scales with the size of the largest register to be used in 
starred commands, which is either SHIFT0 or Q′

0
 . 	�  ◻

Remark 5.1  (Variants to the Implementation) Using techniques presented in Sect. 6, 
we could use a binary instead of a unary encoding of state indices in the encoding 
of transitions. This would reduce the number of required cards from O(N +M2) to 
O(N +M log(M)) . However, given that the charm of Turing machines is their sim-
plicity rather than their efficiency, we felt that we should reserve this trick for later.

For simplicity, we also chose to describe how to implement TMs with band 
alphabet {0, 1} , excluding the special blank symbol ␣. While one can generically 
map this to the standard case by using an encoding 1 =̂ 11 , 0 =̂ 10 , and ␣ ̂= 00 , let us 
briefly discuss how one can easily upgrade our implementation with a TM support-
ing an additional blank symbol. For this, we encode tape cells with three cards via 
♣♡♣ =̂ 0 , ♡♣♣ =̂ 1 and ♣♣♡ =̂ ␣. In this way, the first two cards encode the value 
as previously, unless they are ♣♣, which would be a blank. We then need to add W2 , 
SHIFT2 and Q′

2
 to each of the Q s, specifying the operation in the case that a blank 

symbol is used (Note that the Wi contain the symbol to be written in reversed order, 
to ensure the right action is done to the tape cards). This approach has the advantage 
of allowing us to learn the length of the output after the computation (if it is not to 
be protected), by just turning over the third card in each of the tape cells and output-
ting (the first two cards of) those cells which do not show a ♡, i.e., which are not 
blank.

Remark 5.2  (Reusability of the TM) First note that we never destroy any of the state 
description entries of the TMs code as in normal execution it is always possible to 
enter the state again. Hence, to be able to run a TM multiple times, we only need 
to ensure that after the execution the first state is again in Q[0] . As we cannot trust 
Alice to provide a program that guarantees this behavior, we can introduce an addi-
tional register START[0...M − 1] which is a copy of NEXT and is rotated together with 
Q . It can then be used to rotate Q back into its initial configuration by executing 
𝗋𝗈𝗍 START↑Q after the loop in Protocol 10. Hence, this variant uses 10t + 1 shuffles. 
(Resetting all tape cells to 0 and placing the new input is excluded here, but can be 
easily appended.)
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Securely Simulating a Random Access Machine (RAM)

We now describe a simple bounded Random Access Machine model. The goal is 
to execute a RAM machine with a secret encoding of the machine specified by one 
player, Alice, on a secret input provided by another player, Bob.

A Simple RAM Model

We assume fixed constants N = 2n (memory words), M = 2m (instruction groups), 
l ≤ N (input size) and t < ∞ (time limit). The machine has access to N binary words 
RAM[0],… , RAM[N − 1] of length n each, the first l of which contain the input and 
the remaining N − l contain zero. The following types of instructions are available, 
where x, y are n-bit words and p is an m-bit word:

To simplify the implementation step later, we assume that a program is a sequence 
I[0],… , I[M] of groups of instructions. Each group of instructions contains precisely 
one instruction of each of the above types, in canonical order. Note that this fixed 
instruction order does not affect the strength of the model. Indeed, if we assume that 
without loss of generality the cell RAM[0] is never used in any “real” instruction, we 
may choose x = y = 0 to turn any instruction into a dummy instruction that has no 
effect. By turning all but one desired instruction in each instruction group into such 
a dummy instruction, we can implement programs without having to worry about 
the fixed instruction order at the expense of increasing the number of instructions by 
a constant factor.

Here, the ��� RAM[x] p (“jump if not zero”) instruction means that if RAM[x] con-
tains zero, the execution should continue with the next instruction group. Otherwise, 
p is to be interpreted as the relative offset to the next instruction group that should 
be executed, i.e., if the current instruction group has index j, then the instruction 
group with index (j + p) mod M should be executed next.

