
Vol.:(0123456789)

New Generation Computing (2022) 40:67–93
https://doi.org/10.1007/s00354-021-00148-w

123

Card‑Based Cryptographic Protocols with Malicious Players
Using Private Operations

Yoshifumi Manabe1  · Hibiki Ono1

Received: 18 August 2021 / Accepted: 15 December 2021 / Published online: 3 February 2022
© The Author(s) 2022

Abstract
This paper shows new card-based cryptographic protocols using private operations
that are secure against malicious players. Physical cards are used in card-based cryp-
tographic protocols instead of computers. Operations that a player executes in a
place where the other players cannot see are called private operations. Using several
private operations, calculations of two variable Boolean functions and copy opera-
tions were realized with the minimum number of cards. Though private operations
are very powerful in card-based cryptographic protocols, there is a problem that it is
very hard to prevent malicious actions during private operations. Though most card-
based protocols are discussed in the semi-honest model, there might be cases when
the semi-honest model is not enough. Thus, this paper shows new protocols that are
secure against malicious players. We show logical XOR, logical AND, n-variable
Boolean function, and copy protocols. We can execute any logical computations
with a combination of these protocols. We use envelopes as an additional tool that
can be easily prepared and used by people.

Keywords  Multi-party secure computation · Card-based cryptographic protocols ·
Private operations · Logical computations · Copy · Malicious model

Preliminary version of the paper was presented as Yoshifumi Manabe and Hibiki Ono: “ Secure
Card-based Cryptographic Protocols Using Private Operations Against Malicious Players,” Proc. of
13th International Conference on Information Technology and Communications Security(SecITC
2020), LNCS Vol. 12596, pp.55–70 (Nov. 2020).

 *	 Yoshifumi Manabe
	 manabe@cc.kogakuin.ac.jp

1	 Faculty of Informatics, Kogakuin University, 1‑24‑2, Nishisinjuku, Shinjuku, Tokyo 163‑8677,
Japan

http://orcid.org/0000-0002-6312-257X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00354-021-00148-w&domain=pdf

68	 New Generation Computing (2022) 40:67–93

123

Introduction

Card-based cryptographic protocols [15, 34, 36] were proposed in which physical
cards are used instead of computers to securely calculate values. They can be used
when computers cannot be used or users cannot trust the software on the com-
puter. Also, the protocols are easy to understand; thus, the protocols can be used
to teach the basics of cryptography [4, 30]. den Boer [2] first showed a five-card
protocol to securely calculate logical AND of two inputs. Since then, many pro-
tocols have been proposed to realize primitives to calculate any logical functions
[14, 18, 24, 37, 42, 48, 49, 62, 63] and specific computations such as a specific
class of logical functions [1, 7, 13, 19, 23, 25, 31, 33, 43, 46, 54, 58, 61, 68], uni-
versal computation such as Turing machines [6, 16], millionaires’ problem [27,
40, 47], voting [32, 41, 44, 69, 70], random permutation [8, 10, 11, 39], grouping
[9], ranking [66], lottery [64], proof of knowledge of a puzzle solution [3, 5, 12,
21, 26, 28, 29, 50–53, 55–57, 59], and so on. This paper considers calculations of
logical functions and a copy operation under the malicious model since any logi-
cal function can be realized with a combination of these calculations.

Operations that a player executes in a place where the other players cannot
see are called private operations. These operations are considered to be executed
under the table or in the back. Private operations are shown to be the most power-
ful primitives in card-based cryptographic protocols. They were first introduced
to solve millionaires’ problem [40]. Using three private operations called private
random bisection cuts, private reverse cuts, and private reveals, committed-input
and committed-output logical AND, logical XOR, and copy protocols can be
achieved with the minimum number of cards [48]. Another class of private opera-
tions is private input operations that are used when a player inputs a private value
[20, 47, 65]. These operations are not discussed in this paper since it is impossi-
ble to prevent false input from a malicious player. If the input values are honestly
given, the players can use the protocols shown in this paper.

The largest problem of protocols using private operations is malicious actions.
Most of the card-based protocols assume the semi-honest model, in which the
players obey the rule of the protocols but try to obtain private information. How-
ever, there are many cases when we must consider the malicious model. When we
allow malicious actions, protocols using private operations are not secure. Since
private operations are executed where the other player cannot see, any malicious
operation is possible during the private operations, for example, watching the
marks of face-down cards or changing the positions of cards.

One countermeasure to malicious actions is setting a watch person. When the
protocols are executed by more than two players, it is possible to detect mali-
cious actions by the following rule: whenever a player executes a private opera-
tion, another player watches the execution and reports incorrect behavior. The
XOR, AND, and copy protocols can be executed securely against a malicious
player when the protocols are executed by more than two players [48]. However,
when the protocols are executed by two players, Alice and Bob, it is impossible to
use the above method. If Bob watches Alice’s private operations, Bob knows all

69New Generation Computing (2022) 40:67–93	

123

operations; thus, the relation between input data and output data is known to Bob.
When the output card is opened, the secure input data are known to Bob using the
relation between the input data and the output data.

Thus we need new protocols for the two-player case. Since Bob cannot watch
Alice’s private operations, some additional mechanism is necessary to prevent ille-
gally watching the marks of face-down cards during private operations. This paper
introduces envelopes to prevent illegally watching the marks of face-down cards.
Cards that must not be seen are publicly put into an envelope. If an envelope is ille-
gally opened, it can be detected by anyone. Envelopes are used in [38] to realize
cryptographic protocols that do not use physical cards. In card-based cryptographic
protocols, envelopes are used in [8, 45, 58, 63] to realize some kind of shuffles that
are not easy to be executed by people.

This paper shows new card-based cryptographic protocols that are secure against
malicious players using envelopes as an additional tool. Some malicious actions dur-
ing private operations are prevented by adding extra cards for error correction. We
show logical XOR, logical AND, n-variable Boolean function, and copy protocols
since any logical functions can be obtained with a combination of these protocols.

As related works, protocols that use additional cards and prevent active attacks
while a player executes a shuffle were shown [17]. The private operations used in
the protocol are private shuffles; thus, the method does not consider the other types
of private operations. This paper considers the other types of malicious actions in
the protocols that use private operations. Another type of active attack is inputting
a false value that is not 0 or 1. A protocol to detect such injection attacks was dis-
cussed in [35]. This paper assumes correct inputs since we need to consider input x̄
instead of correct input x but it is impossible to prevent or detect.

Protocols that prevent revealing face-down cards were discussed in [67]. The pro-
tocol uses the technique of secret-sharing to prevent information leakage by opening
some numbers of cards. The protocol cannot be applied to the problem discussed in
this paper since a malicious player might reveal all cards during a private operation.

Another usage of private operations is realizing a public shuffle by multiple pri-
vate shuffles [37]. The protocols cannot be used as it is to solve the problem in this
paper since a malicious player might not honestly execute a private shuffle. Prevent-
ing malicious actions for the protocols that use private random bisection cuts, pri-
vate reverse cuts, and private reveals are not considered.

A protocol to detect malicious actions by executing two instances of a proto-
col and comparing the results was shown [60]. The protocol uses cases to prevent
revealing face-down cards. The functionality of cases is just the same as envelopes
in this paper. The protocol uses twice as many cards as the original protocols and it
is impossible to correct some malicious actions. This paper’s protocols use a smaller
number of cards and can correct some malicious actions.

In Sect. 2, basic notations, the private operations introduced in [48], and notations
related to the envelopes are shown. Section 3 shows the security model. Section 4
shows new protocols to prevent or detect malicious operations. Section 5 concludes the
paper. The difference from the conference version [22] is as follows: (1) We updated all
protocols to clarify the procedure to detect malicious actions. (2) We added a new pro-
tocol to calculate any n-variable Boolean functions. (3) We added formal descriptions

70	 New Generation Computing (2022) 40:67–93

123

of the protocols that output multiple copies of the output value and obtain multiple cop-
ies of an input value.

Preliminaries

Basic Notations

This section gives the notations and basic definitions of card-based protocols. This
paper is based on a standard two-color card model. In the two-color card model, there
are two kinds of marks, and . Cards of the same marks cannot be distinguished.
In addition, the back of both types of cards is . It is impossible to determine the mark
on the back of a given card of .

One-bit data are represented by two cards as follows: = 0 and = 1.
One pair of cards that represents one bit x ∈ {0, 1} , whose face is down, is called a

commitment of x , and denoted as commit(x ). It is written as . For a pair of cards,

exchanging the position of the left card and the right card is called a swap. Note that
when two cards of commit(x ) are swapped, commit(x̄) can be obtained. Thus, logical
negation can be calculated without private operations.

A set of cards placed in a row is called a sequence of cards. A sequence of
cards S whose length is n is denoted as S = s1, s2,… , sn , where si is i-th card of

the sequence. . A sequence whose length is even is

called an even sequence. S1||S2 is a concatenation of sequence S1 and S2 . For two
sequences of cards S1 and S2 ( |S1| = |S2| ) that are put left and right, swapping S1
and S2 means exchanging the position of the two sequences.

All protocols are executed by two players, Alice and Bob. The players might be
malicious, that is, they might not obey the rule of the protocol. There is no collu-
sion between Alice and Bob, otherwise private input data can be easily revealed.

Throughout this paper, we assume that each input is given as a commit-
ted value. The output must also be given as a committed value so that the out-
put can be used as an input to further computations. Though some multi-party
secure calculation protocols assume that each player knows his/her private input,
there are some cases when we cannot assume that. For example, suppose that
x1, x2 are Alice’s private input values and y1, y2 are Bob’s private input values
and they want to securely calculate (x1 ∨ y1) ∧ (x2 ∨ y2) . After commit(x1 ∨ y1) and
commit(x2 ∨ y2) are calculated, they need to calculate logical AND of two secret
values. Thus, we need to calculate the logical functions of two committed inputs.
Note that committed-input protocols can be used even when a player knows some
inputs. For example, if Alice knows input value x , she first commits her input as
commit(x ). Then the committed-input protocol can be executed.

