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Abstract
This paper shows new card-based cryptographic protocols using private operations 
that are secure against malicious players. Physical cards are used in card-based cryp-
tographic protocols instead of computers. Operations that a player executes in a 
place where the other players cannot see are called private operations. Using several 
private operations, calculations of two variable Boolean functions and copy opera-
tions were realized with the minimum number of cards. Though private operations 
are very powerful in card-based cryptographic protocols, there is a problem that it is 
very hard to prevent malicious actions during private operations. Though most card-
based protocols are discussed in the semi-honest model, there might be cases when 
the semi-honest model is not enough. Thus, this paper shows new protocols that are 
secure against malicious players. We show logical XOR, logical AND, n-variable 
Boolean function, and copy protocols. We can execute any logical computations 
with a combination of these protocols. We use envelopes as an additional tool that 
can be easily prepared and used by people.
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Introduction

Card-based cryptographic protocols [15, 34, 36] were proposed in which physical 
cards are used instead of computers to securely calculate values. They can be used 
when computers cannot be used or users cannot trust the software on the com-
puter. Also, the protocols are easy to understand; thus, the protocols can be used 
to teach the basics of cryptography [4, 30]. den Boer [2] first showed a five-card 
protocol to securely calculate logical AND of two inputs. Since then, many pro-
tocols have been proposed to realize primitives to calculate any logical functions 
[14, 18, 24, 37, 42, 48, 49, 62, 63] and specific computations such as a specific 
class of logical functions [1, 7, 13, 19, 23, 25, 31, 33, 43, 46, 54, 58, 61, 68], uni-
versal computation such as Turing machines [6, 16], millionaires’ problem [27, 
40, 47], voting [32, 41, 44, 69, 70], random permutation [8, 10, 11, 39], grouping 
[9], ranking [66], lottery [64], proof of knowledge of a puzzle solution [3, 5, 12, 
21, 26, 28, 29, 50–53, 55–57, 59], and so on. This paper considers calculations of 
logical functions and a copy operation under the malicious model since any logi-
cal function can be realized with a combination of these calculations.

Operations that a player executes in a place where the other players cannot 
see are called private operations. These operations are considered to be executed 
under the table or in the back. Private operations are shown to be the most power-
ful primitives in card-based cryptographic protocols. They were first introduced 
to solve millionaires’ problem [40]. Using three private operations called private 
random bisection cuts, private reverse cuts, and private reveals, committed-input 
and committed-output logical AND, logical XOR, and copy protocols can be 
achieved with the minimum number of cards [48]. Another class of private opera-
tions is private input operations that are used when a player inputs a private value 
[20, 47, 65]. These operations are not discussed in this paper since it is impossi-
ble to prevent false input from a malicious player. If the input values are honestly 
given, the players can use the protocols shown in this paper.

The largest problem of protocols using private operations is malicious actions. 
Most of the card-based protocols assume the semi-honest model, in which the 
players obey the rule of the protocols but try to obtain private information. How-
ever, there are many cases when we must consider the malicious model. When we 
allow malicious actions, protocols using private operations are not secure. Since 
private operations are executed where the other player cannot see, any malicious 
operation is possible during the private operations, for example, watching the 
marks of face-down cards or changing the positions of cards.

One countermeasure to malicious actions is setting a watch person. When the 
protocols are executed by more than two players, it is possible to detect mali-
cious actions by the following rule: whenever a player executes a private opera-
tion, another player watches the execution and reports incorrect behavior. The 
XOR, AND, and copy protocols can be executed securely against a malicious 
player when the protocols are executed by more than two players [48]. However, 
when the protocols are executed by two players, Alice and Bob, it is impossible to 
use the above method. If Bob watches Alice’s private operations, Bob knows all 
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operations; thus, the relation between input data and output data is known to Bob. 
When the output card is opened, the secure input data are known to Bob using the 
relation between the input data and the output data.

Thus we need new protocols for the two-player case. Since Bob cannot watch 
Alice’s private operations, some additional mechanism is necessary to prevent ille-
gally watching the marks of face-down cards during private operations. This paper 
introduces envelopes to prevent illegally watching the marks of face-down cards. 
Cards that must not be seen are publicly put into an envelope. If an envelope is ille-
gally opened, it can be detected by anyone. Envelopes are used in [38] to realize 
cryptographic protocols that do not use physical cards. In card-based cryptographic 
protocols, envelopes are used in [8, 45, 58, 63] to realize some kind of shuffles that 
are not easy to be executed by people.

This paper shows new card-based cryptographic protocols that are secure against 
malicious players using envelopes as an additional tool. Some malicious actions dur-
ing private operations are prevented by adding extra cards for error correction. We 
show logical XOR, logical AND, n-variable Boolean function, and copy protocols 
since any logical functions can be obtained with a combination of these protocols.

As related works, protocols that use additional cards and prevent active attacks 
while a player executes a shuffle were shown [17]. The private operations used in 
the protocol are private shuffles; thus, the method does not consider the other types 
of private operations. This paper considers the other types of malicious actions in 
the protocols that use private operations. Another type of active attack is inputting 
a false value that is not 0 or 1. A protocol to detect such injection attacks was dis-
cussed in [35]. This paper assumes correct inputs since we need to consider input x̄ 
instead of correct input x but it is impossible to prevent or detect.

Protocols that prevent revealing face-down cards were discussed in [67]. The pro-
tocol uses the technique of secret-sharing to prevent information leakage by opening 
some numbers of cards. The protocol cannot be applied to the problem discussed in 
this paper since a malicious player might reveal all cards during a private operation.

Another usage of private operations is realizing a public shuffle by multiple pri-
vate shuffles [37]. The protocols cannot be used as it is to solve the problem in this 
paper since a malicious player might not honestly execute a private shuffle. Prevent-
ing malicious actions for the protocols that use private random bisection cuts, pri-
vate reverse cuts, and private reveals are not considered.

A protocol to detect malicious actions by executing two instances of a proto-
col and comparing the results was shown [60]. The protocol uses cases to prevent 
revealing face-down cards. The functionality of cases is just the same as envelopes 
in this paper. The protocol uses twice as many cards as the original protocols and it 
is impossible to correct some malicious actions. This paper’s protocols use a smaller 
number of cards and can correct some malicious actions.

In Sect. 2, basic notations, the private operations introduced in [48], and notations 
related to the envelopes are shown. Section  3 shows the security model. Section  4 
shows new protocols to prevent or detect malicious operations. Section 5 concludes the 
paper. The difference from the conference version [22] is as follows: (1) We updated all 
protocols to clarify the procedure to detect malicious actions. (2) We added a new pro-
tocol to calculate any n-variable Boolean functions. (3) We added formal descriptions 
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of the protocols that output multiple copies of the output value and obtain multiple cop-
ies of an input value.

Preliminaries

Basic Notations

This section gives the notations and basic definitions of card-based protocols. This 
paper is based on a standard two-color card model. In the two-color card model, there 
are two kinds of marks,  and . Cards of the same marks cannot be distinguished. 
In addition, the back of both types of cards is . It is impossible to determine the mark 
on the back of a given card of .

One-bit data are represented by two cards as follows:  = 0 and = 1.
One pair of cards that represents one bit x ∈ {0, 1} , whose face is down, is called a 

commitment of x , and denoted as commit(x ). It is written as . For a pair of cards, 

exchanging the position of the left card and the right card is called a swap. Note that 
when two cards of commit(x ) are swapped, commit(x̄) can be obtained. Thus, logical 
negation can be calculated without private operations.