Implementation with Cards

Assume we want a secure implementation of the RAM model with parameters 
N = 2n , M = 2m , l, t using playing cards. We may imagine that one player, Alice, 
provides the sequence of instructions, and the other player, Bob, provides the input 
in RAM[0… l−1] of l⋅n bits. As usual, each bit is encoded with a pair of cards and 
a word of n or m bits is a sequence of n or m such pairs. In addition to the inputs, 
we have an encoding of RAM[l…N−1] (initially zero) and two additional n-bit 

���� ���������. RAM[x]←y

����. RAM[x]←RAM[y]

�������� ����. RAM[x]←RAM[RAM[y]]

�������� �����. RAM[RAM[x]]←RAM[y]

��������. RAM[x]←RAM[x] + RAM[y]


����������. RAM[x]←RAM[x] − RAM[y]

����������
 	���. 𝗃𝗇𝗓 RAM[x] p
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“accumulators” A and A′ (initially zero). Finally, there are ♡-cards in (“instruction 
pointer”) positions labeled IP[1],… , IP[M − 1], IP∗ and one ♣-card in the position 
labeled IP[0] , which will be used for the conditional jumps. An overview is given in 
Fig. 5.

We say a few words about the implementation of the instructions, starting with 
a general description of how words can be loaded from and stored to arbitrary 
addresses.

Loading a Word. Assume that an address is available as an n-bit word 
x = (x1,… , xn) , each bit xi encoded as a pair of face-down cards in positions 
Xi = (Xi[0],Xi[1]) and that the word RAM[x] should be loaded into the accumu-
lator. We give an implementation as Protocol 11. The first loop uses n condi-
tional swaps of RAM ranges to transport the content of RAM[x] into RAM[0] . The 
invariant is that after the i-th loop, the content of RAM[x] has been transported 
to RAM[x&(2n−i − 1)] where & denotes the bitwise AND. For instance, if n = 4 
and x = 10 = (1010)2 , then in the rounds i = 1 the left half RAM[0… 7] and right 
half RAM[8… 16] of the memory would be swapped and in round i = 3 the ranges 
RAM[0, 1] and RAM[2, 3] would be swapped, in total transporting RAM[10] via 
RAM[2] to RAM[0].

The second for-loop copies the content of RAM[0] to the accumulator. Since the 
copy protocol can copy information only onto card pairs that are in a known state, 
we must securely reset the accumulator bits before each copy operation. The third 
for-loop undoes all swaps of the first loop, in reverse order. In total, this uses 7n 
shuffles. 

Bob’s input
︷ ︸︸ ︷

ram[0]
︷ ︸︸ ︷

︸ ︷︷ ︸

ram[0]1

︸ ︷︷ ︸

ram[0]2

· · ·
︸ ︷︷ ︸

ram[0]n

· · ·

ram[�−1]
︷ ︸︸ ︷

︸ ︷︷ ︸

ram[�−1]1

· · ·
︸ ︷︷ ︸

ram[�−1]n

ram[�]
︷ ︸︸ ︷

♣ ♥
︸ ︷︷ ︸

ram[�]1

· · · ♣ ♥
︸ ︷︷ ︸

ram[�]n

· · ·

ram[N−1]
︷ ︸︸ ︷

♣ ♥
︸ ︷︷ ︸

ram[N−1]1

· · · ♣ ♥
︸ ︷︷ ︸

ram[N−1]n

ram[0 . . . N−1]:

〈 binary encoding of parameters for instructions of group 0 〉i[0]:

〈 binary encoding of parameters for instructions of group 1 〉i[1]:

...... ...
〈 binary encoding of parameters for instructions of group M − 1 〉i[M−1]:

♣ ip[0]

♥ ip[1]

♥ ip[M−1]

♥ ip∗

A
lic

e’
s
in
pu

t
M

in
st
ru
ct
io
n
gr
ou

ps

♣ ♥
︸ ︷︷ ︸

a1

♣ ♥
︸ ︷︷ ︸

a2

· · · ♣ ♥
︸ ︷︷ ︸

an

Accumulator a :
♣ ♥
︸ ︷︷ ︸

a′
1

♣ ♥
︸ ︷︷ ︸

a′
2

· · · ♣ ♥
︸ ︷︷ ︸

a′
n

a′ :

Fig. 5   Overview of our RAM machine construction, cf. Protocol 13
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Storing a word. Storing is very similar to loading, we give an implementation in 
Protocol 12. Here, instead of copying the RAM content to the accumulator in the 
second line of the second for loop, we copy the value of the accumulator into the 
RAM. As above, this uses 7n shuffles. 