71New Generation Computing (2022) 40:67–93	

123

Private Operations

We show three private operations introduced in [48]: private random bisection
cuts, private reverse cuts, and private reveals.

Primitive 1  (Private random bisection cut) A private random bisection cut is the fol-
lowing operation on an even sequence S0 = s1, s2,… , s2m . A player selects a random
bit b ∈ {0, 1} and outputs

The player executes this operation in a place where the other players cannot see. The
player must not disclose the bit b.

Note that if the private random cut is executed when m = 1 and S0 = commit(x) ,

given , the player’s output , which is or .

We sometimes write the result of the private random bisection cut using a bit b
to a sequence S1||S2(where |S1| = |S2| ) as swap(b, S1||S2) . swap(0, S1||S2)
= S1||S2 and swap(1, S1||S2) = S2||S1 are satisfied. Note that swap(b, swap(b�,
S1||S2)) = swap(b⊕ b�, S1||S2) holds for any b and b� ∈ {0, 1}.

Primitive 2  (Private reverse cut, Private reverse selection) A private reverse cut is
the following operation on an even sequence S2 = s1, s2,… , s2m and a bit b ∈ {0, 1} .
A player outputs

The player executes this operation in a place where the other players cannot see. The
player must not disclose b.

Note that the bit b is not newly selected by the player. This is the difference
between the primitive in Primitive 1, where a random bit must be newly selected by
the player.

Note that in some protocols below, selecting left m cards is executed after a pri-
vate reverse cut. The sequence of these two operations is called a private reverse
selection. A private reverse selection is the following procedure on an even sequence
S2 = s1, s2,… , s2m and a bit b ∈ {0, 1} . A player outputs

Primitive 3  (Private reveal) A player privately opens a given committed bit. The
player must not disclose the obtained value.

S1 =

{
S0 if b = 0

sm+1, sm+2,… , s2m, s1, s2,… , sm if b = 1.

S3 =

{
S2 if b = 0

sm+1, sm+2,… , s2m, s1, s2,… , sm if b = 1.

S3 =

{
s1, s2,… , sm if b = 0

sm+1, sm+2,… , s2m if b = 1.

72	 New Generation Computing (2022) 40:67–93

123

Using the obtained value, the player privately sets a sequence of cards.
Consider the case when Alice executes a private random bisection cut on commit

(x ) and Bob executes a private reveal on the bit. Since the committed bit is rand-
omized by the bit b selected by Alice, the opened bit is x⊕ b . Even if Bob privately
opens the cards, Bob obtains no information about x if b is randomly selected and
not disclosed by Alice. Bob must not disclose the obtained value. If Bob discloses
the obtained value to Alice, Alice knows the value of the committed bit.

Space and Time Complexities

The space complexity of card-based protocols is evaluated by the number of cards.
Minimizing the number of cards is discussed in many works.

The number of rounds was proposed as a criterion to evaluate the time complex-
ity of card-based protocols using private operations [49]. The first round begins
from the initial state. The first round is (possibly parallel) local executions by each
player using the cards initially given to each player. It ends at the instant when no
further local execution is possible without receiving cards from another player. The
local executions in each round include sending cards to some other players but do
not include receiving cards. The result of every private execution is known to the
player. For example, shuffling whose result is unknown to the player him/herself is
not executed. Since the private operations are executed in a place where the other
players cannot see, it is hard to force the player to execute such operations whose
result is unknown to the player. The i(> 1)-th round begins with receiving all the
cards sent during the (i − 1)-th round. Each player executes local executions using
the received cards and the cards left to the player at the end of the (i − 1)-th round.
Each player executes local executions until no further local execution is possible
without receiving cards from another player. The number of rounds of a protocol is
the maximum number of rounds necessary to output the result among all possible
inputs and random values.

Let us show an example of a protocol execution and its space complexity and
time complexity.

Protocol 1  (AND protocol in [48])
Input: commit(x ) and commit(x).
Output: commit(x ∧ y) .

1.	 Alice executes a private random bisection cut on commit(x ). Let the output be
commit(x�) . Alice sends commit(x�) and commit(y ) to Bob.

2.	 Bob executes a private reveal on commit(x�) . Bob sets

 and sends S2 to Alice.

S2 =

{
commit(y)||commit(0) if x� = 1

commit(0)||commit(y) if x� = 0

73New Generation Computing (2022) 40:67–93	

123

3.	 Alice executes a private reverse selection on S2 using the bit b generated in the
private random bisection cut. Let the obtained sequence be S3 . Alice outputs S3.

The correctness of the protocol is shown in [48]. The number of cards is four,
since the cards of commit(x�) are re-used to set commit(0).

The first round ends at the instant when Alice sends commit(x�) and commit(y ) to
Bob. The second round begins at receiving the cards by Bob. The second round ends
at the instant when Bob sends S2 to Alice. The third round begins at receiving the
cards by Alice. The number of rounds of this protocol is three.

Since each operation is relatively simple, the dominating time to execute proto-
cols with private operations is the time to send cards between players and set up
so that the cards are not seen by the other players. Thus, the number of rounds is
the criterion to evaluate the time complexity of card-based protocols with private
operations.

Malicious Actions During Private Operations

We show examples of cheats by a malicious player for the AND protocol shown
in Protocol 1. In the first round, Alice may reveal the cards of commit(x ) (and/or
commit(y )) and read the secret input value x (and/or y , respectively). Alice might
swap the two cards of commit(x ) (and/or commit(y )) and use x̄ (and/or ȳ , respec-
tively) as the input value. In the second round, Bob might reveal the cards of commit
(y ) and read the secret input value y . Bob might set the cards incorrectly, for exam-
ple, set

then the result becomes x ∨ y instead of x ∧ y . Bob can set any other card sequences
to obtain other incorrect results. In the third round, Alice might execute a private
reverse selection using a value b�(≠ b) . Alice might reveal all the cards and see
the values. To make the protocol secure against malicious players, all of the above
cheats must be prohibited or detected.

Envelopes

We need to prevent malicious reveal of committed input values. In the following
protocols, we use envelopes as an additional tool. The cards can be put into an enve-
lope and sealed. Opening the sealed envelope can be easily detected by anyone.
Thus, a malicious player cannot irregularly open envelopes during private operations
because it is detected by the other player. It is impossible to distinguish between two
envelopes. No player can prepare the same envelopes in his/her pocket and exchange
them for the envelopes used in the protocol. Such envelopes are used in some card-
based protocols [8, 45, 58, 63].

S2 =

{
commit(1)||commit(y) if x� = 1

commit(y)||commit(1) if x� = 0,

74	 New Generation Computing (2022) 40:67–93

123

We show some basic operations and notations related to the envelopes. The order
of the cards put into an envelope is preserved when the cards are removed. For
example, a card sequence S is put into an envelope, the output card sequence from
the envelope must also be S . In the following protocols, two envelopes, the left and
the right envelope are used. Swapping the right and left envelopes is exchanging the
positions of the two envelopes.

We use the following notation [⋅] for the representation of the state of two
envelopes. [⋅] means the sequence of cards when the cards are removed from the
two envelopes by the same order of insertion. Note that in any case, the numbers
of cards in the left and the right envelopes are the same. There are two types of
insertion of cards. The first type is each one card from the two cards represent-
ing one bit is stored to the left and right envelope. One bit data is represented by
two cards, for example, suppose that the card sequence s1, s2 is commit(x ). s1 is
put into the left envelope and s2 is put into the right envelope. When the cards are
removed from the two envelopes by the same order of insertion, we can obtain
commit(x ). The status of the two envelopes is represented as [ commit(x)], since
commit(x ) is obtained when the cards are removed. Now, consider the case that
the left and the right envelopes are swapped. When the cards are removed from
the two envelopes by the same order of the insertion, the card sequence becomes
s2, s1 , thus commit(x̄) is obtained, as shown in Fig. 1. The status of the swapped
two envelopes is written as [commit(x̄)].

The other type of insertion is putting a pair of cards to each of the envelopes.
When we insert S = t1, t2 to the left envelope and S� = t3, t4 to the right envelope,
the status of the two envelopes is written as [S||S�] , since we can obtain S||S′ when
we remove the cards from the envelopes. When we swap the two envelopes, the
status of the two envelopes is changed as [S�||S] , because we obtain S′||S when
the cards are removed from the envelopes by the same order of the insertion, as
shown in Fig. 2.

The above two types of insertions can be executed to a single pair of enve-
lopes. Such combination is represented using a comma in [⋅] . For example, the left
(right) cards of commit(x ) and commit(y ) are inserted to the left (right) envelope,

Fig. 1   Insertion and remove to a pair of envelopes(1)

75New Generation Computing (2022) 40:67–93	

123

respectively, and then S(S�) is inserted to the left (right) envelope, respectively.
The status of the two envelopes is written as [ commit(x), commit(y), S||S�] . When
we swap the two envelopes, the status is changed to [commit(x̄), commit(ȳ), S�||S].

In this paper, private random bisection cuts are executed to these two enve-
lopes. When Alice executes a private random bisection cut to the two enve-
lopes that have [ commit(x), commit(y)], [commit(x⊕ b), commit(y⊕ b)] is
obtained, where b is the random bit selected by Alice. When Alice executes a
private random bisection cut to the two envelopes that have [commit(x), S1||S2] ,
[commit(x⊕ b), swap(b, S1||S2)] is obtained, where b is the random bit selected by
Alice.

A private reveal by a player on an envelope means that the player opens the
envelope, obtains a sequence of face-down cards, turns the face-down cards, and
sees the marks of the cards.

Security Model

This section first shows the possible malicious actions during protocol execu-
tions. Then, we show some additional assumptions related to security.

With the envelopes, the activities by a malicious player are as follows when
the private primitives are private random bisection cuts, private reverse cuts, and
private reveals on the envelopes.

Assumption 1  (Operations by malicious players)

–	 When a malicious player executes a private operation, he/she can swap some
envelopes even if it is not allowed in the protocol. He/she can open some enve-
lopes and see the marks on the cards.