A set of cards placed in a row is called a sequence of cards. A sequence of 
cards S whose length is n is denoted as S = s1, s2,… , sn , where si is i-th card of 

the sequence. . A sequence whose length is even is 

called an even sequence. S1||S2 is a concatenation of sequence S1 and S2 . For two 
sequences of cards S1 and S2 ( |S1| = |S2| ) that are put left and right, swapping S1 
and S2 means exchanging the position of the two sequences.

All protocols are executed by two players, Alice and Bob. The players might be 
malicious, that is, they might not obey the rule of the protocol. There is no collu-
sion between Alice and Bob, otherwise private input data can be easily revealed.

Throughout this paper, we assume that each input is given as a commit-
ted value. The output must also be given as a committed value so that the out-
put can be used as an input to further computations. Though some multi-party 
secure calculation protocols assume that each player knows his/her private input, 
there are some cases when we cannot assume that. For example, suppose that 
x1, x2 are Alice’s private input values and y1, y2 are Bob’s private input values 
and they want to securely calculate (x1 ∨ y1) ∧ (x2 ∨ y2) . After commit(x1 ∨ y1) and 
commit(x2 ∨ y2) are calculated, they need to calculate logical AND of two secret 
values. Thus, we need to calculate the logical functions of two committed inputs. 
Note that committed-input protocols can be used even when a player knows some 
inputs. For example, if Alice knows input value x , she first commits her input as 
commit(x ). Then the committed-input protocol can be executed.
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Private Operations

We show three private operations introduced in [48]: private random bisection 
cuts, private reverse cuts, and private reveals.

Primitive 1  (Private random bisection cut) A private random bisection cut is the fol-
lowing operation on an even sequence S0 = s1, s2,… , s2m . A player selects a random 
bit b ∈ {0, 1} and outputs

The player executes this operation in a place where the other players cannot see. The 
player must not disclose the bit b.

Note that if the private random cut is executed when m = 1 and S0 = commit(x) , 

given , the player’s output , which is  or .

We sometimes write the result of the private random bisection cut using a bit b 
to a sequence S1||S2(where |S1| = |S2| ) as swap(b, S1||S2) . swap(0, S1||S2)
= S1||S2 and swap(1, S1||S2) = S2||S1 are satisfied. Note that swap(b, swap(b�,
S1||S2)) = swap(b⊕ b�, S1||S2) holds for any b and b� ∈ {0, 1}.

Primitive 2  (Private reverse cut, Private reverse selection) A private reverse cut is 
the following operation on an even sequence S2 = s1, s2,… , s2m and a bit b ∈ {0, 1} . 
A player outputs

The player executes this operation in a place where the other players cannot see. The 
player must not disclose b.

Note that the bit b is not newly selected by the player. This is the difference 
between the primitive in Primitive 1, where a random bit must be newly selected by 
the player.

Note that in some protocols below, selecting left m cards is executed after a pri-
vate reverse cut. The sequence of these two operations is called a private reverse 
selection. A private reverse selection is the following procedure on an even sequence 
S2 = s1, s2,… , s2m and a bit b ∈ {0, 1} . A player outputs

Primitive 3  (Private reveal) A player privately opens a given committed bit. The 
player must not disclose the obtained value.

S1 =

{
S0 if b = 0

sm+1, sm+2,… , s2m, s1, s2,… , sm if b = 1.

S3 =

{
S2 if b = 0

sm+1, sm+2,… , s2m, s1, s2,… , sm if b = 1.

S3 =

{
s1, s2,… , sm if b = 0

sm+1, sm+2,… , s2m if b = 1.
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Using the obtained value, the player privately sets a sequence of cards.
Consider the case when Alice executes a private random bisection cut on commit

(x ) and Bob executes a private reveal on the bit. Since the committed bit is rand-
omized by the bit b selected by Alice, the opened bit is x⊕ b . Even if Bob privately 
opens the cards, Bob obtains no information about x if b is randomly selected and 
not disclosed by Alice. Bob must not disclose the obtained value. If Bob discloses 
the obtained value to Alice, Alice knows the value of the committed bit.

Space and Time Complexities

The space complexity of card-based protocols is evaluated by the number of cards. 
Minimizing the number of cards is discussed in many works.

The number of rounds was proposed as a criterion to evaluate the time complex-
ity of card-based protocols using private operations [49]. The first round begins 
from the initial state. The first round is (possibly parallel) local executions by each 
player using the cards initially given to each player. It ends at the instant when no 
further local execution is possible without receiving cards from another player. The 
local executions in each round include sending cards to some other players but do 
not include receiving cards. The result of every private execution is known to the 
player. For example, shuffling whose result is unknown to the player him/herself is 
not executed. Since the private operations are executed in a place where the other 
players cannot see, it is hard to force the player to execute such operations whose 
result is unknown to the player. The i(> 1)-th round begins with receiving all the 
cards sent during the (i − 1)-th round. Each player executes local executions using 
the received cards and the cards left to the player at the end of the (i − 1)-th round. 
Each player executes local executions until no further local execution is possible 
without receiving cards from another player. The number of rounds of a protocol is 
the maximum number of rounds necessary to output the result among all possible 
inputs and random values.

Let us show an example of a protocol execution and its space complexity and 
time complexity.

Protocol 1  (AND protocol in [48])
Input: commit(x ) and commit(x).
Output: commit(x ∧ y) . 

1.	 Alice executes a private random bisection cut on commit(x ). Let the output be 
commit(x�) . Alice sends commit(x�) and commit(y ) to Bob.

2.	 Bob executes a private reveal on commit(x�) . Bob sets 

 and sends S2 to Alice.

S2 =

{
commit(y)||commit(0) if x� = 1

commit(0)||commit(y) if x� = 0
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3.	 Alice executes a private reverse selection on S2 using the bit b generated in the 
private random bisection cut. Let the obtained sequence be S3 . Alice outputs S3.

The correctness of the protocol is shown in [48]. The number of cards is four, 
since the cards of commit(x�) are re-used to set commit(0).

The first round ends at the instant when Alice sends commit(x�) and commit(y ) to 
Bob. The second round begins at receiving the cards by Bob. The second round ends 
at the instant when Bob sends S2 to Alice. The third round begins at receiving the 
cards by Alice. The number of rounds of this protocol is three.

Since each operation is relatively simple, the dominating time to execute proto-
cols with private operations is the time to send cards between players and set up 
so that the cards are not seen by the other players. Thus, the number of rounds is 
the criterion to evaluate the time complexity of card-based protocols with private 
operations.

Malicious Actions During Private Operations

We show examples of cheats by a malicious player for the AND protocol shown 
in Protocol 1. In the first round, Alice may reveal the cards of commit(x ) (and/or 
commit(y )) and read the secret input value x (and/or y , respectively). Alice might 
swap the two cards of commit(x ) (and/or commit(y )) and use x̄ (and/or ȳ , respec-
tively) as the input value. In the second round, Bob might reveal the cards of commit
(y ) and read the secret input value y . Bob might set the cards incorrectly, for exam-
ple, set

then the result becomes x ∨ y instead of x ∧ y . Bob can set any other card sequences 
to obtain other incorrect results. In the third round, Alice might execute a private 
reverse selection using a value b�(≠ b) . Alice might reveal all the cards and see 
the values. To make the protocol secure against malicious players, all of the above 
cheats must be prohibited or detected.

Envelopes

We need to prevent malicious reveal of committed input values. In the following 
protocols, we use envelopes as an additional tool. The cards can be put into an enve-
lope and sealed. Opening the sealed envelope can be easily detected by anyone. 
Thus, a malicious player cannot irregularly open envelopes during private operations 
because it is detected by the other player. It is impossible to distinguish between two 
envelopes. No player can prepare the same envelopes in his/her pocket and exchange 
them for the envelopes used in the protocol. Such envelopes are used in some card-
based protocols [8, 45, 58, 63].