Move operations. The operations previously dubbed copy, indirect read and 
indirect write are easy to implement using the load and store algorithms. For 
temporary storage, the accumulator A′ is used. For instance, the indirect write 
operation RAM[RAM[x]]←RAM[y] with the words x and y encoded in positions 
X and Y can be implemented using ����(Y) , ����(A,A�) , ����(X) , ����(A,A�) , 
�����(A�) , where ���� just swaps the two card sequences. As each load or store 
operation uses 7n shuffles, we use 14n shuffles for copy, and 21n shuffles for indi-
rect read and indirect write.
Loading Constants. Copying a value given directly in the instruction is simply 
done by copying each of the n bits one by one. This uses 7n shuffles.
Addition and Subtraction. Secure half and full adders have been described by 
[33]. If n ≥ 2 , the accumulator A′ is sufficient to store carry-bits temporarily. 
Note that both protocols use 5n shuffles (more precisely, random bisection cuts), 
as subtraction uses the full adder with the carry bit set to 1 and all bits of the sec-
ond number inverted (via a simple perm operation). We omit the details.
Conditional Jump. While it would be possible to have an instruction pointer that 
is affected by jump operations, we opt for an approach that seems slightly more 



138	 New Generation Computing (2022) 40:115–147

123

elegant. We always execute instruction group I[0] , and when executing the last 
instruction ��� RAM[x] p of that group, we rotate the sequence of all instructions 
such that either IP[1] or IP[p] becomes IP[0] , depending on the value of RAM[a] . 
See below for the exact description. Counting the shuffles in the relevant part of 
Protocol 13 yields 8n + 2m + 2 shuffles, as the n bit OR operation uses n shuffles. 
(Note that here p might even be 0, meaning that if RAM[x] ≠ 0 the same instruc-
tion group is repeated again. Due to the time limit t, this cannot result in a real 
infinite loop and hence would not exhibit unusual detectable behavior that, e.g., 
Alice could use to learn information on Bob’s input.)

The overall execution of the RAM program is given in Protocol 13. We assume 
the addresses x and p are available in positions X and P, respectively. To carry out 
theconditional jump, first load x into the accumulator and form the Boolean OR of 
all its bits. Assuming RAM[0] is not zero, then the bit a1 is set to true by this OR 
operation and the single ♡-card is swapped into IP∗ before the for-loop and is put 
into position IP[1] afterwards. If, however, RAM[0] is zero, then a1 is set to false in 
which case the for-loop transports the ♣-card into position IP[p] (the loop invariant 
is that the ♣-card is in position IP[p&(2m−i − 1)] ). The rot operation in the last step 
rotates the sequence of instructions as desired. 

Theorem 6.1  For any N = 2n,M = 2m, l < N, t ≥ 1 , there exists a secure card-based 
protocol P with the following properties: 

	 (i)	 The input sequences are all sequences (V, P) where

–	 V encodes l n-bit words (v1,… , vl) ∈ {0, 1}nl using the deck nl⋅[♣,♡].
–	 P encodes an n-bit-word RAM machine R with M instruction groups using 

the deck kM⋅ [♣,♡], where k = O(n + m) is the length of the encoding of one 
instruction group.
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	 (ii)	 The output is a sequence of cards encoding the output of R on input (v1,… , vl) 
after t steps.

	 (iii)	 In addition to the cards encoding the inputs, we need the helping deck 
(N − l + 2)n⋅ [♣,♡] ∪ [♣, M⋅ ♡]. (Additional cards for the starred sort vari-
ants can borrow from A′.)

	 (iv)	 The protocol uses (85n + 2m + 4)t shuffles.

Proof  For the correctness, we refer to the above explanation of all the rel-
evant commands. For security we again use Corollary 3.1 and the fact that 
we do not turn over any cards outside sort or rot operations. For this, note 
that the OR operation in line 5 of Protocol 13 can be framed as a sort opera-
tion, cf. Protocol 4. The number of shuffles is derived by counting the num-
bers of shuffles in each instruction type as specified above. This yields 
(7n + 14n + 21n + 21n + 5n + 5n + 8n + 2m + 4)t = (85n + 2m + 4)t shuffles. 	�  ◻

Remark 6.1  (Reusability of the Program) Similarly to Remark 5.2 for the TM case, 
we can ensure that we end in the original configuration (with the first instruction 
in IP[0] ) by introducing an additional register START[0...M − 1] which is rotated 
together with the instruction groups and IP . At the end of the execution, we use it to 
rotate everything back into place and additionally reset the accumulators. This vari-
ant uses an additional 2n + 1 shuffles (again not including the reset of the RAM cells 
and providing the new input).