(a) Insert cards (b) Swap envelopes (c) Remove cards

Fig. 2   Insertion and remove to a pair of envelopes(2)

76	 New Generation Computing (2022) 40:67–93

123

–	 When a malicious player executes a private random bisection cut to two sets of
envelopes A and B using the same random bit, he/she can use different bits to
A and B.

–	 When a malicious player executes a private reveal on envelope A , he/she can
open another envelope B . Also, he/she might not place envelopes according to
the opened cards.

–	 When a malicious player executes a private reverse cut using a bit b , he/she
might use b�(≠ b) instead of b.

Since there is no collusion of the two players, the public operations executed
by both players together are correctly executed even if both players are malicious.

During the execution of a protocol, a player might find the other player’s mis-
behavior. We need to define the malicious player’s action about the detection of
the other player’s misbehavior.

Assumption 2  (Misbehavior detection). A malicious player does not suppress to
claim the other player’s misbehavior.

As shown in the next section, an incorrect result might be obtained if a mali-
cious player does not claim the other malicious player’s misbehavior.

We add an assumption that for at least one input, say, x multiple copies of
commit(x ) are given as input. The reason for this assumption is as follows. When
a player, say, Alice is given commit(x ) and executes a private operation, there is
no way for the other player to detect whether Alice maliciously executed swap-
ping two cards of commit(x ) and made commit(x̄) . Since Bob does not know x ,
Bob cannot claim that x̄ is used instead of x . To detect this type of malicious
operation, another copy of commit(x ) must be given. Using the copy of commit
(x ), Bob can detect that Alice irregularly swapped commit(x ), as shown in the
protocols in this paper. Note that a method to obtain multiple copies of inputs
using envelopes is shown in Sect. 4.4.

Secure Protocols Under Malicious Model

This section shows our new protocols that are secure against malicious behavior.

XOR Protocol

First, we show an XOR protocol. Note that two copies of one input, commit(x ), are
necessary to prevent malicious actions.

Protocol 2  (XOR protocol)
Input: two copies of commit(x ) and one copy of commit(y).
Output: commit(x⊕ y) .

77New Generation Computing (2022) 40:67–93	

123

1.	 Alice and Bob publicly put cards of one commit(x ) and commit(y ) into two enve-
lopes. The left (right) cards of commit(x ) and commit(y ) are put into the left
(right) envelope, respectively. The two envelopes have [ commit(x), commit(y)].
The remaining two cards of commit(x ) are put into two new envelopes so that
the left (right) card is put into the left (right) envelope, respectively. The two
envelopes have [ commit(x )] (Fig. 3a). The envelopes that have [ commit(x )] and
[ commit(x), commit(y )] are sent to Alice.

1 2 1 2 Swap if 1

Swap if 1

Swap if 1

(a) Insert cards (b) Private random (c) Remove cards
bisec�on cut and swap

reveal

use
the same
bit

1 2 1 2

Swap if 1

(d) Remove cards
and swap

reveal

Fig. 3   XOR protocol

78	 New Generation Computing (2022) 40:67–93

123

2.	 Alice executes private random bisection cuts on [ commit(x )] and
[ commit(x), commit(y )] using the same random bit b (Fig. 3b). Let the output be
[S1] and [S�

1
, S��

1
] , respectively. S1 = S�

1
= commit(x⊕ b) and S��

1
= commit(y⊕ b)

are satisfied. Alice sends [S1] and [S�
1
, S��

1
] to Bob.

3.	 Bob claims that Alice misbehaved and terminates the protocol if an envelope is
opened. Bob executes a private reveal on [S1 = commit(x�)] . Bob claims that Alice
misbehaved and terminates the protocol if the number of cards in an envelope is
not one. Bob privately swaps the two envelopes of [S�

1
, S��

1
] if x� = 1 , otherwise,

does nothing (Fig. 3c). Bob makes the two envelopes public, which are denoted
[S�

2
, S��

2
].

4.	 Alice claims that Bob misbehaved and terminates the protocol if an envelope is
opened. Alice and Bob open the envelopes together. If the number of cards in an
envelope is one, Alice claims that Bob opened an incorrect envelope at Step 3
and terminates the protocol. Otherwise, they obtain S′

2
 and S′′

2
 . They turns (that

is, face-up) S′
2
 . If S�

2
= 0 , S′′

2
 is the output of the protocol. If S�

2
= 1 , swap the left

and the right card of S′′
2
 and the result is the output of the protocol (Fig. 3d).

The protocol is three rounds. The first round is the public execution by Alice and
Bob. Note that the public operations can be executed by a player say, Alice, in front
of the other player, Bob.

The second round is executed by Alice. The third round is executed by Bob. The
last public executions at Step 4 by Alice and Bob do not need sending envelopes.
Bob just makes the envelopes public and Bob can execute the operations in front of
Alice. Thus no overhead is necessary for the public execution. Therefore, the num-
ber of rounds is considered to be three. The number of cards used in the protocol is
six.

From Assumption 1, the malicious activities in this protocol are the follows.
At Step 1 and Step 4, there are no malicious activities because the operations are
publicly executed by the two players. At Step 2, Alice might open some envelopes
during the execution. Alice might not execute the private random bisection cuts
correctly, that is, Alice uses b for swapping [ commit(x )] and b�(≠ b) for swap-
ping [ commit(x), commit(y)]. Alice might incorrectly send the envelopes to Bob,
that is, Alice might swap the four envelopes of [S1] and [S�

1
, S��

1
] (for example, the

left envelope of [S1] and the left envelope of [S�
1
, S��

1
] are given to Bob as the two

envelopes of [S1] ). At Step 3, Bob might open envelopes that are not allowed. Bob
might not execute swapping [S�

1
, S��

1
] correctly. Bob might swap the four envelopes

of [S1] and [S�
1
, S��

1
] (for example, the left envelope of [S1] and the left envelope of

[S�
1
, S��

1
] are shown public as the two envelopes of [S�

2
, S��

2
] ). All of these malicious

activities must be prevented or detected.

Theorem 1  The output of the XOR protocol is correct if the protocol is not termi-
nated during execution even if Alice and/or Bob are malicious. The protocol does
not reveal the input values to the players if the protocol is not terminated during
execution.

79New Generation Computing (2022) 40:67–93	

123

Proof  First, we show the correctness when both Alice and Bob are honest.
Alice sends [S1] = [commit(x⊕ b)] and [S�

1
, S��

1
] = [commit(x⊕ b), commit(y⊕ b)]

to Bob. Bob swaps the pair of [S�
1
, S��

1
] if x⊕ b = 1 . Thus [S�

2
, S��

2
] = [commit((x⊕ b)

⊕(x⊕ b)), commit((y⊕ b)⊕ (x⊕ b))] = [commit(0), commit(x⊕ y)] . Since
S�
2
= commit(0) , S′′

2
 is not swapped and the output is commit(x⊕ y) . Therefore, the

output is correct. The protocol is secure since Alice sees S�
2
= 0 and Bob sees S�

2
= 0

and S1 = x⊕ b but b is an unknown random value for Bob.
Next, consider the case when Alice is malicious and Bob is honest. If Alice

opens an envelope during the private operation, Bob can detect misbehavior. Next,
consider the case when Alice does not execute the private random bisection cut
correctly. Since the numbers of cards in [S1] and [S�

1
, S��

1
] differ, making an incor-

rect pair of envelopes (for example, the left envelope of [S1] and the right enve-
lope of [S�

1
, S��

1
] are sent to Bob as [S1] ) is detected by Bob when Bob opens [S1] .

The only cheat that cannot be detected by Bob is incorrectly swapping each pair
of envelopes. Though the cheat cannot be detected, the result becomes correct as
shown below. Let b and b′ be the random bits selected to swap the envelopes that
have [ commit(x )] and [ commit(x), commit(y)], respectively. The output by Alice is
[S1] = [commit(x⊕ b)] and [S�

1
, S��

1
] = [commit(x⊕ b�), commit(y⊕ b�)] . After Bob

opens [S1] = [commit(x⊕ b)] , Bob swaps the envelopes if x⊕ b = 1 , thus the result
[S�

2
, S��

2
] = [commit(x⊕ b� ⊕ x⊕ b), commit(y⊕ b� ⊕ x⊕ b)] = [commit(b⊕ b�),

commit(y⊕ b� ⊕ x⊕ b)] . When the players open S′
2
 , the cards of S′′

2
 are swapped if

b⊕ b� = 1 . Thus, the output is commit(y⊕ b� ⊕ x⊕ b⊕ (b⊕ b�)) = commit(y⊕ x) .
The result is correct regardless of the selection of b and b′ . The protocol is secure in
this case since Alice sees S�

2
= b⊕ b� and Bob sees S�

2
= b⊕ b� and S1 = x⊕ b but b

is an unknown random value for Bob.
Next, consider the case when Alice is honest or malicious and Bob is malicious.

Alice might incorrectly execute the private random bisection cuts using b and b′ as
in the above case. The other cheats such as irregularly opening envelopes and mak-
ing incorrect pairs of envelopes are detected by Bob as shown above. If Bob opens
an envelope of [S�

1
, S��

1
] , the cheat can be detected by Alice. If Bob makes an incor-

rect pair of envelopes (for example, the left envelope of [S1] and the left envelope of
[S�

1
, S��

1
] are shown public as the two envelopes of [S�

2
, S��

2
] ), the cheat can be detected

by Alice when they open [S�
2
, S��

2
] because the numbers of cards in [S1] and [S�

1
, S��

1
]

differ. Next, consider the case when Bob does not set the envelopes correctly. When
Bob sees x⊕ b , Bob does not swap the envelopes correctly, that is, Bob selects
some value b��(≠ x⊕ b) ∈ {0, 1} and swaps the envelopes of [S�

1
, S��

1
] using b′′ . If

b�� = x⊕ b , the result is correct as shown above. Thus the only cheat selection of b′′
is b�� = x⊕ b = x⊕ b⊕ 1.