S2 =

{
commit(1)||commit(y) if x� = 1

commit(y)||commit(1) if x� = 0,
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We show some basic operations and notations related to the envelopes. The order 
of the cards put into an envelope is preserved when the cards are removed. For 
example, a card sequence S is put into an envelope, the output card sequence from 
the envelope must also be S . In the following protocols, two envelopes, the left and 
the right envelope are used. Swapping the right and left envelopes is exchanging the 
positions of the two envelopes.

We use the following notation [⋅] for the representation of the state of two 
envelopes. [⋅] means the sequence of cards when the cards are removed from the 
two envelopes by the same order of insertion. Note that in any case, the numbers 
of cards in the left and the right envelopes are the same. There are two types of 
insertion of cards. The first type is each one card from the two cards represent-
ing one bit is stored to the left and right envelope. One bit data is represented by 
two cards, for example, suppose that the card sequence s1, s2 is commit(x ). s1 is 
put into the left envelope and s2 is put into the right envelope. When the cards are 
removed from the two envelopes by the same order of insertion, we can obtain 
commit(x ). The status of the two envelopes is represented as [ commit(x)], since 
commit(x ) is obtained when the cards are removed. Now, consider the case that 
the left and the right envelopes are swapped. When the cards are removed from 
the two envelopes by the same order of the insertion, the card sequence becomes 
s2, s1 , thus commit(x̄) is obtained, as shown in Fig. 1. The status of the swapped 
two envelopes is written as [commit(x̄)].

The other type of insertion is putting a pair of cards to each of the envelopes. 
When we insert S = t1, t2 to the left envelope and S� = t3, t4 to the right envelope, 
the status of the two envelopes is written as [S||S�] , since we can obtain S||S′ when 
we remove the cards from the envelopes. When we swap the two envelopes, the 
status of the two envelopes is changed as [S�||S] , because we obtain S′||S when 
the cards are removed from the envelopes by the same order of the insertion, as 
shown in Fig. 2.

The above two types of insertions can be executed to a single pair of enve-
lopes. Such combination is represented using a comma in [⋅] . For example, the left 
(right) cards of commit(x ) and commit(y ) are inserted to the left (right) envelope, 

Fig. 1   Insertion and remove to a pair of envelopes(1)
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respectively, and then S(S�) is inserted to the left (right) envelope, respectively.
The status of the two envelopes is written as [ commit(x), commit(y),  S||S�] . When 
we swap the two envelopes, the status is changed to [commit(x̄), commit(ȳ), S�||S].

In this paper, private random bisection cuts are executed to these two enve-
lopes. When Alice executes a private random bisection cut to the two enve-
lopes that have [ commit(x),  commit(y)], [commit(x⊕ b), commit(y⊕ b)] is 
obtained, where b is the random bit selected by Alice. When Alice executes a 
private random bisection cut to the two envelopes that have [commit(x), S1||S2] , 
[commit(x⊕ b), swap(b, S1||S2)] is obtained, where b is the random bit selected by 
Alice.

A private reveal by a player on an envelope means that the player opens the 
envelope, obtains a sequence of face-down cards, turns the face-down cards, and 
sees the marks of the cards.

Security Model

This section first shows the possible malicious actions during protocol execu-
tions. Then, we show some additional assumptions related to security.

With the envelopes, the activities by a malicious player are as follows when 
the private primitives are private random bisection cuts, private reverse cuts, and 
private reveals on the envelopes.

Assumption 1  (Operations by malicious players) 

–	 When a malicious player executes a private operation, he/she can swap some 
envelopes even if it is not allowed in the protocol. He/she can open some enve-
lopes and see the marks on the cards.

(a) Insert  cards      (b) Swap envelopes              (c) Remove cards

Fig. 2   Insertion and remove to a pair of envelopes(2)
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–	 When a malicious player executes a private random bisection cut to two sets of 
envelopes A and B using the same random bit, he/she can use different bits to 
A and B.

–	 When a malicious player executes a private reveal on envelope A , he/she can 
open another envelope B . Also, he/she might not place envelopes according to 
the opened cards.

–	 When a malicious player executes a private reverse cut using a bit b , he/she 
might use b�(≠ b) instead of b.

Since there is no collusion of the two players, the public operations executed 
by both players together are correctly executed even if both players are malicious.

During the execution of a protocol, a player might find the other player’s mis-
behavior. We need to define the malicious player’s action about the detection of 
the other player’s misbehavior.

Assumption 2  (Misbehavior detection). A malicious player does not suppress to 
claim the other player’s misbehavior.

As shown in the next section, an incorrect result might be obtained if a mali-
cious player does not claim the other malicious player’s misbehavior.

We add an assumption that for at least one input, say, x multiple copies of 
commit(x ) are given as input. The reason for this assumption is as follows. When 
a player, say, Alice is given commit(x ) and executes a private operation, there is 
no way for the other player to detect whether Alice maliciously executed swap-
ping two cards of commit(x ) and made commit(x̄) . Since Bob does not know x , 
Bob cannot claim that x̄ is used instead of x . To detect this type of malicious 
operation, another copy of commit(x ) must be given. Using the copy of commit
(x ), Bob can detect that Alice irregularly swapped commit(x ), as shown in the 
protocols in this paper. Note that a method to obtain multiple copies of inputs 
using envelopes is shown in Sect. 4.4.

Secure Protocols Under Malicious Model

This section shows our new protocols that are secure against malicious behavior.

XOR Protocol

First, we show an XOR protocol. Note that two copies of one input, commit(x ), are 
necessary to prevent malicious actions.

Protocol 2  (XOR protocol)
Input: two copies of commit(x ) and one copy of commit(y).
Output: commit(x⊕ y) . 
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1.	 Alice and Bob publicly put cards of one commit(x ) and commit(y ) into two enve-
lopes. The left (right) cards of commit(x ) and commit(y ) are put into the left 
(right) envelope, respectively. The two envelopes have [ commit(x), commit(y)]. 
The remaining two cards of commit(x ) are put into two new envelopes so that 
the left (right) card is put into the left (right) envelope, respectively. The two 
envelopes have [ commit(x )] (Fig. 3a). The envelopes that have [ commit(x )] and 
[ commit(x), commit(y )] are sent to Alice.

1 2 1 2 Swap if 1

Swap if 1

Swap if 1

(a) Insert cards (b) Private random (c) Remove cards
bisec�on cut and swap

reveal

use
the same
bit

1 2 1 2

Swap if 1

(d) Remove cards
and swap

reveal

Fig. 3   XOR protocol
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2.	 Alice executes private random bisection cuts on [ commit(x )] and  
[ commit(x), commit(y )] using the same random bit b (Fig. 3b). Let the output be 
[S1] and [S�

1
, S��

1
] , respectively. S1 = S�

1
= commit(x⊕ b) and S��

1
= commit(y⊕ b) 

are satisfied. Alice sends [S1] and [S�
1
, S��

1
] to Bob.

3.	 Bob claims that Alice misbehaved and terminates the protocol if an envelope is 
opened. Bob executes a private reveal on [S1 = commit(x�)] . Bob claims that Alice 
misbehaved and terminates the protocol if the number of cards in an envelope is 
not one. Bob privately swaps the two envelopes of [S�

1
, S��

1
] if x� = 1 , otherwise, 

does nothing (Fig. 3c). Bob makes the two envelopes public, which are denoted 
[S�

2
, S��

2
].