Securely Evaluating a Branching Program

Branching Programs [4] are commonly used for constructing program obfuscation, 
e.g., in [17, 20, 47], which inspired this section.

Branching Program. A branching program B of length N and width w for l varia-
bles is a sequence ((j(i),�(i)

0
,�

(i)

1
))1≤i≤N ∈ ({1,… , l} × Sw × Sw)

N of instructions. The 
permutation belonging to a sequence v⃗ = (v1,… , vl) ∈ {0, 1}l of inputs is

In other words, in the i-th step, the value of the j(i)-th variable determines which of 
the two permutations of the i-th instruction is used.

For � ∈ Sw , we say B �-computes a Boolean circuit C, if for any v⃗ ∈ {0, 1}l

Now let ����� be a set of states on which Sw acts via some group action ∗ and execut-
ing B on v⃗ starting from some start state q0 ∈ ����� means computing states (qi)1≤i≤N 
iteratively as qi+1 = �v

j(i)
∗ qi . Of course, we end with qN = 𝜋v

j(N)
∗ … ∗ 𝜋v

j(1)
∗ q

0

= B(v⃗) ∗ q
0

.

B(v⃗) =
∏

1≤i≤N

𝜋
(i)
v
j(i)
.

B(v⃗) =

{
𝜎, if C(v⃗) = 1,

��, if C(v⃗) = 0.
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In this paper, ����� is a set of card sequences of length w and � ∗ q yields the card 
sequence q permuted by �.

A Peculiar Subset of S5 . Barrington’s Theorem makes heavy use of the fact that 
S5 is not a solvable group. In particular, there are permutations �, � ∈ S5 such that 
the commutator [�, �]∶=�◦�◦�−1

◦�
−1 is not the identity permutation. There is some 

freedom when choosing permutations for the construction that follows. To be more 
specific, we define the five permutations �0,… ,�4 as 

ϕ0 :

1

2

34

5
ϕ1 :

1

2

34

5
ϕ2 :

1

2

34

5
ϕ3 :

1

2

34

5

ϕ4 :

1

2

34

5

In general, we can define �i = (1 2 3 4 5)i◦�0◦(1 2 3 4 5)−i for any i ∈ ℤ but, of 
course, only the remainder of the index modulo 5 is relevant.

It is easy to check that �0 = �5 = [�3,�4] and �−1
0

= �
−1
5

= [�1,�3] . We can, 
therefore, write each element � ∈ F∶={�0,… ,�4,�

−1
0
,… ,�−1

4
} as � = [��,���] for 

some other elements ��,��� ∈ F . More concretely, we have

Barrington’s Theorem. We now state a central theorem due to Barrington, which we 
specialize to permutations from the set F defined above. For self-containedness and 
illustration, we give the elegant and constructive proof in full. Recall from Sect. 2 
that the depth of a circuit C is the maximum number of ∧ and ∨ gates on a path in C.

Theorem  7.1  (Barrington [4]) For any Boolean circuit C of depth d and � ∈ F 
there exists a branching program B = B(C) of width 5 and N ≤ 4d instructions that 
 �-computes C.

Proof  The proof works by induction on the length d′ of the longest path in C. If 
d� = 0 , then we also have d = 0 and the output node is labeled with a constant 0, a 
constant 1 or the index j of a variable. In these cases, the trivial branching programs 
with a single instruction of the form (_, ��, ��) , (_,�,�) or (j, ��,�) , respectively,  
�-compute C (here, _ is a placeholder for an arbitrary variable index).

Now assume d′ > 0 . If the output node is labeled ��¬ “, then the value at its unique 
predecessor is computed by a circuit C′ with longest path of length d� − 1 . Therefore, 
there is a branching program B′ that �−1-computes C′ with at most 4d instructions. 
Let (j,�,��) be the last instruction of B′ . Replacing it with (j,�◦�,�◦��) yields a 
branching program B that �-computes C since we have

�i = [�i+3,�i+4], �
−1
i

= [�i+1,�i+3].
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and for similar reasons B(v⃗) = 𝗂𝖽 ⇔ C(v⃗) = 0.
If the output node is labeled ∧ , then values at its two predecessors are computed 

by two circuits C′ and C′′ with longest path of length at most d� − 1 and depth at 
most d − 1 . We previously observed that we can write � = [��,���] for two permuta-
tions ��,��� ∈ F . Let B′