In this case, the result is [S�
2
, S��

2
] = [commit(x⊕ b� ⊕ b��), commit(y⊕ b� ⊕ b��)]

= [commit(b� ⊕ b⊕ 1), commit(y⊕ b� ⊕ x⊕ b⊕ 1)] . When Alice and Bob
open S′

2
 , the two cards of S′′

2
 are swapped if b� ⊕ b⊕ 1 = 1 , Thus, the output is

commit(y⊕ b� ⊕ x⊕ b⊕ 1⊕ (b� ⊕ b⊕ 1)) = commit(y⊕ x) and the result is cor-
rect. The protocol is secure in this case since Alice sees S�

2
= b⊕ b� ⊕ 1 and Bob

sees S�
2
= b⊕ b� ⊕ 1 and S1 = x⊕ b but b is an unknown random value for Bob. 	� ◻

80	 New Generation Computing (2022) 40:67–93

123

Note that the protocol achieves an error correction. Even if Alice and/or Bob
make mistakes in swapping the left and the right of paired envelopes, the mistakes
are automatically corrected. Consider a mistake by Alice when she executes a pri-
vate random bisection cut on [ commit(x )] and [ commit(x), commit(y)], that is, she
swapped [ commit(x )] but did not swap [ commit(x), commit(y )] (or did not swap
[ commit(x )] but swapped [ commit(x), commit(y)]). The situation is just the same
when malicious Alice used different b and b′ to swap the pairs. The other mistake
by Bob is at Step 3, Bob did not swap the two envelopes of [S�

1
, S��

1
] when x� = 1 (or

swapped [S�
1
, S��

1
] when x� = 0 ). The situation is just the same when malicious Bob

executed a false swap. Since the result is correct even with the malicious actions,
these errors are corrected.

Note that a malicious player can output a false misbehavior detection even if the
other player is honest. For example, at Step 3 of the above protocol, malicious Bob
can claim that the envelopes are incorrectly sent by Alice even if Alice is honest, for
example, Bob claims that the left envelope of [S1] has two cards when Bob opened
[S1] . Actually, Bob is malicious and Bob swapped the left envelope of [S1] and the
left envelope of [S�

1
, S��

1
] and opened the left envelope of [S�

1
, S��

1
] . In this case, though

Alice (and Bob) knows that Bob’s claim is incorrect, the players just terminate the
protocol, since there is no third party for Alice and Bob to appeal which player is
malicious. Note that if we prepare envelopes with different colors, [ commit(x )] is
put into two white envelopes and [ commit(x), commit(y )] is put into two yellow
envelopes. Then, this kind of cheat becomes impossible.

From Assumption 2, a malicious player does not suppress to claim the other play-
er’s misbehavior. Suppose that malicious Bob does not claim malicious Alice’s mis-
behavior. At Step 2, Alice opens the envelopes of [S1, S�1] and swap the cards so that
[S1, S

�
1
] = [commit(x⊕ b), commit(ȳ⊕ b)] . At Step 3, Bob does not claim that Alice

opened the envelopes and continues the protocol. Then the output of the protocol is
commit(x⊕ ȳ) . This case is just the same as the case when Alice and Bob collude.
Thus, Assumption 2 is necessary.

Note that there can be cases when both of the players are independently mali-
cious. Let us consider the following case. Alice knows the secret value x and y by
some irregular means in advance. Bob does not know the fact. Malicious Alice
knows the correct value of x⊕ y and wants Bob to obtain a false result. On the other
hand, Bob independently knows the secret value x and y by some other irregular
means in advance. Alice dose not know the fact. Malicious Bob wants Alice to
obtain a false result. Even in this case, when the protocol is terminated, the result is
correct, that is, the two independent malicious actions become void.

AND Protocol

Next, we show an AND protocol that uses envelopes.

Protocol 3  (AND protocol)
Input: two copies of commit(x ) and one copy of commit(x).
Output: commit(x ∧ y) .

81New Generation Computing (2022) 40:67–93	

123

1.	 Alice and Bob publicly put cards into envelopes. The left card of commit(x )
and two new cards of commit(0) are put into the left envelope. The right card of
commit(x ) and the two cards of commit(y ) are put into the right envelope. The
envelopes have [ commit(x), commit(0)||commit(y)]. The remaining two cards of
commit(x ) are put into two envelopes so that the left (right) card is put into the
left (right) envelope, respectively. The envelopes have [ commit(x )] (Fig. 4a). The

1 2 1 2

use
the same
bit

Swap if 1

Swap if 1

Swap if 1

(a) Insert cards (b) Private random (c) Remove cards
bisec�on cut and swap

0

reveal

1 2 1 2

0 1

(d) Remove cards
and select output

output
if if

reveal

Fig. 4   AND protocol

82	 New Generation Computing (2022) 40:67–93

123

envelopes that have [ commit(x )] and [ commit(x), commit(0)||commit(y )] are sent
to Alice.

2.	 Alice executes private random bisection cuts on [ commit(x )] and
[ commit(x), commit(0)||commit(y )] using the same random bit b (Fig. 4b). Let the
output be [S1] and [S�

1
, S��

1
] . S1 = S�

1
= commit(x⊕ b) and S

��
1
= swap

(b, commit(0)||commit(y)) are satisfied. Alice sends [S1] and [S�
1
, S��

1
] to Bob.

3.	 Bob claims that Alice misbehaved and terminates the protocol if an envelope is
opened. Bob executes a private reveal on [S1 = commit(x�)] . Bob claims that Alice
misbehaved and terminates the protocol if the number of cards in an envelope is not
one. Bob privately swaps two envelopes of [S�

1
, S��

1
] if x� = 1 , otherwise, does nothing

(Fig. 4c). Bob makes the two envelopes public, which are denoted [S�
2
, S��

2
].

4.	 Alice claims that Bob misbehaved and terminates the protocol if an envelope is
opened. Alice and Bob open the envelopes together. If the number of cards in
an envelope is one, Alice claims that Bob opened an incorrect envelope at Step
3 and terminates the protocol. Otherwise, they obtain S′

2
 and S′′

2
 . They turn (that

is, face-up) S′
2
 . If S�

2
= 0 , the left two cards of S′′

2
 are the output of the protocol. If

S�
2
= 1 , the right two cards of S′′

2
 are the output of the protocol (Fig. 4d).

The protocol is three rounds. The protocol uses eight cards since two new cards
are used to set commit(0).

From Assumption 1, the malicious activities in this protocol are the follows.
At Step 1 and Step 4, there are no malicious activities because the operations are
publicly executed by the two players. At Step 2, Alice might open some envelopes
during the execution. Alice might not execute the private random bisection cuts
correctly, that is, Alice uses b for swapping [ commit(x )] and b�(≠ b) for swapping
[ commit(x), commit(0)||commit(y)]. Alice might incorrectly send the envelopes to
Bob, that is, Alice might swap the four envelopes of [S1] and [S�

1
, S��

1
] (for example,

the left envelope of [S1] and the left envelope of [S�
1
, S��

1
] are given to Bob as the two

envelopes of [S1] ). At Step 3, Bob might open envelopes that are not allowed. Bob
might not execute swapping [S�

1
, S��

1
] correctly. Bob might swap the four envelopes

of [S1] and [S�
1
, S��

1
] (for example, the left envelope of [S1] and the left envelope of

[S�
1
, S��

1
] are shown public as the two envelopes of [S�

2
, S��

2
] ). All of these malicious

activities must be prevented or detected.

Theorem 2  The output of the AND protocol is correct if the protocol is not termi-
nated during execution even if Alice and/or Bob are malicious. The protocol does
not reveal the input values to the players if the protocol is not terminated during
execution.

Proof  The desired output can be represented as follows.

First, we show the correctness when both Alice and Bob are honest.

x ∧ y =

{
y if x = 1

0 if x = 0.

83New Generation Computing (2022) 40:67–93	

123

Alice sends [S1] = [commit(x⊕ b)] and [S�
1
, S��

1
] = [commit(x⊕ b),

swap(b, commit(0)||commit(y))] to Bob. Bob swaps the pair of [S�
1
, S��

1
] if

x⊕ b = 1 . Thus, [S�
2
, S��

2
] = [commit((x⊕ b)⊕ (x⊕ b)), swap(x⊕ b, swap(b, commit(0)||

commit(y))] = [commit(0), swap(x, commit(0)||commit(y))] . Thus the players select
the left pair of swap(x, commit(0)||commit(y)) . The selected cards are
if x = 1 and commit(0) if x = 0 . Thus, the output is correct.

The protocol is secure since Alice sees S�
2
= 0 and Bob sees S�

2
= 0 and S1 = x⊕ b

but b is an unknown random value for Bob.
Next, consider the case when Alice is malicious and Bob is honest. If Alice opens

an envelope during the private operation, Bob can detect misbehavior. Next, con-
sider the case when Alice does not execute the private random bisection cut cor-
rectly. Since the numbers of cards in [S1] and [S�

1
, S��

1
] differ, making an incorrect

pair of envelopes (for example, the left envelope of [S1] and the right envelope of
[S�

1
, S��

1
] are sent to Bob as [S1] ) is detected by Bob when Bob opens [S1] . The only

cheat that cannot be detected by Bob is incorrectly swapping each pair of envelopes.
Though the cheat cannot be detected, the result becomes correct as shown below.
Let b and b′ be the random bits selected to swap the envelopes that have [ commit
(x )] and [ commit(x), commit(0)|| commit(x)], respectively. The output by Alice
is [commit(x⊕ b)] and [commit(x⊕ b�), swap(b�, commit(0)||commit(y))] . After
Bob opens [commit(x⊕ b)] , Bob swaps the envelopes if x⊕ b = 1 , thus the result
[S�

2
, S��

2
] = [commit(x⊕ b� ⊕ x⊕ b), swap(x⊕ b, swap(b�, commit(0)||commit(y)))]

= [commit(b⊕ b�), swap(x⊕ b⊕ b�, commit(0)||commit(y))] . When the players open
S′
2
 , the left pair of S′′

2
 is the output if b⊕ b� = 0 . The right pair of S′′

2
 is the output if

b⊕ b� = 1 . This is equivalent to execute swap(b⊕ b�, S��
2
) and select the left pair. Since

swap(b⊕ b�, S��
2
) = swap(b⊕ b�, swap(x⊕ b⊕ b�, commit(0)||commit(y))) = swap

(x, commit(0)||commit(y)) , the output is commit(0 ) if x = 0 , otherwise the output is
commit(y ). Therefore, the output is correct regardless of the selection of b and b′.