4.	 Alice claims that Bob misbehaved and terminates the protocol if an envelope is 
opened. Alice and Bob open the envelopes together. If the number of cards in an 
envelope is one, Alice claims that Bob opened an incorrect envelope at Step 3 
and terminates the protocol. Otherwise, they obtain S′

2
 and S′′

2
 . They turns (that 

is, face-up) S′
2
 . If S�

2
= 0 , S′′

2
 is the output of the protocol. If S�

2
= 1 , swap the left 

and the right card of S′′
2
 and the result is the output of the protocol (Fig. 3d).

The protocol is three rounds. The first round is the public execution by Alice and 
Bob. Note that the public operations can be executed by a player say, Alice, in front 
of the other player, Bob.

The second round is executed by Alice. The third round is executed by Bob. The 
last public executions at Step 4 by Alice and Bob do not need sending envelopes. 
Bob just makes the envelopes public and Bob can execute the operations in front of 
Alice. Thus no overhead is necessary for the public execution. Therefore, the num-
ber of rounds is considered to be three. The number of cards used in the protocol is 
six.

From Assumption 1, the malicious activities in this protocol are the follows. 
At Step 1 and Step 4, there are no malicious activities because the operations are 
publicly executed by the two players. At Step 2, Alice might open some envelopes 
during the execution. Alice might not execute the private random bisection cuts 
correctly, that is, Alice uses b for swapping [ commit(x )] and b�(≠ b) for swap-
ping [ commit(x), commit(y)]. Alice might incorrectly send the envelopes to Bob, 
that is, Alice might swap the four envelopes of [S1] and [S�

1
, S��

1
] (for example, the 

left envelope of [S1] and the left envelope of [S�
1
, S��

1
] are given to Bob as the two 

envelopes of [S1] ). At Step 3, Bob might open envelopes that are not allowed. Bob 
might not execute swapping [S�

1
, S��

1
] correctly. Bob might swap the four envelopes 

of [S1] and [S�
1
, S��

1
] (for example, the left envelope of [S1] and the left envelope of 

[S�
1
, S��

1
] are shown public as the two envelopes of [S�

2
, S��

2
] ). All of these malicious 

activities must be prevented or detected.

Theorem 1  The output of the XOR protocol is correct if the protocol is not termi-
nated during execution even if Alice and/or Bob are malicious. The protocol does 
not reveal the input values to the players if the protocol is not terminated during 
execution.
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Proof  First, we show the correctness when both Alice and Bob are honest.
Alice sends [S1] = [commit(x⊕ b)] and [S�

1
, S��

1
] = [commit(x⊕ b), commit(y⊕ b)] 

to Bob. Bob swaps the pair of [S�
1
, S��

1
] if x⊕ b = 1 . Thus [S�

2
, S��

2
] = [commit((x⊕ b)

⊕(x⊕ b)), commit((y⊕ b)⊕ (x⊕ b))] = [commit(0), commit(x⊕ y)] . Since 
S�
2
= commit(0) , S′′

2
 is not swapped and the output is commit(x⊕ y) . Therefore, the 

output is correct. The protocol is secure since Alice sees S�
2
= 0 and Bob sees S�

2
= 0 

and S1 = x⊕ b but b is an unknown random value for Bob.
Next, consider the case when Alice is malicious and Bob is honest. If Alice 

opens an envelope during the private operation, Bob can detect misbehavior. Next, 
consider the case when Alice does not execute the private random bisection cut 
correctly. Since the numbers of cards in [S1] and [S�

1
, S��

1
] differ, making an incor-

rect pair of envelopes (for example, the left envelope of [S1] and the right enve-
lope of [S�

1
, S��

1
] are sent to Bob as [S1] ) is detected by Bob when Bob opens [S1] . 

The only cheat that cannot be detected by Bob is incorrectly swapping each pair 
of envelopes. Though the cheat cannot be detected, the result becomes correct as 
shown below. Let b and b′ be the random bits selected to swap the envelopes that 
have [ commit(x )] and [ commit(x), commit(y)], respectively. The output by Alice is 
[S1] = [commit(x⊕ b)] and [S�

1
, S��

1
] = [commit(x⊕ b�), commit(y⊕ b�)] . After Bob 

opens [S1] = [commit(x⊕ b)] , Bob swaps the envelopes if x⊕ b = 1 , thus the result 
[S�

2
, S��

2
] = [commit(x⊕ b� ⊕ x⊕ b), commit(y⊕ b� ⊕ x⊕ b)] = [commit(b⊕ b�),

commit(y⊕ b� ⊕ x⊕ b)] . When the players open S′
2
 , the cards of S′′

2
 are swapped if 

b⊕ b� = 1 . Thus, the output is commit(y⊕ b� ⊕ x⊕ b⊕ (b⊕ b�)) = commit(y⊕ x) . 
The result is correct regardless of the selection of b and b′ . The protocol is secure in 
this case since Alice sees S�

2
= b⊕ b� and Bob sees S�

2
= b⊕ b� and S1 = x⊕ b but b 

is an unknown random value for Bob.
Next, consider the case when Alice is honest or malicious and Bob is malicious. 

Alice might incorrectly execute the private random bisection cuts using b and b′ as 
in the above case. The other cheats such as irregularly opening envelopes and mak-
ing incorrect pairs of envelopes are detected by Bob as shown above. If Bob opens 
an envelope of [S�

1
, S��

1
] , the cheat can be detected by Alice. If Bob makes an incor-

rect pair of envelopes (for example, the left envelope of [S1] and the left envelope of 
[S�

1
, S��

1
] are shown public as the two envelopes of [S�

2
, S��

2
] ), the cheat can be detected 

by Alice when they open [S�
2
, S��

2
] because the numbers of cards in [S1] and [S�

1
, S��

1
] 

differ. Next, consider the case when Bob does not set the envelopes correctly. When 
Bob sees x⊕ b , Bob does not swap the envelopes correctly, that is, Bob selects 
some value b��(≠ x⊕ b) ∈ {0, 1} and swaps the envelopes of [S�

1
, S��

1
] using b′′ . If 

b�� = x⊕ b , the result is correct as shown above. Thus the only cheat selection of b′′ 
is b�� = x⊕ b = x⊕ b⊕ 1.

In this case, the result is [S�
2
, S��

2
] = [commit(x⊕ b� ⊕ b��), commit(y⊕ b� ⊕ b��)]

= [commit(b� ⊕ b⊕ 1), commit(y⊕ b� ⊕ x⊕ b⊕ 1)] . When Alice and Bob 
open S′

2
 , the two cards of S′′

2
 are swapped if b� ⊕ b⊕ 1 = 1 , Thus, the output is 

commit(y⊕ b� ⊕ x⊕ b⊕ 1⊕ (b� ⊕ b⊕ 1)) = commit(y⊕ x) and the result is cor-
rect. The protocol is secure in this case since Alice sees S�

2
= b⊕ b� ⊕ 1 and Bob 

sees S�
2
= b⊕ b� ⊕ 1 and S1 = x⊕ b but b is an unknown random value for Bob. 	� ◻
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Note that the protocol achieves an error correction. Even if Alice and/or Bob 
make mistakes in swapping the left and the right of paired envelopes, the mistakes 
are automatically corrected. Consider a mistake by Alice when she executes a pri-
vate random bisection cut on [ commit(x )] and [ commit(x), commit(y)], that is, she 
swapped [ commit(x )] but did not swap [ commit(x),  commit(y )] (or did not swap 
[ commit(x )] but swapped [ commit(x), commit(y)]). The situation is just the same 
when malicious Alice used different b and b′ to swap the pairs. The other mistake 
by Bob is at Step 3, Bob did not swap the two envelopes of [S�

1
, S��

1
] when x� = 1 (or 

swapped [S�
1
, S��

1
] when x� = 0 ). The situation is just the same when malicious Bob 

executed a false swap. Since the result is correct even with the malicious actions, 
these errors are corrected.