�′ and B�

��−1
 be two branching programs that �′-compute and 

�
�−1-compute C′ , respectively, and similarly B′′

�′′ and B��

���−1
 be two branching pro-

grams that �′-compute and ���−1-compute C′′ , respectively.
We obtain B as the concatenation of these four branching programs. Depending 

on the values r� = C�(v1,… , vl) and r�� = C��(v1,… , vl) we get the following behav-
ior of B:

Since C(v⃗) = 1 ⇔ r� = r�� = 1 , this means B indeed �-computes C. 	�  ◻

Implementing Branching Programs with Cards

We first describe how the encoding P = P(C) is obtained from C, as the format of 
P already contributes to hiding details about C, especially the pattern in which vari-
ables are used. Firstly, by Barrington’s Theorem (Theorem 7.1) there is a branching 
program B = B(C) that �−1

0
-computes C with N ≤ 4d instructions. We now transform 

B into a normalized branching program B′ by preceding each instruction (j,�0,�1) of 
B with the j − 1 dummy instructions (1, ��, ��),… , (j − 1, ��, ��) and appending to it 
the l − j dummy instructions (j + 1, ��, ��),… , (l, ��, ��) . This means that B′ accesses 
all variables periodically in canonical order. Note that B′ contains lN ≤ l⋅4d . (In 
addition, we may choose to pad B′ to a longer program B′′ of length lN′ if we wish to 
hide the length of B′ and thus of B.) Clearly, B′ exhibits the same behavior as B. The 
sequence P is now simply obtained by concatenating the lN sequences encoding the 
permutations occurring in the description of B′.

Theorem 7.2  For any l,N ≥ 1 , there exists a secure card-based protocol P with the 
following properties: 

	 (i)	 The input sequences are all sequences (V, P) where

–	 V encodes the values of l Boolean variables (v1,… , vl) ∈ {0, 1}l using the 
deck l⋅ [♣,♡].

B(v⃗) = 𝜑 ⇔ B�(v⃗) = 𝗂𝖽 ⇔ C�(v⃗) = 0 ⇔ C(v⃗) = 1

B(v⃗) = B�

𝜑� (v⃗)◦B
��

𝜑�� (v⃗)◦B
�

𝜑�−1(v⃗)◦B
��

𝜑��−1(v⃗)

=

⎧
⎪
⎨
⎪
⎩

𝜑
�
◦𝜑

��
◦𝜑

�−1
◦𝜑

��−1 = [𝜑�,𝜑��] = 𝜑 if r� = r�� = 1

��◦𝜑��
◦��◦𝜑��−1 = �� if r� = 0, r�� = 1

𝜑
�
◦��◦𝜑�−1

◦�� = �� if r� = 1, r�� = 0

��◦��◦��◦�� = �� if r� = r�� = 0
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–	 P encodes a normalized branching program B of length lN with one bit output 
using the deck 2lN⋅[1, 2, 3, 4, 5].

	 (ii)	 The output is two cards encoding B(v1,… , vl).
	 (iii)	 In addition to the cards encoding the inputs, the helping deck [ 2⋅♡,5⋅ ♣] is 

used.
	 (iv)	 Each execution of the protocol performs 3lN shuffle actions.

Proof  The protocol is described in Protocol 14. We denote by capital letters the sets 
of positions on which the corresponding parts of the input (denoted by lower case 
letters) are present at the start of the protocol. Additionally, there are helping cards 
present in positions Q that initially contain the sequences ♣♡♣♣♣ as well as two 
cards to support the ����∗-operation (not shown in Fig. 6).

Consider an iteration of the inner loop with k = li + j . First, the encodings of the 
two permutations �(k)

0
 and �(k)

1
 (in positions � (k)

0
 and � (k)

1
 ) are swapped if vj (in posi-

tion Vj ) is 1 and left as is otherwise. Hence, an encoding of �(k)
vj

 ends up in position 
�

(k)

0
 , from where it is obliviously applied to the sequence in Q . For correctness, note 

that by assumption the normalized branching program �−1
0

-computes C , i.e., if the 
output is 0 , in total we perform �� on the cards in Q , which results in a 0 being 
encoded in QR . If C outputs 1 , then �−1

0
 is applied to the cards of Q , resulting in 

♡♣♣♣♣, as �−1
0

 maps 2 ↦ 1 , yielding an encoded 1 in QR.
Security of P follows again from the fact that the protocol is only composed by 

valid sort operations and Corollary 3.1. 	�  ◻

Remark 7.1  (Reusability of the Program) To allow for reusing the branching pro-
gram after its execution, we would need to write the executed permutation of each 
step back into its register and to undo any conditional swaps. In more formal terms, 
we replace the sort command in the second line of the inner loop of Protocol 14 with 
its starred variant. To undo the swap, we repeat the first line of the inner loop after 
the second line. Moreover, we reset the register Q . Hence, this variant of the protocol 
uses 6lN + 1 shuffles.