The protocol is secure in this case since Alice sees S�
2
= b⊕ b� and Bob sees

S�
2
= b⊕ b� and S1 = x⊕ b but b is an unknown random value for Bob.
Next, consider the case when Alice is honest or malicious and Bob is malicious.

Alice might incorrectly execute the private random bisection cuts using b and b′ as
in the above case. If Bob opens an envelope of [S�

1
, S��

1
] , the cheat can be detected by

Alice. If Bob makes an incorrect pair of envelopes (for example, the left envelope
of [S1] and the left envelope of [S�

1
, S��

1
] are shown public as the two envelopes of

[S�
2
, S��

2
] ), the cheat can be detected by Alice when they open [S�

2
, S��

2
] because the

numbers of cards in [S1] and [S�
1
, S��

1
] differ. Next, consider the case when Bob does

not set the envelopes correctly. When Bob sees x⊕ b , Bob does not swap the enve-
lopes correctly, that is, Bob selects some value b��(≠ x⊕ b) ∈ {0, 1} and swaps the
envelopes of [S�

1
, S��

1
] using b′′ . When b�� = x⊕ b , the output is correct since it is the

correct value. Thus the only cheat selection of b′′ is b�� = x⊕ b = x⊕ b⊕ 1.
In this case, the result is [S�

2
, S��

2
] = [commit(x⊕ b� ⊕ b��), swap(b��, swap(b,

commit(0)||commit(y)))] = [commit(b⊕ b� ⊕ 1), swap(x⊕ b⊕ b� ⊕ 1, commit(0)||
commit(y))]. When Alice and Bob open S′

2
 , the right pair of S′′

2
 are used as the

output if b⊕ b� ⊕ 1 = 1 otherwise, the left pair of S′′
2
 are used as the output.

This is equivalent to execute swap(b⊕ b� ⊕ 1, S��
2
) and select the left pair. Since

swap(b⊕ b� ⊕ 1, S��
2
) = swap(b⊕ b� ⊕ 1, swap(x⊕ b⊕ b� ⊕ 1, commit(0)||commit(y)))

commit(y)

84	 New Generation Computing (2022) 40:67–93

123

= swap(x, commit(0)||commit(y)) , the output is commit(0) if x = 0 , otherwise the
output is commit(y). Therefore, the output is correct regardless of the selection of b
and b′.

The protocol is secure in this case since Alice sees S�
2
= b⊕ b� ⊕ 1 and Bob sees

S�
2
= b⊕ b� ⊕ 1 and S1 = x⊕ b but b is an unknown random value for Bob. 	� ◻

Note that even if Alice and/or Bob make mistakes in swapping the left and the
right of paired envelopes, the mistakes are automatically corrected. The reason is
just the same as the one for the XOR protocol.

Note that using an argument similar to the one in [48], any 2-variable Boolean
function can be calculated by a protocol similar to the XOR protocol or the AND
protocol.

n‑variable Boolean Functions

We show a protocol that calculates any n-variable Boolean function
f (x1, x2,… , xn).

Protocol 4  (Protocol for n-variable Boolean function)
Input: two copies of commit(xi)(i = 1, 2,… , n).
Output: commit(f (x1, x2,… , xn)) .

1.	 Al ice and Bob pub l i c ly make 2n commi tments Ca1,a2,…,an
=

commit(f (a1, a2,… , an))(ai ∈ {0, 1}, i = 1, 2,… , n) . Alice and Bob makes
one sequence T from the sequences Ca1,a2,…,an

(ai ∈ {0, 1}, i = 1, 2,… , n) .
by lining up them using the lexicographical order of (a1, a2,… , an) . That is,
T = C0,0,…,0,0||C0,0,…,0,1||C0,0,…,1,0||… ||C1,1,…,1,1.

2.	 For i = 1, 2,… , n , execute the following procedure.

(a)	 Alice and Bob publicly divide T into the two equal size sequence T0 and T1 , that
is, T0 = Cx1,x2,…,xi−1,0,0,0,…,0,0||Cx1,x2,…,xi−1,0,0,0,…,0,1||… || Cx1,x2,…,xi−1,0,1,1,…,1,1
and T1 = Cx1,x2,…,xi−1,1,0,0,…,0,0|| Cx1,x2,…,xi−1,1,0,0,…,0,1||… ||Cx1,x2,…,xi−1,1,1,1,…,1,1 .
Note that when i = 1 , T0 = C0,0,…,0,0||C0,0,…,0,1||… ||C0,1,…,1,1 and
T1 = C1,0,…,0,0||C1,0,…,0,1||… ||C1,1,…,1,1 . Alice and Bob publicly put cards
into envelopes. The left card of commit(xi) and T0 are put into the left enve-
lope. The right card of commit(xi) and T1 are put into the right envelope.
The two envelopes have [commit(xi), T0||T1] . The remaining two cards of
commit(xi) are put into two new envelopes so that the left (right) card is put
into the left (right) envelope, respectively. The envelopes have [commit(xi)] .
The envelopes that have [commit(xi)] and [commit(xi), T0||T1] are sent to
Alice.

(b)	 Alice executes private random bisection cuts on [commit(xi)] and
[commit(xi), T0||T1] using the same new random bit bi . Let the output be [S1]

85New Generation Computing (2022) 40:67–93	

123

and [S�
1
, S��

1
] . S1 = S�

1
= commit(xi ⊕ bi) . and S��

1
= swap(bi, T0||T1) . Alice

sends [S1] and [S�
1
, S��

1
] to Bob.

(c)	 Bob claims that Alice misbehaved and terminates the protocol if an enve-
lope is opened. Bob executes a private reveal on [S1 = commit(x�

i
)] . Bob

claims that Alice misbehaved and terminates the protocol if the number
of cards in an envelope is not one. Bob privately swaps two envelopes of
[S�

1
, S��

1
] if x�

i
= 1 , otherwise, does nothing. Bob makes the two envelopes

public, which are denoted [S�
2
, S��

2
].

(d)	 Alice claims that Bob misbehaved and terminates the protocol if an
envelope is opened. Alice and Bob open the envelopes together. If the
number of cards in an envelope is one, Alice claims that Bob opened
an incorrect envelope at Step 2 (c) and terminates the protocol. Other-
wise, they obtain S′

2
 and S′′

2
 . They turn (that is, face-up) S′

2
 . If S�

2
= 0 ,

let T be the left half cards of S′′
2
 . If S�

2
= 1 , let T be the right half cards

of S′′
2
 . As shown in the proof of Theorem 3, T = Cx1,x2,…,xi−1,xi,0,0,…,0,0||

Cx1,x2,…,xi−1,xi,0,0,…,0,1||… ||Cx1,x2,…,xi−1,xi,1,1,…,1,1 is satisfied.

3.	 At the end of the protocol, T = Cx1,x2,…,xn
= commit(f (x1, x2,… , xn)) is the output.

From Assumption 1, the malicious activities in this protocol are the follows.
At Step 1, Step 2 (a), and Step 2 (d), there are no malicious activities because the
operations are publicly executed by the two players. At Step 2 (b), Alice might
open some envelopes during the execution. Alice might not execute the private
random bisection cuts correctly, that is, Alice uses bi for swapping [commit(xi)]
and b�

i
(≠ bi) for swapping [commit(xi), T0||T1] . Alice might incorrectly send the

envelopes to Bob, that is, Alice might swap the four envelopes of [S1] and [S�
1
, S��

1
]

(for example, the left envelope of [S1] and the left envelope of [S�
1
, S��

1
] are given to

Bob as the two envelopes of [S1] ). At Step 2 (c), Bob might open envelopes that
are not allowed. Bob might not execute swapping [S�

1
, S��

1
] correctly. Bob might

swap the four envelopes of [S1] and [S�
1
, S��

1
] (for example, the left envelope of [S1]

and the left envelope of [S�
1
, S��

1
] are shown public as the two envelopes of [S�

2
, S��

2
] ).

All of these malicious activities must be prevented or detected.
The correctness of the protocol is shown as follows.

Theorem 3  The output of Protocol 4 is correct if the protocol is not terminated dur-
ing execution even if Alice and/or Bob are malicious. The protocol does not reveal
input values to the players if the protocol is not terminated during execution.

Proof  The correctness of the protocol is shown by proving the following property.
Given inputs T0 = Cx1,x2,…,xi−1,0,0,0,…,0,0||Cx1,x2,…,xi−1,0,0,0,…,0,1||… ||
Cx1,x2,…,xi−1,0,1,1,…,1,1 , T1 = Cx1,x2,…,xi−1,1,0,0,…,0,0||Cx1,x2,…,xi−1,1,0,0,…,0,1||
… ||Cx1,x2,…,xi−1,1,1,1,…,1,1 , and two copies of commit(xi) at the beginning of Step 2 (a),
T = Cx1,x2,…,xi−1,xi,0,0,…,0,0||Cx1,x2,…,xi−1,xi,0,0,…,0,1||… || Cx1,x2,…,xi−1,xi,1,1,…,1,1 is obtained
at the end of Step 2 (d) if the protocol is not terminated during execution.

86	 New Generation Computing (2022) 40:67–93

123

First, we show the correctness when both Alice and Bob are honest. Alice sends
[S1] = [commit(xi ⊕ bi)] and [S�

1
, S��

1
] = [commit(xi ⊕ bi), swap(bi, T0||T1)] to Bob.