Note that a malicious player can output a false misbehavior detection even if the 
other player is honest. For example, at Step 3 of the above protocol, malicious Bob 
can claim that the envelopes are incorrectly sent by Alice even if Alice is honest, for 
example, Bob claims that the left envelope of [S1] has two cards when Bob opened 
[S1] . Actually, Bob is malicious and Bob swapped the left envelope of [S1] and the 
left envelope of [S�

1
, S��

1
] and opened the left envelope of [S�

1
, S��

1
] . In this case, though 

Alice (and Bob) knows that Bob’s claim is incorrect, the players just terminate the 
protocol, since there is no third party for Alice and Bob to appeal which player is 
malicious. Note that if we prepare envelopes with different colors, [ commit(x )] is 
put into two white envelopes and [ commit(x),  commit(y )] is put into two yellow 
envelopes. Then, this kind of cheat becomes impossible.

From Assumption 2, a malicious player does not suppress to claim the other play-
er’s misbehavior. Suppose that malicious Bob does not claim malicious Alice’s mis-
behavior. At Step 2, Alice opens the envelopes of [S1, S�1] and swap the cards so that 
[S1, S

�
1
] = [commit(x⊕ b), commit(ȳ⊕ b)] . At Step 3, Bob does not claim that Alice 

opened the envelopes and continues the protocol. Then the output of the protocol is 
commit(x⊕ ȳ) . This case is just the same as the case when Alice and Bob collude. 
Thus, Assumption 2 is necessary.

Note that there can be cases when both of the players are independently mali-
cious. Let us consider the following case. Alice knows the secret value x and y by 
some irregular means in advance. Bob does not know the fact. Malicious Alice 
knows the correct value of x⊕ y and wants Bob to obtain a false result. On the other 
hand, Bob independently knows the secret value x and y by some other irregular 
means in advance. Alice dose not know the fact. Malicious Bob wants Alice to 
obtain a false result. Even in this case, when the protocol is terminated, the result is 
correct, that is, the two independent malicious actions become void.

AND Protocol

Next, we show an AND protocol that uses envelopes.

Protocol 3  (AND protocol)
Input: two copies of commit(x ) and one copy of commit(x).
Output: commit(x ∧ y) . 
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1.	 Alice and Bob publicly put cards into envelopes. The left card of commit(x ) 
and two new cards of commit(0) are put into the left envelope. The right card of 
commit(x ) and the two cards of commit(y ) are put into the right envelope. The 
envelopes have [ commit(x), commit(0)||commit(y)]. The remaining two cards of 
commit(x ) are put into two envelopes so that the left (right) card is put into the 
left (right) envelope, respectively. The envelopes have [ commit(x )] (Fig. 4a). The 

1 2 1 2

use
the same
bit

Swap if 1

Swap if 1

Swap if 1

(a) Insert cards (b) Private random (c) Remove cards
bisec�on cut and swap

0

reveal

1 2 1 2

0 1

(d) Remove cards
and select output

output
if if

reveal

Fig. 4   AND protocol
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envelopes that have [ commit(x )] and [ commit(x), commit(0)||commit(y )] are sent 
to Alice.

2.	 Alice executes private random bisection cuts on [ commit(x )] and  
[ commit(x), commit(0)||commit(y )] using the same random bit b (Fig. 4b). Let the  
output be [S1] and [S�

1
, S��

1
] .  S1 = S�

1
= commit(x⊕ b) and S

��
1
= swap

(b, commit(0)||commit(y)) are satisfied. Alice sends [S1] and [S�
1
, S��

1
] to Bob.

3.	 Bob claims that Alice misbehaved and terminates the protocol if an envelope is 
opened. Bob executes a private reveal on [S1 = commit(x�)] . Bob claims that Alice 
misbehaved and terminates the protocol if the number of cards in an envelope is not 
one. Bob privately swaps two envelopes of [S�

1
, S��

1
] if x� = 1 , otherwise, does nothing 

(Fig. 4c). Bob makes the two envelopes public, which are denoted [S�
2
, S��

2
].

4.	 Alice claims that Bob misbehaved and terminates the protocol if an envelope is 
opened. Alice and Bob open the envelopes together. If the number of cards in 
an envelope is one, Alice claims that Bob opened an incorrect envelope at Step 
3 and terminates the protocol. Otherwise, they obtain S′

2
 and S′′

2
 . They turn (that 

is, face-up) S′
2
 . If S�

2
= 0 , the left two cards of S′′

2
 are the output of the protocol. If 

S�
2
= 1 , the right two cards of S′′

2
 are the output of the protocol (Fig. 4d).

The protocol is three rounds. The protocol uses eight cards since two new cards 
are used to set commit(0).

From Assumption 1, the malicious activities in this protocol are the follows. 
At Step 1 and Step 4, there are no malicious activities because the operations are 
publicly executed by the two players. At Step 2, Alice might open some envelopes 
during the execution. Alice might not execute the private random bisection cuts 
correctly, that is, Alice uses b for swapping [ commit(x )] and b�(≠ b) for swapping 
[ commit(x), commit(0)||commit(y)]. Alice might incorrectly send the envelopes to 
Bob, that is, Alice might swap the four envelopes of [S1] and [S�

1
, S��

1
] (for example, 

the left envelope of [S1] and the left envelope of [S�
1
, S��

1
] are given to Bob as the two 

envelopes of [S1] ). At Step 3, Bob might open envelopes that are not allowed. Bob 
might not execute swapping [S�

1
, S��

1
] correctly. Bob might swap the four envelopes 

of [S1] and [S�
1
, S��

1
] (for example, the left envelope of [S1] and the left envelope of 

[S�
1
, S��

1
] are shown public as the two envelopes of [S�

2
, S��

2
] ). All of these malicious 

activities must be prevented or detected.

Theorem 2  The output of the AND protocol is correct if the protocol is not termi-
nated during execution even if Alice and/or Bob are malicious. The protocol does 
not reveal the input values to the players if the protocol is not terminated during 
execution.

Proof  The desired output can be represented as follows.

First, we show the correctness when both Alice and Bob are honest.

x ∧ y =

{
y if x = 1

0 if x = 0.
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Alice sends [S1] = [commit(x⊕ b)] and [S�
1
, S��

1
] = [commit(x⊕ b), 

swap(b, commit(0)||commit(y))] to Bob. Bob swaps the pair of [S�
1
, S��

1
] if  

x⊕ b = 1 . Thus, [S�
2
, S��

2
] = [commit((x⊕ b)⊕ (x⊕ b)), swap(x⊕ b, swap(b, commit(0)||

commit(y))] = [commit(0), swap(x, commit(0)||commit(y))] . Thus the players select 
the left pair of swap(x, commit(0)||commit(y)) . The selected cards are 
if x = 1 and commit(0) if x = 0 . Thus, the output is correct.