A Note Regarding Active Security. Note that a malicious Alice might learn some-
thing about the input passed to the program by choosing the permutations of the 
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program in such a way that the output (the first two cards in Q after the protocol run) 
is not ♣♡ or ♡♣, but ♣♣. If we want to avoid this, we can initialize q0 with ♣♡♣♡♣ 
(replacing the penultimate ♣ with a ♡), and instead of opening just the first two 
cards at the end, we have to ensure that the content of the register gets mapped to 
a single bit, without revealing anything else. For this, note that after a protocol run 
of a legal program, Q contains one of two configurations namely ♣♡♣♡♣ if �� was 
applied, and ♡♣♣♣♡ if �−1

0
 was applied. Important here, is that in the first case, the 

♡ s have distance 1 and in the second case distance 0 , which is invariant over ran-
dom cuts, and represents the two possible configuration classes (orbits w.r.t. random 
cuts) in the five-card trick [8]. We cannot use the five-card trick directly, as its out-
put is not in committed format, however. To overcome this, we can make use of the 
five-card AND protocol of [3], which starts with a situation as above and then out-
puts a bit commitment to the AND value in a (restart-free) Las Vegas fashion. (Note 
that this protocol is shown to be optimal/card-minimal in a strong sense in [27].) 
This change would add seven shuffles (five random cuts and two random bisection 
cuts) in expectation.

Moreover, for active security in all the protocols in this paper, one should addi-
tionally implement the shuffle operation with active security as in [30]. For ease of 
implementing the coupled shuffles, we recommend to use envelopes to avoid addi-
tional helping cards, as in Fig. 2.

Bob’s input
︷ ︸︸ ︷

︸ ︷︷ ︸

V1

︸ ︷︷ ︸

V2

· · ·
︸ ︷︷ ︸

V�

qR
︷ ︸︸ ︷

♣ ♥ ♣ ♣ ♣
︸ ︷︷ ︸

q

︸ ︷︷ ︸

Π(1)
0

︸ ︷︷ ︸

Π(1)
1

Π(1):

︸ ︷︷ ︸

Π(2)
0

︸ ︷︷ ︸

Π(2)
1

Π(2):

......
︸ ︷︷ ︸

Π(�·N)
0

︸ ︷︷ ︸

Π(�·N)
1

Π(�·N):

A
lic

e’
s
in
pu

t
�
·N

br
an

ch
in
g
in
st
ru
ct
io
ns

Fig. 6   Overview of the branching program construction. Alice’s input is the branching program 
((j(i),�

(i)

0

,�
(i)

1

))
1≤i≤N ∈ ({1,… , l} × S

5

× S
5

)N in normalized form



144	 New Generation Computing (2022) 40:115–147

123

Conclusion

We give four card-efficient and conceptually simple protocols for executing a uni-
versal machine model in a secure multiparty computation protocol, hence achieving 
Private Function Evaluation. These are for circuits, Turing and word-RAM machines 
and branching programs, giving the user a palette of options, from which they can 
choose the most suitable one. As an interesting building block—also largely simpli-
fying security proofs—we introduce sort protocols, which we believe to be of inde-
pendent interest, as many protocols from the literature can be restated in these terms. 
We give the concrete numbers of necessary cards for each of the models, carefully 
reusing helping cards where possible. We additionally discuss several adaptations, 
e.g., on how to execute these in a non-destructive way that lets us reuse the program 
multiple times.

Our results can also be interpreted as a straightforward instantiation of Obliv-
ious RAM (ORAM), making heavy use of the fact that we can physically and 
obliviously move around “RAM cells”, which is not possible in the usual crypto-
graphic ORAM model. By stating these classical cryptography problems, such as 
constructing ORAM or program obfuscation in the language of card-based cryp-
tography, it might not only be of didactic use in explaining these to students, but 
also provide some insight into the constructions in the classical cryptographic 
realm.
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