Bob swaps the pair of [S�
1
, S��

1
] if xi ⊕ bi = 1 . Thus [S�

2
, S��

2
] = [commit((xi ⊕b

i
)⊕

(xi ⊕ bi)), swap(xi ⊕ bi, swap(bi, T0||T1))] = [commit(0), swap(xi, T0||T1)] . Since
S�
2
= commit(0) , S′′

2
 is not swapped and the output is the left half of swap(xi, T0||T1) ,

which is Cx1,x2,…,xi−1,xi,0,0,…,0,0||Cx1,x2,…,xi−1,xi,0,0,…,0,1||… ||Cx1,x2,…,xi−1,xi,1,1,…,1,1 There-
fore, the output is correct.
The protocol is secure since Alice sees S�

2
= 0 and Bob sees S�

2
= 0 and S1 = xi ⊕ bi

but bi is an unknown random value for Bob.
Next, consider the case when Alice is malicious and Bob is honest. If Alice

opens an envelope during the private operation, Bob can detect misbehavior.
Next, consider the case when Alice does not execute the private random bisection
cut correctly. Since the numbers of cards in [S1] and [S�

1
, S��

1
] differ, making incor-

rect pairs of envelopes (for example, the left envelope of [S1] and the right enve-
lope of [S�

1
, S��

1
] are sent to Bob as [S1] ) is detected by Bob when Bob opens [S1] .

The only cheat that cannot be detected by Bob is incorrectly swapping each pair
of envelopes. Though the cheat cannot be detected, the result becomes cor-
rect as shown below. Let bi and b′

i
 be the random bits selected to swap the enve-

lopes that have [commit(xi)] and [commit(xi), T0||T1] , respectively. The output by
Alice is [S1] = [commit(xi ⊕ bi)] and [S�

1
, S��

1
] = [commit(xi ⊕ b�

i
), swap(b�

i
, T0||T1)] .

After Bob opens [S1] = [commit(xi ⊕ bi)] , Bob swaps the envelopes if
xi ⊕ bi = 1 , thus the result [S�

2
, S��

2
] = [commit(x

i
⊕ b

�
i
⊕ x

i
⊕ b

i
),

swap(xi ⊕ bi, swap(b
�
i
,T0||T1))] = [commit(bi ⊕ b�

i
), swap(xi ⊕ bi ⊕ b�

i
,T0||T1))]. When

the players open S′
2
 , the left half cards of S′′

2
 is the output if bi ⊕ b�

i
= 0 . The right half

cards of S′′
2
 is the output if bi ⊕ b�

i
= 1 . This is equivalent to execute swap(bi ⊕ b�

i
, S��

2
)

and select the left half cards. Since swap(bi ⊕ b�
i
, swap(xi ⊕ bi ⊕ b�

i
,

T0||T1)) = swap(x
i
, T0||T1) , the output T = T0 if xi = 0 and T = T1 if x1 = 1 . Thus,

T = Cx1,x2,…,xi−1,xi,0,0,…,0,0||Cx1,x2,…,xi−1,xi,0,0,…,0,1||… || Cx1,x2,…,xi−1,xi,1,1,…,1,1 . The result
is correct regardless of the selection of bi and b′

i
.

The protocol is also secure in this case since Alice sees S�
2
= bi ⊕ b�

i
 and Bob sees

S�
2
= bi ⊕ b�

i
 and S1 = xi ⊕ bi but bi is an unknown random value for Bob.

Next, consider the case Alice is honest or malicious and Bob is malicious. Alice
might incorrectly execute the private random bisection cuts using bi and b′

i
 as in

the above case. The other cheats such as irregularly opening envelopes and making
incorrect pairs of envelopes are detected by Bob as shown above. If Bob opens an
envelope of [S�

1
, S��

1
] , the cheat can be detected by Alice. If Bob makes an incorrect

pair of envelopes (for example, the left envelope of [S1] and the left envelope of
[S�

1
, S��

1
] are shown public as the two envelopes of [S�

2
, S��

2
] ), the cheat can be detected

by Alice when they open [S�
2
, S��

2
] because the numbers of cards in [S1] and [S�

1
, S��

1
]

differ. Next, consider the case when Bob does not set the envelopes correctly. When
Bob sees xi ⊕ bi , Bob does not swap the envelopes correctly, that is, Bob selects
some value b��

i
(≠ xi ⊕ bi) ∈ {0, 1} and swaps the envelopes of [S�

1
, S��

1
] using b′′

i
 . If

b��
i
= xi ⊕ bi , the result is correct as shown above. Thus the only cheat selection of

b′′
i
 is b��

i
= xi ⊕ bi = xi ⊕ bi ⊕ 1.

In this case, the result is [S�
2
, S��

2
] = [commit(xi ⊕ b�

i
⊕ b��

i
), swap(b��

i
, swap

(b�
i
, T0||T1))] = [commit(b�

i
⊕ bi ⊕ 1), swap(xi ⊕ bi ⊕ b�

i
⊕ 1, T0||T1)] . When Alice

87New Generation Computing (2022) 40:67–93	

123

and Bob open S′
2
 , the right half cards of S′′

2
 are used as the output if bi ⊕ b�

i
⊕ 1 = 1 ,

otherwise the left half cards of S′′
2
 are used as the output. This is equiva-

lent to execute swap(bi ⊕ b�
i
⊕ 1, S��

2
) and select the left half of cards. Since

swap(bi ⊕ b�
i
⊕ 1, S��

2
) = swap(bi ⊕ b�

i
⊕ 1, swap(xi ⊕ bi ⊕ b�

i
⊕ 1, T0||T1)) = swap

(x
i
, T0||T1) , the output is T0 if xi = 0 , otherwise the output is T1 , that is,

T = Cx1,x2,…,xi−1,xi,0,0,…,0,0||Cx1,x2,…,xi−1,xi,0,0,…,0,1||… || Cx1,x2,…,xi−1,xi,1,1,…,1,1 . Therefore,
the output is correct regardless of the selection of bi and b′

i
.

The protocol is secure in this case since Alice sees S�
2
= bi ⊕ b�

i
⊕ 1 and Bob sees

S�
2
= bi ⊕ b�

i
⊕ 1 and S1 = xi ⊕ bi but bi is an unknown random value for Bob. 	� ◻

The protocol is 2n + 1 rounds since Step (d) of i-th iteration of the loop and Step
(a) of (i + 1)-th iteration of the loop can be executed in the same round. The protocol
uses 4n + 2n+1 cards.

Multiple Output Protocol

Multiple copies of output data of computation might be needed in some cases. For
example, consider the case when we calculate w = (x⊕ y) ∧ (x� ⊕ y�) . We calculate
z = x⊕ y , z� = x� ⊕ y� , and then w = z ∧ z� . To calculate w , two copies of output
value z are necessary at calculating z = x⊕ y . Thus, multiple output protocols are
necessary. A method to obtain m(> 1) copies of the output is preparing m copies of
commit(y ). We show XOR and AND protocols that output multiple copies of the
result.

Protocol 5  (multiple output XOR protocol)
Input: two copies of commit(x ) and m(> 1) copies of commit(y).
Output: m copies of commit(x⊕ y).
The differences from Protocol 2 are as follows:
Step 1: Alice and Bob publicly put cards of one commit(x ) and m commit(y )

into two envelopes. The left (right) cards of commit(x ) and m copies of commit
(y ) are put into the left (right) envelope, respectively. The two envelopes have
[commit(x), commit(y), commit(y),… , commit(y)] . The remaining commit(x ) is put
into two new envelopes as in Protocol 2.

Step 3: At the end of Step 3, the cards in the envelopes are denoted
[S�

2
, S��

2,1
, S��

2,2
,… , S��

2,m
]

Step 4: The procedure until opening the cards of S′
2
 is the same as in Protocol 2.

If S�
2
= 0 , S��

2,1
, S��

2,2
,… , S��

2,m
 are the outputs of the protocol. If S�

2
= 1 , swap the

left and the right cards of S��
2,i
(i = 1, 2,… ,m) and the results are the outputs of the

protocol.

The proof of correctness and security is just the same as the one for Protocol 2.

88	 New Generation Computing (2022) 40:67–93

123

Protocol 6  (multiple output AND protocol)
Input: two copies of commit ( x ) and m(> 1) copies of commit(y).
Output: m copies of commit(x ∧ y).
The differences from Protocol 3 are as follows:
Step 1: Alice and Bob publicly put cards of one commit(x ) and m commit

(y ) and commit(0 ) into two envelopes. The left card of commit(x ) and m cop-
ies of commit(0 ) are put into the left envelope. The right card of commit(x ) and
m copies of commit(y ) are put into the right envelope. The two envelopes have
[commit(x), commit(0)||commit(0)||… ||commit(0)||commit(y)||commit(y)||
… ||commit(y)] . The remaining commit(x ) is put into two new envelopes as in Pro-
tocol 3.

Step 3: At the end of Step 3, the cards in the envelopes are denoted [S�
2
, S��

2,1
||

S��
2,2
||… , ||S��

2,2m
] , where S��

2,i
(i = 1, 2,… , 2m) is one pair of cards.

Step 4: The procedure until opening the cards of S′
2
 is the same as in Pro-

tocol 3. If S�
2
= 0 , S��

2,1
, S��

2,2
,… , S��

2,m
 are the outputs of the protocol. If S�

2
= 1 ,

S��
2,m+1

, S��
2,m+2

,… , S��
2,2m

 are the outputs of the protocol.

The proof of correctness and security is just the same as the one for Protocol 3.
We can obtain an n-variable Boolean function calculation protocol that outputs m

copies using the same idea using 4n + 2n+1m cards.
There might be some cases when the number of necessary copies of some value

is changed during execution. For example, the players securely calculate Boolean
function z, f0, and f1 . The intermediate result z is opened, which is 0 or 1. Next,
the players need to calculate fz ∧ yi(i = 1,… , n) . Since many copies of f0(f1) are
necessary only if z = 0(z = 1) respectively, preparing many copies of f0 and f1 in
advance is wasteful. In such cases, a copy protocol is used during execution. We
show another protocol that directly increases the number of copies of input data
using the XOR protocol.

Protocol 7  (copy protocol)

Input: two copies of commit(x).
Output: m(> 2) copies of commit(x).
Execute Protocol 5 with input x and m copies of y = 0.

Since x⊕ 0 = x , m copies of x are obtained.
Last, we show a method to obtain multiple copies of input x using envelopes.