The protocol is secure since Alice sees S�
2
= 0 and Bob sees S�

2
= 0 and S1 = x⊕ b 

but b is an unknown random value for Bob.
Next, consider the case when Alice is malicious and Bob is honest. If Alice opens 

an envelope during the private operation, Bob can detect misbehavior. Next, con-
sider the case when Alice does not execute the private random bisection cut cor-
rectly. Since the numbers of cards in [S1] and [S�

1
, S��

1
] differ, making an incorrect 

pair of envelopes (for example, the left envelope of [S1] and the right envelope of 
[S�

1
, S��

1
] are sent to Bob as [S1] ) is detected by Bob when Bob opens [S1] . The only 

cheat that cannot be detected by Bob is incorrectly swapping each pair of envelopes. 
Though the cheat cannot be detected, the result becomes correct as shown below. 
Let b and b′ be the random bits selected to swap the envelopes that have [ commit
(x )] and [ commit(x),  commit(0)|| commit(x)], respectively. The output by Alice 
is [commit(x⊕ b)] and [commit(x⊕ b�), swap(b�, commit(0)||commit(y))] . After 
Bob opens [commit(x⊕ b)] , Bob swaps the envelopes if x⊕ b = 1 , thus the result 
[S�

2
, S��

2
] = [commit(x⊕ b� ⊕ x⊕ b), swap(x⊕ b, swap(b�, commit(0)||commit(y)))]

= [commit(b⊕ b�), swap(x⊕ b⊕ b�, commit(0)||commit(y))] . When the players open 
S′
2
 , the left pair of S′′

2
 is the output if b⊕ b� = 0 . The right pair of S′′

2
 is the output if 

b⊕ b� = 1 . This is equivalent to execute swap(b⊕ b�, S��
2
) and select the left pair. Since 

swap(b⊕ b�, S��
2
) = swap(b⊕ b�, swap(x⊕ b⊕ b�, commit(0)||commit(y))) = swap

(x, commit(0)||commit(y)) , the output is commit(0 ) if x = 0 , otherwise the output is 
commit(y ). Therefore, the output is correct regardless of the selection of b and b′.

The protocol is secure in this case since Alice sees S�
2
= b⊕ b� and Bob sees 

S�
2
= b⊕ b� and S1 = x⊕ b but b is an unknown random value for Bob.
Next, consider the case when Alice is honest or malicious and Bob is malicious. 

Alice might incorrectly execute the private random bisection cuts using b and b′ as 
in the above case. If Bob opens an envelope of [S�

1
, S��

1
] , the cheat can be detected by 

Alice. If Bob makes an incorrect pair of envelopes (for example, the left envelope 
of [S1] and the left envelope of [S�

1
, S��

1
] are shown public as the two envelopes of 

[S�
2
, S��

2
] ), the cheat can be detected by Alice when they open [S�

2
, S��

2
] because the 

numbers of cards in [S1] and [S�
1
, S��

1
] differ. Next, consider the case when Bob does 

not set the envelopes correctly. When Bob sees x⊕ b , Bob does not swap the enve-
lopes correctly, that is, Bob selects some value b��(≠ x⊕ b) ∈ {0, 1} and swaps the 
envelopes of [S�

1
, S��

1
] using b′′ . When b�� = x⊕ b , the output is correct since it is the 

correct value. Thus the only cheat selection of b′′ is b�� = x⊕ b = x⊕ b⊕ 1.
In this case, the result is [S�

2
, S��

2
] = [commit(x⊕ b� ⊕ b��), swap(b��, swap(b,

commit(0)||commit(y)))] = [commit(b⊕ b� ⊕ 1), swap(x⊕ b⊕ b� ⊕ 1, commit(0)||
commit(y))]. When Alice and Bob open S′

2
 , the right pair of S′′

2
 are used as the 

output if b⊕ b� ⊕ 1 = 1 otherwise, the left pair of S′′
2
 are used as the output. 

This is equivalent to execute swap(b⊕ b� ⊕ 1, S��
2
) and select the left pair. Since 

swap(b⊕ b� ⊕ 1, S��
2
) = swap(b⊕ b� ⊕ 1, swap(x⊕ b⊕ b� ⊕ 1, commit(0)||commit(y)))

commit(y)
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= swap(x, commit(0)||commit(y)) , the output is commit(0) if x = 0 , otherwise the 
output is commit(y). Therefore, the output is correct regardless of the selection of b 
and b′.

The protocol is secure in this case since Alice sees S�
2
= b⊕ b� ⊕ 1 and Bob sees 

S�
2
= b⊕ b� ⊕ 1 and S1 = x⊕ b but b is an unknown random value for Bob. 	�  ◻

Note that even if Alice and/or Bob make mistakes in swapping the left and the 
right of paired envelopes, the mistakes are automatically corrected. The reason is 
just the same as the one for the XOR protocol.

Note that using an argument similar to the one in [48], any 2-variable Boolean 
function can be calculated by a protocol similar to the XOR protocol or the AND 
protocol.

n‑variable Boolean Functions

We show a protocol that calculates any n-variable Boolean function
f (x1, x2,… , xn).

Protocol 4  (Protocol for n-variable Boolean function)
Input: two copies of commit(xi)(i = 1, 2,… , n).
Output: commit(f (x1, x2,… , xn)) . 

1.	 Al ice  and  Bob  pub l i c ly  make  2n  commi tments  Ca1,a2,…,an
= 

commit(f (a1, a2,… , an))(ai ∈ {0, 1}, i = 1, 2,… , n) . Alice and Bob makes 
one sequence T  from the sequences Ca1,a2,…,an

(ai ∈ {0, 1}, i = 1, 2,… , n) . 
by lining up them using the lexicographical order of (a1, a2,… , an) . That is, 
T = C0,0,…,0,0||C0,0,…,0,1||C0,0,…,1,0||… ||C1,1,…,1,1.

2.	 For i = 1, 2,… , n , execute the following procedure. 

(a)	 Alice and Bob publicly divide T into the two equal size sequence T0 and T1 , that 
is, T0 = Cx1,x2,…,xi−1,0,0,0,…,0,0||Cx1,x2,…,xi−1,0,0,0,…,0,1||… || Cx1,x2,…,xi−1,0,1,1,…,1,1  
and T1 = Cx1,x2,…,xi−1,1,0,0,…,0,0|| Cx1,x2,…,xi−1,1,0,0,…,0,1||… ||Cx1,x2,…,xi−1,1,1,1,…,1,1 . 
Note that when i = 1 , T0 = C0,0,…,0,0||C0,0,…,0,1||… ||C0,1,…,1,1 and 
T1 = C1,0,…,0,0||C1,0,…,0,1||… ||C1,1,…,1,1 . Alice and Bob publicly put cards 
into envelopes. The left card of commit(xi) and T0 are put into the left enve-
lope. The right card of commit(xi) and T1 are put into the right envelope. 
The two envelopes have [commit(xi), T0||T1] . The remaining two cards of 
commit(xi) are put into two new envelopes so that the left (right) card is put 
into the left (right) envelope, respectively. The envelopes have [commit(xi)] . 
The envelopes that have [commit(xi)] and [commit(xi), T0||T1] are sent to 
Alice.

(b)	 Alice executes private random bisection cuts on [commit(xi)] and 
[commit(xi), T0||T1] using the same new random bit bi . Let the output be [S1] 



85New Generation Computing (2022) 40:67–93	

123

and [S�
1
, S��

1
] . S1 = S�

1
= commit(xi ⊕ bi) . and S��

1
= swap(bi, T0||T1) . Alice 

sends [S1] and [S�
1
, S��

1
] to Bob.

(c)	 Bob claims that Alice misbehaved and terminates the protocol if an enve-
lope is opened. Bob executes a private reveal on [S1 = commit(x�

i
)] . Bob 

claims that Alice misbehaved and terminates the protocol if the number 
of cards in an envelope is not one. Bob privately swaps two envelopes of 
[S�

1
, S��

1
] if x�

i
= 1 , otherwise, does nothing. Bob makes the two envelopes 

public, which are denoted [S�
2
, S��

2
].