Protocol 8  (multiple input protocol)
Input: m(> 1) cards and m cards.
Output: m copies of commit(x ).

1.	 The players publicly put m face-down () cards into the left (right) envelope,
respectively.

89New Generation Computing (2022) 40:67–93	

123

2.	 The input player who has the private input value x privately swaps the two enve-
lopes if x = 1 , otherwise, does nothing. The input player makes the two envelopes
public.

3.	 A player claims that the input player misbehaved and terminates the protocol if
an envelope is opened. The players open the envelopes together. Two piles of
face-down cards are obtained. When the players select one card from each of the
piles, a copy of commit(x ) can be obtained, thus m copies of commit(x ) can be
obtained.

Note that a malicious input player might input x̄ instead of x , but it is impos-
sible to prevent such a cheat since no other player knows the secret value x.

When we calculate general logical functions using XOR, AND, and copy pro-
tocols, we need to prepare two copies of each input. Any number of copies of a
value can be obtained by using the copy protocol at any time, if there are two
copies of each value. Obtaining two copies of an intermediate output value can
be realized by the above protocols; thus, any logical functions can be calculated
securely using these protocols.

Conclusion

This paper proposed new protocols using private operations that are secure against
malicious players. We show logical XOR, logical AND, copy, and n-variable
Boolean function calculation protocols that use envelopes as an additional tool.
Since the envelopes are a very powerful tool to restrict swap executions, some mali-
cious executions are corrected in the protocols.

We can consider weak tools for preventing the illegal opening of face-down cards,
for example, seals on the marks of the cards. They cannot restrict swap executions.
One of the open problems is considering secure protocols with such weak tools.

Acknowledgements  The authors would like to thank anonymous referees who gave us valuable com-
ments to improve this paper.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Abe, Y., Hayashi, Y.I., Mizuki, T., Sone, H.: Five-card and computations in committed format using
only uniform cyclic shuffles. N. Gener. Comput. 39(1), 97–114 (2021)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

90	 New Generation Computing (2022) 40:67–93

123

	 2.	 den Boer, B.: More efficient match-making and satisfiability the five card trick. In: Proc. of EURO-
CRYPT ’89, LNCS Vol. 434, pp. 208–217 (1990)

	 3.	 Bultel, X., Dreier, J., Dumas, J.G., Lafourcade, P., Miyahara, D., Mizuki, T., Nagao, A., Sasaki,
T., Shinagawa, K., Sone, H.: Physical zero-knowledge proof for makaro. In: Proc. of 20th Interna-
tional Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018), LNCS
Vol.11201, pp. 111–125 (2018)

	 4.	 Cheung, E., Hawthorne, C., Lee, P.: Cs 758 project: Secure computation with playing cards (2013).
http://​cdcha​wthor​ne.​com/​writi​ngs/​secure_​playi​ng_​cards.​pdf

	 5.	 Dumas, J.G., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: Interactive physical
zero-knowledge proof for norinori. In: Proc. of 25th International Computing and Combinatorics
Conference(COCOON 2019), LNCS Vol. 11653, pp. 166–177. Springer (2019)

	 6.	 Dvořák, P., Kouckỳ, M.: Barrington plays cards: The complexity of card-based protocols. arXiv
preprint arXiv:​2010.​08445 (2020)

	 7.	 Francis, D., Aljunid, S.R., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Necessary and sufficient
numbers of cards for securely computing two-bit output functions. In: Proc. of Second International
Conference on Cryptology and Malicious Security(Mycrypt 2016), LNCS Vol. 10311, pp. 193–211
(2017)

	 8.	 Hashimoto, Y., Nuida, K., Shinagawa, K., Inamura, M., Hanaoka, G.: Toward finite-runtime card-
based protocol for generating hidden random permutation without fixed points. IEICE Trans. Fun-
dam. Electron. Commun. Comput. Sci. 101–A(9), 1503–1511 (2018)

	 9.	 Hashimoto, Y., Shinagawa, K., Nuida, K., Inamura, M., Hanaoka, G.: Secure grouping protocol
using a deck of cards. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 101(9), 1512–1524
(2018)

	10.	 Ibaraki, T., Manabe, Y.: A more efficient card-based protocol for generating a random permutation
without fixed points. In: Proc. of 3rd Int. Conf. on Mathematics and Computers in Sciences and in
Industry (MCSI 2016), pp. 252–257 (2016)

	11.	 Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a hidden random
permutation without fixed points. In: Proc. of 14th International Conference on Unconventional
Computation and Natural Computation(UCNC 2015), LNCS Vol. 9252, pp. 215–226 (2015)

	12.	 Isuzugawa, R., Miyahara, D., Mizuki, T.: Zero-knowledge proof protocol for cryptarithmetic using
dihedral cards. In: Proc. of 19th International Conference on Unconventional Computation and Nat-
ural Computation (UCNC 2021), LNCS Vol. 12984, pp. 51–67. Springer (2021)

	13.	 Isuzugawa, R., Toyoda, K., Sasaki, Y., Miyahara, D., Mizuki, T.: A card-minimal three-input and
protocol using two shuffles. In: Proc. of 27th International Computing and Combinatorics Confer-
ence (COCOON 2021), LNCS Vol. 13025, pp. 668–679. Springer (2021)

	14.	 Kastner, J., Koch, A., Walzer, S., Miyahara, D., Hayashi, Y., Mizuki, T., Sone, H.: The minimum
number of cards in practical card-based protocols. In: Proc. of Asiacrypt 2017, Part III, LNCS Vol.
10626, pp. 126–155 (2017)

	15.	 Koch, A.: The landscape of optimal card-based protocols. IACR Cryptology ePrint Archive, Report
2018/951 (2018)

	16.	 Koch, A., Walzer, S.: Private function evaluation with cards. Cryptology ePrint Archive, Report
2018/1113 (2018). https://​eprint.​iacr.​org/​2018/​1113

	17.	 Koch, A., Walzer, S.: Foundations for actively secure card-based cryptography. In: Proc. of 10th
International Conference on Fun with Algorithms (FUN 2020). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik (2020)

	18.	 Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a minimal number of
cards. In: Proc. of Asiacrypt 2015, LNCS Vol. 9452, pp. 783–807 (2015)

	19.	 Koyama, H., Toyoda, K., Miyahara, D., Mizuki, T.: New card-based copy protocols using only ran-
dom cuts. In: Proceedings of the 8th ACM on ASIA Public-Key Cryptography Workshop, APKC
‘21, p. 13?22. Association for Computing Machinery, New York, NY, USA (2021). https://​doi.​org/​
10.​1145/​34573​38.​34582​97

	20.	 Kurosawa, K., Shinozaki, T.: Compact card protocol. In: Proc. of 2017 Symposium on Cryptogra-
phy and Information Security(SCIS 2017), pp. 1A2–6 (2017). (In Japanese)

	21.	 Lafourcade, P., Miyahara, D., Mizuki, T., Robert, L., Sasaki, T., Sone, H.: How to construct physical
zero-knowledge proofs for puzzles with a “single loop” condition. Theoretical Computer Science
888, 41–55 (2021) https://​doi.​org/​10.​1016/j.​tcs.​2021.​07.​019. https://​www.​scien​cedir​ect.​com/​scien​
ce/​artic​le/​pii/​S0304​39752​10042​42

http://cdchawthorne.com/writings/secure_playing_cards.pdf
http://arxiv.org/abs/2010.08445
https://eprint.iacr.org/2018/1113
https://doi.org/10.1145/3457338.3458297
https://doi.org/10.1145/3457338.3458297
https://doi.org/10.1016/j.tcs.2021.07.019
https://www.sciencedirect.com/science/article/pii/S0304397521004242
https://www.sciencedirect.com/science/article/pii/S0304397521004242

91New Generation Computing (2022) 40:67–93	

123

	22.	 Manabe, Y., Ono, H.: Secure card-based cryptographic protocols using private operations against
malicious players. In: Proc. of 13th International Conference on Information Technology and Com-
munications Security(SecITC 2020), LNCS Vol. 12596, pp. 55–70. Springer (2020)

	23.	 Manabe, Y., Ono, H.: Card-based cryptographic protocols for three-input functions using private
operations. In: Proc. of 32nd International Workshop on Combinatorial Algorithms (IWOCA 2021),
LNCS Vol. 12757, pp. 469–484. Springer (2021)

	24.	 Manabe, Y., Ono, H.: Card-based cryptographic protocols with a standard deck of cards using pri-
vate operations. In: Proc. of 18th International Colloquium on Theoretical Aspects of Computing
(ICTAC 2021), LNCS Vol.12819. Springer (2021)

	25.	 Marcedone, A., Wen, Z., Shi, E.: Secure dating with four or fewer cards. IACR Cryptology ePrint
Archive, Report 2015/1031 (2015)

	26.	 Miyahara, D., Haneda, H., Mizuki, T.: Card-based zero-knowledge proof protocols for graph prob-
lems and their computational model. In: Proc. of 15th International Conference on Provable and
Practical Security (ProvSec 2021), LNCS Vol.13059. Springer (2021)

	27.	 Miyahara, D., Hayashi, Y.I., Mizuki, T., Sone, H.: Practical card-based implementations of yao’s
millionaire protocol. Theoret. Comput. Sci. 803, 207–221 (2020)

	28.	 Miyahara, D., Robert, L., Lafourcade, P., Takeshige, S., Mizuki, T., Shinagawa, K., Nagao, A., Sone,
H.: Card-based zkp protocols for takuzu and juosan. In: Proc. of 10th International Conference on
Fun with Algorithms (FUN 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

	29.	 Miyahara, D., Sasaki, T., Mizuki, T., Sone, H.: Card-based physical zero-knowledge proof for
kakuro. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 102(9), 1072–1078 (2019)

	30.	 Mizuki, T.: Applications of card-based cryptography to education. In: IEICE Techinical Report
ISEC2016-53, pp. 13–17 (2016). (In Japanese)

	31.	 Mizuki, T.: Card-based protocols for securely computing the conjunction of multiple variables. The-
oret. Comput. Sci. 622, 34–44 (2016)