(d)	 Alice claims that Bob misbehaved and terminates the protocol if an 
envelope is opened. Alice and Bob open the envelopes together. If the 
number of cards in an envelope is one, Alice claims that Bob opened 
an incorrect envelope at Step 2 (c) and terminates the protocol. Other-
wise, they obtain S′

2
 and S′′

2
 . They turn (that is, face-up) S′

2
 . If S�

2
= 0 , 

let T be the left half cards of S′′
2
 . If S�

2
= 1 , let T be the right half cards 

of S′′
2
 . As shown in the proof of Theorem 3, T = Cx1,x2,…,xi−1,xi,0,0,…,0,0|| 

Cx1,x2,…,xi−1,xi,0,0,…,0,1||… ||Cx1,x2,…,xi−1,xi,1,1,…,1,1 is satisfied.

3.	 At the end of the protocol, T = Cx1,x2,…,xn
= commit(f (x1, x2,… , xn)) is the output.

From Assumption 1, the malicious activities in this protocol are the follows. 
At Step 1, Step 2 (a), and Step 2 (d), there are no malicious activities because the 
operations are publicly executed by the two players. At Step 2 (b), Alice might 
open some envelopes during the execution. Alice might not execute the private 
random bisection cuts correctly, that is, Alice uses bi for swapping [commit(xi)] 
and b�

i
(≠ bi) for swapping [commit(xi), T0||T1] . Alice might incorrectly send the 

envelopes to Bob, that is, Alice might swap the four envelopes of [S1] and [S�
1
, S��

1
] 

(for example, the left envelope of [S1] and the left envelope of [S�
1
, S��

1
] are given to 

Bob as the two envelopes of [S1] ). At Step 2 (c), Bob might open envelopes that 
are not allowed. Bob might not execute swapping [S�

1
, S��

1
] correctly. Bob might 

swap the four envelopes of [S1] and [S�
1
, S��

1
] (for example, the left envelope of [S1] 

and the left envelope of [S�
1
, S��

1
] are shown public as the two envelopes of [S�

2
, S��

2
] ). 

All of these malicious activities must be prevented or detected.
The correctness of the protocol is shown as follows.

Theorem 3  The output of Protocol 4 is correct if the protocol is not terminated dur-
ing execution even if Alice and/or Bob are malicious. The protocol does not reveal 
input values to the players if the protocol is not terminated during execution.

Proof  The correctness of the protocol is shown by proving the following property. 
Given inputs T0 = Cx1,x2,…,xi−1,0,0,0,…,0,0||Cx1,x2,…,xi−1,0,0,0,…,0,1||… ||
Cx1,x2,…,xi−1,0,1,1,…,1,1 , T1 = Cx1,x2,…,xi−1,1,0,0,…,0,0||Cx1,x2,…,xi−1,1,0,0,…,0,1||
… ||Cx1,x2,…,xi−1,1,1,1,…,1,1 , and two copies of commit(xi) at the beginning of Step 2 (a), 
T = Cx1,x2,…,xi−1,xi,0,0,…,0,0||Cx1,x2,…,xi−1,xi,0,0,…,0,1||… || Cx1,x2,…,xi−1,xi,1,1,…,1,1 is obtained 
at the end of Step 2 (d) if the protocol is not terminated during execution.
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First, we show the correctness when both Alice and Bob are honest. Alice sends 
[S1] = [commit(xi ⊕ bi)] and [S�

1
, S��

1
] = [commit(xi ⊕ bi), swap(bi, T0||T1)] to Bob. 

Bob swaps the pair of [S�
1
, S��

1
] if xi ⊕ bi = 1 . Thus [S�

2
, S��

2
] = [commit((xi ⊕b

i
)⊕

(xi ⊕ bi)), swap(xi ⊕ bi, swap(bi, T0||T1))] = [commit(0), swap(xi, T0||T1)] . Since 
S�
2
= commit(0) , S′′

2
 is not swapped and the output is the left half of swap(xi, T0||T1) , 

which is Cx1,x2,…,xi−1,xi,0,0,…,0,0||Cx1,x2,…,xi−1,xi,0,0,…,0,1||… ||Cx1,x2,…,xi−1,xi,1,1,…,1,1 There-
fore, the output is correct.
The protocol is secure since Alice sees S�

2
= 0 and Bob sees S�

2
= 0 and S1 = xi ⊕ bi 

but bi is an unknown random value for Bob.
Next, consider the case when Alice is malicious and Bob is honest. If Alice 

opens an envelope during the private operation, Bob can detect misbehavior. 
Next, consider the case when Alice does not execute the private random bisection 
cut correctly. Since the numbers of cards in [S1] and [S�

1
, S��

1
] differ, making incor-

rect pairs of envelopes (for example, the left envelope of [S1] and the right enve-
lope of [S�

1
, S��

1
] are sent to Bob as [S1] ) is detected by Bob when Bob opens [S1] . 

The only cheat that cannot be detected by Bob is incorrectly swapping each pair 
of envelopes. Though the cheat cannot be detected, the result becomes cor-
rect as shown below. Let bi and b′

i
 be the random bits selected to swap the enve-

lopes that have [commit(xi)] and [commit(xi), T0||T1] , respectively. The output by  
Alice is [S1] = [commit(xi ⊕ bi)] and  [S�

1
, S��

1
] = [commit(xi ⊕ b�

i
), swap(b�

i
, T0||T1)] . 

After Bob opens [S1] = [commit(xi ⊕ bi)] , Bob swaps the envelopes if  
xi ⊕ bi = 1 , thus the result [S�

2
, S��

2
] = [commit(x

i
⊕ b

�
i
⊕ x

i
⊕ b

i
),

swap(xi ⊕ bi, swap(b
�
i
,T0||T1))] = [commit(bi ⊕ b�

i
), swap(xi ⊕ bi ⊕ b�

i
,T0||T1))]. When  

the players open S′
2
 , the left half cards of S′′

2
 is the output if bi ⊕ b�

i
= 0 . The right half 

cards of S′′
2
 is the output if bi ⊕ b�

i
= 1 . This is equivalent to execute swap(bi ⊕ b�

i
, S��

2
) 

and select the left half cards. Since swap(bi ⊕ b�
i
, swap(xi ⊕ bi ⊕ b�

i
,

T0||T1)) = swap(x
i
, T0||T1) , the output T = T0 if xi = 0 and T = T1 if x1 = 1 . Thus, 

T = Cx1,x2,…,xi−1,xi,0,0,…,0,0||Cx1,x2,…,xi−1,xi,0,0,…,0,1||… || Cx1,x2,…,xi−1,xi,1,1,…,1,1 . The result 
is correct regardless of the selection of bi and b′

i
.

The protocol is also secure in this case since Alice sees S�
2
= bi ⊕ b�

i
 and Bob sees 

S�
2
= bi ⊕ b�

i
 and S1 = xi ⊕ bi but bi is an unknown random value for Bob.

Next, consider the case Alice is honest or malicious and Bob is malicious. Alice 
might incorrectly execute the private random bisection cuts using bi and b′

i
 as in 

the above case. The other cheats such as irregularly opening envelopes and making 
incorrect pairs of envelopes are detected by Bob as shown above. If Bob opens an 
envelope of [S�

1
, S��

1
] , the cheat can be detected by Alice. If Bob makes an incorrect 

pair of envelopes (for example, the left envelope of [S1] and the left envelope of 
[S�

1
, S��

1
] are shown public as the two envelopes of [S�

2
, S��

2
] ), the cheat can be detected 

by Alice when they open [S�
2
, S��

2
] because the numbers of cards in [S1] and [S�

1
, S��

1
] 

differ. Next, consider the case when Bob does not set the envelopes correctly. When 
Bob sees xi ⊕ bi , Bob does not swap the envelopes correctly, that is, Bob selects 
some value b��

i
(≠ xi ⊕ bi) ∈ {0, 1} and swaps the envelopes of [S�

1
, S��

1
] using b′′

i
 . If 

b��
i
= xi ⊕ bi , the result is correct as shown above. Thus the only cheat selection of 

b′′
i
 is b��

i
= xi ⊕ bi = xi ⊕ bi ⊕ 1.