	32.	 Mizuki, T., Asiedu, I.K., Sone, H.: Voting with a logarithmic number of cards. In: Proc. of 12th
International Conference on Unconventional Computing and Natural Computation (UCNC 2013),
LNCS Vol. 7956, pp. 162–173 (2013)

	33.	 Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four cards. In: Proc. of
Asiacrypt 2012, LNCS Vol.7658, pp. 598–606 (2012)

	34.	 Mizuki, T., Shizuya, H.: A formalization of card-based cryptographic protocols via abstract
machine. Int. J. Inf. Secur. 13(1), 15–23 (2014)

	35.	 Mizuki, T., Shizuya, H.: Practical card-based cryptography. In: Proc. of 7th International Confer-
ence on Fun with Algorithms(FUN2014), LNCS Vol. 8496, pp. 313–324 (2014)

	36.	 Mizuki, T., Shizuya, H.: Computational model of card-based cryptographic protocols and its appli-
cations. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 100(1), 3–11 (2017)

	37.	 Mizuki, T., Sone, H.: Six-card secure and and four-card secure xor. In: Proc. of 3rd International
Workshop on Frontiers in Algorithms(FAW 2009), LNCS Vol. 5598, pp. 358–369 (2009)

	38.	 Moran, T., Naor, M.: Polling with physical envelopes: A rigorous analysis of a human-centric proto-
col. In: Proc. of EUROCRYPT 2006, LNCS Vol. 4004, pp. 88–108. Springer (2006)

	39.	 Murata, S., Miyahara, D., Mizuki, T., Sone, H.: Efficient generation of a card-based uniformly dis-
tributed random derangement. In: Proc. of 15th International Workshop on Algorithms and Compu-
tation (WALCOM 2021), LNCS Vol. 12635, pp. 78–89. Springer International Publishing, Cham
(2021)

	40.	 Nakai, T., Misawa, Y., Tokushige, Y., Iwamoto, M., Ohta, K.: How to solve millionaires’ problem
with two kinds of cards. N. Gener. Comput. 39(1), 73–96 (2021)

	41.	 Nakai, T., Shirouchi, S., Iwamoto, M., Ohta, K.: Four cards are sufficient for a card-based three-
input voting protocol utilizing private sends. In: Proc. of 10th International Conference on Informa-
tion Theoretic Security (ICITS 2017), LNCS Vol. 10681, pp. 153–165 (2017)

	42.	 Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols for any boolean func-
tion. In: Proc. of 15th International Conference on Theory and Applications of Models of
Computation(TAMC 2015), LNCS Vol. 9076, pp. 110–121 (2015)

	43.	 Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Securely computing three-input functions with eight
cards. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 98(6), 1145–1152 (2015)

	44.	 Nishida, T., Mizuki, T., Sone, H.: Securely computing the three-input majority function with
eight cards. In: Proc. of 2nd International Conference on Theory and Practice of Natural
Computing(TPNC 2013), LNCS Vol. 8273, pp. 193–204 (2013)

92	 New Generation Computing (2022) 40:67–93

123

	45.	 Nishimura, A., Hayashi, Y.I., Mizuki, T., Sone, H.: Pile-shifting scramble for card-based protocols.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 101(9), 1494–1502 (2018)

	46.	 Nishimura, A., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols using unequal
division shuffles. Soft. Comput. 22(2), 361–371 (2018)

	47.	 Ono, H., Manabe, Y.: Efficient card-based cryptographic protocols for the millionaires’ prob-
lem using private input operations. In: Proc. of 13th Asia Joint Conference on Information
Security(AsiaJCIS 2018), pp. 23–28 (2018)

	48.	 Ono, H., Manabe, Y.: Card-based cryptographic logical computations using private operations. N.
Gener. Comput. 39(1), 19–40 (2021)

	49.	 Ono, H., Manabe, Y.: Minimum round card-based cryptographic protocols using private operations.
Cryptography 5(3) (2021)

	50.	 Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Physical zero-knowledge proof for suguru puz-
zle. In: Proc. of 22th International Symposium on Stabilizing, Safety, and Security of Distributed
Systems(SSS 2020), LNCS Vol. 12514, pp. 235–247. Springer (2020)

	51.	 Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Interactive physical zkp for connectivity:applications
to nurikabe and hitori. In: Proc. of 17th International Conference on Computability in Europe(CiE 2021),
LNCS Vol. 12813, pp. 373–384. Springer International Publishing, Cham (2021)

	52.	 Ruangwises, S.: An improved physical zkp for nonogram. arXiv preprint arXiv:​2106.​14020 (2021)
	53.	 Ruangwises, S.: Two standard decks of playing cards are sufficient for a zkp for sudoku. arXiv pre-

print arXiv:​2106.​13646 (2021)
	54.	 Ruangwises, S., Itoh, T.: And protocols using only uniform shuffles. In: Proc. of 14th International

Computer Science Symposium in Russia(CSR 2019), LNCS Vol. 11532, pp. 349–358 (2019)
	55.	 Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for numberlink puzzle and k vertex-disjoint

paths problem. N. Gener. Comput. 39(1), 3–17 (2021)
	56.	 Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for ripple effect. Theoretical Computer Sci-

ence (2021) https://​doi.​org/​10.​1016/j.​tcs.​2021.​09.​034. https://​www.​scien​cedir​ect.​com/​scien​ce/​artic​
le/​pii/​S0304​39752​10055​57

	57.	 Ruangwises, S., Itoh, T.: Physical zkp for connected spanning subgraph: applications to bridges
puzzle and other problems. In: Proc. of 19th International Conference on Unconventional Computa-
tion and Natural Computation (UCNC 2021), LNCS Vol. 12984, pp. 149–163. Springer (2021)

	58.	 Ruangwises, S., Itoh, T.: Securely computing the n-variable equality function with 2n cards. Theo-
retical Computer Science 887, 99–110 (2021) https://​doi.​org/​10.​1016/j.​tcs.​2021.​07.​007. https://​
www.​scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​S0304​39752​10041​26

	59.	 Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge proof for
sudoku. Theoret. Comput. Sci. 839, 135–142 (2020)

	60.	 Shimizu, Y., Kishi, Y., Sasaki, T., Fujioka, A.: Card-based cryptographic protocols with private
operations which can prevent malicious behaviors. In: IEICE Techinical Report ISEC2017-113, pp.
129–135 (2018). (In Japanese)

	61.	 Shinagawa, K., Mizuki, T.: The six-card trick:secure computation of three-input equality. In: Proc.
of 21st International Conference on Information Security and Cryptology (ICISC 2018), LNCS Vol.
11396, pp. 123–131 (2018)

	62.	 Shinagawa, K., Mizuki, T.: Secure computation of any boolean function based on any deck of cards.
In: Proc. of 13th International Workshop on Frontiers in Algorithmics (FAW 2019), LNCS Vol.
11458, pp. 63–75. Springer (2019)

	63.	 Shinagawa, K., Nuida, K.: A single shuffle is enough for secure card-based computation of any
boolean circuit. Discret. Appl. Math. 289, 248–261 (2021)

	64.	 Shinoda, Y., Miyahara, D., Shinagawa, K., Mizuki, T., Sone, H.: Card-based covert lottery. In: Proc.
of 13th International Conference on Information Technology and Communications Security(SecITC
2020), LNCS Vol. 12596, pp. 257–270. Springer (2020)

	65.	 Shirouchi, S., Nakai, T., Iwamoto, M., Ohta, K.: Efficient card-based cryptographic protocols for
logic gates utilizing private permutations. In: Proc. of 2017 Symposium on Cryptography and Infor-
mation Security(SCIS 2017), pp. 1A2–2 (2017). (In Japanese)

	66.	 Takashima, K., Abe, Y., Sasaki, T., Miyahara, D., Shinagawa, K., Mizuki, T., Sone, H.: Card-based
protocols for secure ranking computations. Theoret. Comput. Sci. 845, 122–135 (2020)

	67.	 Takashima, K., Miyahara, D., Mizuki, T., Sone, H.: Actively revealing card attack on card-based
protocols. Natural Computing pp. 1–14 (2021)

	68.	 Toyoda, K., Miyahara, D., Mizuki, T., Sone, H.: Six-card finite-runtime xor protocol with only ran-
dom cut. In: Proc. of the 7th ACM Workshop on ASIA Public-Key Cryptography, pp. 2–8 (2020)

http://arxiv.org/abs/2106.14020
http://arxiv.org/abs/2106.13646
https://doi.org/10.1016/j.tcs.2021.09.034
https://www.sciencedirect.com/science/article/pii/S0304397521005557
https://www.sciencedirect.com/science/article/pii/S0304397521005557
https://doi.org/10.1016/j.tcs.2021.07.007
https://www.sciencedirect.com/science/article/pii/S0304397521004126
https://www.sciencedirect.com/science/article/pii/S0304397521004126

93New Generation Computing (2022) 40:67–93	

123

	69.	 Watanabe, Y., Kuroki, Y., Suzuki, S., Koga, Y., Iwamoto, M., Ohta, K.: Card-based majority voting
protocols with three inputs using three cards. In: Proc. of 2018 International Symposium on Infor-
mation Theory and Its Applications (ISITA), pp. 218–222. IEEE (2018)

	70.	 Yasunaga, K.: Practical card-based protocol for three-input majority. IEICE Trans. Fundam. Elec-
tron. Commun. Comput. Sci. E103.A(11), 1296–1298 (2020). https://​doi.​org/​10.​1587/​trans​fun.​
2020E​AL2025

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1587/transfun.2020EAL2025
https://doi.org/10.1587/transfun.2020EAL2025

	Card-Based Cryptographic Protocols with Malicious Players Using Private Operations
	Abstract
	Introduction
	Preliminaries
	Basic Notations
	Private Operations
	Space and Time Complexities
	Malicious Actions During Private Operations
	Envelopes

	Security Model
	Secure Protocols Under Malicious Model
	XOR Protocol
	AND Protocol
	n-variable Boolean Functions
	Multiple Output Protocol

	Conclusion
	Acknowledgements
	References