In this case, the result is [S�
2
, S��

2
] = [commit(xi ⊕ b�

i
⊕ b��

i
), swap(b��

i
, swap

(b�
i
, T0||T1))] = [commit(b�

i
⊕ bi ⊕ 1), swap(xi ⊕ bi ⊕ b�

i
⊕ 1, T0||T1)] . When Alice  
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and Bob open S′
2
 , the right half cards of S′′

2
 are used as the output if bi ⊕ b�

i
⊕ 1 = 1 , 

otherwise the left half cards of S′′
2
 are used as the output. This is equiva-

lent to execute swap(bi ⊕ b�
i
⊕ 1, S��

2
) and select the left half of cards. Since 

swap(bi ⊕ b�
i
⊕ 1, S��

2
) = swap(bi ⊕ b�

i
⊕ 1, swap(xi ⊕ bi ⊕ b�

i
⊕ 1, T0||T1)) = swap

(x
i
, T0||T1) , the output is T0 if xi = 0 , otherwise the output is T1 , that is, 

T = Cx1,x2,…,xi−1,xi,0,0,…,0,0||Cx1,x2,…,xi−1,xi,0,0,…,0,1||… || Cx1,x2,…,xi−1,xi,1,1,…,1,1 . Therefore, 
the output is correct regardless of the selection of bi and b′

i
.

The protocol is secure in this case since Alice sees S�
2
= bi ⊕ b�

i
⊕ 1 and Bob sees 

S�
2
= bi ⊕ b�

i
⊕ 1 and S1 = xi ⊕ bi but bi is an unknown random value for Bob. 	�  ◻

The protocol is 2n + 1 rounds since Step (d) of i-th iteration of the loop and Step 
(a) of (i + 1)-th iteration of the loop can be executed in the same round. The protocol 
uses 4n + 2n+1 cards.

Multiple Output Protocol

Multiple copies of output data of computation might be needed in some cases. For 
example, consider the case when we calculate w = (x⊕ y) ∧ (x� ⊕ y�) . We calculate 
z = x⊕ y , z� = x� ⊕ y� , and then w = z ∧ z� . To calculate w , two copies of output 
value z are necessary at calculating z = x⊕ y . Thus, multiple output protocols are 
necessary. A method to obtain m(> 1) copies of the output is preparing m copies of 
commit(y ). We show XOR and AND protocols that output multiple copies of the 
result.

Protocol 5  (multiple output XOR protocol)
Input: two copies of commit(x ) and m(> 1) copies of commit(y).
Output: m copies of commit(x⊕ y).
The differences from Protocol 2 are as follows:
Step 1: Alice and Bob publicly put cards of one commit(x ) and m commit(y ) 

into two envelopes. The left (right) cards of commit(x ) and m copies of commit
(y ) are put into the left (right) envelope, respectively. The two envelopes have 
[commit(x), commit(y), commit(y),… , commit(y)] . The remaining commit(x ) is put 
into two new envelopes as in Protocol 2.

Step 3: At the end of Step 3, the cards in the envelopes are denoted 
[S�

2
, S��

2,1
, S��

2,2
,… , S��

2,m
]

Step 4: The procedure until opening the cards of S′
2
 is the same as in Protocol 2.

If S�
2
= 0 , S��

2,1
, S��

2,2
,… , S��

2,m
 are the outputs of the protocol. If S�

2
= 1 , swap the 

left and the right cards of S��
2,i
(i = 1, 2,… ,m) and the results are the outputs of the 

protocol.

The proof of correctness and security is just the same as the one for Protocol 2.
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Protocol 6  (multiple output AND protocol)
Input: two copies of commit ( x ) and m(> 1) copies of commit(y).
Output: m copies of commit(x ∧ y).
The differences from Protocol 3 are as follows:
Step 1: Alice and Bob publicly put cards of one commit(x ) and m commit

(y ) and commit(0 ) into two envelopes. The left card of commit(x ) and m cop-
ies of commit(0 ) are put into the left envelope. The right card of commit(x ) and 
m copies of commit(y ) are put into the right envelope. The two envelopes have 
[commit(x), commit(0)||commit(0)||… ||commit(0)||commit(y)||commit(y)|| 
… ||commit(y)] . The remaining commit(x ) is put into two new envelopes as in Pro-
tocol 3.

Step 3: At the end of Step 3, the cards in the envelopes are denoted [S�
2
, S��

2,1
|| 

S��
2,2
||… , ||S��

2,2m
] , where S��

2,i
(i = 1, 2,… , 2m) is one pair of cards.

Step 4: The procedure until opening the cards of S′
2
 is the same as in Pro-

tocol 3. If S�
2
= 0 , S��

2,1
, S��

2,2
,… , S��

2,m
 are the outputs of the protocol. If S�

2
= 1 , 

S��
2,m+1

, S��
2,m+2

,… , S��
2,2m

 are the outputs of the protocol.

The proof of correctness and security is just the same as the one for Protocol 3.
We can obtain an n-variable Boolean function calculation protocol that outputs m 

copies using the same idea using 4n + 2n+1m cards.
There might be some cases when the number of necessary copies of some value 

is changed during execution. For example, the players securely calculate Boolean 
function z, f0, and f1 . The intermediate result z is opened, which is 0 or 1. Next, 
the players need to calculate fz ∧ yi(i = 1,… , n) . Since many copies of f0(f1) are 
necessary only if z = 0(z = 1) respectively, preparing many copies of f0 and f1 in 
advance is wasteful. In such cases, a copy protocol is used during execution. We 
show another protocol that directly increases the number of copies of input data 
using the XOR protocol.

Protocol 7  (copy protocol)

Input: two copies of commit(x).
Output: m(> 2) copies of commit(x).
Execute Protocol 5 with input x and m copies of y = 0.

Since x⊕ 0 = x , m copies of x are obtained.
Last, we show a method to obtain multiple copies of input x using envelopes.

Protocol 8  (multiple input protocol)
Input: m(> 1)  cards and m  cards.
Output: m copies of commit(x ). 

1.	 The players publicly put m face-down  ( ) cards into the left (right) envelope, 
respectively.
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2.	 The input player who has the private input value x privately swaps the two enve-
lopes if x = 1 , otherwise, does nothing. The input player makes the two envelopes 
public.

3.	 A player claims that the input player misbehaved and terminates the protocol if 
an envelope is opened. The players open the envelopes together. Two piles of 
face-down cards are obtained. When the players select one card from each of the 
piles, a copy of commit(x ) can be obtained, thus m copies of commit(x ) can be 
obtained.

Note that a malicious input player might input x̄ instead of x , but it is impos-
sible to prevent such a cheat since no other player knows the secret value x.

When we calculate general logical functions using XOR, AND, and copy pro-
tocols, we need to prepare two copies of each input. Any number of copies of a 
value can be obtained by using the copy protocol at any time, if there are two 
copies of each value. Obtaining two copies of an intermediate output value can 
be realized by the above protocols; thus, any logical functions can be calculated 
securely using these protocols.

Conclusion

This paper proposed new protocols using private operations that are secure against 
malicious players. We show logical XOR, logical AND, copy, and n-variable 
Boolean function calculation protocols that use envelopes as an additional tool. 
Since the envelopes are a very powerful tool to restrict swap executions, some mali-
cious executions are corrected in the protocols.

We can consider weak tools for preventing the illegal opening of face-down cards, 
for example, seals on the marks of the cards. They cannot restrict swap executions. 
One of the open problems is considering secure protocols with such weak tools.
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